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Abstract

In this thesis, the gradient descent algorithm for noiseicadn is investigated, partic-
ularly with respect to its convergence properties as thgtkenf the trajectory required
to be “noise reduced” tends to infinity. This investigaticegims by considering the re-
sults of applying the gradient descent algorithm to noisyettories from some simple
dynamical maps. These experiments suggest the type of igamee result that might
hold, as well as indicating the type of dynamical system fhrol noise reduction might
be expected to work. The aim of the rest of the thesis is tordtgally justify the con-
clusions of these experiments. In particular, the maingasuo rigorously prove that for
a certain class of dynamical systems, the gradient deslggrttam will converge (as the
length of the noisy trajectory given tends to infinity) onke tcorrect “clean” trajectory
everywhere, except near the initial and final points. Thathiat the errors between the
“noise reduced” trajectory points and the original “cledrdjectory points can be made
arbitrarily small by taking the length of these trajecterleng enough, except near the
initial and final points of the trajectories. The proof is édon relating the non-linear
gradient descent algorithm to a linearised version. The@gence result for the noise
reduction is shown for the linearised gradient descent biyidg explicitly computable
analytic bounds for the errors at each point. These bouredthan shown to generalise
to the non-linear gradient descent, provided that a cedadlition is met. The question
of which dynamical systems satisfy this condition remaiperg but it is conjectured that

it is satisfied, in fact, for any non-linear dynamical systefithe class considered.
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Chapter 1

Introduction

1.1 Noise Reduction

In the course of determining a quantity from an experimesyatem, some error will be
introduced. These errors are generally referred to as ndiken the size of the errors are
significant when compared to the quantity that is requirdaetoneasured, it is obviously
important to know if the amount of noise can be reduced, asd, ihow this reduction can
be achieved. If the measurement is from a system which vslogdy with time (slowly
with respect to how often the measurements are made), teeents likely that the error
will be reduced by averaging the results of many deternonati This of course assumes
that there is ndviasto the errors — that is, that the errors should average owrtmin the
limit of infinitely many measurements. If the system doesvaoy slowly with time, then

it cannot be assumed that the measurement will give the sasveea (up to noise) each
time. Instead, it is necessary to make an assumption abeuth®measured quantity
should vary with time.

Successive determinations of such a quantity are usuafhetd atime series Time
series analysis is a vast area of study, and different agsams@bout how the measured
quantity should change with time lead to different analyshniques (see [29] for an
introduction to non-linear time series analysis). How a suead quantity varies with
time is really a reflection of thdynamicsof the system that is being investigated. One
of the most common assumptions then, is that the system bglaavdinear dynamical
system This is an obvious generalisation of the no-change sanatind as such, should

be expected to be a reasonable assumption for a broaderohagperimental systems.
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Given a linear dynamical system and knowledge of how the tfyaof interest relates
to it (the physicsof the system), there are many ways of attempting to redue@dise
on each measurement made. A traditional method is torftise-freeime series to the
observed measurements usintgast-squares erroapproach. That is, the sum of the
squares of the differences between each observed measiirantethe corresponding
fitted series value is minimised. As with the no-change sitnathis procedure might be
expected to reduce the amount of noise present at each ragesr provided there is no
bias to the errorgyr in the fitting

A bias in the fitting can be caused by using the wrong dynansigstiem to generate
noise-free data. Generally, there is no reason to expectitbaxperimenter knows the
exact dynamics of their system. In fact, it is possible th&t is what the experimenter
hopes to elucidate. To generate noise-free data to fit to Hesarements, it is therefore
necessary to have a model (generally a class of models) vidniaksumed to include
the experimental system (or at least a satisfactory apmpaton of it). The problem
of noise reduction therefore leads, inexorably, to the lemobof modellinga dynamical
system. A good model of a dynamical system should be ableowige noise-free data
that approximates the observed measurements. This aitdatia is hopefully close to the
true valuesof the experimental quantity being investigated, and mayetfore represent
successful noise reduction.

Hence the problem of noise reduction is intimately relatethe modelling problem.
It should also be noted that the fitting of the artificial datdéite observed measurements
after a model has been chosen, reflectssthge estimatioproblem: Given an observed
time series (noisy), can the state of the dynamical systesorae particular time (say the
initial or final point of the series) be determined? The pdiete is that a good model
needs a good initial condition (or end condition, or bothyider to yield good artificial
data. Noise reduction therefore is also intimately relatetthe state estimation problem.
Note however, that state estimation asks for the state afriderlying dynamical system,
whereas noise reduction is only concerned with the depemplemtity of interest. State
estimation is therefore (generally) more fundamental.

For linear dynamical systems, the problems of modellingtesestimation and noise
reduction have been investigated thoroughly, and answerssaally discussed in the lan-

guage ofkalman Filter theory([3, 4]). However, for non-linear dynamical systems, the
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theory pertaining to these problems is far less developadi has only recently become
commonly applied to practical problems. In this thesis,adg@nt descent algorithm for
noise reduction is presented and its performance wheneapfwi non-linear dynamical
systems investigated. In particular, it is shown that nogskiction is guaranteessymp-
totically—that s, in the limit of infinitely many measurements (camgrinfinite time) —
at all data points except those near the initial and finaligsdsubject to several conditions

and assumptions of course). This algorithm is introducéovbe

1.2 Gradient Descent and Other Algorithms

Throughout this thesis, it will always be assumed that theadyics of the system under
investigation will be known. This assumption is made to difpphe analysis. Further,

the dynamical system will be assumed todigcrete

Yirr=f(), T€Z,
and the dynamical mag, will be assumed to be a diffeomorphism from (a subseRdf)
into itself!. Let {x}I";, x € RY, be the set of experimental measurements made (equally
spaced in time). It is convenient to regard this set as a vatiR"™: x = (X1, X2, ..., Xn).
The output of the noise reduction algorithm is thereforetlagovector inR™ which will
be denoted by. Because the dynamical map is assumed to be known, therdassof
generality in assuming that the noise on the measuremeadslisve. If the true value at

timei isy; then, the noisy measurements must satisfy

X =VYi+4
where thed are a realisation of some noise distribution (assumed enldgntly and
identically distributed). In the forthcoming analysis @er 5), this noise distribution
will be assumed to be bounded. Clearly this is not a severitakion.

The gradient descent algorithm for noise reduction is devi@. A determinism func-

tion L: R" — R is defined by

n—1
L0 =5 3, s 1 00)1” CED

Later, f will be restricted to act on a compact manifditifor technical reasons. However, the noise
reduction algorithms are more conveniently discussed icliean space, and it is clear that their action

can always be transferred back onto the manifold using theogpiate charts.
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The norm used in this definition is completely arbitrary — sti@ndard Euclidean norm

is convenient (it has nice analytic properties) and will Bediin what follows. Note that

L (x) = 0 precisely when the poinis € RY form a deterministic trajectory df. Generally,

the noisy measurements do not form a deterministic trajgdbat the idea is that one can

be generated by minimisinlg This can be done via gradient descent, hence the name.

The algorithm therefore amounts to solving the set of déffial equations
X(t)=-0L(x(t)), x(0)=x (1.2)

The noise reduced trajectory, iS then given by = lim;_,., X(t). The “time” variablet
used in the gradient descent will be referred to asdiggcent timéo distinguish it from
the discrete “time” implicit in the iteratiog — yi 1 = f (i).

This algorithm was introduced (in this context) by Daviek2{), as an alternative
to the earlier algorithms of Kostelich and Yorke ([32]), Hawal ([21]), Schreiber and
Grassberger ([16]) and Farmer and Sidorowich ([15]). Thehorkof Kostelich and Yorke
involved replacing each small segment of the noisy trajgdiy a nearby trajectory that
better fitted thdinearisationof the dynamics in that segment. Hammel improved this by

using a Newton-Raphson type algorithm to compute a commanaféhe functions
& =X1— f(x).

Each iteration of the Newton algorithm amounts to finding theque solution of a set

of algebraicequations (rather than differential ones), provided tmaextra constraint

is imposed upon the;. The constraint chosen by Hammel (on the basis of previous
work) was to sek; to be zeroin the stable directiorand &, to be zeroin the unstable
direction These are directions (relative to the noisy points) wHediecally contracts and
expands distances, respectively (see Chapter 3). Thatalgasf Farmer and Sidorowich

on the other hand, aims to find the closest deterministiedtajy to the noisy data. This

corresponds to minimising
n
L' (w) = Zillxi —wi?
i=

(where thex; are the noisy data points) subject to the constramts = f (w;), i =
1,...,n—1. Using Lagrange multipliers, the minimisation can be eeéd using New-

ton’s method (again).



The justification for these algorithms typically involvdetShadowing Lemma ([8,
17]). This states that if the data came fronmygperbolicdynamical system (defined in
Chapter 3), then for sufficiently small bounded noise, a medeterministic trajectory
can always be found. If the data sequencifigite (in past and future) then the nearby
deterministic trajectory is unique. It seems plausiblattiat for a finite (but sufficiently
long) data sequence, the nearby deterministic trajectayld be almost unique — all the
sufficiently close trajectories are identical (to an exaailapproximation) except perhaps
near their initial and final points (where the finite lengthnmgortant). In [13], Davies
argues that therefore there is no point in explicitly trytodind theclosestdeterministic
trajectory to the noisy data — any deterministic trajectfmasonably near by) looks
like the closest except around the initial and final pointse §radient descent algorithm
(which just finds a deterministic trajectory) should thusalsegood at noise reduction as
that of Farmer and Sidorowich.

It is not the aim of this thesis to compare the performancasotde reduction algo-
rithms. As stated before, the aim isgmove rigorouslythat the gradient descent algorithm
will achieve noise reduction (under certain conditiong)rdcent work addressing a sim-

ilar problem ([35]), Lalley notes that

Although variousad hoc“noise reduction” algorithms have been pro-
posed (some seemingly quite effective when tested on camnpgenerated
data from low-dimensional chaotic systems, ...), theioth#@cal properties

are largely unknown.

He then introduces another noise reduction algorithmmndesa result concerning its
theoretical performance. The setup is as follows. Suppoesg(y;}., is a trajectory
of a twice-differentiableAxiom Asystem (see [49] for a definition), thatis the noisy
measurement gof; and that the noise comes from a distribution bounded byith mean
zero). The performance of the algorithm will be evaluatethia limit that the number
of points, n, tends to infinity. Letk, be a slowly increasing sequence of integetisor
eachj betweenk,+ 1 andn — K, consider thesub-trajectoryof {x;} consisting of the
2Kn + 1 points centred around. This will be called the,-trajectory abouk;. Then for

eachj, find all thex, for which thekp-trajectories about, have each point within &

2For technical reasons, Lalley suggests taking- logn/ loglogn.
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(say) of the corresponding point in tig-trajectory abouk;. The noise reduced point
Xj is defined to be the average of thege If | < kyor j > n—kn+1, X is defined to
be xj. What this means is that all the sub-trajectories (of a gleagth) which “look”
sufficiently like the sub-trajectory centred gpare found, and the central points of each
of these sub-trajectories are averaged to get the noiseeddointxj. Lalley’s result is

the following:

Theorem 1.1 (Lalley) For the “averaging” algorithm described above, if the noiseund
0 is sufficiently small, then for evegy> 0, the probability that the proportion of points

where the noise reduction fails exceexsends to zero as n tends to infinity. That is,
. 1 . .
lim P =i llyi =% > e} > € ) =0.

Furthermore, if the initial point of the clean trajectoty; } was chosen at random from
the SRB-measure, then with probability one, the errors betweemthise reduced points
and the clean points converge uniformly to zero, exceptraddhe initial and final points.
Specifically,

lim max [yi—X]| =0
N—0 Kn+1<i<N—Kp

with probability one.

This result relies heavily on the statistical theory of dymzal systems (ergodic the-
ory). Information on this (and SRB-measures) may be fourjd,ii4, 53]. Lalley’s result
guarantees (with probability one at least) that in the liofiinfinite data, the averaging
algorithm returns the original clean traject@yceptear the initial and final points (pro-
vided the clean trajectory is “typical”). In Chapter 5, a 8an(though slightly stronger)

result is proved for the gradient descent algorithm.

1.3 Indistinguishable States

The motivation behind studying the theoretical propertiethe gradient descent algo-
rithm did not, however, come from Lalley’s result, nor diccdme from consideration
of the noise reduction literature. This study was in factiaed by the theory oindis-

tinguishable statesf Judd and Smith ([28]), and relates to the state estimatioblem.
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This theory and its relation to the gradient descent allgorivill be summarised here for
completeness.

Suppose that semi-infinitetime series is given, ..,X_2,X_1,Xp), terminating at time
0. The aim is to determine the state of the underlying dynahsigstem at time 0 so that
the values okj, Xz, ... may be predicted. If the time series is noise-free (and tlaey+
ing dynamical system is smooth), then Takens’ Theorem )[i5iplies that an equivalent
dynamical system can be constructed for which the statenat®is known exactly, and
which gives the time series as the actual underlying dynalmistem. Furthermore, only
a finite (but sufficiently long) time series is required forstisonstruction. If the time-
series is noisy however, it is clear that the exact stateatamm determined in this way
from a finite time series. The question is whether the exateé £tan be determined if the
entire semi-infinite time series is used.

The noise on the time series will be assumed independendantigally distributed
with distributionp. Given a noisy measuremextthen, there are many candidates for
the exact point that gave rise to it. These candidates adetgdie indistinguishable
from one another, on the basis of the measureme@bviously, knowledge of the noise
distribution would let one quantify which candidates wererenlikely to have given rise
to x;. Take any two pointg; andy;. The probability ofy; andy; being indistinguishable

(writteny; ~ yi) on the basis of a noisy measurement, is given by
X —Yi)p (% —Y,) dx

[l (o)
(see Figure 1.1). Note that(i2 ~ y;) = 1 as it should.

p(
P(yi ~¥) =/ (1.3)

Suppose now that=(...,y_2,y-1,Yo) andy = (...,y ,,Y 1,Yy) are two possible

semi-infinite time series, which shall be assumed to be rfogse As the errors are as-
sumed independent of one another and are identically llisé&d from point to point, the

joint probability ofy being indistinguishable frory is given by
0
Py~Y)= ] Pvi~¥).

j=—o00

The interpretation is that if & ~ y') = 0, then there is enough evidence to conclude (with
probability one) thay andy cannot give rise to the same noisy time serieg/ PY) is
the probability thaty andy cannot be distinguished on the basis of the observation of

some noisy version of (ory).



Figure 1.1: If the pointy; andy are subjected to additive noise (which for clarity is
assumed to be bounded and uniform) then the noisy pointslaugithin the indicated
regions. If one such noisy measurement is observed, thenciear that one can tell
whether it came frony; or y; unless the measurement lies in the intersection of the two
regions. Theprobability that such a noisy measurement will distinguish between the
pointsy; andy is therefore proportional to the area of overlap of the tvghaes. Equation

1.3 is a direct generalisation of this.

The question of whether a semi-infinite noisy trajectorp\ali the unique determi-
nation of the final state (and hence the state at all times)nedwces to the question of
whether there are any other noise-free time series indigshable from the actual noise-
free time series. If so, then the final state is not uniquebcBed. To illustrate this,
consider the simple case of a one-dimensional dynamicésywith Gaussian noise.

That is, suppose that

A quick calculation shows now that
Plyi~y) = e b)eet

=~ Py~y) = exp{%i }yi—}/i}z}. (1.4)

i=—o0

Thereforey andy’ are indistinguishable if |y —yﬂz < 0, Thus,y—Yy must converge
to zero ag tends to—co. Forisotropic Gaussian distributions in higher dimensions, this
result generalises by replacihgby ||-|| (the Euclidean norm in higher dimensions). Sim-
ilar results are true for more general distributions ([28f) is convenient to introduce

a definition here. Thenstable manifolaf the pointyy (with respect to the dynamical
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system) is the s&t, (yo) given by (see also Chapter 3):
WL (Yo) = {)/0 ; iIﬂirp00 lyi —¥i|| = o} .

It follows now that ify andy’ are indistinguishable, they}, must lie on the unstable
manifold of yo. The convergence dfy; —Vi|| to zero in the definition of the unstable
manifold is exponential (for nice systems anyway, see Gha§jt so the converse is also
true.

Hence the final state cannot be determined uniquely. Howalléghe possible final
states must lie on the unstable manifold of the true finakstahis suggests that rather
than getting a “best estimate” of the final state and usingritprediction, one should
use arensemblsampled from the unstable manifold of the best estimates dhsemble
will contain the true final state (or at least a good approxiometo it). How is the best
estimate of the final state obtained? Judd and Smith use #uiegt descent algorithm
applied to the noisy data — the final point of the output becothe best estimate. This
may not be a superb estimate of the truth, but they claim (basenumerical evidence)
that the ensemble constructed this way will contain thehtrat least if the noise is not
too large. That s, that the gradient descent gives a bestaston the unstable manifold
of the true state. This claim is in fact equivalent to theroléinat in the limit of infinite
data, the gradient descent algorithm gives the true cleamderies except near the initial

and final points, as will be seen in Chapter 5.

1.4 Overview

The rest of this thesis consists of an attempt to give a rigomroof of the claim that
the gradient descent algorithm discussed above achielgsmaluction for a broad class
of dynamical systems. More specifically, that in the limitthe number of points in
the noisy trajectory given tends to infinity, the noise reztlitrajectory given by gradient
descent converges onto the original clean trajectory éxwsy the initial and final points.

This will be achieved by deriving analytic bounds on the eyrat each point along the

3Actually, this holds only for unbounded noise distribusotf p is bounded, theg andy, cannot be
too far apart, otherwise they will be distinguishable onlibsis of a single measurement. In this case then,

the set ofy;, for whichy andy’ are indistinguishable form a bounded subset of the unstaatefold ofy.
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trajectory, and showing that these bounds converge to asrthé length of the trajectory
tends to infinity) except near the initial and final points.

In Chapter 2, the gradient descent algorithm is applied tificgal data from some
two dimensional non-linear dynamical systems. These nigalexperiments show the
typical behaviour of noise reduction algorithms (as wekame atypical behaviour) and
suggest various constraints that must be made upon the dyedaystem in order to have
any chance of establishing rigorous bounds on the errorgpa@icular note here is the
phenomenon ofangencies Tangencies in non-linear dynamical systems are a bane of
noise reduction algorithms. Here, a couple of examplesraestigated numerically and
some interesting behaviour noted. However, no attempt genrawhat follows to treat
the effect of tangencies in a rigorous manner as this wounhtsi certainly require theory
more developed that what is used in this thesis (Pesin tHeomstance, see [42, 30]).

Chapter 3 introduces the parts of the standard theory ofinear dynamical systems
that is required in what follows. This includes summariesohtraction maps, stable
manifold theory, centre manifold theory and other gensadilbns, as well as a couple of
results concerning Lyapunov numbers. As a rule, proofslfdhese results are referred
to the literature. However, as the mandatory exceptiometiseone full proof. The result
is a simple fact about the stretching and contracting in adyoal system, but contains
a couple of subtleties which are often ignored and occallyomasinterpreted. This fact
(and its subtleties) are required for later proofs.

The technical work begins in Chapter 4. To get error bound#hi® noise reduction
of a non-linear system, the strategy employed is to relaie tihelinearised systenfor
which the analysis is somewhat easier. To this end then, #ngrtdn-Grobman Theorem
Is introduced and proven. This result is then extended te guantitativeinformation
about the correspondence between the system and its §agan (necessary for the an-
alytic bounds to be set up later). A generalisation of thetidan-Grobman Theorem due
to Kurata is then presented and proven, and this too is egtetalgive quantitative in-
formation. The quantitative extensions given in this cbapte due to the author — this
type of result is almost certainly known to experts but thesses do not seem to appear
in the literature. Additionally, the proof of Kurata's geabsation has been modified by
the author, both to clarify and explain the details of thigaint result, and to allow the

required quantitative extension to be proven as simply asipke.
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Finally then in Chapter 5, the proof that the gradient dese&yorithm guarantees
noise reduction begins. This result is first proven in theeadsa symmetric linear dy-
namical system for simplicity. The surprisingly difficulegeralisation for more general
linear systems follows, and from here it is a small matterasspto a linearised dynam-
ical system. The transition to the full non-linear systeneffected by constructing a
commutative diagram between the non-linear gradient aeseel its counterpart for the
linearised system. It is here that the technical resultshag@er 4 are used, to ensure the
components of the diagram have the correct properties. Uastigative nature of these
results allow the bounds from the analysis of the linearsgesiem to be carried across to
the non-linear system, provided a particular conditionaisséed (Condition 5.12), and
it is then shown that the non-linear gradient descent aeBiewvise reduction. This con-
dition is argued (though not proven) to be satisfied by anyadyinal system of the type
suggested by the experiments of Chapter 2. All the resulisi@thapter are the work of

the author.
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Chapter 2

Numerical Experiments

In this chapter, some results of the gradient descent #fgoifior noise reduction will be
presented and discussed. As the algorithm consists oingpévset of differential equa-
tions (equations 1.2), it is very easy to implement. Theofeihg results were obtained
using theode15s function inMATLAB by letting the descent-time variable increase un-
til convergence appeared to have been established. Thensysbonsidered will all be

artificial so that the original clean trajectory is known.

2.1 The Henon Map

Perhaps the simplest example of a non-linear diffeomonphiise HEnon map was intro-
duced and investigated numerically (by Hénon) in 1976]j[2 fact, he investigated a
family of maps, a version of which may be represented by thetfansf,p, : R? — R?
defined by

fap(Xy) = (a— X2 +by,X), (2.1)

wherea andb are given constants. Note thabit# 0, then this map is invertible. In what
follows, a shall be set to /5 andb to 3/10.

Numerical iteration of any point sufficiently close to thégam by f = f7/53/10 gives
a plot similar to that in Figure 2.1. All the points appearigodn (or very near) a smooth
curve. This curve folds back on itself so that its points remtounded, and it seems
reasonable to presume that the curve’s length is in factiiefifThis curve is called the

Hénon attractor althoughf has not yet been rigorously proven to even possess such an

1This is not the form usually given for this map ([18]), but thealitative features are the same.
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Figure 2.1: The Hénon attractor.

attractor in the technical sense of the word ([18], see atseeher, [6], and more recently,

[52]). Transverse cross sections of the attractor haveagtesemblence to a Cantor set,

and so the Hénon attractor is said toftactal or strange

The clean trajectory chosen for the gradient descent atgorhas ten points, with
initial point (—1.1709 1.6318) and final point0.4552 —1.1989) (approximately). Each
point of this trajectory is then perturbed by adding a randprantity to each coordinate.
In this case, a normal random variable with mean zero andiatdrdeviation 15 was
used. This “noised-up” trajectory was used as the initialdition for the gradient de-
scent. The output from the differential equation solvedusele15s ) is shown in Figure
2.2 (left). From this it would appear that convergence wasratd byt = 50. The ordinate

axis here measures the deviation in each coordinate of eanhgd the noisy trajectory

as the algorithm proceeds. That is(xf (t),y1 (1)), (x2(t),y2(1)),...

t, then the ordinate axis measures eacdh) — x (0) andy; (t) —y; (0) fori=1,2,...,n.
The coordinates of the points after convergence has beaavadnhgive the noise-

reduced trajectory. In this case, the value of the detesmiriunctionL (see equation 1.1)

was about & 1012 The noise-reduced trajectory is then compared with thgirai

14

, (% (1), yn (t)) rep-
resents the coordinates of each point when the gradien¢delsas reached descent-time



deviation

. . . . . . . . ! n . . . . .
0 5 10 15 20 25 30 35 40 45 50 1 2 3 4 5 6 7 8 9 10
time point

Figure 2.2: Convergence (left) and errors (right) from gpyg the gradient descent algo-

rithm to a ten point trajectory of the H&non map.

clean trajectory, and the errors (Euclidean) at each pdotial in Figure 2.2 (right). The
result is also summarised pictorially in space in Figure @i3ere the squares are points
of the original clean trajectory, the circles are pointst@f hoisy trajectory, and the lines
leading from them represent the progress of the gradiecedéslgorithm.

The errors displayed in Figure 2.2 show a typical trend fas@oeduction algorithms:
They are quite small except near the initial and final poiritéhe trajectory. The error
values themselves depend on which particular noisy t@jgatias generated from the
clean one, but as may be seen in Figure 2.4, the “shape” oftbedistribution remains
the same, and its amplitude does not vary significantly innitage, even when a longer
piece of trajectory is considered.

The clue to why this should be so is contained in Figure 2.&r&lare three instances
here where the gradient descent algorithm has convergeti@gbisiobviously the wrong
point — the two points at the top left and one of the points atdbttom centre. It is easily
checked (and should be obvious from the error graph in Fign®ethat these are the initial
point, the final point and its predecessor. In fact, the fim@hipand its predecessor are the
points which appear to converge onto the attractor, whdtreamitial point is the point
which does not. Rather, the initial point appears to corwemfothe attractof of f=1,

the inverse Hénon map. It is somewhat difficult to get a pectf this inverse attractor,

2Actually this is not an attractor. Nearby trajectories docmme closer and closer to it, but rather tend

further and further away. It is more correct to label thisisture arepellor
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Figure 2.3: The Hénon attractor and the progress of thegmadescent algorithm. The
squares label the points of the clean trajectory, the d@itle points of the noisy trajectory,
and the lines emanating from the circles represent the gssgof the gradient descent

algorithm.
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Figure 2.4: Errors from ten different noise realisationdextito a ten-point trajectory (left)

/

2 14 16 18 20

and a twenty-point trajectory (right) of the Henon map. é&ltitat the shape of the error
distributions is largely unaffected by the particular maisalisation used, and the average
size of the errors at the initial and final points seem to bdfeai@d by how many points

are used.
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Figure 2.5: A magnification of the top-left of Figure 2.3 shiogvadditionally, a piece of
the inverse Hénon attractor. Note that one point appeatstigerge onto the attractor

whereas the other appears to converge onto the inversetattra

as it is unbounded so iterates under' have a habit of ending up at infinity. However,
the piece passing through the initial point of the clearettary is easily generated and is

shown in Figure 2.5.

So, the final point of the noise-reduced trajectory lies an pglece of the attractor
which passes through the final point of the original cleajettary, and the initial point
of the noise-reduced trajectory lies on the piece of therswattractor which passes
through the initial point of the original clean trajectofiy make this statement a little less
cumbersome, note that the relevant pieces of the attrastbingerse attractor appearing
above are in fact, (local) unstable and stable manifpldsspectively. Therefore, after
gradient descent, the computed final point should be on tlséable manifold of the
correct final point, and the computed initial point shouldbipethe stable manifold of the

correct initial point.

3See chapter 3 for definitions.
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Figure 2.6: Phase portrait showing the dynamics of the mdipetkein equation 2.2.
The fixed point at the origin is a saddle point with the veltitigection stable and the

horizontal direction unstable.

2.2 Refinements

The conjecture of the previous paragraph is, unfortunafallse as it stands. As a coun-

terexample, consider the systgm: R? — R? defined by

9 (%,Y) = (62 + (1+€)x, (1 ¢€)y). (2.2)

This dynamical system has a fixed point at the origin. A phasgrdm showing various
trajectories is shown in Figure 2.6. A ten-point trajectofyg; 5o Was generated with
initial point approximately(0.00350.2210). Gaussian noise with mean zero and standard
deviation /50 was added to each coordinate of each point of the trajgeetod the result
was then noise reduced using the gradient descent algoritma results are shown in
Figure 2.7. Note that the initial and final points of the neisduced trajectorphave

not converged onto the stable and unstable manifolds of theittitial and final points
(respectively). Note also the shape of the error distrdsut- the errors near the middle
of the trajectory ar@ot small compared to those at the initial and final points.

The noise-reduction algorithm fails for this example begathe algorithm has not

18



x10°

Figure 2.7: Results from applying the gradient descentrdlgu to a ten-point trajectory
from the mapy, /29. The symbols are used as they were in Figure 2.3. The stalviéaith
of the initial point of the clean trajectory and the unstaml@nifold of the final point are

also shown (upper left and lower right respectively).

been given a long enough trajectory. If it is given forty gsifwith the same initial point
say), then a typical result is shown in Figure 2.8. Note tloat the initial and final points
are on the stable and unstable manifolds (or at least muskrcio them). Also, the error
distribution now has the expected shape even if the errdheimiddle of the distribution

are still not small.

It would seem then that for a sufficiently long trajectorye @trror distribution will be
such that the errors decay at first, reach a minimum, and tieeedse towards the end. It
is convenient to think of this distribution as having two qmments, one each correspond-
ing to the stable and unstable manifolds of the points ofrdjedtory. The error along the
stable manifold decreases (exponentially) and that albegihstable manifold increases
(exponentially). If the rates of increase and decreasdetaxpansion and contraction
rates) are close to unity, then a long trajectory will be regfito make the errors in the
middle small (see chapter 3, especially section 3.3.1 faierna these rates). This is the
case with the mapg; for € small, whose expansion and contraction rates aree and
1-— ¢ respectively (in fact, this map is a small perturbation ahaar map — indeed the
linear map would have sufficed for the above discussion).tik@iHénon map (equation

2.1), the expansion and contraction rates can be approxéhmatmerically, and are about
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point

Figure 2.8: Results from applying the gradient descentrdlgua to a forty-point trajec-
tory from the mam; 2. The initial point is at top-left, the final point at bottorigint.

1.52 and 0198 ([2]). Therefore, only a few points are needed to makeethars in the
middle of the trajectory small. Note that in Figure 2.4 thees do indeed decrease much
more quickly at the start, than they increase towards thé end

Of course, it is possible that the map used has an expansmntiaction rate equal
to unity. That is, there is a direction where the map does igstifscantly expand or
contract distances. On the basis of the previous paraghegh the error distribution of
a trajectory from such a map would not be expected to be snakhatter how long the
trajectory was. A simple example confirming this statemsrthe identity map — the
errors after noise reduction are necessarily constant froimt to point. Such maps are
referred to as beingon-hyperboli¢to contrast with the maps whose rates of increase and
decrease are not unity, callagiperbolicmaps. Hyperbolicity will be discussed further in
Chapters 3 and 4.

It should be mentioned here that the errors in the middleefridgectory will decrease
as the length of the trajectory increag@svidedthat the errors at the initial and final
points of the trajectory remain (approximately) constdritat is, these errors should be
of the same order of magnitude as the amount of noise orlgiadtied, regardless of the
length of the trajectory used. That this should be true isagdy a plausible statement

to make, but it is by no means clear that it must Holdf however, it is the case that

40ne can try to force such a requirement by adding an extrattethe determinism function (equation

1.1) which penalises trajectories whose points are far dvesry the points of the original noisy trajectory.
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all the errors are small, and that this holds for arbitramnglérajectories as well, then it
would be expected that the errors would lie in the stablectioa for the initial point and

in the unstable direction for the final point. For otherwidee component of the initial
error in the unstable direction would be expected to grovoagptially, contradicting the
smallness of the errors everywhere. Similarly with the ferabr. Therefore, the goal of
the analysis of noise reduction algorithms should be to ettt the errors do remain

small, regardless of the length of trajectory.

2.3 Tangencies

Consider now one last example, the lkeda map. 4 : C — C defined by

d

Napcd(2) =a+ befz, f=c——,
1+

(2.3)

introduced as a model for a cell in an optical computer ([25his can be expressed as a

real function oriR?, which shall also be denoted by, ¢4 and takes the form
hapbcd (X Y) = (a+b(xcosf —ysin),b(xsind +ycosh)), (2.4)

wheref =c—d (1+x2+y2)71. In what follows,a=1,b=2/5,c=9/10 andd = 6.
The attractor foh = hy 55 9/106 IS sShown in Figure 2.9.

A twenty-point trajectory was chosen with initial poif@.9255 —1.0126) and final
point (1.1243 —2.1607) (approximately). Gaussian noise with mean zero and stdndar
deviation /10 was added to this trajectory before the gradient desdgatitam was
applied. The resulting errors feendifferent noise realisations are shown in Figure 2.10.
The interesting feature here is the presence of “spikedieretror distributions at points
(times) 3, 8 and 16. Almost every noise distribution yielager than expected errors at
these points, and the points nearby also have larger ehamnsstxpected. Itis as if at these
points, the noise reduction algorithm fails, and the rasidbme sort of patching together
of what might result if the algorithm were applied to the épries corresponding to
points 1 to 3, 3t0 8, 8 to 16 and 16 to 80parately

The cause of this “spiking” phenomenon may be found by examgithe stable and

unstable manifolds of the offending points. These are shiaviAigure 2.11. Notice that

The value of such a term has not been established however thesdescussion at the end of Chapter 5.
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Figure 2.9: The lkeda attractor.
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Figure 2.10: Errors from ten different noise realisatioddead to a trajectory from the

Ikeda map.
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Figure 2.11: Points 3, 8 and 16 from the clean Ikeda trajgatonsidered, with their
stable manifolds (dotted lines) and unstable manifoldéddmes). Note that at each

point, the angles between the stable and unstable mandotdgery small.

for points 8 and 16, the stable and unstable manifolds agpelae tangent to one an-
other at the clean trajectory point, and for point 3, althotige manifolds are not tangent
there, the angle between them is quite slight. In fact, thigeshmay be numerically ap-
proximated quite easily ([47]) and are (abou28for point 3, 28° for point 8, and 12°
for point 16. Points where the angle between the stable asthble manifolds is small
are termedhear-tangency pointsr often justtangency pointsAt these tangency points,
the algorithm would seem to have difficulty distinguishingieh direction is stable and

which is unstable, and therein lies its failure.

There are certainly points on the Ikeda attractor where tiggeabetween the stable

and unstable manifold is exactly z&raHowever, it might be expected that such points

SThese are defined to be the angles between tangent linessfstathle and unstable manifolds at the

point. See section 3.3.1.
6This is true of the Hénon attractor as well. It is the “folgirof the attractor back on itself (which is

necessary for allowing expanding directions whilst kegpime attractor bounded) that forces tangencies
to occur — hence they should be present in any system of this Bpiking occurs in noise reduction of

Hénon trajectories too, though somewhat less frequently.
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Figure 2.12: Errors after gradient descent from the Ikedgdtory considered after the
gradient descent algorithm has been to descent-times P5250 and 1000. The distri-

bution remained constant for descent-times greater th@@.10

are extremely rare (this expectation is justified in TheoB85), and thus that they will
never be encountered, practically. Therefore, for a givajedttory, the gradient descent
algorithm should be able to sort out which direction is stabid which is unstablgjven
enough time Perhaps the “spiking” effect seen in Figure 2.10 is an actedf poor con-

vergence.

Figure 2.12 shows the errors induced by the gradient deségmtithm for the lkeda
trajectory, at descent-times 25, 100, 250 and 1000. Rdwallfor the Hénon trajectory
considered in section 2.1, convergence was complete bydesme 50. It is apparent
that convergence is obtained for the Ikeda trajectory byelgstime 100, except in the
vicinity of the tangency at point 16. No further change in &neor distribution was ob-
served beyond descent-time 1000, however. Why points meatangency are slow to
converge compared with points near another, is not cledacthwith other noise realisa-
tions, it is sometimes observed that the tangency at poisti& one which takes a long
time to converge, so it can only be concluded that the preseftangency points in a

trajectorymaymean that the convergence of the gradient descent algoistiiery slow.
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Figure 2.13: A logarithmic plot of the error distributionffea noise reduction for thirty
different noise realisations added to a fifty point trajegtoThe noise distribution was

Gaussian with standard deviatioplD.

It is, however, clear that the errors at the tangency poertsain larger than expected,
even after the noise reduction algorithm has been run for leeg times. Consider now
Figure 2.13. This shows error distributions laggarithmicscale) for thirty different noise
realisations. The logarithmic scale shows the exponedéahy and growth of the er-
rors quite clearly. There is a tangency of approximatéhaBpoint 39 as well as lesser
tangencies of between 1@nd 20at points 2, 10 and 25. These are visible in the er-
ror distributions. What is of greater interest is the obagon that the error distributions
around the tangency at point 39 form two quite distinct geouiphe jump in the errors
around point 39 is sometimes small and sometimes much larger

These two groups are shown spatially (around the tangenoy ®) in Figure 2.14.
The large square marks point 39, the “+” signs mark the tmdige reduced approxima-

tions of point 39, and the dotted and solid lines show thelstabd unstable manifolds

"The errors corresponding to the larger jump areresplvedn this figure due to the logarithmic scale.
In fact, approximately half the distributions show thisglar jump. The reasons for this will become appar-

ent shortly.
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Figure 2.14: Spatial results for thet§§point of the thirty noise reduced trajectories of
Figure 2.13. The large square marks the correct point, theitggns mark the noise re-
duced points, and the dotted and solid lines are the stadlemstable manifolds through

the correct point.

through point 39 (respectivelyNote that the groups cluster about the points where the
stable and unstable manifolds interse@bints where the stable and unstable manifold

intersect are calledomoclinic intersection points

Why this clustering about homoclinic intersection pointBecause this forces the
points to be close to the stable and unstable manifolds dftleepoint. Iterating forward
then means that the error must shrink (because the pointaisthe stable manifold).
The error along the unstable manifold must likewise grovd #ms forces the unstable
manifold to bulge outwards (and the angle between the stafdeunstable manifolds
to increase). Similarly, upon iterating backwards, th@ralong the unstable manifold
decreases and the error along the stable manifold growintgto a bulging of the stable

manifold (and a corresponding increase in the angle betwleemanifolds). This is
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Figure 2.15: Spatial results for thet§7point (left) and the 45t point (right) of the thirty
noise reduced trajectories of Figure 2.13, showing thdestaotted) and unstable (solid)

manifolds.

pictured in Figure 2.15. Thus the erralscreasen both directions (in fact, this argument
also explains why the errors grow and deexyponentiallyaround a tangency point). If
the noise reduced points were not near a homoclinic inteosepoint, then by iterating
forwards or backwards, the errors would have to eventuathyvg Summarising, it can
be said that the trajectories through the two homocliniersgction points of Figure 2.14
(one of which is the true point) remain close together anthembise reduction algorithm
chooses one or the other depending on the particular n@tsaton given.

Another way of saying this is that the trajectories throughhomoclinic intersection
points are difficult to distinguish on the basis of the givernse realisations. This dif-
ficulty can be quantified using thedistinguishability theoryof section 1.3. The noise
distribution used here was Gaussian with standard dewiafib0, so the probability that
two trajectories andy’ will be indistinguishable given a random noise realisatsogiven
by (equation 1.4):

e(y~) ~exo] 253 [ o°}.
A plot of (an excellent approximation of) the indistinguéddility of the correct trajectory
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Figure 2.16: This shows the probability that the trajectbefined by the given point will
be indistinguishable from the true trajectory. At left, firebability is computed assuming

Gaussian noise with standard deviatigfiQ. At right, the standard deviation ig30.

and the nearby trajectories is given in Figure 2.16 (leftje plot measures the probability
of indistinguishability versus the point correspondingtint 39 of the correct trajectory.
The two peaks correspond to the homoclinic intersectiontpdthe peak with value 1 is
obviously the correct point). The second peak has proltglaiiproximately ®. There-
fore it is very likely that a given noise realisation will beable to distinguish between
the true trajectory and the trajectory through the otherdwmic intersection point. This
explains why the numbers of noise reduced points clustepethd each homoclinic inter-
section point are approximately equal — the two trajectoaie usually indistinguishable

so the noise reduction algorithm gives each with approxetgaqual probabilities.

The large peak around tangencies in the error distribusdherefore due to the al-
gorithm choosing the wrong homoclinic intersection poittis is usually only observed
when the angle between the stable and unstable manifolditis small however. For

small angles, the distance between the homoclinic intBosepoints is expected to be

smallcompared to the noise lev@nd this forces the distances between the forward and
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backward iterates of the homoclinic intersection poindgcay exponentially). Therefore
the algorithm is just as likely to converge onto the wrong bolimic intersection point as
the right one. In terms of indistinguishability, this is elg pictured in Figure 2.16 (right)
where the standard deviation of the noise has been droppedlft10 to 1/50. The prob-
ability that the trajectories through each of the homocliniersection points cannot be
distinguished drops from.9 to about 006. At this noise level, the algorithm will only
rarely choose the wrong homoclinic intersection point.

Forsufficiently smalhoise then, it would seem that the noise reduced trajechanyld
match the true trajectory with significant errors only ndwr initial and final points, pro-
vided that the length of trajectory taken is sufficientlydoidowever, if the length of the
trajectory is increased to achieve this goal, then it liklgt a “bad” tangency will be
introduced into the trajectory. A “bad” tangency here is éorewhich the distance be-
tween the homoclinic intersection points is not much latgan the noise level. To deal
with this tangency then, the noise level must be reducetiéurtit is apparent then that
in order to get angonvergenceesults where the noise reduced trajectory converges onto
the true trajectory (except near the initial and final pgiatsthe length of the trajectory
tends to infinity, it is necessary to exclude arbitrarilydbgangencies. A notion that does

this will be introduced in Chapter 3.

2.4 Summary

It would seem then, on the basis of these numerical expetsnirat the following claims

may be made:

e The errors between the original clean trajectory and theen@duced trajectory at
the initial and final points, are of the same order of magmtad the amount of

noise added.

¢ If the map from which the trajectory was obtained is hypedand the trajectory
sufficiently long, then the errors near the initial pointagexponentially, the errors
near the final point grow exponentially, and the errors imtieédle of the trajectory

are negligiblegxcept around near-tangency points

e Around a near-tangency point, the error distribution meguate a “spike” shape
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with the errors growing exponentially, reaching a maximuntha near-tangency
point, and then decaying exponentially. The errors aroumeba-tangency point are
often of the same order of magnitude as the noise level andiuar¢o the presence

of “close” homoclinic intersection points.

e For a hyperbolic map, as the length of the trajectory goesfiaity, the initial
(final) point of the noise reduced trajectory converges enpoint from the stable

(unstable) manifold of the initial (final) point of the origil clean trajectory.

Since in practical applications, the clean trajectory isegally unknown, it is convenient

to restate the last claim in the following form:

e Forahyperbolic map, as the length of the trajectory goeiaity, the initial (final)
point of each trajectory which could have produced the noagctory (assuming
a bounded noise distribution say) converges onto a point fhee stable (unstable)

manifold of the initial (final) point of the noise reducedjéetory.

These statements are equivalent because the notion ofgedoto stable and unstable
manifolds issymmetric That is, if p belongs to the stable manifold qf thenq belongs

to the stable manifold op. The point is that the gradient descent algorithm does yield
the correct clean trajectory except near the initial pdhg,final point and near tangency
points. As mentioned above, if arbitrarily “bad” tangerscage not present in the dynam-
ical system of interest, then for sufficiently long trajeats and sufficiently small noise,
the errors in the middle will be negligible, so noise redmetwill have been achieved

everywhere except near the initial and final points.
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Chapter 3

Stable Manifold Theory

This chapter briefly summarises stable manifold theory amdesof its various gener-
alisations. These results clarify the discussion of theabielur of the gradient descent
algorithm in Chapter 2. They will also be used repeatedhhaduantitative analysis of
Chapter 5. To motivate the structures relevant to the gésatians, Oseledec’s Multi-
plicative Ergodic Theorem is introduced. This result alseeg (as a corollary) a quan-
tification of the stretching induced by the linearised dyi@and is also vital for the
analysis of Chapter 5. With the exception of this corolldyaposition 3.6), proofs of all

the theorems in this chapter will be omitted.

3.1 Preliminaries

In this section, a couple of the mostimportant results thdeulie the theory of non-linear
analysis are reviewed. These results are used to prove tadtha$ the major theorems
in this area. For the purposes of dynamical systems theloeyriost important is the
Contraction Mapping Theorem of Banach. A mapetween two metric spacéX,d)

and(X’,d") is said to be.ipschitzif there is a constark > 0 for which
d (f(x),f(X)) <kd(xx)

holds for every € X andx € X’. The least suck is called theLipschitz constantf f and
is denoted by Lig. If Lip f < 1, thenf is called acontraction A proof of the Contraction

Mapping Theorem may be found in most texts on analysis ([@Binfstance).
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Proposition 3.1 (Contraction Mapping Theorem) Let f: X — X be a contraction on a
complete metric space X. Then, there is a unique fixed pgiatXx for f, and for any

xe X, f1(x) — Xp as n— oo,

In the theory of dynamical systems,is usually a function space. Often it is required
to prove the existence of a particular type of function $gtig a particular relation. The
idea is to set up a map whose fixed point satisfies this relatind then show that the
map is a contraction on the space of functions of the givea (fqr instance the space of
continuous functions). This guarantees the existence &éd fioint, and therefore of the
function required. The Stable Manifold Theorem (TheoreBt&low) is proven in this
way. The difficulty with this theorem and others like it, istet the map up in such a way
that it is a contraction. Note that since any poinXirtonverges to the fixed point under
iteration by a contraction map, it follows that the fixed goimust belong to everglosed
subsebf X which is preserved by the contraction.

The Inverse Function Theorem is another result used oft@omlinear analysis. It
is in fact, also proved using a contraction mapping argumaurtt it will be stated as a
preliminary result here for convenience. The Inverse Hanctheorem is usually stated
as a local result (see [19] or [46]). However, the global fei(fi27, 48]) are most suitable
for the linearisation theory in the following chapter. Tldldwing result is a sharpening
of the usualC'-Inverse Function Theoremm(T) denotes the minimum dilation of an
invertible linear maf :

m(T) = inf [TX| = [

Proposition 3.2 (Lipschitz Inverse Function Theorem)Let T : E — E be linear and
invertible, where E is a Banach space, anddetE — E be Lipschitz with.ip ¢ <m(T),

and¢ (0) = 0. Then, T+ ¢ is invertible, and(T + ¢) 1 is Lipschitz.

3.2 Stable, Centre and Unstable Manifolds

In this section the Stable Manifold Theorem and its gensaiibn, the Centre Manifold
Theorem are presented and discussed. These relate to tHmeamndynamics near a

hyperbolic and non-hyperbolic fixed point respectively. ietentiable mapf : M —
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M on a compact manifol® is said to have &yperbolic fixed point E M if f(p) =
p anddf (p) has no eigenvalues on the unit circle. This restriction endigenvalues
yields a significant conceptual simplification in that theidive has only expanding

and contracting directions.

3.2.1 Hyperbolic Fixed Points

Consider an invertible linear dynamical syst&mon a Banach spade with no eigenval-
ues on the unit circle. 0 is then a hyperbolic fixed poirAoT here are eigenspaceésand
Ey of A corresponding to those eigenvalues less than and greateutfity in modulus.

These spaces have the following important characterissitio
Es = {X€E:AX—0 as n— »}
and E, = {x€eE:A™x—0 as n— oo},
and are called the stable and unstable eigenspacdksesipectively. These characterisa-
tions clearly generalise (in an obvious manner) to nonalirtyynamical systems. Given a
diffeomorphismf on a manifoldM then, and a hyperbolic fixed poiptof f, define the
stableandunstablemanifolds to be the sets
W, = {xeM:f"(x) = p as n— o}
and W, = {xeM:f""(x)—>p as n—oo}.
Such sets are non-empty, fprbelongs to both by definition. Clearly, they are invariant

underf. The question of what forms these sets can take, and how taeyianted around

p is the province of the Stable Manifold Theorem.

Theorem 3.3 (Stable Manifold Theorem) Let p be a hyperbolic fixed point for a diffeo-
morphism f: M — M. Then, there ardocal stable and unstable manifolds which are
smooth submanifolds of M, diffeomorphic to a disc, and angéat at p to the stable
and unstable eigenspaces of @ : Tp (M) — Tp(M). That s, in the notation introduced
above,

The local stable and unstable manifolds satisfy
WAl i "B (p) and W= (B (p)),
n=0 n=0
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Figure 3.1: Stable and Unstable manifolds for a hyperbotedfipoint

where B (p) is a ball of radius r about p.

This result is illustrated in Figure 3.1. It says that logahe stable manifold is a
smooth manifold of the same dimension as the stable eigeaspae global stable man-
ifold is then constructed by taking the limit of the set ofraons of the local stable
manifold underf ~1. Similarly, the global unstable manifold is the limit of thet of iter-
ations of the local unstable manifold underThese are often not genuine submanifolds
of M however, as they can fold back infinitely close to themselves

There are many proofs of the Stable Manifold Theorem. The swamonly encoun-
tered is thegraph transfornmethod of Hadamard. The idea here is that because the local
stable manifold is tangent to the stable eigenspage ihican be represented (on a suffi-
ciently small neighbourhood qf) as the graph of a function frois into E, (refer again
to Figure 3.1). Given any functiog: Es — E, then, the graph transforinis defined in
such a way that

graphr™ (g) = f~* (graphg)
on the sufficiently small neighbourhood pf It is expected that the inverse iterates will
converge onto the local stable manifold, and thereforeitaedtion undef” will yield a
function whose graph is the local stable manifold. This ®vpd by showing thaf is a
contraction mapping on an appropriate function space. muwothness of the fixed point
of I' then dictates the smoothness of the local stable manifalapl@Gtransform proofs of
the Stable Manifold Theorem may be found in [30, 46, 48]. ©tiipes of proof can be
found in [41, 27, 40].
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3.2.2 Non-hyperbolic Fixed Points

What happens whedf (p) has eigenvalues with unit modulus? There is an eigenspace
corresponding to these eigenvalues calledcérgre eigenspacdt would seem plausible
then that there must be a correspondiegtre manifoldangent to the centre eigenspace,
but it is not yet obvious how to characterise this manifolthe Tentre eigenspace may
contain vectors that are fixed loyf (p) or are rotated by it. However, as it is atgebraic

eigenspace, it can also contain vectors which are expanded (p). For example,

n

Note that the norms of the iterates(6f 1) in this example increase in magnituglelyno-
mially with n. In an unstable eigenspace, the norms must (eventuallggase exponen-
tially. Similarly, in the stable eigenspace, the norms (gwally) decrease exponentially.
A centre manifold is defined to be a smooth invariant manifattyent afp to the centre
eigenspace. The idea is that this set should consist of pofrdub-exponential growth
and decay (with respect to some metric on the manifold). Wewdecause the manifold
is assumed compact, the notion of an exponential growthsatet well defined. Expo-
nential decay ratesre well defined but are not useful for characterising a centreifolal
because only points on the stable and unstable manifoldsxpexted to decay exponen-
tially with forward or backward iteration. It turns out angwthat centre manifolds may

not be unique (see [18] for an example).

Theorem 3.4 (Centre Manifold Theorem) Let p be a fixed point for a diffeomorphism
f : M — M. Then, there are local stable, centre and unstable maasfdld, Wz and W,

respectively which are smooth submanifolds of M, diffeqiarto a disc, and satisfying
Tp (Ws) — Es, Tp (Wc> — EC and -II‘_) (Wu) — Eu7
where E, E; and E, are the stable, centre and unstable eigenspaces ¢pdrespectively.

The local centre manifold can be extended to a global cenamifold by taking the
union of its iterates undef and f~1. Proofs of this theorem may be found in [1, 10,
48]. The idea here is that in the consideration of hyperkglithe number 1 is not all

that special. For sufficiently smadl > 0, d f (p) will have no eigenvalues of modulus
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1— ¢, and so there is a splitting into eigenspaégsand E., whose eigenvalues have
modulus less than or greater than £ respectively. If the unit ball is iterated forward
under f, the resulting sets converge (in a manner that can be mads@r®nto a set
tangent tcE¢,. This is because this eigenspace is associated with dinscitn which the
dynamics daot contract, that is, the unstable and centre directions. lirhisng set may
not actually be a manifold (locally) but can always be decosegl into manifoldS\,
tangent atp to E,. These manifolds are callezentre-unstable manifold®r obvious
reasons. Similarly, iterating backwards gives a limitieg, ¥s tangent toEgs called the
strong stable manifoldFor ¢ sufficiently small, this is the stable manifold and may be
characterised by its exponential decay property. Repep#ti@ process with 4 g, gives
centre-stable manifold$\.s, and astrong-unstable manifold\{,,. Then, the transverse
intersection of a centre-stable manifold with a centretainle manifold gives a centre

manifold.

3.2.3 Flows

It should be noted at this point that the preceding theorg {aMact the rest of the chapter
as well) applies equally well to flows as it does to diffeontogms, with the modification
that hyperbolicity corresponds to the derivative havingeigenvalues on the imaginary
axis. Although it is the stable and unstable manifolds ofdiffeomorphismf which are
of primary interest in the investigation of noise reductioygradient descent, the gradient
descent algorithm defines a flow, so it will be useful to keemind that these structures

exist for flows too, especially in Chapter 5.

3.3 Global Hyperbolicity

3.3.1 The Multiplicative Ergodic Theorem

It is quite easy to extend Stable Manifold Theory to consjkmiodic orbits of a diffeo-
morphismf, essentially by considering a periodic pome M as a fixed point off™
(wheremis the period ofp). Hyperbolicity of the periodic orbit then corresponds 6 h
perbolicity of eaclp in the orbit, with respect té™. It is not so easy, however, to see how

hyperbolicity can be defined on arbitrary trajectories. Tagect notion to introduce is
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that of anaveragerate of expansion or contraction. This is neatly express€@seledec’s
Multiplicative Ergodic Theorem ([39]).

Before stating this result, the concept of ergodic theorgiime introduced (briefly).
Ergodic theory is a statistical theory of dynamical systededlicated to the study of
probability measures left invariant by the action of the alyiical system (see [20, 36,

53]). A measureu is said to be amvariant measurdor f : M — M if

H(A) =p(fH(A)
for every measurable sAtC M. A measure is said to kergodicif the manifoldM cannot

be decomposed into invariant measurable sets of positiasune. This guarantees that

does not act on (statistically significant) pieced/bin an independent manner.

Theorem 3.5 (Multiplicative Ergodic Theorem) Let f be a diffeomorphism of a com-
pact manifold M preserving an ergodic measwre Then, there is an f-invariant set

N\ C M of full measure such that for all @ A, there is a splitting:
r
To(M) =(DEi(p).
i=1

varying measurably with p, invariantin thatdp) (E; (p)) =Ei (f (p)), and non-negative

numbersi; < ... < A, for which

lim [[df"(p)x|"=A  Vxe @a <p>\$9ia (p).
Proofs of the Multiplicative Ergodic Theorem may be found4a2], for the case of
a two dimensional manifold, and [47] for the general casee Ahappearing in this
theorem are called tHeyapunov number®r f (with respect tqu). EachA; quantifies the
average expansion and contraction for vectors in each yash#pacegE; (p) : p € A}.
In analogy to the case of a fixed point, the spd&gp) will be referred to as eigenspaces.
However, they arenot generally eigenspaces of any of the derivatidégp). A more

useful quantification of the expansion and contractiorsra¢he following.

Proposition 3.6 Let f be a diffeomorphism on M. Then, for almost every p, ahd al
x € Tp(M), there exists & > 0 such that given ang > 0, there exists C> 0 (depending

on € but independent of x) for which
[df"(p)X]| <C(A +¢)" |||
for every n> 0.
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Proof: Choosep € M so that the splitting of the Multiplicative Ergodic Theorenxists,
choosex € T, (M) non-zero, and lek be the Lyapunov number for Suppose now, that
the statement is false. Then, given &y 0, there exishy,ny, ns, ... such thang — oo

ask — oo, and||d f™ (p)x|| > C(A + &)™ ||x||. Therefore,
[ % (p) x| ™™ > MM (A + ) |||
Since then, tend toc, it follows from Theorem 3.5 that
A = lim ||d £ (p)x|[*" = lim [|d £ (p) x|/ > lim CYM(A +) x|V = A +e,

a contradiction for ang > 0.

It remains to show tha may be chosen independentoiConsider therefore the unit
circle in each eigenspac8, = E; (p) N S*~1. The Lyapunov number is constant on this
set, so the functiofid " (p) x|| (A + &) " is continuous on this set, and hence bounded by
compactness. Let

a1 (p)x|
Ki (€) = supsup———=-n—
R o

This is finite. It follows by linearity now, that

1d " (p) x| < Ki(e) (A +&)" [X]

for all x € Ej andn > 0. LetP, be the eigenprojectidronto the eigenspadg (p) andA;

be the Lyapunov number for vectorski(p). Then, for generat,

Ja )Xl < FIdPRX| < Y Ki(e) o) x|

(A +&)" I,

ZK. )(A+€)" |P||||x||—[ZK| )R

sinceA;, the Lyapunov number dix, is less than or equal t, the Lyapunov number of

X (whenevelRx # 0). [ ]

Using the same arguments as in the proof above, the bound
[df"(p)x|| > C' (A —&)"|Ix] (3.1)

may also be derived (for son@ > 0). Similarly,C' can be chosen independent»of

on each eigenspaceHowever, this independence cannot be extended to gexerdl

1That is, the projection ontg; (p) parallel to the otheE; (p), j #1i.
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without settingC’ = 0. The reason for this is quite simple: The Lyapunov exponért
with respect tof need not be related to the Lyapunov exponent with respect tof L.
To clarify this, consider the inequality of Proposition Zipplied tof ~ in the tangent

spaceTsn ) (M):

[d " (F" (p)X|

= |

N

C(A +¢&)"|x|

C(N +¢)"ld " (p)x|

N

= Xl > C ) K|
c () ) K

where in the second line,was replaced by f" (p)x, A" is the Lyapunov number fox

with respect tof ~1, and the equality in the last line holds for sogie> 0. In this bound,
C and henc€~* can be chosen independentxofComparing with the bound in equation
3.1, it is clear tha€’ can be chosen independentoif A, the Lyapunov number fax
with respect tdf, is equal to()\’)_l, the inverse of the Lyapunov numbenoivith respect

to f 1. This is true whemnx belongs to one of the eigenspaces, but is not true in general.

3.3.2 Hyperbolic Sets

The set/\ appearing in the statement of the Multiplicative Ergodi@diem is said to be
ahyperbolic sefor f if none of the Lyapunov numbers are unity. The stable andainfest
eigenspaces (in each tangent spio@M)) are defined to be
Es(p)=(PE((MP and Eiu(p)=EDE/P.
Ai<1 Ai>1
This gives ahyperbolic splitting invariant underf. For such a hyperbolic splitting, the

contraction-expansion estimates of Proposition 3.6 th&ddllowing form.

Proposition 3.7 Suppose thad is an invariant hyperbolic set for f and that< 1 < v
are chosen so that is greater than all the Lyapunov numbers for f less than yaityl
v is less than all the Lyapunov numbers for f greater than unityen, for each g A,

there are G > 1 and0 < C, < 1 such that

1A (p)xs <Cspi™[Ixsl| - and A (p)xull = Cuv" Il

for all xs € Es(p) and all x, € Ey(p).
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This follows directly from Proposition 3.6 for the stabldiesate, and from the dis-
cussion following it for the unstable estimate. Now, @eandC, appearing in this result
may be chosen independentlyxafandx, respectively. Can they be chosen independent
of p? If A =M, a compact manifold, then the answer is affirmative by a @mpjument.
However, the Multiplicative Ergodic Theorem asserts thaan exclude a set of measure
zero fromM, and hence be non-compact. It is possible then that theams€; andC,
may not be chosen independentmof

It is necessary therefore to introduce compactness as amptien. An invariant
hyperbolic set\ which is also compact is called amvariant uniformly hyperbolic set
For such a set, the constaris andC, in Proposition 3.7 can be chosen independent
of p. Another (more surprising) consequence of this compastagsumption is that the
eigenspaceBs (p) andEy (p) vary continuouslywith p ([30]), rather than just measurably
as claimed in Theorem 3.5. Therefore, the minimal angle éetks(p) andE, (p) is
bounded away from zero, and so no exact tangencies can agecatl (he discussion of
tangencies in section 2.3). The presence of tangenciesftiherindicates a non-uniform
structure (that isA\ is not compact — the splitting fails at exact tangencies whbe
stable and unstable eigenspaces have non-trivial inteyegcObviously the tangencies
can only occur at the points df excluded fron\ — a set of measure zero. The numerical
evidence of Chapter 2 therefore suggests that the Ikeda nthfna Henon map are both

examples of non-uniformly hyperbolic diffeomorphisms.

3.4 Generalised Stable, Centre and Unstable Manifolds

In this section the generalisation of the theory of sectidht8 invariant uniformly hy-
perbolic sets is presented. This consists of taking thefistructure (guaranteed by
the Multiplicative Ergodic Theorem) on the tangent spaeesl, pulling it back onto the
manifold, to get local stable and unstable manifolds throegch point of the invariant
uniformly hyperbolic set. An important question which dogsrise in the fixed point
case, is how all these stable and unstable manifolds fitheget

As in the fixed point case, vectoxss Es(p) are eventually contracted under iteration
by d f (p). The difference is that each iterate belongs to a differmgént space. That is,

the distance between the iteratex@nd the corresponding iterates of O (the zero of the
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tangent space) contract. The corresponding notion on afohéid (with a metricd) is
therefore that the distance between iterates afid iterates op (underf now) contract
(recall the discussion in section 3.2.2 indicating thatageis well defined on a manifold

whereas growth is not). Thus, define

Ws(p) = {xeM:d(f"(x),f"(p)) =0 as n— o}

and  Wy(p) = {xeM:d(f"(x),f"(p)) >0 as n— o}

to be thegeneralised stabland unstable manifolds of f through gespectively. The

properties of these sets are given in the following resai,(8]).

Theorem 3.8 (Generalised Stable Manifold Theorem)Let A C M be an invariant uni-
formly hyperbolic set for a diffeomorphism M — M. Then, there are local generalised
stable and unstable manifolds through eachk p which are smooth submanifolds of M,
diffeomorphic to a disc, and tangent at p to the eigenspagép)i&and E, (p) determined
in the Multiplicative Ergodic Theorem. Furthermore, thedb generalised stable and

unstable manifolds vary continuously with p.

Global generalised stable and unstable manifolds can nowobstructed from the

local ones as

Ws(p) = J 1" (WO (p)))  and  wy(p) = £ (WOCRl(1(p))).

n=0 n=0

They form families invariant undefr. Again, the global generalised stable and unstable
manifolds are not usually submanifoldsMf but they clearly vary in a continuous manner
with p also. In patrticular, it follows that the homoclinic intecsien point closest t@
(but different fromp of course) also varies continuously, when it exists. Thareefon an
invariant uniformly hyperbolic set, the compactness ferite distance betwegnand its
nearest homoclinic intersection poiatbe bounded away from zerdhis is exactly the
requirement suggested by the numerical experiments abse&B for the noise reduction
by gradient descent to work (for sufficiently small noise).

Finally, there is also a Generalised Centre Manifold Theo(3]) which will be

used in a very special case in Chapter 5.
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Theorem 3.9 (Generalised Centre Manifold Theorem)Let A C M be a compact in-
variant set for a diffeomorphism:™M — M such that at each g A, there is a continuous

splitting into stable, centre and unstable directions:

Tp(M) =Es(p) ®Ec(p) ®Eu(p)-

Then, there are local generalised stable, centre and umhstatanifolds through each
p € A which are smooth submanifolds of M, diffeomorphic to a cis] tangent at p to
the stable, centre and unstable eigenspaces determindlsplitting. Furthermore, the
local generalised stable and unstable manifolds vary cwdusly with p, and the local
generalised centre manifolds, whilst not unique, may beehdo vary continuously with

P.
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Chapter 4

Linearisation Theory

4.1 Introduction

In this chapter, a generalisation, due to Kurata ([34]) hefidartman-Grobman Theorem
is presented. This result will be used in Chapter 5 to get tijadéime bounds on the errors
in the gradient descent algorithm for noise reduction. Kaisgoroof is essentially an el-
egant application of the standard Hartman-Grobman Theorean infinite dimensional
space. Therefore a detailed proof of the standard theorgiaea below (Theorem 4.2).
This theorem gives a qualitative correspondence betwesbhehaviour of a non-linear
system and its linearisation around a certain type of fixedtpdBecause quantitative
information is needed for the analysis of the gradient desalkgorithm, an extension of
the Hartman-Grobman Theorem is also presented (Corolla)y While the quantitative
information provided by this extension (in the form of tHélder continuityof the cor-
respondence) is almost certainly well known to experts enfiéld, it does not seem to
appear in the literature. Therefore this extension is tigiral work of the author. The
same applies to Kurata’s generalisation — the quantitattension of the result (Propo-
sition 4.17) is original work, and indeed, Kurata’'s proothmeeen modified so as to more

easily accomodate this extension.

Before continuing, note that in all of the proofs in this cteapthe norms used will
be adaptedto the relevant dynamical system, or will be derived from damed norm.

Given a hyperbolic invertible linear map with stable and unstable eigenspaégsnd

43



E,, anorm,

, IS said to be adapted Wif

[X[[ = max{|xsfls, lIxully}

wherex = Xs+ Xy, With Xs € Es andx, € Ey, and where the norm||; onEsand||-||, on
E, satisfy

<1
u

ITlelly<1 and ||T°

e,

(9|, denotes the restriction (projection) of a functigto a subset) of its domain). For
proofs that such norms exist, see [46, 38]. It will be congahto denote the restrictions
of a function¢ to Es andE, by ¢s and ¢, respectively. This convention will be used
throughout this chapter. Note that for an adapted norm, thechitz constant o is
given by

Lip ¢ = max{Lip ¢s,Lip ¢u} .

It will become apparent in what follows, especially when sidering Kurata’s gen-
eralisation (section 4.3), that a proliferation of normseaguired, most of which will be
denoted by|-||. It is hoped that the context is sufficient to clearly idgntifhich norm is

meant.

4.2 Fixed Points

4.2.1 The Hartman-Grobman Theorem

In this section the Hartman-Grobman Theorem for a diffegrhimm f is proven. This
states that the non-linear dynamics around a hyperbolid ot is qualitatively similar
(at least locally) to the dynamics of its linearisation atitne fixed point. Specifically, it
guarantees the existence of a homeomorplhisiafined on a neighbourhood of the fixed
point p, satisfying

foh=hodf(p) (4.1)

whenever this makes sense. A homeomorphism satisfyingdaigon is called aopolog-
ical conjugacy f andd f (p) are then said to blecally topologically conjugateNote that
h maps orbits ofl f (p) onto orbits off. In particular, the stable and unstable eigenspaces

of d f (p) are mapped onto sets which must be local stable and unstabiéohds of f. In
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one sense, the Hartman-Grobman Theorem gives more infomtaan the Stable Man-
ifold Theorem (Theorem 3.3) as it applies to a whole neighbood of the fixed point.
However, the Stable Manifold Theorem asserts that theestaid unstable manifolds are
as smooth as the diffeomorphisinp whereas the Hartman-Grobman Theorem can only

assert continuity (sinckis only a homeomorphism, see also section 4.2.2 below).

As with the Stable Manifold Theorem, the main part of the pis@n application of
the contraction mapping theorem, and not a particularlijcdit one at that. However,
there is a conceptual difficulty in that the local conjugaeyot unique — essentially all
that is required is to give a correspondence betweeal trajectories of the system and
trajectories of its linearisation. There would seem to bénéinite number of ways that
this can be done. Hence a local conjugacy cannot be exhibgidte fixed point of a
contraction. But, there is a class of diffeomorphisms forohta uniqueglobal conjugacy
can be specifiedEverytrajectory of these systems can be put into correspondeithe w
the trajectories of their linearisations, and whilst tigai might seem to be achievable in
an infinite number of ways, it turns out that there is only o what this correspondence
may be constructed subject to a boundedness constraistcdhjugacy is then shown to
apply to general diffeomorphisms, provided we restrict teeaghbourhood of the fixed
point. The proof of the global theorem given below is due tghP(j43]). Since the main
result (Theorem 4.2) is local, what follows can be simplifigdworking on a Banach
space, rather than on the appropriate manifold. Note thaeghe non-linear behaviour
is expected to be similar to the linearised behaviour neafiged point, the conjugacy
may be thought of as a perturbation of the identity. Thus trgugacy will be written
as id+ h rather tharh. Also recall from section 3.1, than(T) denotes the minimum

dilation of a hyperbolic invertible linear map.

Theorem 4.1 (Global Hartman-Grobman Theorem) Let T : E — E be an invertible
linear map on a Banach space E. l¢etyy : E — E be bounded witkp (0) =0andy (0) =
0, and Lipschitz with Lipschitz constant less tham {1 — || Ts||,m(Ty) — 1, m(T)}. De-
note the space of bounded continuous functions from E isédf i(with the supremum
norm) by Cg(E). Then, there is a unique@CS(E) such thatid + h conjugates H ¢
and T+ (.
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Proof: The aim is to solve the conjugacy equation

(TH+@)o(id+h) = (idd+h)o(T+y) (4.2)
= Toh+¢o(id+h) = Y+ho(T+Y)
for h. The functionh may be isolated in two ways from this equation:
h = (Toh—@+¢o(id+h))o(T+y)?

or h = T o(@—¢o(id+h +ho(T+y)).

Note thatT +  is invertible by the Inverse Function Theorem (Proposia). Project
the first of these equations orflgand the second ontg,. This gives conspicuous factors

Ts and T, ! which are both contractions. Define a n@pC{ (E) — C2 (E) by

O(hshy) = ((Tsohs— s+ gso(id +h))o(T+y) !
ot (Wu—¢uo (id +h)+hyo (T+y))). (4.3)

© preserve€? (E) as it clearly maps continuous functions to continuous fionst, and

if his bounded,

1©()lls < Tl sl + [l sll + [[@s]l < [Tl [N+ (T[] + 1]

and similarly,
IO M) lly < [T [l lwll+ Nl +Ihi),
s00 (h) is bounded. Additionally® is a contraction since for arty i € CJ (E),

@) -0 (M|, = ||(Tsohs— s+ gso (id +h))o (T +y)
— (Tsoh— Ws+ ¢so (id + 1)) o (T +y)

S

< [Te (=)o)

+ (50 (d o (T+4) ™ —so (id + 1) o (T+u) |
< [ITsll{|hs = hg s+ Lip ¢s||hs — hgf|
< (ITs|+Lipg) [h—t||

and similarly,
l©(h) —o (W), < [T | (1+Lip ¢){|h ||
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Hence there is a unique < C2 (E) fixed by ©, andh therefore satisfies equation 4.2.
Repeating the above construction wiihand ¢ interchanged gives a uniqiec Cg (E)

which satisfies

(T+y)o(id+h)=(id+h)o(T+¢). (4.4)

Using both equations 4.2 and 4.4 now gives

(T+y)o(id +H)o(id +h) = (id+)o(T+¢)o(id+h)
= (id+h)o(id+h)o(T+y).

That is, the functior(id + /) o (id +h) commutewith T + . By what has just been
proven (applied to the special cage= (), there is a unique continuous function of the
form id +h’, "’ bounded, which commutes with+ (. Obviously, the identity function

commuteslf’ = 0), and so it must follow that

(id +h)o(id +h) =id.
A similar argument now shows that

(id +h)o (id +h') =id,

so that id+ h is a homeomorphism. [ ]

This is the global version of the theorem. In particular, ibyes the existence of
a unigue conjugacy ig- h with h bounded, defined everywhere, betwdeand T + ¢,
when ¢ is everywhere small in a Lipschitz sense. Now, any diffeqggham f with a
hyperbolic fixed point (translated to the origin for convarge) has the forni =T + ¢,
with ¢ (0) = 0 andd¢ (0) = 0. Hence for any > 0O, there is a neighbourhood of the

origin in which Lip¢ < €.

Theorem 4.2 (Hartman-Grobman Theorem) Let f: E — E be a diffeomorphism on a
Banach space E with a hyperbolic fixed point p. Then, therensighbourhood U of p
and a neighbourhood V of the origin such tha, fs topologically conjugate to d(fp)|,, .

Proof: Without loss of generality, translate the fixed point to thigio. Given anyr > 0,

it is possible to choose an infinitely differentiable fuocty : R — R such thaty(x) = 1
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if x| <r/2,y(x)=0Iif |x >r and Lipy is bounded. If¢ = f —df(0), then define a
functiong : E — E by ¢ (x) = y(||x||) ¢ (X). It follows that@ is Lipschitz since

1860-8MI = IvUxDo - v(vl)é W
< I (@ 09 = 8 L+ 1y (XD = v (D) @ ()
< (Ui Blg0+||#ls,0 | Lip V) XV

Clearly by choosing sufficiently small, it is possible to make
Lip ¢ <min{1—|df(0)sl|,m(df(0),)—1,m(df(0))}.

Then, by Theorem 4.4 f (0) andd f (0) + @ are globally topologically conjugate df,
with conjugacyh say. But,df (0) +¢ = df(0)+ ¢ = f onB, »(0), so there are neigh-
bourhood4) = B; , (0) andV = h (B, > (0)) such thad f (0)|, is topologically conjugate

to f|, as required. n

Note that this proof holds for any Banach space, regardliedsnensionality. This is
important as an infinite dimensional application of thisaiteen will be used to prove the

generalisation required in section 4.3.2.

4.2.2 The Hlder Continuity of the Conjugacy

Recall that the conjugacy given by the Hartman-Grobman fidreas only guaranteed to
be continuous. This gives a qualitative correspondencedset the dynamics of the sys-
tem and its linearisation. To get quantitative informatieranalytic estimates for instance
— a sharpening of the result is required. The major theorems@ming the smoothness
of the conjugacy is that of Sternberg (see [37] for a detadiedussion) which says that
the conjugacy will be smooth provided certain algebraiadttions on the eigenvalues of
df (p) arenot satisfied. However, many important classes of dynamicakegsys auto-
matically satisfy one or more of these conditions (Hamikrsystems for instance). For
general maps then, the conclusion is that the conjugacy widyendifferentiable, and we
must turn to weaker forms of quantitative information.

Lipschitz continuity of the conjugacy would be ideal. Howeuvrwin ([27]) gives a

simple example of a hyperbolic system for which the conjygaaot Lipschitz in any
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neighbourhood of the fixed point. It seems that the besttrasutan get in this direction
is that the conjugacy will be locallolder continuousRecall that a functiog is Holder

continuous if there are constaris> 0 and O< a < 1 such that for any andy,

lg(x) =gl < BlIx—ylI*.

That the conjugacy is Holder continuous will be demonstidily showing that the con-
traction mapd of equation 4.3 preserves an appropriate space of Holdetiins. The
set of all Holder functions on a Banach sp&cérm a linear subspace éﬁ(E). Unfor-
tunately, this linear subspace is not usually closed, ngpikinnsuitable for a contraction
mapping argument. To see this, consilet [0, 1]. If there is a functiory : E — E which
is continuous but not Holder, then by the Weierstrass Axipration Theorem ([33])x

is the uniform limit of polynomials, which are clearly H@&d (sinceE is bounded). It

remains to exhibit such a function, and it is not difficult twos/ thaty : [0,1] — [0,1]

defined by
— ifx>0
X (X) — 1—-Inx .
0 if x=0
will do.

A subset of the Holder functions which turns out to be usisftihe set
B (E)={geC)(E): g(x)—ay)| <Blx—y|% whenever |x—y|<r}

where O< a < 1, 3 > 0 andr > O are fixed constants. This is not a linear space, but it is

closed inC (E).
Proposition 4.3 9P (E) is a closed subset of CE).

Proof: If g, € %G’B (E) for eachn andg, — g uniformly, then given an¥ > 0, there

existsn such that|gn — g|| < €. Thus for||x—vy|| <,

[g¥) =gl < 1[g(X) = gn ()| +[[gn (X) —gn W[ +1[gn (¥) =g (V)]

< e+BIx-y|"+e.

Sincee > 0 was arbitraryg € AP (E). |
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Proposition 4.4 Let® : CY (E) — C? (E) be given by
O (hs,hy) = ((Tsohs+ pso (id +h)) o T~L, T L (—¢yo (id +h) +hyoT)).

Then, for anyp > 0, © preservesfﬁ“’ﬁ (E) for sufficiently smalla, Lip ¢ and some

r>0.

Proof: © is the contraction map of equation 4.3 wigh= 0. It is convenient to choose

r = BY/1-9 wherea will be determined later. Ih € /%% * (E), then

o) (-0 M)l < [Tehs(T ) —Tshs (T 1)
+||¢so (id +h) (T™*x) — o (id +h) (T~1y) |
< Tl Ihs (T71%) = hs (T 1) [
+Lip s [[[ T~ (x=y)[[ + [N (T™%) —h (T ]
< TIB(ITEx =y
+Lip s [T Ix=yll+ BT (x=y)|°]
ITSHIT " BlIx =il

+Lip s [T Ix=yll+B 77| Ix=yI7] -

/N

Now, r was chosen so that
Ix=yl<r = Ix=y[**<B = |x=y|<Blx-y|.
It follows then that whenevdix—y|| <,
[©(h) ()~ @ (M) (Y)lls < [ITsll [T~ + Li ¢s|| T + Lip g T ] BlIx—vII*.

So, if a is sufficiently small and Lig is sufficiently small, the term in square brackets is

less than unity. A similar calculation shows that whenepery|| <r,

[o) ()= Wy < [[IT | (ITI*+2Lip¢)] B lIx—yII.

Hence®(h) € AP (E) for a and Lip¢ sufficiently small. u

Corollary 4.5 There arelocal topological conjugacies between a dynamical system and

its linearisation about a hyperbolic fixed point that arélder continuous.

50



Proof: Choose a neighbourhood of the fixed point for which ¢ijs sufficiently small,
anda > 0 small enough that the terms in square-brackets in the pifd@foposition 4.4

are less than unity. Setto be the supremum of the distances between points in the cho-
sen neighbourhood (which is finite since the neighbourhaodoe taken to be bounded),
andf = r1=?. Then, by Proposition 4.4 the contraction map of the Hart@ambman
Theorem preserves the subset™P (E) which is closed irC2 (E). Thus, the conjugacy
obtained by adding the identity to the fixed point of the cadtion is Holder on the given
neighbourhood (since the identity function is obviouslyglé€r on any bounded set, and

the space oéll Holder functions is linear). [ ]

4.3 Hyperbolic Sets

The Hartman-Grobman Theorem can be easily generalisedifxethpoints to hyperbolic
periodic orbits, and such a treatment is found in most temtthe subject ([27, 46, 30]).
The generalisation to invariant uniformly hyperbolic sétewever, appears to be quite

obscure. Anosov mentions one such theorem in [5] and nogef®liowing:

Strangely enough this theorem has not achieved much piybRssibly the
reason is that (by contrast with the Grobmann-Hartman #rebit does not

provide a good “model” for motions around (the hyperbolit).se

The theorem referred to by Anosov is due to Kurata ([34)halgh the linearisation
about hyperbolic sets had been investigated earlier in trk of Hirsch, Pugh and Shub
(see [44] for instance). In the following, the theorem of &taris presented — it is more
elementary than the results of Hirsch, Pugh and Shub, andvas riotes in his review
([26]), extremely elegant. This is then extended to ingzdgé matters of Holder continuity
as was done for the fixed point case. To facilitate this, Kasgbroof will be modified
somewhat. In particular, the contraction map employedhélanalogous to the one used
in section 4.2.1.

The proof of Kurata’s theorem is phrased in the language ofovebundles, as are
many proofs pertaining to hyperbolic sets — for instance, @eneralised Stable Man-

ifold Theorem (Theorem 3.8). The appropriate concepts eveewed now. A simple
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BX B Bx B

Figure 4.1: A vector bundle showing a fibBg and a (continuous) sectian

introduction to these concepts may be found in [9].

4.3.1 \ector Bundles

A vector bundlés a triple (B, 11, X) whereX is a topological manifoldsr: B — X is sur-
jective, and for eacl € X, By = 1 (x) is ann-dimensional vector space. Additionally,
there is a third requirement, known as the axiom of localdlity. It states that for a suf-
ficiently small neighbourhood of any pointx € X, the restricted bundla—*(U) can be
mapped bijectively ontt) x RY for somed (constant), and the bijections can be chosen to
take eaclBy linearly to {x} x RY. The product topology od x RY induces a topology on

B by making these bijectionsomeomorphismsand this gives the vector bundle a man-
ifold structure (the homeomorphisms form the charts). S¢éof details. B is thetotal
space X thebase eachBy is afibre, andrris theprojectionof the bundle. The archetypal
vector bundle is of course the tangent bund(&) of a manifoldX. It is common to refer

to the vector bundle aB (or sometimest) instead of(B, 17, X). Elements of the vector
bundle will be denoted byy where the subscript indicates which fibre it belongs to. That
iS, ux € Bx. The projectionrt therefore has the actiom(uyx) = x. A sectionof a vector
bundle is a maw : X — B taking each element of to an element of the corresponding
fibre: o (x) € Bx. Therefore, a section satisfigs 0 = idx. Thezero-sectioris the section
taking eachx to 0. It is common to associate a section with its image just als otiher
functions. The zero-section is thus associated WithA schematic picture of a vector
bundle with a fibre and a section is shown in Figure 4.1.

Since every fibre of a vector bundle is a linear space, it cagilen a norm. The
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norm on each fibrd&y corresponding tx € X is usually denoted by-||,. Under quite
general conditions oKX ([1]), these norms can be chosen so that they vary contimyious
with x (this gives aFinsler on B). An important class of maps on a vector burilare
those which preserve the fibres, meaning that each fibre ipedapto another fibre. If

a mapG : B — B always takes the fibrBy into the fibreBy,, for a particular function
g: X — X, thenG will be called abundle map over grhis is, however, not quite standard
terminology (see [9, 1]). Note that even though the set ofsrfegm B to itself do not
have a linear structure, the set of bundle maps over a fungtido. A norm may be

defined on this set by
G| = sup||G(u .
H H UXEQH ( X)Hg(x)

The set oboundedoundle maps oveay is a Banach space.

The concept of thexponential majalso needs to be introduced. This is a very useful
map from the tangent bundid@ (X) onto the manifoldX. Its definition is rather compli-
cated (see [9] for a discussion in termsspfayg, but it can be thought of as consisting of
“projections”, exp from each tangent spadg(X) ontoX whenX and the tangent space
are embedded in Euclidean space (see Figure 4.2). Thdietqgether smoothly to give

the exponential map (denoted by exp) on the tangent bundle:

exp(uy) = expy (u).

Each exp is a local diffeomorphism around O withexp, (0) = idt,(x). It follows then
that the map(r,exp) : T (X) — X x X is a diffeomorphism when restricted to a suitable
neighbourhood of the zero-section. Siregeexp) (Ox) = (X, x), the image of this neigh-
bourhood is a neighbourhood of the diagonaXii X.

As (11,exp) acts onT (X), it is necessary to introduce the tangent space& f) in
order to discuss its derivative. Along the zero-section,tdngent space df (X) can be

decomposed into the “manifold” and “fibre” directions (Figu.3). Therefore,
To, (TX))=Tx(X)® To, (Tx (X)) = Tx (X) & Tx (X)

sinceTy (X) is a linear space. While these two factors are the same, ribvpoitant to

remember that the first represents the direction along tteesection (identified wittx)

LActually it is only defined on an open neighbourhood of thezsection.
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Figure 4.3: The double tangent space along the zero-sedtisplits into two copies of

Tx (X), one tangent to the manifoii and the other tangent to (is) the fibre through

and the second, the direction along the fibre. This orderiigo@ maintained in what
follows.

The derivative of 11, exp) on the zero-section may now be computed as follows. Since
rmand exp are both the identity on the zero-sectign{0x), their derivatives at,Qin the
manifold direction are both the identity (0 (X)). Along the fibre,iris constant (by
definition) so its derivative in the fibre direction is 0. expwever, reduces to exmn
Tx (X), and its derivative at 0 is the identity. Therefore (remerimgethe ordering),

d (. exp) (0) = ( @0 ) 4.5)
id id
Tk (X) & Tx(X) = To, (T (X)) — T (XX X) = Tu(X) & Tx (X).

4.3.2 The Generalised Hartman-Grobman Theorem

The goal of this section is to determine some kind of conjydstween the non-linear

mapf and its derivatived f (p) in the neighbourhood of a invariant uniformly hyperbolic
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set,A. Specifically, a family of homeomorphisr{$, : p € A} will be exhibited which

vary continuously withp and satisfy the generalisation of equation 4.1:

VpeA, fohp:hf(p)odf(p). (4.6)

This will be achieved by abstracting this equation to a spelcere the standard fixed-
point Hartman-Grobman Theorem may be applied. The bulk@ftioof of the Gener-
alised Hartman-Grobman Theorem therefore consists odlibgilup this abstraction and
then pulling it apart again to get the desired result. No# ith contrast to section 4.2,

must act on the manifol rather than a model spageas the setting is no longer local.

The Jacobiansg f (p) fit together to give the derivativé f : T(M) — T (M). The

derivative acts on the tangent bundle by

TH(U) = (df(X)U) ¢y -

That is, T f takes au from a tangent spac& (X), maps it tod f (u) and puts it in the
tangent spacé ) (X). T f is therefore a bundle map ovér In order to make sense of a
conjugacy betweef andT f then, it is necessary to “lift” the action dfonto the tangent
bundle. Actually, the object of interest is the invariantfarmly hyperbolic setA C M,

so the appropriate vector bundle to considefy$M), the bundle of tangent spaces for

points inA\.

The “lifting” of f to Ty (M) is achieved using an exponential map as follows. Wet
andV be neighbourhoods of the zero-sectionT(M)) and the diagonal of\ x M for
which (1,exp) : U — V is a diffeomorphism. DefinE : U — Ty (M) by

F = (mexp to(fxf)o(mexp), (4.7)

shrinkingU if necessary to match up domains. Note tRanust be defined in terms of
two copies off as the dimension ol (M) is twice that ofM. The first copy ensures that
F acts along the zero-section likgF is a bundle map ovef), and the second th&tacts

in the fibre directions likef (distorted slightly by the exponential maps). The derixati
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of F on the zero-section is therefore given by (using equatibh 4.

dF (0x) = [d(m.exp) (Ofp)] Td(f x f)(xx)d (1 exp) (Ox)
-1

(i o df(x) 0 id 0
-~ \id id 0 dfe ) \id id

df(x) 0 )
= (M) T(M) — Tx(M)®Tx(M). (4.8)

0 df(x
The idea now is to prove a bundle version of equation 4.6. iEh#hat there exists a

homeomorphisni : Ty (M) — Ta (M) satisfying
FoH=HoTf, (4.9)

whereH is a bundle map formed by fitting together theof equation 4.6. Sincé and
T f are bundle maps ovd; it is easy to see tha&t must be a bundle map over the identity.
Abstraction to the tangent bundle is, however, not suffidieprove the Generalised
Hartman-Grobman Theorem. Linearising abdutorresponds to linearising about the
zero-section of the tangent bundle. To abstratb a fixed point (to which the standard
Hartman-Grobman Theorem may be applied), the zero-seati@set is identified with
the zero-section as a function — a single point in functipaee. Therefore, the space
[ (TA (M)) of bounded sections df (M) is introduced. This is a Banach space with the
norm

o]l = supl[o (X)]lx
XEN

([1]). For simplicity,I" (Ta (M)) will be denoted by .
The link betweer” and the bundldx (M) is provided by the observation that each

ux € Ta (M) corresponds to a bounded sectiype I defined by

5uX(X’){ ue if x=x

0y otherwise

If Gis a bundle map over a diffeomorphigmthen a mags, : T — I may be defined by
G.(0)=Googog L

A quick calculation shows that & preserves the zero-section (that@(0x) = Oy for
all x e A) then
G (Ux) = Vg = G, (Qu,) = 9,



Therefore, bundle maps over a diffeomorphism which preséme zero-section induce
particularly well-behaved functions dn To characterise these functions, it is necessary

to know their action on arbitrary sections. This is given by

G.(9)(X) =G0 0g™(X) = Godyeg 11 0 -(X) = G. (Byeg-109 ) (¥).

Note that if a mapG, satisfies this relation and takes ady to somed,g<x), then a zero-

section preserving bundle map o@may be defined by

G(ux) = Gx () (9 (X))
Summarising this gives the following result.

Proposition 4.6 If G : To (M) — Ta (M) is a zero-section preserving bundle map over a
diffeomorphism g A — A, then G induces a map,GI — I by G, (0) = Goaogog™™.

G, satisfies the relations:

1. G (%) =9,

9(x)
2. G.(0)(X) = G. (8gug-19 ) (X).

Conversely, if G: T — I satisfies relations 1 and 2 for some diffeomorphismi\g— A,
then G. induces a zero-section preserving bundle map over g/ 3M) — Tx (M), by

G (Ux) = G () (9 (X))-

Let .# (I') denote the space of all maps frdminto itself. The norm o™ induces a
norm on.Z (I') via

|G+l = sup||G. (9)]|-

oel

The set of bounded maps frominto itself, Z (I"), is a Banach space with this norm.
Recall that the set of bounded bundle maps over a diffeonrpdpis a Banach space
(section 4.3.1). The set of bounded bundle maps gwehich preserve the zero-section
clearly form a closed linear subspace, and hence a Banack gsgach will be denoted
by %g4. The set of functions in# (I') and% (I') which satisfy relations 1 and 2 (for a
particular diffeomorphisng) will be denoted by.#g (") and %y (I") respectively. The

following result completes the link betwe€rand T (M).

Proposition 4.7 The mapx : G — G, is an isometric linear isomorphism betwegfy

and %y ().
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Proof: It has already been shown thatakesZ% into .#y (I"), andx is obviously linear.
* IS an isometry because

IG:|| = supsup||G..(0) (x)|| = supsup||G (a (g7 *(x))|| = sup [IG(u)l|=IIGl|-

oel xel oel xel UxeTa(M)

Linear isometries are always injective, so it remains toasti@t « is surjective. Suppose
then that¥ € %4 (I"). DefineG by G(ux) = ¥ (dy,) (9(x)). By Proposition 4.6G is a

zero-section preserving bundle map oge6 is bounded since

16 (ux)llg) = 1€ () (9 (X)) llg) = [1¥ ()| < (1]

for eachuy € Ty (M), soG € %y. Finally,

G.(0) () =6 (0 (g7 (X))) =% (8,(g 1)) ) =% (0) (X

for everyx € A ando € I' (using relation 2 of Proposition 4.6). Thus, = ¥, andx is

invertible. n

As bothF andT f are (generally unbounded) zero-section preserving bumdies
over f, they induce mapB, andT f, in .#; (I'). Itis easily verified thaE, andT f, leave
the zero-section (i) fixed. The standard Hartman-Grobman Theorem may therefore
be applied to these functions (after some more techniesalitiave been dealt with) to

guarantee the existence of a functiensatisfying
FioH,=H,oTf,. (4.10)

This H,. induces arH satisfying equation 4.9, which as remarked earlier, shbelc
bundle map over the identity. Therefoild, is expected to be an element @y (I').
However, to makél aconjugacy continuity is required. Define then, for each diffeomor-
phismg: A\ — A, the space%’g consisting of those bundle maps4#y whose elements
are continuous. Also introduce the spamfé’ () and,%’g (I') consisting of the functions
of .44 (") and %y () (respectively) which give continuous bundle maps undé: H.

should therefore be an element®f, ().

Lemma 4.8 %4(I') is a closed linear subspace & (I').
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Proof: Linearity is obvious. Suppo$8,. € %y (') andGp, — G, butG, (&) # d,g(x)
for anyv € Ty (M). Then,G, (&) (X') # Oy for somex’ # g(x). But,

1Gn — G| = [|Gne (3) (X) — Gu (&) (X) || = (|G- (&) () || #0,

for everyn. Hence||G. — G,|| is bounded below by a positive number, a contradiction,

S0G; (dy) = dy,,, for somev € Ty (M). Also,

G. (9) (X) = lim Gn. (0) (X) = im Gr. (Spug-1(9 ) (%) = G- (Bgog1 ) (X

n—oo

S0%y(I") is closed. u

Lemma 4.9 ,%’8 (I') is a closed linear subspace &fq (I").

Proof: Sinceﬁg(r) = % (%8) (by definition) andx is an isometric linear isomorphism,
,%’8 (I') is a closed linear subspacet; (I') if and only if ,%’8 is a closed linear subspace
of #gy. This in turn is a consequence of the well-known result thatuniform limit of

a sequence of continuous functidmstween metric spacésalso continuous ([45]). The

details are as follows.

As M is a compact manifold, it admits a metdc— that is, there is a metric which
gives the topology o ([50]) — and A inherits this metric. By the axiom of local
triviality (see section 4.3.1), there are open neighboodst®J, about eactx € A and
homeomorphismgy : Tl(UX) — Uy, x RY. Each spacéy x RY is a metric space with

metricD given by

D ((X1,¥1), (X2,¥2)) = max{d (x1,%X2) , [[y1 — Y2|| }

(eachRY is given the normi|-||). SupposeG, — G where eactG, € %’8. Define Gy :
U)/( x R4 — Ug(x) x Rd by

G;I = Xy(x) © Gno X;l Uy xRd

whereU) = Uyng? (Ug(x)) is an open neighbourhood &f(g is continuous). Sincgy
and Xqx) are homeomorphisms, th@], are continuous, and convergaiformly (to G’
say) as the convergence of t8g is uniform. But, theG;, act between metric spaces, so

G’ is continuous too. It follows that

G = Xy G 0 Xl rrauy 1 T (Ux) = 1 (Ugy)
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is also continuous. Finally then,

G = lim Xy Gho Xxlmyug) = iM Gnlrr1ugy = Glir1quy

— 00

soG is continuous ot 1 (U)) for anyx € A. These sets covdiy (M) soG ¢ %’8. u

To proveH, exists, the contraction map of Theorem 4.1 is employed (emuéd.3).
This will act on#(I), the space of bounded functions bn However, it will also be
shown to preserve the closed subsp@%z(l’), implying that the fixed point must belong
to this subspace. As the contraction map will involve conitpmss of functions in///g? ()
and%’éJ (") for various g it is necessary to investigate how these spaces are reiat

function composition.

Lemma 4.10If G, € .#y4(I") and G, € .#y ('), then G oG, € #yy (). In fact,
G.oG, = (GOG/)*.

Additionally, if G. € ./ () and G. € .3 (T), then G oG, € .4, ().

Proof: The first assertion is a simple matter of checking relatioaad 2 of Proposition

4.6, and is easily verified. An equally simple calculatiovegi
G*OG; (o) =G,0G o000 (g')_lzGoG/odo (g')_logflz (GOG/)*(U),

so thatGo G’ inducesG, o G,. Note thatGo G’ is continuous ifG andG’ are. |

Lemma 4.111f G, € .#4(I") is invertible, then(G,) * e My (T), Gis invertible, and
(G)t=(G),.

*

Proof: Again, the first assertion is easily verified. It follows thiat (G, )" induces a

zero-section preserving bundle map oget, G’ say. By Lemma 4.10,
G.o(G,) '=idr = GoG =idr, ),

and similarly,G’ o G = id, ). HenceG is invertible andc =G u

Clearly, both these assertions remain true wh#ns replaced byA.
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Lemma 4.12 If G, € . (I') is invertible with a Lipschitz inverse, therr&e ///é’,l (M.

That is, G is a homeomorphism.

Proof: By Lemma 4.11G is invertible, so it remains to demonstrate the continufty o

G L. LetB(r) be the ball of radius around the zero section T (M):
B(r) ={uxc TA(M) : [luxlly < T3}
Then, forux € B(r),

IGHWllg 109 = G (B (97 (¥ [lg-109 = [IGT (&)
< LipG 1|yl < rlipGt.

Therefore G~ (B(r)) C B(r Lip G, 1), which is compact (sincA is). AsG is contin-

uous by assumption, and invertible, it is easily seen @a@t(B(r)) is closed, therefore
compact. Consider therefol®|g-1g)) G 1(B(r)) — B(r). This is a continuous bi-
jection from a compact set, hence a homeomorphistherefore G—1 is continuous on

eachB(r) and since was arbitraryG : Ta (M) — Ta (M) is a homeomorphism. n

A global Hartman-Grobman Theorem can now be proved oifhe isomorphisnx
can then be used to pull this back down to the tangent bundhally; this is dissected
fibre-wise to get the required result at each point of the Hygee set. First, however, a
definition. LetT : To (M) — Ta (M) be an invertible linear bundle map over a diffeomor-
phismg: M — M. Suppose there is a splitting of each filggM) into Ty (M) & Tx (M),
which varies continuously witk, is invariant undef in thatT (Tx(M)g) = Ty, (M)g and

T (Tx(M),) = Tyx) (M), and is such that
Mlgoy < Hlluxll — and T llg = v [Ivll

for someu < 1 < v and alluy € Ty (M) andvy € Tx(M),,. Then,T is said to be hyperbolic,
and Ty (M) is said to have a hyperbolic splitting inf (M), @ Ta (M),,. This splitting

defines a notion of hyperbolicity on. Define subspacdss andl™, to be the bounded

2Let f : X — Y be a continuous bijectioi compact, ant Haussdorf. Then, iR C X is open X \ Ais
closed hence compact, $¢X \ A) is compact inY (sincef is continuous). Thusy \ f (X\ A) is open, but

this is f (A) sincef is a bijection. Thereforef ! is continuous.
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sections ofTy (M) that take values iTA (M), and Tp (M), respectively. An invertible

linear mapT, : ' — I is then hyperbolic if
IT.osll < plflos]|  and  [[T.ouf| = vioull

forsomeu <1< vandallosel'sandagy € I'y. Itis easy to see that a hyperbolic linear

bundle mapr induces a hyperbolic linear section map

Theorem 4.13 Suppose that,Te //zg(r) is linear, hyperbolic, and invertible. Then,
there is ane > 0 such that for any,, ®, € ,%’8 (I') with Lipschitz constants less than

there is a unique map He ,%’i% (I") satisfying
(Te+P,)o(id +H,) = (id + H,) o (T. +Wy).
(id 4 H,) is invertible, and(id +H.) ' € %9 ().

Proof: This is the section map analogue of Theorem 4.1. In fact, thm @wontraction
mapping argument is exactly the same, applied now to boufwtedions on the infinite

dimensional Banach spate Comparing with equation 4.3, we define the n&py

OH,) = ((T*soH*s—cD*so(id+H*))o(T*+lP*)’l

Tt (Wi — Duyo (id +H,y) + Hago (T + W), (4.11)

whereT, + W, is invertible fore small enough by the Inverse Function Theorem (Theo-
rem 3.2). The same calculations as in the proof of Theorenstdotv that® preserves

2 (I') and is a contraction on this space. Suppose nowHhat %’% (). By thelLips-
chitzinverse Function Theorem (Theorem 3R)+ W, € ,//é) (") has a Lipschitz inverse
for sufficiently smalle. Thus, Lemma 4.12 implies th&T, +W,) * € //lg,l (F). Sim-
ilarly, Tt € ///é’,l (T'). Repeated use of Lemma 4.10 now shows @ét,) belongs

to .3 ('), hencez, (') (since® preserves? (I')). Since#? (') is closed in% (")
(Lemmas 4.8 and 4.9), it follows that the fixed point of theteaction belongs te?, ().

Invertibility is proven as in Theorem 4.1. ]

Theorem 4.14 (Global Generalised Hartman-Grobman Theorem Let T: TA (M) —
Ta (M) be a linear hyperbolic invertible bundle map over a diffeopiism g: A — A.
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Then, there is am > 0 such that for anyb € %y which is Lipschitz withLip ® < ¢, there
is a unique bounded zero-section preserving bundle map theeidentity, H such that

id +H conjugates T and F &.

Proof: T and® induce mapg, and®, onl as in Proposition 4.6L, is linear, hyperbolic
and invertible, whilstb, is bounded and it is easily verified that ldp = Lip ®. Thus the

conditions of Theorem 4.13 are fulfilled, so there is a unigue %2 (") such that
T.o(id +H,) = (id +H,) o (T, + P,).

H. therefore induces a continuous zero-section preservinglbunap over the identity,
H, which satisfies

To(id+H)=(d+H)o(T+®),

by Lemma 4.10 (apply ! to each side of the previous equation). Fina(lig,+- H*)_1 in-
duces(id +H) ! by Lemma 4.11, and this is continuous by Theorem 4.13. HeheeH

is a homeomorphism. [ ]

Theorem 4.15 (Generalised Hartman-Grobman Theorem)Let f: M — M be a dif-
feomorphism and C M be an invariant uniformly hyperbolic set for f. Then, thesa
neighbourhood U of the zero-section @f(M) and a map h taking U homeomaorphically

onto a neighbourhood of the diagonalAfx M, which satisfies
(fxf)oh=hoTf
onUNT f (V).

Proof: f inducesamap :U’ — Ty (M) as in equation 4.7, whet#' is a neighbourhood
of the zero-section. The derivative Bfat 0 is d f (x) ©d f (x) by equation 4.8, so the
restriction of T F to the zero-section is judtf (in the fibre-directions). Define therefore,
® =F — T f|,.. By shrinkingU’ if necessary, it follows thab is bounded and Lipschitz
with a suitably small Lipschitz constant. As in the proof bétHartman-Grobman The-
orem (Theorem 4.2)p is replaced by a globally defined functighwhich is bounded,
has the same small Lipschitz constant, agrees withn an open subset &f’, U say,

and is identically zero on the complementdf A global version ofF is then given by
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F = Tf+®. By Theorem 4.14, there is a zero-section preserving bumdle over the
identity, H, conjugating= andT f. Restricting this tdJ gives a local conjugacy between

F andT f. Finally, settingh = (7T,exp) o H|, gives
(fxf)oh=hoTf

as required. [ ]

Corollary 4.16 Let/A C M be a invariant uniformly hyperbolic set for a diffeomorgim

f:M — M. Then, there is a famil{hp pe /\} of functions varying continuously with
p, satisfying
fohp: hf(p)odf(p),

and such that for every g A\, hp(p) = p, and Iy maps some open neighbourhood of p

homeomorphically onto another open neighbourhood of p.

Proof: Let ry be the canonical projection from x M onto M. Applying i, to both

sides of the conjugacy equation,
(f x f)o(mexpoH|, = (mexpoH|,oTHT,

gives
f oexpoH = expoH o T f.
Restricting this to a fibrel, (M), then gives

foexp,oHp = expr(p oHs(podf(p)

= fohp = hf(p)odf(p)

wherehp = exp,oHp. u

4.3.3 The Hlder Continuity of the hp

It is now relatively simple to show that thg of equation 4.6 are Holder continuous. Us-

ing exactly the same estimates as in Proposition 4.4, the figzent,H,, of the contraction

64



mapping of equation 4.11 is locally Holder continuotk: € %G’B (") for sufficiently

small exponentr. This induces the bundle map over the identityand this satisfies

IH (W) = H (W)l = [[H (8u) ()~ He (&) (9

= ||H: (8) —Hi (8y) |

< Blla—ay”
= Bllu—uli
whenever| &y, — Ay || = [|ux — Ul < . Thus, the restriction dfl to each fibreH | ),

is also locally Holder continuous. Since each giga local diffeomorphism, it follows

thathp = exp, o (id +H |Tp(M)) is Holder continuous too.

Proposition 4.17 Each h, of Corollary 4.16 is Hlder continuous on a neighbourhood

of p, and the Wlder constants and exponents may be chosen independent of p
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Chapter 5

Analytical Results

Recall the gradient descent algorithm described in sedtidnGiven a noisy time series
representing an approximation of some deterministic tiemges, this algorithm produces
another deterministic time series whichsispposedo be a much better approximation
of the actual time series. This algorithm assumes that tinamycal system producing
the time series is known. In this chapter, it is rigorouslpvan that the gradient de-
scent algorithm satisfies this supposition, provided tkaiain conditions are met. More
specifically, it is shown thgbrovided the time series comes from an invariant uniformly
hyperbolic set, the noise is bounded, and the dynamicaésystduces a gradient de-
scent satisfying Condition 5.12 belptlie approximation becomes arbitrarily good as the
length of the time series tends to infinity, except near titealrand final points. This is
accomplished by relating the gradient descent tiresarisation for which the analysis is
tractable. The transition back to the original non-lineadient descent is then achieved
using the linearisation results of Chapter 4. Note that tireerical results of section 2.3
suggest that the noise reduction will fail when the amouma$e added becomes com-
parable to the distance between homoclinic intersectiam®g@at near-tangency points).
As homoclinic intersections are impossible for linear eyss, it seems reasonable that
the noise levels which allow noise reduction correspongr@pmately) to the neigh-
bourhoods where the linearisation theory is valid! TheHooiming analysis needed for
the linearised gradient descent is somewhat involved, s@#ise of a linear dynamical
system is initially considered. First however, some gdraaperties of gradient descent

are addressed.

67



5.1 Gradient Descent Revisited

Suppose that : M — M is aC2-diffeomorphism defining a discrete dynamical system on
a d-dimensional manifold which will be assumed smooth amdmpact Throughout
this chapter, the manifolt¥ will be locally identified withRY using appropriate charts.
The map induced by onRY will also be denoted byf. The determinism functioh :
R" — R may therefore be defined by equation 1.1:
1t 2

L0 =5 3 a0,
wherex = (Xg,...,Xn), Xi € RY, and (as before) the standard Euclidean norm is chosen
onRY for analytic convenience. The gradient descent algoritien tonsists of solving
equation 1.2:

%(t) = —OL(x(t)),  x(0)=x,

wherex represents the given noisy trajectory, and lettitend to infinity. Now,L (x) =0
if and only if thex; form a deterministic trajectory fof, and clearly the deterministic

trajectories are critical points &f Conversely, by differentiatinb:

—CIf(X;|_)>’< (Xz— f (X]_)) ifi=1

oL o

% (6 —f(x-1)—df(x)" (Xp1—f(x)) ifi=2...,n-1 (5.1)
(X — f (Xn-1)) ifi=n

I

it is easily checked that these are the only critical poihex€* denotes matrix trans-
position). If these critical points welisolated then the gradient descent would have to
converge to one of them, regardless of the initial point}jf2dowever, the deterministic
trajectories are not isolated — they vary continuously wfité first coordinate (for in-
stance). Therefore, more consideration is required befongergence to a deterministic
trajectory can be claimed.

Choose a deterministic trajectoyy This is a fixed point of the gradient descent flow
as are the other deterministic trajectories. Witk (qy,. .., gn) = OL : R" — R" defined
by equation 5.1, thénearisationof the gradient descent flow about the fixed pairns
given by

W(t) =—dqly)w(t),  w(0)=x-y. (5.2)

Sincef is C? by assumptiong; (y+ ), i =2,...,n—1, may be expanded (fa¥ small)
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as

G(y+0) = (y+8)—f((y+0)i_y) —df((y+8))" ((y+0)isa—F((y+0)))
= Yi+a&—f(yie)—df(yica)d-a1—...
—df(yi+8)" (Vieat+dpa—F (i) —df(y)d—...)
= §-df(yi-1)d-1—df(y)" (a2 —df(y)&)+...

where terms up to first order id have been retained. Similar computations whenl

andi = n combine to give:

AAL —A
AL AR A
A I +AA A
da(y) = T | (5.3)
—An2 T+A A1 —AL
—An1 |

whereA; = d f (y;) (and all blank entries are zero). The deterministic trajees for the

linearised gradient descent are defined to be those satysfyi

Wia=Aw=df(y)w = w1=df (yp)w

foralli=1,...,n— 1. The effect of the linearised gradient descent is now easgter-

mine.

Proposition 5.1 The linearised gradient descent algorithm given by soleggation 5.2
and letting t— oo, is equivalent to projecting orthogonally onto the subspatdetermin-

istic trajectories.

Proof: Clearly the set of deterministic trajectories form a linealospace. Considdqg(y)

defined by equation 5.3. This is a symmetric matrix (by inipae¢but also because it is
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aHessiammatrix forL). In fact,dq(y) is positive semi-definite as

wda)w) = 3 (w.(da);w;)
i,J=
n-1
= <W1,A?|F_A1W1> + ZZ <Wi, (I +Ai*Ai)Wi> + (Wn,Wn>

- n;l (Wi, Af Wiy 1) — _i (Wi, A 1Wi-1)
n-1 A

_ ; [HAiWiHZ_ <A5Wi,Wi+l>] + ; [||Wi||2— <Wi,Ai71Wi71>]
- r21[||AiWi||2+||Wi+1||2—<AiWivWi+1>_<""i+1’A‘W‘>]

n—-1 )
= 3 A - (5.4)
0

WV

where(-, ) refer to the standard inner-produttsn RY andR", andA; = d f (y;). The

solution of the linearised gradient descent equations is
w(t) = e 99w (0),
and sincelq(y) is positive semi-definite, it follows that
g dat __, 5

ast — o, where Z is the orthogonal projection onto kiq(y). That is,w(t) — W =

Zw(0). It remains to show then, that keq(y) is the deterministic subspace. But,
(w,dq(y)w) =0 <= dq(y)w = 0 (becauselq(y) is positive semi-definite and there-
fore possesses a symmetric square root). Hence this is grt@asequence of equation

54. ]

It follows from this result that for a linearised dynamicgistem, gradient descent
finds theclosestdeterministic trajectory to the noisy one (in terms of theli€lean norm
onR"). This is of interest in relation to the algorithm of FarmedaSidorowich dis-
cussed in section 1.2, which aims to do exactly this, but foomlinear system. It also
follows that the linearised gradient descent flow (abouttardanistic trajectoryy) has a

d-dimensional kernel, consisting of the deterministicecapries for the linearised system,

lwith the convention used in physick, y) = x*y, rather than that standard in mathematigsy) = y*x.
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and that the dynamics orthogonal to the kernel is contrgctiFhat is, the linearisation
gives centre and stable eigenspaces. By the Centre Mariifdrem then (Theorem
3.4), the non-linear gradient descent flow possesses camirstable manifolds, tangent
to these respective eigenspaces. The stable manifoldadyctbe set of all initial condi-
tions which givey after gradient descent. Consider the set of determinrstiedtories for
the non-linear system. This is a smooth manifold as it carepeesented as the graph of
the smooth function

(f,f2,..., ") RY - RO-DI,

Sinceq is constant (zero) on this manifold, it follows that its teng space & is con-
tained in the kernel oflq(y), the centre eigenspace. As both these linear spaces have
dimensiond, they are in fact equal, and it follows that the smooth maditd determin-
istic trajectories is tangent gtto the centre eigenspace. Being obviously invariant under
g, the set of deterministic trajectories is therefore a @nanifold for the non-linear
gradient descent! Ag was an arbitrary deterministic trajectory, the set of dateistic
trajectories is a centre manifold feweryfixed point of the non-linear gradient descent,
and will therefore be denoted I#.

Now, note that#; is closed (sincé. is continuous) hence compact (thinking of the
set back orM). From its smoothness, it follows that the centre eigenspaeach point
of %, varies continuously with the point. Each stable eigensgat®e orthogonal com-
plement of the corresponding centre eigenspace (by Progpos.1) so these also vary
continuously with the point. Therefore, there is a contumueplitting along the compact
invariant set#;. into stable and centre eigenspaces. By the Generalisededdanifold
Theorem (Theorem 3.9), the generalised stable manifoldes@onding to each point in
# vary continuously. These are of course just the stable mlaisifor each fixed point.
Because these vary continuously (on a local level at leiagb)lows that there is an open
neighbourhood o#; which islaminatedby stable manifolds, meaning that the (disjoint)
union of these stable manifolds contains the entire neighimod. Any point in this
neighbourhood will therefore end up @t after the gradient descent algorithm has been
completed. By extending this to global manifolds and makisg of the compactness
of M once more, it can be concluded that the global stable maisifaiminate all oM.

Therefore, the following result is finally justified!
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Proposition 5.2 The gradient descent algorithm is guaranteed to converdge amleter-

ministic trajectory.

As the linearised gradient descent algorithm will be theeobpf study in much of
what follows, and as it is equivalent to projecting orthoglbn (Proposition 5.1), it is
convenient here to characterise the relevant projectiatrix &2 (in terms of some basis
of R"9). This projects onto thd-dimensional space of deterministic trajectories for the

linearised gradient descent (about soyree”;). Therefore the following representation

is valid:
d U.U*
P = .S (5.5)
k= (| Ukl
where the
Uk
df(y1)u
Uk = df2(y1)uk , k=1,...d,

d " (y1) uk
form an orthogonal basis of the subspace of determinisdjedtories for the linearised

system.

5.2 Gradient Descent for Linear Dynamical Systems

In this section the properties of the gradient descent dlgorare investigated in the
special case where the dynamical mapRY — RY is linear. For clarity, this linear
map will be denoted byA rather thanf. As A is a finite-dimensional linear opera-
tor, its spectrum (denoted by (A)) may be decomposed into three disjoint subsets:
o (A)=0s(A)Uaoc (A)Uay (A) corresponding to eigenvalues of modulus less than, equal
to, or greater than unity (respectively). This induces étim of RY into stable, centre
and unstable eigenspaces, denotedg\E. andE, respectively. The eigenprojections
corresponding to these eigenspaces will be denotde;, iy andP,. These projections
are not generally orthogonal.

As the derivative of a linear operator is that same linearatpe the gradient descent

equations (equation 1.2, see also equation 5.1) are liapdrso by Proposition 5.1, the
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gradient descent algorithm is equivalent to projectingagbnally onto the deterministic
subspace

Ee = {yeR”d Vis1 = AWLi = 1,...,n—1}.
The investigation of gradient descent therefore consistsvestigating the properties of
this orthogonal projection, especially its relation to ti@n-orthogonal projectioni;,
P. andP,. This is somewhat more difficult than it might appear, andreanalysis is

initially simplified by assuming that the linear operafois symmetric

5.2.1 Symmetric Linear Systems

Suppose then tha is a symmetric linear operator @&f. Definers : R" — RY to be
the operator projecting out th point of a trajectory (tx = X;). If &7 is the orthogonal
projection effecting the gradient descent, the” is the operator which gives tridh
point of the noise reduced trajectory. It will be useful tasmer the decomposition
of these points in the stable, centre and unstable direxteomd so the operatoPyt &
(whereP is one of the eigenprojectiom, P; or B,) are the focus of what follows. Define
anorm orR", ||-||... by

Xl = max il

This norm reflects the noise level added to a trajectory.i$fa noisy version of a deter-
ministic trajectoryy where the noise distribution is bounded &gay, ther|x—y||,, < €.
This norm will be used o™ for the remainder of this thesig-( will still denote the

Euclidean norm when applied ®'@ however).

Proposition 5.3 Suppose that A is a symmetric linear operator filéfhinto itself, with
stable, centre and unstable eigenprojectiogs R and R, respectively, and?’ is the
orthogonal projection iR onto &, the subspace of deterministic trajectories under A.
Then,

i1 1+ (A
|PsTs 2| < At
W2 M

and the same inequality holds wheyelRd os (A) are replaced by Pand o (A) or R, and
ou(A).

Proof: The norm orPsit.22 : R — RY js the operator norm:

P
IR = supl X
x£0 Xl
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SinceA is symmetric, there is an orthonormal basisRSf consisting of eigenvectors of
A. Denote these by, k=1,...,d, and letAk be the corresponding eigenvalues. Tihe

define deterministic trajectoriés € & by

Uk Uk
Aug )\kuk
Ue=| Au [=] 22w
A”‘luk Ai'(“luk
Since the{uy} are orthonormal,
( n
% if K=mand|Ag| #1
: k™ —
i—1 _
(Ui, Um) = Zi<’\k e Am ) =4 itk=mandpj=1  ©O
\ 0 if k#m.

So, the{Uy} form an orthogonal basis faef.. Using equation 5.5 fog?, it follows that

for all x € RN,

d
P Px = Rt 3 (Ui UKl Ui

Al®—
= Psz Z <AJ 1U X]> ‘)\ |2n Uk

111

_ 1 AP =1 i,
— UKgE Z)\l <u XJ>|)\ |2n Uk

sj=1
using equation (5.6) and the fact ttvat = O for all u ¢ Es. Therefore, using the Cauchy-

Schwarz inequality,

Prox < v 5 A it
NS — o1 |k k 0
> ngEs ]Zl 1- |)\k|2n
i1 1+|A|
1
= z ‘ |I 1+|)\|HHXH00

Aeas(A)
since theuy were chosen to be normalised. The argument for the unstabeis identi-
cal, and the only difference with the centre case is thatAkle= 1 part of equation 5.6

must be used. n

This estimate is used to prove the first result concerningpénormance of the gradient

descent algorithm.

74



Theorem 5.4 Let A be a symmetrigyperboliclinear operator defining a discrete dynam-
ical dynamical system oRY, x € R" be a noisy trajectory, andl be the noise reduced
trajectory given by the gradient descent algorithm. If theése distribution isbounded
then the points o&nydeterministic trajectory that could be the true trajectadiffer from
the points ok by an amount which tends to zero as n, the length of the tajes, tends
to infinity, except for points near the initial and final pa@ntThe errors at these points

remainboundedas n— oo.

Proof: Lety € & be a candidate for the true trajectory. Theng ik the bound on the

noise,||[x—Yyl, < €. Definey <1< v by

H= max |A| and v= min |A].
Aeas(A) Aeay(A)

Then, by Proposition 5.3, the error in the stable directietween each point of the noise

reduced trajectory, andy is given by
IR (X=y)| = [RrZ (x-y)

1 14]A]
1+ |A|"

< 3 Ix=y.

Aeas(A)
< dimEsu Tt (1+p)e.

The unstable error is given by

P (X=y)[ = [[RmEZ (x=y)|

1A

< Al i IX— Yoo
M TN

aiy AT A

= A X =Yl
o ERpYL

n-1
_ —(n—i) A1)

< dimEyw "V (14 v e,

Now, €, U, v, dimEs and dimE, are all constant, so the errors at paifbhetweernkandy)
decrease exponentially in the stable directiom iasreases, and they are bounded above
by dimEs(1+ u) € sinceu < 1. Similarly, the errors at pointincrease exponentially in
the unstable direction dsincreases, but they are bounded above byHifi+v—1) e
sincev > 1. As these bounds are independentpthe length of the trajectory, it fol-

lows that the errors in both directions will be simultandgwasbitrarily small for a long
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enough trajectory, except near the initial point where table error may be of the order
of magnitude of the noise bound, and near the final point witherenstable error may be
of the order of magnitude of the noise bound. Finally, sidée assumed hyperbolic (and
symmetric), the total error at each point is the Pythagoseam of the errors in the stable
and unstable directions, so the total errors can be madeaaityi small by taking a long

enough trajectory, except near the initial and final points! [ ]

Note that from Proposition 5.3, the bound PpR:75Z|| is independent of (it re-
duces to dink). Therefore, when considering the generalisation of Téwos.4 to non-
hyperbolic symmetric linear operators, one finds that thends in the stable and unstable
directions behave as before, but the bound in the centretdineremains constant, and
hence the bound on the total error doex become arbitrarily small anywhere as the
length of the trajectory is increased. That is, the errot&zéen that noise reduced trajec-
tory X and the true trajectorycan be large, and the gradient descent algorithm fails. This
is in accordance with the numerical results of Chapter 2. hatvollows, attention will
be restricted to hyperbolic systems.

It is easy to see how to generalise Theorem 5.4 to unboundieé ddstributions.
In this case, there is no strict bound {x—vy||,, and the probability that a given noise
realisation will exceed any bound imposed (as the lengtheféalisation goes to infinity)
is 1. Instead, one considers some sort of average errorlapeat of the trajectory. This
then relates to the corresponding average for the noisdédigon. For instance, th@ot-
mean-squarerrors at each point are bounded by the same expressionaraqgpm the
proof of Theorem 5.4 witlg replaced by thetandard deviatiomf the noise distribution.
This obviously extends to confidence levels. The conclusidhen that with probability
p < 1, the given bound holds with the appropriate Clearly for an unbounded noise

distribution,e — 0 asp— 1.

5.2.2 Hyperbolic Linear Systems

Before generalising the results of section 5.2.1, it is aeagy to know how general linear
operators expand and contract vectors. For symmetricrliogerators, the existence of

a basis of eigenvectors implies that these (and hence damatars) are expanded or
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contractedexponentiallyunder iteration. However, this is not quite true for geneeal
eigenvectors — an example where a vector is expapdgehomiallyunder iteration was
givenin section 3.2.2. A better estimate is provided by éseilts of section 3.3, especially
Proposition 3.7 (adapted to the case where A and hencel f" (p) = A"). It is easy to
see that the Lyapunov numbers farare just the moduli of the eigenvalues &f By
Proposition 3.7 then, given < 1 < v such that

B> max |A and v< min |A],
Aeos(A) A€ou(A)

there exisCs > 1 and 0< C, < 1 such that
[AMs[| < Cspt"[lvsl|  and  [JAMy[| = Cuv"vull, (5.7)

for all vs € Es andv, € Ey. 1 andv will be referred to as thayperbolicity bound$or A.

In this section, the generalisation of Theorem 5.4 to a gémperbolic linear oper-
ator, A, is proven. Because these operators admit non-orthogameispaces (and gen-
eralised eigenspaces), the analysis is more complicatedeter, the idea of the proof
remains the same: The orthogonal projectighonto &; is decomposed into a sum of
terms involving vectors (i, C R") whose magnitudes can be related to the expansion

and contraction rates & The following computation will also be required.

Lemma 5.5 Suppose thatjas a sequence of non-negative numbers satisfying
a; < CKj_iai
forall j >i>1wheregq > 0,0< kK < 1landC> 0are constants. Then,

2
(s71a) _1+(C-Dk
z?zlajz h 1—K

Proof. Expand the numerator as

n 2 n ) n-1 n
aj| =) aj+2 a;a;.
(Be) <275 8 o0

j=1+1

By hypothesis,



which yields the estimate:

2
n : n—1cn A,
(lelal) Yici 2j—it18ia,]
—<n a2 n 2
2j=19 2j=19

as required. [ ]

1+(2C—-1)k

=142
+ 11—k ’

Because of the presence of non-orthogonal eigenspaceai,beveonvenient to con-
sider theminimal anglebetween subspaces. For two subsp&tesdE’ of a Euclidean
space, the minimal angkis defined to be the acute angle satisfying

(xX)

[ 1]

cosf = sup{ :x€ E\ {0} andX € E'\ {O}}

Proposition 5.6 Suppose that A is a hyperbolic linear operator fré into itself, with
stable and unstable projectiong&hd R, respectively, and” is the orthogonal projection
in R" onto &, the subspace of deterministic trajectories for A. Theu, fihlowing

bounds hold:

-t - 1+ (gt —1) vt
IR7 2| < dimEs=H V1+(2Gs-1)u \/ (2Cu™-1)

sing sinpy1—p tangy/1—v-1
~1,—(n-i) (/14 (2Cgt-1)v-1? —
IP7E2|| < dimE, Y \/ _( 1) V1+(2Cs—1p
sing singy1—v-1 tang/1— U

whereu < 1 < v are hyperbolicity bounds for A,{&nd G, are the associated constants

(see equations 5.7), arlis the minimal angle betweeny Bnd E,.

Proof: Let &5 and &, be the deterministic trajectories whose points ar&drand E,

respectively. That is, let

r ( )
v v
Av Av
Es= A2y :veE Eg and ¢y A2y veEy,
A1y A1y
Vs

J .

SinceA is hyperbolicRY = Es@ E,, and this induces the decompositiéin= ¢s® ¢,. If

11(E,E’) denotes the projection onto the subspBEqearallel to the subspad&?, then

2That is, (E, E’) is the unique projection with image and kerneE’.
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may be decomposed as

P — n(@s, cftg) n n(@:g, c»:s) (5.8)

where! denotes orthogonal complementation. This obviously spoads to a decom-
position of & into &s® Qfé, so the idea is to rewriter(@é, @s) so that it involvesg,,.
The constructions which achieve this are indicated schieailgtin Figure 5.1 for conve-

nience.

Suppose then, thaW} constitute an orthogonal basis faég. Since dimgs =
dim¢&,, it follows that these linear spaces are isomorphic, anchaeraent isomorphism

is given by

(&, Q”:S)|e§ 3

(the projection onta, parallel to€s, restrictedto ¢2). This defines a (non-orthogonal)

basis{Ux} by Uy = (&, ) Wk. However, it is clear that

Y
u

[n(@fu,Qfsﬂesirl: T[(Qfé‘,(’fs) ¢

the restriction of arorthogonalprojection, so it follows thaty has the orthogonal de-
compositionUy = W + Vi, whereVy = 11(&s, €5 ) Uy € €. Note that the{Vi} need not
form a basis foi¢s — for instance, some (or even all) of thg may be zero. Now, iBy

is the acute angle betweély andVk (defined to bet/2 if Vi = 0), then

Wkl = (U]l sin6i = [|Vi|| tan6k (5.9)

(where the norm is the standard Euclidean norniR6#).

As {W} is an orthogonal basis fats andW, = Uy — Vk, the second term in the

decomposition ofZ (equation 5.8) may be expanded as

d * d

- W<W = -2 * * * *

m(ed,es) = 3 0 = S Wk 2 (U — Uk — MU V),
= Wl &

whered, = dime&g = dime, = dimE,. SinceP,75 (¢s) = P, (Es) = {0}, the first term in
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¢y

A
/

Figure 5.1: Construction of “unstable trajectoriefJy}, and “stable trajectories{V},

from the basi§W} of & .

the decomposition of” (equation 5.8) is annihilated B§,75. Therefore, fox € R",

P,EPX = mer(@é, Gs) N

= B Z |\M<|| UkUk —Uka —VkUk +Vka)

du

= P> I (A M Uk X) — A (Vi X)

1
—A~ 1y (Uk, X) + A (Vie, X))
dy

= 3 IR Z (A uexi) = (A i)

whereu, = Uy € E, andvg = iV € Es. This expresses” in terms of vectors from
the stable and unstable eigenspaceA.obUsing equations 5.9 and the Cauchy-Schwarz

inequality, this gives the bounds:

& A | 1uk\ 0 i -
|IPiE2X|| < ()| A u|[ 4 || AT v Xi
d“ HA"lukH 0o (]|A- 1ukH A
< 00
2 W ,Z W] A

_oe AT A ] A
— ZlHUkHSIanZ(HUkHSank Vil [tan6k X|-  (5.10)

In the case where any of thg are zero, the correspondingare zero, and so the second

term in the parentheses above is zero.
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Consider now the term

LA | ST A

. vV, _ 12
A M T g
If aj = ||AI~1v ||, then by equation 5.7,
o= A < A =t

wherepu < 1 is a (stable) hyperbolicity bound fé; andCs > 1 is the associated constant.

By Lemma 5.5 then,

| ) . 2 1/2
0 A | (S7aflA-2ul]) <{1+(20s—1)“]1/2 (5.11)

& I ST (A -ty 1-H

Similarly, if aj = || A" uy||, thenaj < C;v—(=a; wherev > 1 is an (unstable) hyper-

bolicity bound forA andC, < 1 is the associated constant. Therefore,

c A

5.12
2 512

1+ (2cgt—1)v-1]"?
1-v-1

One last application of equation 5.7 and Lemma 5.5 gives

A u] A tu|
Ul (At

so combining this with equations 5.11, 5.12 and 5.10, yigldsestimate

<
IRm2l< 2 sinGv/1—v-1 tan6y/1— p

& sinbk

& iy~ (\/1+(20u yvr ¢1+(2cs—1>u)

This bound expresses the normRyft <2 in terms of the constangs, v, Cs, C, andd,
— which depend on the hyperbolic linear operaé@nd not on the length of the trajectory
n— and the angle§i. As thef, are angles between th@jectories U andV, they will
generally vary witm. It remains then to show that they are bounded away from zero,
that sing, and targ, do not vanish as tends to infinity. Ifg is the minimal angle between

the eigenspacdss andE, (which only depends oA), then using the Cauchy-Schwarz
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inequality for sums,

| (Uk, Vi) |
(U] [ Vkcl|

}Z?zl <Aj*1Uk7Aj*1Vk>‘

: 1/2 .
ST AP S At
311 A | A i cosep

50 la ) 55 1A
57l s A ]

. 1/2 , 1/2
(S0 At ][5 At
= cosp,

|costk|

12

/N

12

1/2

sinceAl~1u e E, andAl~1y € Es. Therefore, si > sing and tary > tang, so substi-
tution gives the required unstable bound. The stable boiamdP{r5 &?) is derived using

the same technique, wigandu interchanged. ]

Theorem 5.7 Let A be a hyperbolic linear operator defining a discrete dyiaal dynam-
ical system orRY, x € R" be a noisy trajectory, and be the noise reduced trajectory
given by the gradient descent algorithm. If the noise distibn isbounded then the
points of any deterministic trajectory that could be the true trajectodyffer from the
points ofX by an amount which tends to zero as n, the length of the tajes, tends
to infinity, except for points near the initial and final pantThe errors at these points

remainboundedas n— oo.

Proof: If yis a candidate for the true trajectory anis the bound on the noise distribu-

tion, then||x—vy||,, < &. It follows now from Proposition 5.6, that
IPsTE (R —=Y)|| = [IPsTE 2 (x = Y)|| < Kstt' ™ [[X = Ylor < Kol e
whereKs is a constant independentiodr the length of the trajectony. Similarly,
P78 (R—y)[| < Ky~ "Ve

whereKy is also independent efandn. The result now follows from the same argument

as was used in the proof of Theorem 5.4. [ ]

82



It is easy to see now that as the errors in the stable dirediéoay exponentially to
zero ad increases, the difference between the final point of theen@duced trajectory
X and the final point of a candidate true trajectgrymust converge onto the unstable
eigenspacasn tends to infinity. Another way of saying this is to conside¥ generalised
unstable eigenspace througfwhich is just the unstable eigenspace through 0 translated
toy). Then, the final point of the noise reduced trajectorgan be madarbitrarily close
to the generalised unstable eigenspace of the final poihedftie trajectoryy, by taking
n sufficiently large. A similar statement is true for the firgimt and the generalised
stable eigenspace. As this proves the conjecture of Jud&@wmith mentioned at the end
of section 1.3 (for hyperbolic linear dynamical systems bhodnded noise), it is stated as

a result.

Corollary 5.8 If Aiis a hyperbolic linear operator defining a discrete dyneahdynami-

cal system ofiRY, x a noisy trajectory of the system (derived from the trugettry y and

a bounded noise distribution), ardthe noise reduced trajectory given by applying the
gradient descent algorithm to x, then by taking n, the lemjtiine trajectory, sufficiently
large, X; may be made arbitrarily close to the generalised stableresgace of y andX,

may be made arbitrarily close to the generalised unstalierspace ofy

Note that by the bounds of Proposition 5.6, the clgsar v are to unity, the larger
n needs to be to make the errors near the middle of the trayestoall. The bounds also
suggest that the errors at the initial and final points migiakger for systems withu or v
close to unity, and for systems where the angle betweendbkisind unstable eigenspace
is small! This should be contrasted with the numerical ihigasions of section 2.3, where
tangencies and homoclinic intersection points were desmlis It would seem then, that
even when there are no homoclinic intersection points,iiedlsangle can magnify errors

in the noise reduction procedure (by a factor up to the ortiy sir? 6).

5.3 Gradient Descent for Non-linear Dynamical Systems

In this section, Theorem 5.7 is generalised to a non-lingaandhical system. This is
done by extending the linear result to the linearisationhef $system (see section 5.1)

and then using the theory of Chapter 4 to recover the nomuliresult. Letf : M — M
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be aC?-diffeomorphism defining a discrete dynamical system on acthmcompact-
dimensional manifold. The results of section 2.3 indicate that for noise reduactm
work, the distance between homoclinic intersections far#@ngency points must be
bounded away from zero. This uniform bound holds whdmas an invariant uniformly
hyperbolic set\ (see section 3.4), and so the existence of subhvall be assumedn

what follows.

5.3.1 Linearised Systems

Recall that the linearisation of the gradient descent flawf f@about a deterministic trajec-
toryyis given by equation 5.2. Proposition 5.1 then asserts lieagffect of the linearised
gradient descent is to project orthogonally onto the sutispa

( A
Vv

df(y)v
Ee = dfz(yl)v ‘veRd

df"(yp)v

).
By the chain rule, these deterministic trajectories for lthearised system correspond
to trajectories for dinear system, where the linear operatdrangeswith each iteration.
That is, at the first point, the operatords (y;), at the secondj f (y»), and so on. With
this in mind, as well as the results of the Multiplicative &dic Theorem (Theorem 3.5),
it is easy to generalise the results of section 5.2.2 to ths®.c Note that becaugeis
hyperbolic, there exigt < 1 < v such thafu is larger than any Lyapunov number féf,
less than unity, and is smaller than any Lyapunov number fbf, greater than unityu

andv will be calledhyperbolicity bound$or f|,.

Proposition 5.9 Suppose that f is a&diffeomorphism of a smooth compact d-dimensional
manifold M possessing an invariant uniformly hyperbolit Aavith splitting into stable

and unstable eigenspaces(lp) and E, (p), p€ A\, and thaty is a deterministic trajectory

of length n for f. IfZ is the orthogonal projection (ilR"%) onto & (y), the subspace of
deterministic trajectories for the system linearised atbg@and Iéi) and F‘ui) are the stable

and unstable projections ontosBy;) and E, (y;) for i =1,...,n (respectively), then the
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following bounds hold:

P <ds—= .
s'78 H * sing sing/1I— i tangpy/1— v—1

v (1 (2t - L VIH -y
sing singy1—v-1 tangy/1—pu

Cop'* (\/l+(2Cs—l)[,l . Vit (cit-1) vl)

] <a®

whereu < 1 < v are hyperbolicity bounds for|f, Cs and G, are the associated constants
(see Proposition 3.7),dand d, are the common dimensions of the(g) and E,(p)
(respectively), andp # 0 is the minimal angle between; ) and E,(p), p € A (non-

zero by the discussion in section 3.3.2).

Proof: This proof is the same as that of Proposition 5.6 with a few ifftcadions. In
particular, A" is replaced byd f™(y;) throughout. The subspacé&s and &, are then
the trajectories if; (y) whose first point belongs t6s(y1) andE, (y1) respectively. The
invariance of thés (p) and thek, (p) given by the Multiplicative Ergodic Theorem (The-
orem 3.5) and the fact thgtwas chosen to be a deterministic trajectory foshow that
&s and &, consist of trajectories whose points stay in stable andabiesteigenspaces
(respectively). Hences; (y) = €s@ &,. Given an orthogonal basis ¢f say, the con-
struction of stable and unstable trajectories can proce@uthe proof of Proposition 5.6,
and these can be used to derive the analogue of equation™é&@nequalities of Propo-
sition 3.7 and Lemma 5.5 are then used to simplify this e)gioes noting that because
N\ is compact, the constan@ andC, may be chosen independently of the points of the
trajectoryy (see the discussion after Proposition 3.7), and hence @mlemt ofn. The
resulting expression still contains angles between staiaunstable trajectories — these
are dealt with in exactly the same manner as in the proof gbd¥ition 5.6, noting that

the angles between ttig (p) and thek, (p) are uniformly bounded away from zero.m

Obviously, analogues of Theorem 5.7 and Corollary 5.8 axetalie. These are stated for

completeness.

Theorem 5.10 Let f be a C-diffeomorphism of a smooth compact d-dimensional mani-
fold M possessing an invariant uniformly hyperbolic 8e € R" be a noisy trajectory

of the linearised system, andbe the noise reduced trajectory given by the linearised
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gradient descent algorithm. If the noise distributiorbisunded then the points ofiny
deterministic trajectory (for the linearised system) thatld be the true trajectory, differ
from the points ok by an amount which tends to zero as n, the length of the tajes,
tends to infinity, except for points near the initial and fipaints. The errors at these

points remairboundedas n— oo,

Corollary 5.11 If f is a C?-diffeomorphism of a smooth compact d-dimensional mani-
fold M possessing an invariant uniformly hyperbolic Aek a noisy trajectory of the lin-
earised system (derived from the true trajectory y of thedimsed system and a bounded
noise distribution), anX the noise reduced trajectory given by applying the lingedi
gradient descent algorithm to x, then by taking n, the lemjtiine trajectory, sufficiently
large, X; may be made arbitrarily close to the generalised stableresgace of y and X,

may be made arbitrarily close to the generalised unstalierspace ofy

5.3.2 Non-linear Systems

Recall the discussion leading up to Proposition 5.2. Theneas shown that for a non-
linear system, the set of deterministic trajectorigg, forms a centre manifold fagvery
fixed point of the gradient descent flow, and there is a lanunatf stable manifolds,
{#s(y) 1y € #¢c}, orthogonal to this common centre manifold. The situat®exactly
the same in the linearised case — here theresalspacef deterministic trajectories
which forms a centre eigenspace, and a lamination of stagéngpaces given by the
family of (n— 1) d-dimensional hyperplanes parallel to k&r= &; (y). These laminations
are indicated in Figure 5.2. It would seem plausible theat the non-linear gradient
descent flow and its linearisation about some fixed point agditatively similar, that is,
topologically conjugatedespite the presence of a centre manifold.

This statement does in fact hold. In most discussions ofreenénifold theory ([10,
11]), a statement to the effect that thi@bility of a fixed point with a stable and centre
manifold is dictated by the dynamics on the centre manifelguoted or proven. That is,

if the dynamical system (continuous say) can be written enfetnim

u = Au+g(uv)
v = Bv+h(uv),
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A Cg)c (y)

Linearised (abouy) Non-Linear

Figure 5.2: Stable manifold and eigenspace laminationsjaedtory spac&"d

whereA has eigenvalues on the imaginary aBd)as eigenvalues with negative real part,
g(0,0) = h(0,0) = 0 anddg(0,0) = dh(0,0) = 0, then the stability of the fixed point O

is determined by the stability of the fixed point O of

U= Au+g(u, gc(u))

whered. is a function from the stable eigenspace into the centrensfggce whose graph
gives a local centre manifold. What this suggests (but isendglifficult to show) is that

there is a local topological conjugacy between the fulleyséind the system

U = Au+g(u éc(u))

v = Bv

Two proofs of this fact may be found in [31]. When the centreniftdd consists entirely
of fixed points, the dynamics on the centre manifold is nilneA = 0 andgo (id, ¢¢c) =
0 so the full system is locally topologically conjugate ts linearisation, verifying the
claim of the previous paragraph.

Let the effect of the gradient descent algorithm be giverbyR"™ — #¢. That is,
the gradient descent equations 1.2 give rise to afibwhich converges, given any initial
condition, ag — o (by Proposition 5.2). The pointwise limit gf' ast — o definesd.

The idea in what follows is to make the diagram

Rnd i) WC L) Rd

jfl TH Thi (5.13)

Rnd i) éﬁc()’) L) Rd
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commute for some function®”, H andh;, whereZ is the orthogonal projection effecting
the linearised gradient descent abgut #:. Knowledge of the function’”” and theh;
then allows the study of the non-linear gradient descentetoelduced to the study of
the linearised gradient descent. Of course, it is not endogmow that these functions
exist. To generalise the results of section 5.3.1 to nogalirsystems, it is necessary to
demand that thé; take points near the stable and unstable eigenspaces afi¢laeised
system to points near the stable and unstamdmifoldsof the non-linear system, and
that thedistortionsinduced by usingZZ” and theh; to switch between the non-linear and
linearised spaces can beundedas the length of the trajectories tend to infinity.
ConsiderH : &;(y) — #¢. To make the right square of diagram 5.13 commute, it
follows that the functiorH must decompose &$ = (hy,...,h,). AsH maps determinis-
tic trajectories for the linearised system onto deterntimisajectories for the non-linear

system, its action may be written as

hy u v

hy df(y)u f(v)
H=| hs | 1| dff(ygu [—= | f*(v)

hn df"(y1) =t (v)

ThusH is completely determined by how it takasnto v. If the function onRY takingu

into v is denoted by then, it follows that
h = fiflogo [d fi-1 (yl)]_l = fiflogod f-(-1 (Vi) -

Note that the action dif; on a neighbourhood of will be to map the unstable eigenspace
for y; back onto the unstable eigenspaceyfgrdistort it a little (the action of)), and then
map them forward to a neighbourhoodypfigain. Foi large enough then (and provided
the action ofgisn’t too disruptive), the resulting set should be an excglapproximation
(at least locally) of the generalised unstable manifolg;ofin fact, there is a choice for
g which makesy map the unstable eigenspace locally onto the local gesedhlinstable
eigenspacexactly

Consider the homeomorphisrﬁ§, p € A, defined between neighbourhoodgmnfat-
isfying equation 4.6:

~
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(these exist by the Generalised Hartman-Grobman Theorehspecifically, Corollary
4.16). Ifgis defined to bdﬁyl, then by equation 4.6,

h1 = 0 = F‘yl,
hy = fohyo[df(y)]™ = hy,
hs = f2ohyofdf(yn)] toldf(yz)] ™" = fohy,o[df(y)] ™" = Ry,

hn = f"2ohy, ofdf(ys)] Toldf(ya)] to---o[df(yn 1) "

= fohy, oldf(yn1)]* = hy,

As eackﬁp maps the local stable and unstable eigenspacp®ofo the local generalised
stable and unstable manifoldsmfthe same is true of ea¢h (for y;). Furthermore, since
eachh; is a homeomorphism, so i, and the domain dfi can be naturally extended to
the product of the domains of tig, soH maps a neighbourhood gthomeomorphically
onto another neighbourhood nf

Consider now the left square of diagram 5.13. &ss the identity on#; and . is

the identity onéz (y), it follows that
Hlgy o Hly, = idly,
= Hly, = Higy=H",
It would be very convenient if defining? to be H~! made diagram 5.13 commute.
However, there is no reason to expect this. Instead, note tha
Pot#=Hlod =  H=(1-P)os+H 1o,

and that(l — &) o 2 takes values is(y) whereasH 1 o ® takes values i, (y). In
fact, itis clear that the commutativity requirement willldie fulfilled if the .7 appearing
on theright of this equation is replaced by any function mappi#g onto &; (y). A
convenient choice is the homeomorphistn?, as it is the only function satisfying this

requirement whose properties are known. That is, define
H=(-P)oH T +H 1o (5.14)

2 therefore maps a neighbourhoodyointo another neighbourhood gf and satisfies

P oA = od=H"1od (whenever this makes sense). Geometricalf§takes the
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centre manifold#; onto the centre eigenspaég(y), and maps each stable manifold
of the non-linear lamination onto some stable eigenspadbetinearised lamination
(see Figure 5.2). The tertd 1o ® specifieswhich stable eigenspace corresponds to
a particular stable manifold, and the tefin- 22) o H~! specifieswhereon the stable
eigenspace each point of the stable manifold is mapped

It remains to consider the distortions induced.#§ and theh;. That is, any stretch-
ing or contracting of distances caused by switching betwieemon-linear and linearised
gradient descents. All these functions aoatinuouq® is continuous because the stable
manifolds in the lamination vary continuously — see the asston leading up to Propo-
sition 5.2) on their respective domains, so this distortan be made arbitrarilgmallby
restricting their domains to be sufficiently small. Howetbe generalisation of Theorem
5.10 to non-linear systems must address the behaviour &l of the relevant trajec-
tories,n, tend to infinity. Therefore it is necessary to know how th&alition varies with
n— specifically, it is necessary to show that the errors dukisodistortion arelominated
by the (expected) exponential decrease of the errors (awaythe initial and final point
of the trajectory) as tends to infinity.

This can be done for thie using the quantitative information of Chapter 4. The
were chosen to be the homeomorphisms correspondigggoaranteed by the Gener-
alised Hartman-Grobman Theorem and Corollary 4.16. By [Goyo4.17, theh; are
evenHolder continuou®n their respective domains, and the associated consteytbe

chosen independently of theand hence of nThat is, there existr, 3 > 0 such that
I (w) = b ()| < B[Ju—u']®

for all u,u’ belonging to the domain df;, and wherea and3 may be chosen indepen-

dently ofi (andn). This bounds the distortion of the nicely, and it is clear that the same

30bviously, the “where” is unimportant in this applicaticas(the linearised gradient descent projects
along the stable eigenspace). However, if it were necessahpow that’#” conjugated the gradient descent
flow and its linearisation fofinite descent timegather than just in the limit — oo, then this would be
important. In fact, one can keep track of where points shbeldnapped by considering (in addition to
the stable laminations) a lamination of (generalised)reem@anifolds and eigenspaces (the eigenspaces are
clearly thed-dimensional subspaces parallel€g(y)). See [31] for details. In fact, the?’ constructed
above has not been shown to be invertible, so it cannot evalifgas a conjugacy betweeh and #.

Because it makes the diagram 5.13 commute however, it is@n@e of asemi-conjugacy
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result holds for the inverses of the(anda andf can be chosen to be Holder exponents
and constants for eacﬂlf1 too). Using this, the diagram 5.13, and Proposition 5.9, it

follows that fory € #¢, x € R andx'= @ (x),

K-yl = I -ro)|
= [N (P () = (m2 (3))]|
< Bln2 ()~ Y)°
< Bk kv O - WIS, (515)

whereKgs andKy, are constants (independentrgf It remains then to estimate the effect
of (distortion due to)/7.
Note that since thé; are Holder continuous, it follows th&t is Holder continuous

with respect to the norm||:

[HO=H )l = sup [|h (<) =i ()]
< 2BPhAr
= Blx=x|lz,

with constantsr and independent of. As the inverses of the homeomorphismsre
also Holder continuous$] —1 is Holder continuous with respect g, too. It might seem
plausible now that# is Holder continuous as well (with respect|td|.,). Establishing
this seems to be quite difficult however. Obviously the restm of .7 to the centre
manifold is Holder asi7’|,,, = H-1, and it is quite easy to show tha#’ restricted to

each stable manifold is Holder. This follows from the corgion & X' € #5(y)):

AN —A(X) = (1—2)(H LX) -H (X)) +H (@D (x)-H (D (X))
= (1=2)(H () —H*(X))

= -2 X)), < I1-2lBx—X|a,
where
(1 = 2) Xl
| - £, =sup————=
1= 2l = S0
Note that

1= 2o <14 [|Z] = 1+supl| 2| < 1+sup(|Psr 2| + [Rus 2|)) ,
| |
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which is bounded uniformly im by Proposition 5.9, so the Holder constant and exponent
of %ﬂ‘"/ﬂs(y) can be chosen independentlyrofandy). It does not, however, follow from
this thats itself (unrestricted) is Holder with constant and expdnedependent of.

The problem seems to be that no quantitative informationblegs derived for the
non-linear gradient descent flo®. If say a local Lipschitz condition was derived for
& (with respect tq|-||,,) and the Lipschitz constant could be bounded independemt of
then the Holder continuity af# would be established immediately from the definition
(equation 5.14). However, getting any quantitative infation about® appears to be

hard. The following condition ori (and on the induced gradient descemtsuffices:

Condition 5.12 Let y; € RY define deterministic trajectories’y € #¢ c R™ (for each
n by Y% = f ("), i=1...,n—1 and et

Be (y(”)> = {xe R Hx—y(”)

gs}.
00

Then, fore > 0 (denoting the noise level) sufficiently small but fixed, timefion

Qe (n)= sup
xeBe(y")

®09—y"

00

increasesub-exponentiallyvith n.

Since® is continuousQ; (n) — 0 ase — 0. However, the variance of this quantity
with € is not really important (although it might be nice to knowhig'is because of the

following computation (with|x—y||, < €):

17 (%) = A (Y)|eo

N

[(1=22) HT()—H ()|, +[[H T o@(x) —H Tod(y)|,
< =2 BlIx=Yla+ B[P (X -yl
< 1= 2] Be” + BQe (N)7 .

If Condition 5.12 is satisfied, thelps# (x) — 7 (y) ||, is bounded (for sufficiently small
noise) by a quantity that increases only sub-exponentitly n. Therefore, by equation

5.15,

. A\ a
I% =il < B (Kt 4Ky )7 o2 () — 2 (y) I

< plta [(Ksui_l-l-KuV_(”_i)) (- @||M£G+Qg(n>a)}a
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and asn increases, the exponential decay of the tepind andv (" for i ~ n/2 dom-
inates the sub-exponential increasef(n). That is, near the middle of the trajectory
(hence away from the initial and final points), the errorsvenge to zero as the length
of the trajectoriesn, tends to infinity. Thus, when Condition 5.12 is satisfie@, ¢fener-
alisation of Theorem 5.10 to non-linear dynamical systewith(an invariant uniformly

hyperbolic set) is proven.

Theorem 5.13 Let f be a C-diffeomorphism of a smooth compact d-dimensional mani-
fold M possessing an invariant uniformly hyperbolic Aeand satisfying Condition 5.12,

x € R" be a noisy trajectory of the (non-linear) system, &k the noise reduced trajec-
tory given by the gradient descent algorithm. If the noisgrdiution isboundedoy € > 0
sufficiently small, then the points ahy deterministic trajectory that could be the true
trajectory, differ from the points of by an amount which tends to zero as n, the length of
the trajectories, tends to infinity, except for points nde initial and final points. The
errors at these points are boundedif (n) is bounded (in n) and otherwise may increase

subexponentially as f co.

Additionally, if Condition 5.12 holds, then the generalisa of Corollary 5.11 to
non-linear systems with an invariant uniformly hyperbaet is also easy to prove. As-
suming the hypotheses and notation of Theorem 5.13 (andBitagn 5.9), it is easy to
see that the stable error after Iinearisatithéi)m@ (A (X)—H(Y)) H will be negligi-
ble for alli sufficiently large (whem is sufficiently large). In particular, there will be
ani = n—m say, for which this stable error is negligiblnd for which the correspond-
ing unstable error after Iinearisatio%,éi)mﬁ(jf(x) —Jf(y))H, is small enough that
Th-mZ (H (X) — A (y)) belongs to the neighbourhood wf n, whereh,_n, conjugates
the linear and non-linear systems. As the stable error iigielg, andh,_n, takes the
local generalised unstable eigenspace onto the local gesext unstable manifolguan-
titatively, it follows that X,—m = Th-m® (X) = hnem (THh-mPZ 7 (X)) will be extremely
close to thdocal generalised unstable manifold wf . But, by Proposition 5.2¢ is a
deterministic trajectory fof, as isy, soX,_m close to the generalised unstable manifold
of yn—m implies thatxy is even closer to the generalised unstable manifolg, ¢although
the distancalongthe unstable manifold may be very large). The same argumees g

the corresponding result fag and the generalised stable manifoldyef
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Corollary 5.14 If f is a C?-diffeomorphism of a smooth compact d-dimensional mahifol
M possessing an invariant uniformly hyperbolic Aetnd which satisfies Condition 5.12,
X a noisy trajectory of the system (derived from the truesttgry y and a bounded noise
distribution with sufficiently small bound), ardthe noise reduced trajectory given by
applying the gradient descent algorithm to x, then by takinipe length of the trajectory,
sufficiently largeX; may be made arbitrarily close to the generalised stableresgace

of y; andX, may be made arbitrarily close to the generalised unstalgemspace ofy

Theorem 5.13 essentially states that the gradient destganithm is a good noise
reduction algorithm for non-linear dynamical systems wvathinvariant uniformly hy-
perbolic set (that is, without arbitrarily bad tangencigspvided the noise level is suf-
ficiently small. Corollary 5.14 then states that (as one neypect) the noise reduced
trajectory begins on (or very near) the generalised stalleifisid of the initial point of
the true trajectory, and ends on (or very near) the genethlimistable manifold of the
final point of the true trajectoryBoth results, however, rely on the Condition 5.12 being
satisfied When does this condition hold? Perhaps a better questi@ktwauld be: How
could this condition possibly fail to hold? For a consequeotfailure would be that the
errors at the initial and final points could grexponentiallyor even faster as the length
of the trajectory increases. This is certainly at odds whth mumerical experiments of
Chapter 2, although these experiments are of course, notremeotely exhaustive. In
fact, this limited set of experiments suggest that the srameboundedas the length of
trajectory tends to infinity, and this was proven for linead dinearised systems in The-
orems 5.7 and 5.10. Furthermore, by Bowen’s Shadowing Ene¢j8]), for sufficiently
small noise, there is @aniquedeterministic trajectory that could produce any given ynois
trajectoryof infinite length One would hope that a respectable noise reduction algorith
would converge (pointwise, not uniformly) onto this unigajectory as the length of
trajectory tends to infinity.

It seems reasonable thereforectmjecturethat for anyf possessing an invariant uni-
formly hyperbolic set (from which the time series was geteztg Condition 5.12 is sat-
isfied. Another reasonable conjecture to make is that Ciomdi. 12 is not only satisfied
by suchf, but Q¢ (n) is in fact, bounded im (for eache small enough). The author

believes strongly that the first conjecture holds. Howeitas, possible that the second
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(strengthened) conjecture is not true in general. If thidhéscase, then it may happen
that after gradient descent with small bounded noise, titi@liand final errors might be
quite large. This is obviously less than optimal for theesegtimation problem (see sec-
tions 1.1 and 1.3). An alternate gradient descent algor{{2&]) might therefore be of
use in this case. The idea here is to try to limit how far thelgnat descent can “move”
each point of the trajectory being noise reduced, by reptattie determinism functiobn

(defined in equation 1.1) by
n
LX) =L9+n3 [ -X1%,
1=

wherex is the original noisy trajectory angl > 0 is an arbitrary weighting. Fay # 0,
there is no reason why the trajectory obtained after gradieacent withi should be
deterministic, so to get a (nearly) deterministic trajegtehe algorithm is recursively
applied to the point reached after gradient descent, usialer values of, until L is
satisfactorily smafl. It is expected that (with an appropriate choice of weigdgin) this
algorithm should give a deterministic trajectory that ifo%e” to the original noisy one.
In a sense then, the question of whetf®r(n) is in fact bounded im or merely of sub-
exponential growth, is equivalent to there being a thecakjustification for considering
L rather tharl..

How then, might one establish the truth or falsity of the eohjres of the previous
paragraph? The corresponding results for the linear apdfised systems was proven by
deriving the analytic bounds of Propositions 5.6 and 5.9s @erivation was made pos-
sible because the linearised gradient descent is equivalé¢ine action of an orthogonal
projection (by Proposition 5.1). This yields enough guatitie information to show that
the errors are uniformly bounded. It seems likely thereftrat to get such a bound for
the non-linear gradient descent, one must consider théestadnifolds (rather than the
stable eigenspaces) with respect to whdzhehaves somewhat like a projection. It may
be true that for small enough noise, the local stable matsfakre uniformly Lipschitz

(as graphs of functions) with Lipschitz constants indegenafn, but it is not clear, as

“Note that the extra term added faemoves thelegeneracyf the fixed point set. That is, the set of
fixed points of the gradient descent witlis zero-dimensional, and so they are isolated (by the cotnpss
of M). Hence, the critical points df could be found using an algebraic solver, rather than areiftal
solver. With this in mind, this algorithm should be compatedhe algorithm of Farmer and Sidorowich

discussed in section 1.2
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yet, how to relate this idea to the curvature of the centreifolain The author would like
to apologise for not pursuing this result further, pleadiinge constraints that force the

matter to remain in question at this point.

96



Chapter 6

Conclusions

In this thesis, an algorithm for performing noise reductiwas introduced, discussed,
numerically tested, and an attempt was made to prove rigbroliat the algorithm con-
verges onto the clean data except near the initial and finakgan the limit that the
number of data points used tends to infinity (and under amiditimild assumptions). The
algorithm studied was the gradient descent algorithm. i8pakty, it was shown that the
algorithm always reduces the noise level to zero, and tleatighed the data comes from
an invariant uniformly hyperbolic set for a discrete dyneahisystem, the noise comes
from a bounded distribution with sufficiently small bouneidaCondition 5.12 is satis-
fied, then the possible noise-free data sets which could ¢isrea rise to the noisy data
(assuming observational noise) only differ significantganthe initial and final points
of the data set. It was argued that Condition 5.12 is in fapesiluous for uniformly
hyperbolic systems, and an idea as to how this might be showntioned.

The thesis begins by introducing noise reduction in gerterals and its relation to the
problems of modelling and state estimation. The gradiesteat algorithm is introduced
and compared with a couple of other simple “dynamical” nomsguction algorithms.
The motivation behind investigating the theoretical prtips of the gradient descent al-
gorithm comes from the theory of indistinguishable statess{ate estimation), so this
was briefly introduced. This was followed by some numerigglegiments consisting of
applying the gradient descent algorithm to some simplelim@aar maps (mostly the maps
of Henon and Ikeda). These experiments gave an indicafitnat sort of results should
be expected for gradient descent, and also highlightedntipertance of hyperbolicity

and tangencies. In particular, it was shown that tangerpmiegent the gradient descent
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algorithm from achieving noise reduction, essentiallysaese a tangency usually implies
the presence of a (non-trivial) nearby homoclinic intetisecpoint of generalised stable
and unstable manifolds. It was further argued, on the bdsisdistinguishability, that
such tangencies will prevent noise reduction for any gidgorghm, and that therefore,
to show that noise reduction is always achieved, it is necgd® restrict attention to
systems which do not exhibit tangencies.

The numerical experiments with tangencies also showedrtlwatler to avoid homo-
clinic intersection points, it is necessary to considerlsnase levels only. Specifically,
the noise should be smaller than the distances between hiomnadotersection points.
It was therefore argued that because the allowed noisesleeetespond to neighbour-
hoods where one would expect the non-linear dynamics to bktatively similar to the
linearised dynamics, it should be possible to prove thelradout noise reduction for a
non-linear system, by investigating what happens for thedliised system. However, the
systems of interest do not generally consist of dynamicsrat@ fixed point, for which
the linearisation theory is well known (in the form of the Blaan-Grobman Theorem).
Therefore, a more general linearisation theory had to bednted. This took the form
of a generalisation of the Hartman-Grobman Theorem to iamauniformly hyperbolic
sets.

The investigation of the gradient descent algorithm waa thitiated. The algorithm
itself amounts to solving a differential equation (withpest to time say) and computing
the limit, as time tends to infinity, of the solution. It wasogin that the linearised gra-
dient descent algorithm (formed by linearising the différ@ equation about any fixed
point) was equivalent to projecting orthogonally onto aspdre corresponding to tra-
jectories of the linearised dynamical system. Using thisiiteand general results from
stable manifold theory, it was then shown that the non-liggadient descent algorithm
has to converge onto a noise-free trajectory. The gradiesteht algorithm was then
investigated for a hyperbolic linear dynamical system, asidg the equivalence with an
orthogonal projection, analytic bounds were derived ahgsuint for the errors between
the trajectory given by the algorithm, and the true trajgctdhese were shown to imply
that for a linear dynamical system, the errors convergero eeerywhere except near the
initial and final points of the trajectory, as the length o thajectory tends to infinity.

After proving this result, it was a simple matter to pass ®abrresponding result for
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the linearisation of a hyperbolic dynamical system (ushregMultiplicative Ergodic The-
orem). To generalise this to non-linear hyperbolic systproged more difficult however.
Mimicking the idea behind the proof of the Hartman-Grobmé&edrem, a diagram was
constructed around the non-linear and linearised gradiestent algorithms and func-
tions sought to make this diagram commute. It was shown ktigaetare many ways to
do this, but that there were choices for the functions thaewarticularly convenient. In
particular, corresponding to each point of the trajectbmyas shown to be convenient to
choose the homeomorphism (guaranteed by the generatisdttbe Hartman-Grobman
Theorem) effecting the qualitative correspondence betwee non-linear and linearised
dynamics around that point. The homeomorphisms were dgtsiabwn earlier to pro-
vide a quantitative correspondence (in the form of Holdetimuity), and so the analytic
bounds derived for the linearised system can be extendeeationdth these homeomor-
phisms. It remained to choose a function which transfornhednion-linear flow into a
linearised flow. The functions that do this were shown to hawvexplicit form, and a
convenient representative was chosen. Under the assuntpéibthe non-linear gradient
descent satisfies Condition 5.12, the commutative diagramtiren shown to extend the

analytic bounds derived for the linearised system to thenfa-linear system.
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