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Abstract

In this thesis, the gradient descent algorithm for noise reduction is investigated, partic-

ularly with respect to its convergence properties as the length of the trajectory required

to be “noise reduced” tends to infinity. This investigation begins by considering the re-

sults of applying the gradient descent algorithm to noisy trajectories from some simple

dynamical maps. These experiments suggest the type of convergence result that might

hold, as well as indicating the type of dynamical system for which noise reduction might

be expected to work. The aim of the rest of the thesis is to theoretically justify the con-

clusions of these experiments. In particular, the main focus is to rigorously prove that for

a certain class of dynamical systems, the gradient descent algorithm will converge (as the

length of the noisy trajectory given tends to infinity) onto the correct “clean” trajectory

everywhere, except near the initial and final points. That is, that the errors between the

“noise reduced” trajectory points and the original “clean”trajectory points can be made

arbitrarily small by taking the length of these trajectories long enough, except near the

initial and final points of the trajectories. The proof is based on relating the non-linear

gradient descent algorithm to a linearised version. The convergence result for the noise

reduction is shown for the linearised gradient descent by deriving explicitly computable

analytic bounds for the errors at each point. These bounds are then shown to generalise

to the non-linear gradient descent, provided that a certaincondition is met. The question

of which dynamical systems satisfy this condition remains open, but it is conjectured that

it is satisfied, in fact, for any non-linear dynamical systemof the class considered.
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Chapter 1

Introduction

1.1 Noise Reduction

In the course of determining a quantity from an experimentalsystem, some error will be

introduced. These errors are generally referred to as noise. When the size of the errors are

significant when compared to the quantity that is required tobe measured, it is obviously

important to know if the amount of noise can be reduced, and ifso, how this reduction can

be achieved. If the measurement is from a system which variesslowlywith time (slowly

with respect to how often the measurements are made), then itseems likely that the error

will be reduced by averaging the results of many determinations. This of course assumes

that there is nobiasto the errors — that is, that the errors should average out to zero in the

limit of infinitely many measurements. If the system does notvary slowly with time, then

it cannot be assumed that the measurement will give the same answer (up to noise) each

time. Instead, it is necessary to make an assumption about how the measured quantity

should vary with time.

Successive determinations of such a quantity are usually termed atime series. Time

series analysis is a vast area of study, and different assumptions about how the measured

quantity should change with time lead to different analysistechniques (see [29] for an

introduction to non-linear time series analysis). How a measured quantity varies with

time is really a reflection of thedynamicsof the system that is being investigated. One

of the most common assumptions then, is that the system behaves as alinear dynamical

system. This is an obvious generalisation of the no-change situation, and as such, should

be expected to be a reasonable assumption for a broader rangeof experimental systems.
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Given a linear dynamical system and knowledge of how the quantity of interest relates

to it (the physicsof the system), there are many ways of attempting to reduce the noise

on each measurement made. A traditional method is to fit anoise-freetime series to the

observed measurements using aleast-squares errorapproach. That is, the sum of the

squares of the differences between each observed measurement and the corresponding

fitted series value is minimised. As with the no-change situation, this procedure might be

expected to reduce the amount of noise present at each measurement, provided there is no

bias to the errors,or in the fitting.

A bias in the fitting can be caused by using the wrong dynamicalsystem to generate

noise-free data. Generally, there is no reason to expect that the experimenter knows the

exact dynamics of their system. In fact, it is possible that this is what the experimenter

hopes to elucidate. To generate noise-free data to fit to the measurements, it is therefore

necessary to have a model (generally a class of models) whichis assumed to include

the experimental system (or at least a satisfactory approximation of it). The problem

of noise reduction therefore leads, inexorably, to the problem of modellinga dynamical

system. A good model of a dynamical system should be able to provide noise-free data

that approximates the observed measurements. This artificial data is hopefully close to the

true valuesof the experimental quantity being investigated, and may therefore represent

successful noise reduction.

Hence the problem of noise reduction is intimately related to the modelling problem.

It should also be noted that the fitting of the artificial data to the observed measurements

after a model has been chosen, reflects thestate estimationproblem: Given an observed

time series (noisy), can the state of the dynamical system atsome particular time (say the

initial or final point of the series) be determined? The pointhere is that a good model

needs a good initial condition (or end condition, or both) inorder to yield good artificial

data. Noise reduction therefore is also intimately relatedto the state estimation problem.

Note however, that state estimation asks for the state of theunderlying dynamical system,

whereas noise reduction is only concerned with the dependent quantity of interest. State

estimation is therefore (generally) more fundamental.

For linear dynamical systems, the problems of modelling, state estimation and noise

reduction have been investigated thoroughly, and answers are usually discussed in the lan-

guage ofKalman Filter theory([3, 4]). However, for non-linear dynamical systems, the
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theory pertaining to these problems is far less developed, and has only recently become

commonly applied to practical problems. In this thesis, a gradient descent algorithm for

noise reduction is presented and its performance when applied to non-linear dynamical

systems investigated. In particular, it is shown that noisereduction is guaranteedasymp-

totically— that is, in the limit of infinitely many measurements (covering infinite time) —

at all data points except those near the initial and final points (subject to several conditions

and assumptions of course). This algorithm is introduced below.

1.2 Gradient Descent and Other Algorithms

Throughout this thesis, it will always be assumed that the dynamics of the system under

investigation will be known. This assumption is made to simplify the analysis. Further,

the dynamical system will be assumed to bediscrete:

yi+1 = f (yi) , i ∈ Z,

and the dynamical map,f , will be assumed to be a diffeomorphism from (a subset of)Rd

into itself1. Let {xi}n
i=1, xi ∈ R

d, be the set of experimental measurements made (equally

spaced in time). It is convenient to regard this set as a vector in Rnd: x = (x1,x2, . . . ,xn) .

The output of the noise reduction algorithm is therefore another vector inRnd which will

be denoted by ˆx. Because the dynamical map is assumed to be known, there is noloss of

generality in assuming that the noise on the measurements isadditive. If the true value at

time i is yi then, the noisy measurements must satisfy

xi = yi +δi

where theδi are a realisation of some noise distribution (assumed independently and

identically distributed). In the forthcoming analysis (Chapter 5), this noise distribution

will be assumed to be bounded. Clearly this is not a severe limitation.

The gradient descent algorithm for noise reduction is as follows. A determinism func-

tion L : R
nd → R is defined by

L(x) =
1
2

n−1

∑
i=1

‖xi+1− f (xi)‖2 . (1.1)

1Later, f will be restricted to act on a compact manifoldM for technical reasons. However, the noise

reduction algorithms are more conveniently discussed in Euclidean space, and it is clear that their action

can always be transferred back onto the manifold using the appropriate charts.
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The norm used in this definition is completely arbitrary — thestandard Euclidean norm

is convenient (it has nice analytic properties) and will be used in what follows. Note that

L(x) = 0 precisely when the pointsxi ∈Rd form a deterministic trajectory off . Generally,

the noisy measurements do not form a deterministic trajectory, but the idea is that one can

be generated by minimisingL. This can be done via gradient descent, hence the name.

The algorithm therefore amounts to solving the set of differential equations

ẋ(t) = −∇L(x(t)) , x(0) = x. (1.2)

The noise reduced trajectory, ˆx, is then given by ˆx = limt→∞ x(t). The “time” variablet

used in the gradient descent will be referred to as thedescent timeto distinguish it from

the discrete “time” implicit in the iterationyi 7→ yi+1 = f (yi).

This algorithm was introduced (in this context) by Davies ([12]), as an alternative

to the earlier algorithms of Kostelich and Yorke ([32]), Hammel ([21]), Schreiber and

Grassberger ([16]) and Farmer and Sidorowich ([15]). The method of Kostelich and Yorke

involved replacing each small segment of the noisy trajectory by a nearby trajectory that

better fitted thelinearisationof the dynamics in that segment. Hammel improved this by

using a Newton-Raphson type algorithm to compute a common zero of the functions

εi = xi+1− f (xi) .

Each iteration of the Newton algorithm amounts to finding theunique solution of a set

of algebraicequations (rather than differential ones), provided that an extra constraint

is imposed upon theεi. The constraint chosen by Hammel (on the basis of previous

work) was to setε1 to be zeroin the stable directionandεn to be zeroin the unstable

direction. These are directions (relative to the noisy points) wheref locally contracts and

expands distances, respectively (see Chapter 3). The algorithm of Farmer and Sidorowich

on the other hand, aims to find the closest deterministic trajectory to the noisy data. This

corresponds to minimising

L′ (w) =
n

∑
i=1

‖xi −wi‖2

(where thexi are the noisy data points) subject to the constraintswi+1 = f (wi), i =

1, . . . ,n−1. Using Lagrange multipliers, the minimisation can be achieved using New-

ton’s method (again).
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The justification for these algorithms typically involves the Shadowing Lemma ([8,

17]). This states that if the data came from ahyperbolicdynamical system (defined in

Chapter 3), then for sufficiently small bounded noise, a nearby deterministic trajectory

can always be found. If the data sequence isinfinite (in past and future) then the nearby

deterministic trajectory is unique. It seems plausible then that for a finite (but sufficiently

long) data sequence, the nearby deterministic trajectory should be almost unique — all the

sufficiently close trajectories are identical (to an excellent approximation) except perhaps

near their initial and final points (where the finite length isimportant). In [13], Davies

argues that therefore there is no point in explicitly tryingto find theclosestdeterministic

trajectory to the noisy data — any deterministic trajectory(reasonably near by) looks

like the closest except around the initial and final points. The gradient descent algorithm

(which just finds a deterministic trajectory) should thus beas good at noise reduction as

that of Farmer and Sidorowich.

It is not the aim of this thesis to compare the performances ofnoise reduction algo-

rithms. As stated before, the aim is toprove rigorouslythat the gradient descent algorithm

will achieve noise reduction (under certain conditions). In recent work addressing a sim-

ilar problem ([35]), Lalley notes that

Although variousad hoc “noise reduction” algorithms have been pro-

posed (some seemingly quite effective when tested on computer-generated

data from low-dimensional chaotic systems, ...), their theoretical properties

are largely unknown.

He then introduces another noise reduction algorithm andprovesa result concerning its

theoretical performance. The setup is as follows. Suppose that {yi}n
i=1 is a trajectory

of a twice-differentiableAxiom Asystem (see [49] for a definition), thatxi is the noisy

measurement ofyi and that the noise comes from a distribution bounded byδ (with mean

zero). The performance of the algorithm will be evaluated inthe limit that the number

of points,n, tends to infinity. Letκn be a slowly increasing sequence of integers2. For

each j betweenκn + 1 andn− κn, consider thesub-trajectoryof {xi} consisting of the

2κn+1 points centred aroundx j . This will be called theκn-trajectory aboutx j . Then for

each j, find all thexk for which theκn-trajectories aboutxk have each point within 3δ
2For technical reasons, Lalley suggests takingκn ∼ logn/ loglogn.
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(say) of the corresponding point in theκn-trajectory aboutx j . The noise reduced point

x̂ j is defined to be the average of thesexk. If j 6 κn or j > n−κn + 1, x̂ j is defined to

be x j . What this means is that all the sub-trajectories (of a givenlength) which “look”

sufficiently like the sub-trajectory centred onx j are found, and the central points of each

of these sub-trajectories are averaged to get the noise-reduced point ˆx j . Lalley’s result is

the following:

Theorem 1.1 (Lalley) For the “averaging” algorithm described above, if the noisebound

δ is sufficiently small, then for everyε > 0, the probability that the proportion of points

where the noise reduction fails exceedsε, tends to zero as n tends to infinity. That is,

lim
n→∞

P

(

1
n
|{i : ‖yi − x̂i‖ > ε}| > ε

)

= 0.

Furthermore, if the initial point of the clean trajectory{yi} was chosen at random from

theSRB-measure, then with probability one, the errors between thenoise reduced points

and the clean points converge uniformly to zero, except around the initial and final points.

Specifically,

lim
n→∞

max
κn+16i6n−κn

‖yi − x̂i‖ = 0

with probability one.

This result relies heavily on the statistical theory of dynamical systems (ergodic the-

ory). Information on this (and SRB-measures) may be found in[7, 14, 53]. Lalley’s result

guarantees (with probability one at least) that in the limitof infinite data, the averaging

algorithm returns the original clean trajectoryexceptnear the initial and final points (pro-

vided the clean trajectory is “typical”). In Chapter 5, a similar (though slightly stronger)

result is proved for the gradient descent algorithm.

1.3 Indistinguishable States

The motivation behind studying the theoretical propertiesof the gradient descent algo-

rithm did not, however, come from Lalley’s result, nor did itcome from consideration

of the noise reduction literature. This study was in fact initiated by the theory ofindis-

tinguishable statesof Judd and Smith ([28]), and relates to the state estimationproblem.
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This theory and its relation to the gradient descent algorithm will be summarised here for

completeness.

Suppose that asemi-infinitetime series is given,(. . . ,x−2,x−1,x0), terminating at time

0. The aim is to determine the state of the underlying dynamical system at time 0 so that

the values ofx1,x2, . . . may be predicted. If the time series is noise-free (and the underly-

ing dynamical system is smooth), then Takens’ Theorem ([51]) implies that an equivalent

dynamical system can be constructed for which the state at time 0 is known exactly, and

which gives the time series as the actual underlying dynamical system. Furthermore, only

a finite (but sufficiently long) time series is required for this construction. If the time-

series is noisy however, it is clear that the exact state cannot be determined in this way

from a finite time series. The question is whether the exact state can be determined if the

entire semi-infinite time series is used.

The noise on the time series will be assumed independent and identically distributed

with distributionρ . Given a noisy measurementxi then, there are many candidates for

the exact point that gave rise to it. These candidates are said to be indistinguishable

from one another, on the basis of the measurementxi . Obviously, knowledge of the noise

distribution would let one quantify which candidates were more likely to have given rise

to xi . Take any two pointsyi andy′i . The probability ofyi andy′i being indistinguishable

(writtenyi ∼ y′i) on the basis of a noisy measurement, is given by

P
(

yi ∼ y′i
)

=

∫

ρ (xi −yi)ρ
(

xi −y′i
)

dxi
∫

[ρ (xi)]
2dxi

(1.3)

(see Figure 1.1). Note that P(yi ∼ yi) = 1 as it should.

Suppose now thaty = (. . . ,y−2,y−1,y0) andy′ =
(

. . . ,y′−2,y
′
−1,y

′
0

)

are two possible

semi-infinite time series, which shall be assumed to be noise-free. As the errors are as-

sumed independent of one another and are identically distributed from point to point, the

joint probability ofy being indistinguishable fromy′ is given by

P
(

y∼ y′
)

=
0

∏
i=−∞

P
(

yi ∼ y′i
)

.

The interpretation is that if P(y∼ y′) = 0, then there is enough evidence to conclude (with

probability one) thaty andy′ cannot give rise to the same noisy time series. P(y∼ y′) is

the probability thaty andy′ cannot be distinguished on the basis of the observation of

some noisy version ofy (or y′).
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p pyi y′i

Figure 1.1: If the pointsyi andy′i are subjected to additive noise (which for clarity is

assumed to be bounded and uniform) then the noisy points mustlie within the indicated

regions. If one such noisy measurement is observed, then it is clear that one can tell

whether it came fromyi or y′i unless the measurement lies in the intersection of the two

regions. Theprobability that such a noisy measurement will distinguish between the

pointsyi andy′i is therefore proportional to the area of overlap of the two regions. Equation

1.3 is a direct generalisation of this.

The question of whether a semi-infinite noisy trajectory allows the unique determi-

nation of the final state (and hence the state at all times) nowreduces to the question of

whether there are any other noise-free time series indistinguishable from the actual noise-

free time series. If so, then the final state is not uniquely specified. To illustrate this,

consider the simple case of a one-dimensional dynamical system with Gaussian noise.

That is, suppose that

ρ (z) =
1√

2πσ2
e−z2/2σ2

.

A quick calculation shows now that

P
(

yi ∼ y′i
)

= e−(yi−y′i)
2
/4σ2

⇒ P
(

y∼ y′
)

= exp

{

−1
4σ2

0

∑
i=−∞

∣

∣yi −y′i
∣

∣

2

}

. (1.4)

Thereforey andy′ are indistinguishable if∑ |yi −y′i |
2 < ∞. Thus,y− y′ must converge

to zero asi tends to−∞. For isotropicGaussian distributions in higher dimensions, this

result generalises by replacing|·| by ‖·‖ (the Euclidean norm in higher dimensions). Sim-

ilar results are true for more general distributions ([28]). It is convenient to introduce

a definition here. Theunstable manifoldof the pointy0 (with respect to the dynamical
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system) is the setWu(y0) given by (see also Chapter 3):

Wu(y0) =

{

y′0 : lim
i→−∞

∥

∥yi −y′i
∥

∥= 0

}

.

It follows now that if y and y′ are indistinguishable, theny′0 must lie on the unstable

manifold of y0. The convergence of‖yi −y′i‖ to zero in the definition of the unstable

manifold is exponential (for nice systems anyway, see Chapter 3), so the converse is also

true3.

Hence the final state cannot be determined uniquely. However, all the possible final

states must lie on the unstable manifold of the true final state. This suggests that rather

than getting a “best estimate” of the final state and using it for prediction, one should

use anensemblesampled from the unstable manifold of the best estimate. This ensemble

will contain the true final state (or at least a good approximation to it). How is the best

estimate of the final state obtained? Judd and Smith use the gradient descent algorithm

applied to the noisy data — the final point of the output becomes the best estimate. This

may not be a superb estimate of the truth, but they claim (based on numerical evidence)

that the ensemble constructed this way will contain the truth, at least if the noise is not

too large. That is, that the gradient descent gives a best estimate on the unstable manifold

of the true state. This claim is in fact equivalent to the claim that in the limit of infinite

data, the gradient descent algorithm gives the true clean time series except near the initial

and final points, as will be seen in Chapter 5.

1.4 Overview

The rest of this thesis consists of an attempt to give a rigorous proof of the claim that

the gradient descent algorithm discussed above achieves noise reduction for a broad class

of dynamical systems. More specifically, that in the limit asthe number of points in

the noisy trajectory given tends to infinity, the noise reduced trajectory given by gradient

descent converges onto the original clean trajectory except near the initial and final points.

This will be achieved by deriving analytic bounds on the errors at each point along the

3Actually, this holds only for unbounded noise distributions. If ρ is bounded, theny0 andy′0 cannot be

too far apart, otherwise they will be distinguishable on thebasis of a single measurement. In this case then,

the set ofy′0 for whichy andy′ are indistinguishable form a bounded subset of the unstablemanifold ofy.
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trajectory, and showing that these bounds converge to zero (as the length of the trajectory

tends to infinity) except near the initial and final points.

In Chapter 2, the gradient descent algorithm is applied to artificial data from some

two dimensional non-linear dynamical systems. These numerical experiments show the

typical behaviour of noise reduction algorithms (as well assome atypical behaviour) and

suggest various constraints that must be made upon the dynamical system in order to have

any chance of establishing rigorous bounds on the errors. Ofparticular note here is the

phenomenon oftangencies. Tangencies in non-linear dynamical systems are a bane of

noise reduction algorithms. Here, a couple of examples are investigated numerically and

some interesting behaviour noted. However, no attempt is made in what follows to treat

the effect of tangencies in a rigorous manner as this would almost certainly require theory

more developed that what is used in this thesis (Pesin theoryfor instance, see [42, 30]).

Chapter 3 introduces the parts of the standard theory of non-linear dynamical systems

that is required in what follows. This includes summaries ofcontraction maps, stable

manifold theory, centre manifold theory and other generalisations, as well as a couple of

results concerning Lyapunov numbers. As a rule, proofs for all these results are referred

to the literature. However, as the mandatory exception, there is one full proof. The result

is a simple fact about the stretching and contracting in a dynamical system, but contains

a couple of subtleties which are often ignored and occasionally misinterpreted. This fact

(and its subtleties) are required for later proofs.

The technical work begins in Chapter 4. To get error bounds for the noise reduction

of a non-linear system, the strategy employed is to relate itto the linearised systemfor

which the analysis is somewhat easier. To this end then, the Hartman-Grobman Theorem

is introduced and proven. This result is then extended to give quantitativeinformation

about the correspondence between the system and its linearisation (necessary for the an-

alytic bounds to be set up later). A generalisation of the Hartman-Grobman Theorem due

to Kurata is then presented and proven, and this too is extended to give quantitative in-

formation. The quantitative extensions given in this chapter are due to the author — this

type of result is almost certainly known to experts but thesecases do not seem to appear

in the literature. Additionally, the proof of Kurata’s generalisation has been modified by

the author, both to clarify and explain the details of this elegant result, and to allow the

required quantitative extension to be proven as simply as possible.
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Finally then in Chapter 5, the proof that the gradient descent algorithm guarantees

noise reduction begins. This result is first proven in the case of a symmetric linear dy-

namical system for simplicity. The surprisingly difficult generalisation for more general

linear systems follows, and from here it is a small matter to pass to a linearised dynam-

ical system. The transition to the full non-linear system iseffected by constructing a

commutative diagram between the non-linear gradient descent and its counterpart for the

linearised system. It is here that the technical results of Chapter 4 are used, to ensure the

components of the diagram have the correct properties. The quantitative nature of these

results allow the bounds from the analysis of the linearisedsystem to be carried across to

the non-linear system, provided a particular condition is satisfied (Condition 5.12), and

it is then shown that the non-linear gradient descent achieves noise reduction. This con-

dition is argued (though not proven) to be satisfied by any dynamical system of the type

suggested by the experiments of Chapter 2. All the results ofthis chapter are the work of

the author.
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Chapter 2

Numerical Experiments

In this chapter, some results of the gradient descent algorithm for noise reduction will be

presented and discussed. As the algorithm consists of solving a set of differential equa-

tions (equations 1.2), it is very easy to implement. The following results were obtained

using theode15s function inMATLAB, by letting the descent-time variable increase un-

til convergence appeared to have been established. The systems considered will all be

artificial so that the original clean trajectory is known.

2.1 The Hénon Map

Perhaps the simplest example of a non-linear diffeomorphism, the Hénon map was intro-

duced and investigated numerically (by Hénon) in 1976 ([22]). In fact, he investigated a

family of maps, a version of which may be represented by the functions fa,b : R2 → R2

defined by1

fa,b(x,y) =
(

a−x2 +by,x
)

, (2.1)

wherea andb are given constants. Note that ifb 6= 0, then this map is invertible. In what

follows, a shall be set to 7/5 andb to 3/10.

Numerical iteration of any point sufficiently close to the origin by f ≡ f7/5,3/10 gives

a plot similar to that in Figure 2.1. All the points appear to lie on (or very near) a smooth

curve. This curve folds back on itself so that its points remain bounded, and it seems

reasonable to presume that the curve’s length is in fact infinite. This curve is called the

Hénon attractor, althoughf has not yet been rigorously proven to even possess such an

1This is not the form usually given for this map ([18]), but thequalitative features are the same.
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Figure 2.1: The Hénon attractor.

attractor in the technical sense of the word ([18], see also however, [6], and more recently,

[52]). Transverse cross sections of the attractor have a strong resemblence to a Cantor set,

and so the Hénon attractor is said to befractal or strange.

The clean trajectory chosen for the gradient descent algorithm has ten points, with

initial point (−1.1709,1.6318) and final point(0.4552,−1.1989) (approximately). Each

point of this trajectory is then perturbed by adding a randomquantity to each coordinate.

In this case, a normal random variable with mean zero and standard deviation 1/5 was

used. This “noised-up” trajectory was used as the initial condition for the gradient de-

scent. The output from the differential equation solver used (ode15s ) is shown in Figure

2.2 (left). From this it would appear that convergence was attained byt = 50. The ordinate

axis here measures the deviation in each coordinate of each point of the noisy trajectory

as the algorithm proceeds. That is, if(x1(t) ,y1(t)) ,(x2(t) ,y2(t)) , . . . ,(xn(t) ,yn(t)) rep-

resents the coordinates of each point when the gradient descent has reached descent-time

t, then the ordinate axis measures eachxi (t)−xi (0) andyi (t)−yi (0) for i = 1,2, . . . ,n.

The coordinates of the points after convergence has been achieved give the noise-

reduced trajectory. In this case, the value of the determinism functionL (see equation 1.1)

was about 7× 10−12. The noise-reduced trajectory is then compared with the original

14
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Figure 2.2: Convergence (left) and errors (right) from applying the gradient descent algo-

rithm to a ten point trajectory of the Hénon map.

clean trajectory, and the errors (Euclidean) at each point plotted in Figure 2.2 (right). The

result is also summarised pictorially in space in Figure 2.3, where the squares are points

of the original clean trajectory, the circles are points of the noisy trajectory, and the lines

leading from them represent the progress of the gradient descent algorithm.

The errors displayed in Figure 2.2 show a typical trend for noise reduction algorithms:

They are quite small except near the initial and final points of the trajectory. The error

values themselves depend on which particular noisy trajectory was generated from the

clean one, but as may be seen in Figure 2.4, the “shape” of the error distribution remains

the same, and its amplitude does not vary significantly in magnitude, even when a longer

piece of trajectory is considered.

The clue to why this should be so is contained in Figure 2.3. There are three instances

here where the gradient descent algorithm has converged to what is obviously the wrong

point — the two points at the top left and one of the points at the bottom centre. It is easily

checked (and should be obvious from the error graph in Figure2.2) that these are the initial

point, the final point and its predecessor. In fact, the final point and its predecessor are the

points which appear to converge onto the attractor, whereasthe initial point is the point

which does not. Rather, the initial point appears to converge ontothe attractor2 of f−1,

the inverse Hénon map. It is somewhat difficult to get a picture of this inverse attractor,

2Actually this is not an attractor. Nearby trajectories do not come closer and closer to it, but rather tend

further and further away. It is more correct to label this structure arepellor

15



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 2.3: The Hénon attractor and the progress of the gradient descent algorithm. The

squares label the points of the clean trajectory, the circles the points of the noisy trajectory,

and the lines emanating from the circles represent the progress of the gradient descent

algorithm.
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Figure 2.4: Errors from ten different noise realisations added to a ten-point trajectory (left)

and a twenty-point trajectory (right) of the Hénon map. Note that the shape of the error

distributions is largely unaffected by the particular noise realisation used, and the average

size of the errors at the initial and final points seem to be unaffected by how many points

are used.

16



−1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

x

y

Figure 2.5: A magnification of the top-left of Figure 2.3 showing additionally, a piece of

the inverse Hénon attractor. Note that one point appears toconverge onto the attractor

whereas the other appears to converge onto the inverse attractor

as it is unbounded so iterates underf−1 have a habit of ending up at infinity. However,

the piece passing through the initial point of the clean trajectory is easily generated and is

shown in Figure 2.5.

So, the final point of the noise-reduced trajectory lies on the piece of the attractor

which passes through the final point of the original clean trajectory, and the initial point

of the noise-reduced trajectory lies on the piece of the inverse attractor which passes

through the initial point of the original clean trajectory.To make this statement a little less

cumbersome, note that the relevant pieces of the attractor and inverse attractor appearing

above are in fact, (local) unstable and stable manifolds3, respectively. Therefore, after

gradient descent, the computed final point should be on the unstable manifold of the

correct final point, and the computed initial point should beon the stable manifold of the

correct initial point.

3See chapter 3 for definitions.
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Figure 2.6: Phase portrait showing the dynamics of the map defined in equation 2.2.

The fixed point at the origin is a saddle point with the vertical direction stable and the

horizontal direction unstable.

2.2 Refinements

The conjecture of the previous paragraph is, unfortunately, false as it stands. As a coun-

terexample, consider the systemgε : R2 → R2 defined by

gε (x,y) =
(

εy2+(1+ ε)x,(1− ε)y
)

. (2.2)

This dynamical system has a fixed point at the origin. A phase diagram showing various

trajectories is shown in Figure 2.6. A ten-point trajectoryof g1/20 was generated with

initial point approximately(0.0035,0.2210). Gaussian noise with mean zero and standard

deviation 1/50 was added to each coordinate of each point of the trajectory, and the result

was then noise reduced using the gradient descent algorithm. The results are shown in

Figure 2.7. Note that the initial and final points of the noise-reduced trajectoryhave

not converged onto the stable and unstable manifolds of the trueinitial and final points

(respectively). Note also the shape of the error distribution — the errors near the middle

of the trajectory arenot small compared to those at the initial and final points.

The noise-reduction algorithm fails for this example because the algorithm has not
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Figure 2.7: Results from applying the gradient descent algorithm to a ten-point trajectory

from the mapg1/20. The symbols are used as they were in Figure 2.3. The stable manifold

of the initial point of the clean trajectory and the unstablemanifold of the final point are

also shown (upper left and lower right respectively).

been given a long enough trajectory. If it is given forty points (with the same initial point

say), then a typical result is shown in Figure 2.8. Note that now the initial and final points

are on the stable and unstable manifolds (or at least much closer to them). Also, the error

distribution now has the expected shape even if the errors inthe middle of the distribution

are still not small.

It would seem then that for a sufficiently long trajectory, the error distribution will be

such that the errors decay at first, reach a minimum, and then increase towards the end. It

is convenient to think of this distribution as having two components, one each correspond-

ing to the stable and unstable manifolds of the points of the trajectory. The error along the

stable manifold decreases (exponentially) and that along the unstable manifold increases

(exponentially). If the rates of increase and decrease (called expansion and contraction

rates) are close to unity, then a long trajectory will be required to make the errors in the

middle small (see chapter 3, especially section 3.3.1 for more on these rates). This is the

case with the mapgε for ε small, whose expansion and contraction rates are 1+ ε and

1− ε respectively (in fact, this map is a small perturbation of a linear map — indeed the

linear map would have sufficed for the above discussion). Forthe Hénon map (equation

2.1), the expansion and contraction rates can be approximated numerically, and are about
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Figure 2.8: Results from applying the gradient descent algorithm to a forty-point trajec-

tory from the mapg1/20. The initial point is at top-left, the final point at bottom-right.

1.52 and 0.198 ([2]). Therefore, only a few points are needed to make theerrors in the

middle of the trajectory small. Note that in Figure 2.4 the errors do indeed decrease much

more quickly at the start, than they increase towards the end!

Of course, it is possible that the map used has an expansion orcontraction rate equal

to unity. That is, there is a direction where the map does not significantly expand or

contract distances. On the basis of the previous paragraph then, the error distribution of

a trajectory from such a map would not be expected to be small,no matter how long the

trajectory was. A simple example confirming this statement is the identity map — the

errors after noise reduction are necessarily constant frompoint to point. Such maps are

referred to as beingnon-hyperbolic, to contrast with the maps whose rates of increase and

decrease are not unity, calledhyperbolicmaps. Hyperbolicity will be discussed further in

Chapters 3 and 4.

It should be mentioned here that the errors in the middle of the trajectory will decrease

as the length of the trajectory increasesprovided that the errors at the initial and final

points of the trajectory remain (approximately) constant.That is, these errors should be

of the same order of magnitude as the amount of noise originally added, regardless of the

length of the trajectory used. That this should be true is certainly a plausible statement

to make, but it is by no means clear that it must hold4. If however, it is the case that

4One can try to force such a requirement by adding an extra termto the determinism function (equation

1.1) which penalises trajectories whose points are far awayfrom the points of the original noisy trajectory.
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all the errors are small, and that this holds for arbitrary long trajectories as well, then it

would be expected that the errors would lie in the stable direction for the initial point and

in the unstable direction for the final point. For otherwise,the component of the initial

error in the unstable direction would be expected to grow exponentially, contradicting the

smallness of the errors everywhere. Similarly with the finalerror. Therefore, the goal of

the analysis of noise reduction algorithms should be to prove that the errors do remain

small, regardless of the length of trajectory.

2.3 Tangencies

Consider now one last example, the Ikeda mapha,b,c,d : C → C defined by

ha,b,c,d (z) = a+beiθ z, θ = c− d

1+ |z|2
, (2.3)

introduced as a model for a cell in an optical computer ([25]). This can be expressed as a

real function onR2, which shall also be denoted byha,b,c,d and takes the form

ha,b,c,d (x,y) = (a+b(xcosθ −ysinθ) ,b(xsinθ +ycosθ)) , (2.4)

whereθ = c−d
(

1+x2 +y2
)−1

. In what follows,a = 1, b = 2/5, c = 9/10 andd = 6.

The attractor forh≡ h1,2/5,9/10,6 is shown in Figure 2.9.

A twenty-point trajectory was chosen with initial point(0.9255,−1.0126) and final

point (1.1243,−2.1607) (approximately). Gaussian noise with mean zero and standard

deviation 1/10 was added to this trajectory before the gradient descent algorithm was

applied. The resulting errors fortendifferent noise realisations are shown in Figure 2.10.

The interesting feature here is the presence of “spikes” in the error distributions at points

(times) 3, 8 and 16. Almost every noise distribution yields larger than expected errors at

these points, and the points nearby also have larger errors than expected. It is as if at these

points, the noise reduction algorithm fails, and the resultis some sort of patching together

of what might result if the algorithm were applied to the trajectories corresponding to

points 1 to 3, 3 to 8, 8 to 16 and 16 to 20separately.

The cause of this “spiking” phenomenon may be found by examining the stable and

unstable manifolds of the offending points. These are shownin Figure 2.11. Notice that

The value of such a term has not been established however — seethe discussion at the end of Chapter 5.
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Figure 2.9: The Ikeda attractor.
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Figure 2.10: Errors from ten different noise realisations added to a trajectory from the

Ikeda map.
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Figure 2.11: Points 3, 8 and 16 from the clean Ikeda trajectory considered, with their

stable manifolds (dotted lines) and unstable manifolds (solid lines). Note that at each

point, the angles between the stable and unstable manifoldsare very small.

for points 8 and 16, the stable and unstable manifolds appearto be tangent to one an-

other at the clean trajectory point, and for point 3, although the manifolds are not tangent

there, the angle between them is quite slight. In fact, the angles5 may be numerically ap-

proximated quite easily ([47]) and are (about) 8.2◦ for point 3, 2.8◦ for point 8, and 1.2◦

for point 16. Points where the angle between the stable and unstable manifolds is small

are termednear-tangency pointsor often justtangency points. At these tangency points,

the algorithm would seem to have difficulty distinguishing which direction is stable and

which is unstable, and therein lies its failure.

There are certainly points on the Ikeda attractor where the angle between the stable

and unstable manifold is exactly zero6. However, it might be expected that such points

5These are defined to be the angles between tangent lines for the stable and unstable manifolds at the

point. See section 3.3.1.
6This is true of the Hénon attractor as well. It is the “folding” of the attractor back on itself (which is

necessary for allowing expanding directions whilst keeping the attractor bounded) that forces tangencies

to occur — hence they should be present in any system of this kind. Spiking occurs in noise reduction of

Hénon trajectories too, though somewhat less frequently.
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Figure 2.12: Errors after gradient descent from the Ikeda trajectory considered after the

gradient descent algorithm has been to descent-times 25, 100, 250 and 1000. The distri-

bution remained constant for descent-times greater than 1000.

are extremely rare (this expectation is justified in Theorem3.5), and thus that they will

never be encountered, practically. Therefore, for a given trajectory, the gradient descent

algorithm should be able to sort out which direction is stable and which is unstable,given

enough time. Perhaps the “spiking” effect seen in Figure 2.10 is an artefact of poor con-

vergence.

Figure 2.12 shows the errors induced by the gradient descentalgorithm for the Ikeda

trajectory, at descent-times 25, 100, 250 and 1000. Recall that for the Hénon trajectory

considered in section 2.1, convergence was complete by descent-time 50. It is apparent

that convergence is obtained for the Ikeda trajectory by descent-time 100, except in the

vicinity of the tangency at point 16. No further change in theerror distribution was ob-

served beyond descent-time 1000, however. Why points near one tangency are slow to

converge compared with points near another, is not clear. Infact, with other noise realisa-

tions, it is sometimes observed that the tangency at point 8 is the one which takes a long

time to converge, so it can only be concluded that the presence of tangency points in a

trajectorymaymean that the convergence of the gradient descent algorithmis very slow.
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Figure 2.13: A logarithmic plot of the error distributions after noise reduction for thirty

different noise realisations added to a fifty point trajectory. The noise distribution was

Gaussian with standard deviation 1/10.

It is, however, clear that the errors at the tangency points remain larger than expected,

even after the noise reduction algorithm has been run for very long times. Consider now

Figure 2.13. This shows error distributions (inlogarithmicscale) for thirty different noise

realisations. The logarithmic scale shows the exponentialdecay and growth of the er-

rors quite clearly. There is a tangency of approximately 3◦ at point 39 as well as lesser

tangencies of between 10◦ and 20◦at points 2, 10 and 25. These are visible in the er-

ror distributions. What is of greater interest is the observation that the error distributions

around the tangency at point 39 form two quite distinct groups. The jump in the errors

around point 39 is sometimes small and sometimes much larger7.

These two groups are shown spatially (around the tangency point 39) in Figure 2.14.

The large square marks point 39, the “+” signs mark the thirtynoise reduced approxima-

tions of point 39, and the dotted and solid lines show the stable and unstable manifolds

7The errors corresponding to the larger jump are notresolvedin this figure due to the logarithmic scale.

In fact, approximately half the distributions show this larger jump. The reasons for this will become appar-

ent shortly.
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Figure 2.14: Spatial results for the 39th point of the thirty noise reduced trajectories of

Figure 2.13. The large square marks the correct point, the “+” signs mark the noise re-

duced points, and the dotted and solid lines are the stable and unstable manifolds through

the correct point.

through point 39 (respectively).Note that the groups cluster about the points where the

stable and unstable manifolds intersect!Points where the stable and unstable manifold

intersect are calledhomoclinic intersection points.

Why this clustering about homoclinic intersection points?Because this forces the

points to be close to the stable and unstable manifolds of thetrue point. Iterating forward

then means that the error must shrink (because the point is near the stable manifold).

The error along the unstable manifold must likewise grow, and this forces the unstable

manifold to bulge outwards (and the angle between the stableand unstable manifolds

to increase). Similarly, upon iterating backwards, the error along the unstable manifold

decreases and the error along the stable manifold grows, leading to a bulging of the stable

manifold (and a corresponding increase in the angle betweenthe manifolds). This is
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Figure 2.15: Spatial results for the 37th point (left) and the 41st point (right) of the thirty

noise reduced trajectories of Figure 2.13, showing the stable (dotted) and unstable (solid)

manifolds.

pictured in Figure 2.15. Thus the errorsdecreasein both directions (in fact, this argument

also explains why the errors grow and decayexponentiallyaround a tangency point). If

the noise reduced points were not near a homoclinic intersection point, then by iterating

forwards or backwards, the errors would have to eventually grow. Summarising, it can

be said that the trajectories through the two homoclinic intersection points of Figure 2.14

(one of which is the true point) remain close together and so the noise reduction algorithm

chooses one or the other depending on the particular noise realisation given.

Another way of saying this is that the trajectories through the homoclinic intersection

points are difficult to distinguish on the basis of the given noise realisations. This dif-

ficulty can be quantified using theindistinguishability theoryof section 1.3. The noise

distribution used here was Gaussian with standard deviation 1/10, so the probability that

two trajectoriesy andy′ will be indistinguishable given a random noise realisationis given

by (equation 1.4):

P
(

y∼ y′
)

= exp

{

−25∑
i

∥

∥yi −y′i
∥

∥

2

}

.

A plot of (an excellent approximation of) the indistinguishability of the correct trajectory
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Figure 2.16: This shows the probability that the trajectorydefined by the given point will

be indistinguishable from the true trajectory. At left, theprobability is computed assuming

Gaussian noise with standard deviation 1/10. At right, the standard deviation is 1/50.

and the nearby trajectories is given in Figure 2.16 (left). The plot measures the probability

of indistinguishability versus the point corresponding topoint 39 of the correct trajectory.

The two peaks correspond to the homoclinic intersection points (the peak with value 1 is

obviously the correct point). The second peak has probability approximately 0.9. There-

fore it is very likely that a given noise realisation will be unable to distinguish between

the true trajectory and the trajectory through the other homoclinic intersection point. This

explains why the numbers of noise reduced points clustered around each homoclinic inter-

section point are approximately equal — the two trajectories are usually indistinguishable

so the noise reduction algorithm gives each with approximately equal probabilities.

The large peak around tangencies in the error distribution is therefore due to the al-

gorithm choosing the wrong homoclinic intersection point.This is usually only observed

when the angle between the stable and unstable manifold is quite small however. For

small angles, the distance between the homoclinic intersection points is expected to be

smallcompared to the noise level(and this forces the distances between the forward and
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backward iterates of the homoclinic intersection points todecay exponentially). Therefore

the algorithm is just as likely to converge onto the wrong homoclinic intersection point as

the right one. In terms of indistinguishability, this is nicely pictured in Figure 2.16 (right)

where the standard deviation of the noise has been dropped from 1/10 to 1/50. The prob-

ability that the trajectories through each of the homoclinic intersection points cannot be

distinguished drops from 0.9 to about 0.06. At this noise level, the algorithm will only

rarely choose the wrong homoclinic intersection point.

Forsufficiently smallnoise then, it would seem that the noise reduced trajectory should

match the true trajectory with significant errors only near the initial and final points, pro-

vided that the length of trajectory taken is sufficiently long. However, if the length of the

trajectory is increased to achieve this goal, then it likelythat a “bad” tangency will be

introduced into the trajectory. A “bad” tangency here is onefor which the distance be-

tween the homoclinic intersection points is not much largerthan the noise level. To deal

with this tangency then, the noise level must be reduced further. It is apparent then that

in order to get anyconvergenceresults where the noise reduced trajectory converges onto

the true trajectory (except near the initial and final points) as the length of the trajectory

tends to infinity, it is necessary to exclude arbitrarily “bad” tangencies. A notion that does

this will be introduced in Chapter 3.

2.4 Summary

It would seem then, on the basis of these numerical experiments, that the following claims

may be made:

• The errors between the original clean trajectory and the noise reduced trajectory at

the initial and final points, are of the same order of magnitude as the amount of

noise added.

• If the map from which the trajectory was obtained is hyperbolic, and the trajectory

sufficiently long, then the errors near the initial point decay exponentially, the errors

near the final point grow exponentially, and the errors in themiddle of the trajectory

are negligible,except around near-tangency points.

• Around a near-tangency point, the error distribution may assume a “spike” shape
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with the errors growing exponentially, reaching a maximum at the near-tangency

point, and then decaying exponentially. The errors around anear-tangency point are

often of the same order of magnitude as the noise level and aredue to the presence

of “close” homoclinic intersection points.

• For a hyperbolic map, as the length of the trajectory goes to infinity, the initial

(final) point of the noise reduced trajectory converges ontoa point from the stable

(unstable) manifold of the initial (final) point of the original clean trajectory.

Since in practical applications, the clean trajectory is generally unknown, it is convenient

to restate the last claim in the following form:

• For a hyperbolic map, as the length of the trajectory goes to infinity, the initial (final)

point of each trajectory which could have produced the noisytrajectory (assuming

a bounded noise distribution say) converges onto a point from the stable (unstable)

manifold of the initial (final) point of the noise reduced trajectory.

These statements are equivalent because the notion of belonging to stable and unstable

manifolds issymmetric. That is, if p belongs to the stable manifold ofq, thenq belongs

to the stable manifold ofp. The point is that the gradient descent algorithm does yield

the correct clean trajectory except near the initial point,the final point and near tangency

points. As mentioned above, if arbitrarily “bad” tangencies are not present in the dynam-

ical system of interest, then for sufficiently long trajectories and sufficiently small noise,

the errors in the middle will be negligible, so noise reduction will have been achieved

everywhere except near the initial and final points.
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Chapter 3

Stable Manifold Theory

This chapter briefly summarises stable manifold theory and some of its various gener-

alisations. These results clarify the discussion of the behaviour of the gradient descent

algorithm in Chapter 2. They will also be used repeatedly in the quantitative analysis of

Chapter 5. To motivate the structures relevant to the generalisations, Oseledec’s Multi-

plicative Ergodic Theorem is introduced. This result also gives (as a corollary) a quan-

tification of the stretching induced by the linearised dynamics and is also vital for the

analysis of Chapter 5. With the exception of this corollary (Proposition 3.6), proofs of all

the theorems in this chapter will be omitted.

3.1 Preliminaries

In this section, a couple of the most important results that underlie the theory of non-linear

analysis are reviewed. These results are used to prove almost all of the major theorems

in this area. For the purposes of dynamical systems theory, the most important is the

Contraction Mapping Theorem of Banach. A mapf between two metric spaces(X,d)

and(X′,d′) is said to beLipschitzif there is a constantκ > 0 for which

d′ ( f (x) , f
(

x′
))

6 κ d
(

x,x′
)

holds for everyx∈X andx′ ∈X′. The least suchκ is called theLipschitz constantof f and

is denoted by Lipf . If Lip f < 1, thenf is called acontraction. A proof of the Contraction

Mapping Theorem may be found in most texts on analysis ([33] for instance).
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Proposition 3.1 (Contraction Mapping Theorem) Let f : X → X be a contraction on a

complete metric space X. Then, there is a unique fixed point x0 ∈ X for f , and for any

x∈ X, fn(x) → x0 as n→ ∞.

In the theory of dynamical systems,X is usually a function space. Often it is required

to prove the existence of a particular type of function satisfying a particular relation. The

idea is to set up a map whose fixed point satisfies this relation, and then show that the

map is a contraction on the space of functions of the given type (for instance the space of

continuous functions). This guarantees the existence of a fixed point, and therefore of the

function required. The Stable Manifold Theorem (Theorem 3.3 below) is proven in this

way. The difficulty with this theorem and others like it, is toset the map up in such a way

that it is a contraction. Note that since any point inX converges to the fixed point under

iteration by a contraction map, it follows that the fixed point must belong to everyclosed

subsetof X which is preserved by the contraction.

The Inverse Function Theorem is another result used often innon-linear analysis. It

is in fact, also proved using a contraction mapping argument, but it will be stated as a

preliminary result here for convenience. The Inverse Function Theorem is usually stated

as a local result (see [19] or [46]). However, the global forms ([27, 48]) are most suitable

for the linearisation theory in the following chapter. The following result is a sharpening

of the usualCr-Inverse Function Theorem.m(T) denotes the minimum dilation of an

invertible linear mapT:

m(T) = inf
‖x‖=1

‖Tx‖ =
∥

∥T−1
∥

∥

−1
.

Proposition 3.2 (Lipschitz Inverse Function Theorem)Let T : E → E be linear and

invertible, where E is a Banach space, and letϕ : E →E be Lipschitz withLip ϕ < m(T),

andϕ (0) = 0. Then, T+ϕ is invertible, and(T +ϕ)−1 is Lipschitz.

3.2 Stable, Centre and Unstable Manifolds

In this section the Stable Manifold Theorem and its generalisation, the Centre Manifold

Theorem are presented and discussed. These relate to the non-linear dynamics near a

hyperbolic and non-hyperbolic fixed point respectively. A differentiable mapf : M →
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M on a compact manifoldM is said to have ahyperbolic fixed point p∈ M if f (p) =

p andd f (p) has no eigenvalues on the unit circle. This restriction on the eigenvalues

yields a significant conceptual simplification in that the derivative has only expanding

and contracting directions.

3.2.1 Hyperbolic Fixed Points

Consider an invertible linear dynamical systemA on a Banach spaceE with no eigenval-

ues on the unit circle. 0 is then a hyperbolic fixed point ofA. There are eigenspacesEs and

Eu of A corresponding to those eigenvalues less than and greater than unity in modulus.

These spaces have the following important characterisations:

Es = {x∈ E : Anx→ 0 as n→ ∞}

and Eu =
{

x∈ E : A−nx→ 0 as n→ ∞
}

,

and are called the stable and unstable eigenspaces ofA respectively. These characterisa-

tions clearly generalise (in an obvious manner) to non-linear dynamical systems. Given a

diffeomorphismf on a manifoldM then, and a hyperbolic fixed pointp of f , define the

stableandunstablemanifolds to be the sets

Ws = {x∈ M : f n(x) → p as n→ ∞}

and Wu =
{

x∈ M : f−n(x) → p as n→ ∞
}

.

Such sets are non-empty, forp belongs to both by definition. Clearly, they are invariant

underf . The question of what forms these sets can take, and how they are oriented around

p is the province of the Stable Manifold Theorem.

Theorem 3.3 (Stable Manifold Theorem)Let p be a hyperbolic fixed point for a diffeo-

morphism f: M → M. Then, there arelocal stable and unstable manifolds which are

smooth submanifolds of M, diffeomorphic to a disc, and are tangent at p to the stable

and unstable eigenspaces of d f(p) : Tp(M)→ Tp(M). That is, in the notation introduced

above,

Tp(Ws) = Es and Tp(Wu) = Eu.

The local stable and unstable manifolds satisfy

Wlocal
s =

∞
⋂

n=0

f−n(Br (p)) and Wlocal
u =

∞
⋂

n=0

f n(Br (p)) ,

33



C
C
C
C
C
C
CO

C
C
C
C
C
C
CW

-�
0

Eu

Es

Ws(p)

Wu(p)

C
C
C
C
C
C
CO

C
C
C
C
C
C
CW

-�
p

p+Eu

p+Es

Tp(M) M

Figure 3.1: Stable and Unstable manifolds for a hyperbolic fixed point

where Br (p) is a ball of radius r about p.

This result is illustrated in Figure 3.1. It says that locally the stable manifold is a

smooth manifold of the same dimension as the stable eigenspace. The global stable man-

ifold is then constructed by taking the limit of the set of iterations of the local stable

manifold underf−1. Similarly, the global unstable manifold is the limit of theset of iter-

ations of the local unstable manifold underf . These are often not genuine submanifolds

of M however, as they can fold back infinitely close to themselves.

There are many proofs of the Stable Manifold Theorem. The most commonly encoun-

tered is thegraph transformmethod of Hadamard. The idea here is that because the local

stable manifold is tangent to the stable eigenspace atp, it can be represented (on a suffi-

ciently small neighbourhood ofp) as the graph of a function fromEs into Eu (refer again

to Figure 3.1). Given any functiong : Es → Eu then, the graph transformΓ is defined in

such a way that

graphΓ(g) = f−1(graphg)

on the sufficiently small neighbourhood ofp. It is expected that the inverse iterates will

converge onto the local stable manifold, and therefore thatiteration underΓ will yield a

function whose graph is the local stable manifold. This is proved by showing thatΓ is a

contraction mapping on an appropriate function space. The smoothness of the fixed point

of Γ then dictates the smoothness of the local stable manifold. Graph transform proofs of

the Stable Manifold Theorem may be found in [30, 46, 48]. Other types of proof can be

found in [41, 27, 40].
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3.2.2 Non-hyperbolic Fixed Points

What happens whend f (p) has eigenvalues with unit modulus? There is an eigenspace

corresponding to these eigenvalues called thecentre eigenspace. It would seem plausible

then that there must be a correspondingcentre manifoldtangent to the centre eigenspace,

but it is not yet obvious how to characterise this manifold. The centre eigenspace may

contain vectors that are fixed byd f (p) or are rotated by it. However, as it is analgebraic

eigenspace, it can also contain vectors which are expanded by d f (p). For example,





1 1

0 1





n



0

1



=





n

0





.

Note that the norms of the iterates of(0,1) in this example increase in magnitudepolyno-

mially with n. In an unstable eigenspace, the norms must (eventually) increase exponen-

tially. Similarly, in the stable eigenspace, the norms (eventually) decrease exponentially.

A centre manifold is defined to be a smooth invariant manifoldtangent atp to the centre

eigenspace. The idea is that this set should consist of points of sub-exponential growth

and decay (with respect to some metric on the manifold). However, because the manifold

is assumed compact, the notion of an exponential growth rateis not well defined. Expo-

nential decay ratesarewell defined but are not useful for characterising a centre manifold

because only points on the stable and unstable manifolds areexpected to decay exponen-

tially with forward or backward iteration. It turns out anyway that centre manifolds may

not be unique (see [18] for an example).

Theorem 3.4 (Centre Manifold Theorem) Let p be a fixed point for a diffeomorphism

f : M → M. Then, there are local stable, centre and unstable manifolds, Ws, Wc and Wu

respectively which are smooth submanifolds of M, diffeomorphic to a disc, and satisfying

Tp(Ws) = Es, Tp(Wc) = Ec and Tp(Wu) = Eu,

where Es, Ec and Eu are the stable, centre and unstable eigenspaces of d f(p) respectively.

The local centre manifold can be extended to a global centre manifold by taking the

union of its iterates underf and f−1. Proofs of this theorem may be found in [1, 10,

48]. The idea here is that in the consideration of hyperbolicity, the number 1 is not all

that special. For sufficiently smallε > 0, d f (p) will have no eigenvalues of modulus
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1− ε, and so there is a splitting into eigenspacesEss andEcu whose eigenvalues have

modulus less than or greater than 1− ε respectively. If the unit ball is iterated forward

under f , the resulting sets converge (in a manner that can be made precise) onto a set

tangent toEcu. This is because this eigenspace is associated with directions in which the

dynamics donotcontract, that is, the unstable and centre directions. Thislimiting set may

not actually be a manifold (locally) but can always be decomposed into manifolds,Wcu,

tangent atp to Ecu. These manifolds are calledcentre-unstable manifoldsfor obvious

reasons. Similarly, iterating backwards gives a limiting set,Wss tangent toEss called the

strong stable manifold. For ε sufficiently small, this is the stable manifold and may be

characterised by its exponential decay property. Repeating the process with 1+ ε, gives

centre-stable manifolds, Wcs, and astrong-unstable manifold, Wuu. Then, the transverse

intersection of a centre-stable manifold with a centre-unstable manifold gives a centre

manifold.

3.2.3 Flows

It should be noted at this point that the preceding theory (and in fact the rest of the chapter

as well) applies equally well to flows as it does to diffeomorphisms, with the modification

that hyperbolicity corresponds to the derivative having noeigenvalues on the imaginary

axis. Although it is the stable and unstable manifolds of thediffeomorphismf which are

of primary interest in the investigation of noise reductionby gradient descent, the gradient

descent algorithm defines a flow, so it will be useful to keep inmind that these structures

exist for flows too, especially in Chapter 5.

3.3 Global Hyperbolicity

3.3.1 The Multiplicative Ergodic Theorem

It is quite easy to extend Stable Manifold Theory to considerperiodic orbits of a diffeo-

morphism f , essentially by considering a periodic pointp ∈ M as a fixed point off m

(wherem is the period ofp). Hyperbolicity of the periodic orbit then corresponds to hy-

perbolicity of eachp in the orbit, with respect tof m. It is not so easy, however, to see how

hyperbolicity can be defined on arbitrary trajectories. Thecorrect notion to introduce is
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that of anaveragerate of expansion or contraction. This is neatly expressed in Oseledec’s

Multiplicative Ergodic Theorem ([39]).

Before stating this result, the concept of ergodic theory must be introduced (briefly).

Ergodic theory is a statistical theory of dynamical systems, dedicated to the study of

probability measures left invariant by the action of the dynamical system (see [20, 36,

53]). A measureµ is said to be aninvariant measurefor f : M → M if

µ (A) = µ
(

f−1(A)
)

for every measurable setA⊆ M. A measure is said to beergodicif the manifoldM cannot

be decomposed into invariant measurable sets of positive measure. This guarantees thatf

does not act on (statistically significant) pieces ofM in an independent manner.

Theorem 3.5 (Multiplicative Ergodic Theorem) Let f be a diffeomorphism of a com-

pact manifold M preserving an ergodic measureµ. Then, there is an f -invariant set

Λ ⊆ M of full measure such that for all p∈ Λ, there is a splitting:

Tp(M) =
r
⊕

i=1

Ei (p) ,

varying measurably with p, invariant in that d f(p)(Ei (p))= Ei ( f (p)), and non-negative

numbersλ1 < .. . < λr for which

lim
n→∞

‖d fn(p)x‖1/n = λk ∀ x∈
k
⊕

i=1

Ei (p)\
k−1
⊕

i=1

Ei (p) .

Proofs of the Multiplicative Ergodic Theorem may be found in[42], for the case of

a two dimensional manifold, and [47] for the general case. The λi appearing in this

theorem are called theLyapunov numbersfor f (with respect toµ). Eachλi quantifies the

average expansion and contraction for vectors in each family of spaces{Ei (p) : p∈ Λ}.

In analogy to the case of a fixed point, the spacesEi (p) will be referred to as eigenspaces.

However, they arenot generally eigenspaces of any of the derivativesd f (p). A more

useful quantification of the expansion and contraction rates is the following.

Proposition 3.6 Let f be a diffeomorphism on M. Then, for almost every p, and all

x∈ Tp(M), there exists aλ > 0 such that given anyε > 0, there exists C> 0 (depending

onε but independent of x) for which

‖d fn(p)x‖ 6 C(λ + ε)n‖x‖

for every n> 0.
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Proof: Choosep∈ M so that the splitting of the Multiplicative Ergodic Theoremexists,

choosex∈ Tp(M) non-zero, and letλ be the Lyapunov number forx. Suppose now, that

the statement is false. Then, given anyC > 0, there existn1,n2,n3, . . . such thatnk → ∞

ask→ ∞, and‖d fnk (p)x‖ > C(λ + ε)nk ‖x‖. Therefore,

‖d fnk (p)x‖1/nk > C1/nk (λ + ε)‖x‖1/nk .

Since thenk tend to∞, it follows from Theorem 3.5 that

λ = lim
n→∞

‖d fn(p)x‖1/n = lim
k→∞

‖d fnk (p)x‖1/nk > lim
k→∞

C1/nk (λ + ε)‖x‖1/nk = λ + ε,

a contradiction for anyε > 0.

It remains to show thatC may be chosen independent ofx. Consider therefore the unit

circle in each eigenspace,Si = Ei (p)∩Sd−1. The Lyapunov number is constant on this

set, so the function‖d fn(p)x‖ (λ + ε)−n is continuous on this set, and hence bounded by

compactness. Let

Ki (ε) = sup
n>0

sup
x∈Si

‖d fn(p)x‖
(λ + ε)n

.

This is finite. It follows by linearity now, that

‖d fn(p)x‖ 6 Ki (ε)(λ + ε)n‖x‖

for all x∈ Ei andn > 0. LetPi be the eigenprojection1 onto the eigenspaceEi (p) andλi

be the Lyapunov number for vectors inEi (p). Then, for generalx,

‖d fn(p)x‖ 6 ∑
i
‖d fn(p)Pix‖ 6 ∑

i
Ki (ε)(λi + ε)n‖Pix‖

6 ∑
i

Ki (ε)(λ + ε)n‖Pi‖‖x‖ =

[

∑
i

Ki (ε)‖Pi‖
]

(λ + ε)n‖x‖ ,

sinceλi , the Lyapunov number ofPix, is less than or equal toλ , the Lyapunov number of

x (wheneverPix 6= 0).

Using the same arguments as in the proof above, the bound

‖d fn(p)x‖ > C′ (λ − ε)n‖x‖ (3.1)

may also be derived (for someC′ > 0). Similarly, C′ can be chosen independent ofx

on each eigenspace. However, this independence cannot be extended to generalx 6= 0

1That is, the projection ontoEi (p) parallel to the otherE j (p), j 6= i.
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without settingC′ = 0. The reason for this is quite simple: The Lyapunov exponentof x

with respect tof need not be related to the Lyapunov exponent ofx with respect tof−1.

To clarify this, consider the inequality of Proposition 3.6applied to f−1 in the tangent

spaceTf n(p) (M):

∥

∥d f−n( f n(p))x
∥

∥ 6 C
(

λ ′ + ε
)n‖x‖

⇒ ‖x‖ 6 C
(

λ ′ + ε
)n‖d fn(p)x‖

⇒ ‖d fn(p)x‖ > C−1(λ ′+ ε
)−n‖x‖

= C−1
(

(

λ ′)−1− ε ′
)n

‖x‖

where in the second line,x was replaced byd fn(p)x, λ ′ is the Lyapunov number forx

with respect tof−1, and the equality in the last line holds for someε ′ > 0. In this bound,

C and henceC−1 can be chosen independent ofx. Comparing with the bound in equation

3.1, it is clear thatC′ can be chosen independent ofx if λ , the Lyapunov number forx

with respect tof , is equal to(λ ′)−1, the inverse of the Lyapunov number ofx with respect

to f−1. This is true whenx belongs to one of the eigenspaces, but is not true in general.

3.3.2 Hyperbolic Sets

The setΛ appearing in the statement of the Multiplicative Ergodic Theorem is said to be

ahyperbolic setfor f if none of the Lyapunov numbers are unity. The stable and unstable

eigenspaces (in each tangent spaceTp(M)) are defined to be

Es(p) =
⊕

λi<1

Ei (p) and Eu(p) =
⊕

λi>1

Ei (p) .

This gives ahyperbolic splitting, invariant underf . For such a hyperbolic splitting, the

contraction-expansion estimates of Proposition 3.6 take the following form.

Proposition 3.7 Suppose thatΛ is an invariant hyperbolic set for f and thatµ < 1 < ν

are chosen so thatµ is greater than all the Lyapunov numbers for f less than unity, and

ν is less than all the Lyapunov numbers for f greater than unity. Then, for each p∈ Λ,

there are Cs > 1 and0 < Cu 6 1 such that

‖d fn(p)xs‖ 6 Csµn‖xs‖ and ‖d fn(p)xu‖ > Cuνn‖xu‖ ,

for all xs ∈ Es(p) and all xu ∈ Eu(p).
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This follows directly from Proposition 3.6 for the stable estimate, and from the dis-

cussion following it for the unstable estimate. Now, theCs andCu appearing in this result

may be chosen independently ofxs andxu respectively. Can they be chosen independent

of p? If Λ = M, a compact manifold, then the answer is affirmative by a simple argument.

However, the Multiplicative Ergodic Theorem asserts thatΛ can exclude a set of measure

zero fromM, and hence be non-compact. It is possible then that the constantsCs andCu

may not be chosen independent ofp.

It is necessary therefore to introduce compactness as an assumption. An invariant

hyperbolic setΛ which is also compact is called aninvariant uniformly hyperbolic set.

For such a set, the constantsCs andCu in Proposition 3.7 can be chosen independent

of p. Another (more surprising) consequence of this compactness assumption is that the

eigenspacesEs(p) andEu(p) varycontinuouslywith p ([30]), rather than just measurably

as claimed in Theorem 3.5. Therefore, the minimal angle betweenEs(p) andEu(p) is

bounded away from zero, and so no exact tangencies can occur (recall the discussion of

tangencies in section 2.3). The presence of tangencies therefore indicates a non-uniform

structure (that is,Λ is not compact — the splitting fails at exact tangencies where the

stable and unstable eigenspaces have non-trivial intersection). Obviously the tangencies

can only occur at the points ofM excluded fromΛ — a set of measure zero. The numerical

evidence of Chapter 2 therefore suggests that the Ikeda map and the Henon map are both

examples of non-uniformly hyperbolic diffeomorphisms.

3.4 Generalised Stable, Centre and Unstable Manifolds

In this section the generalisation of the theory of section 3.2 to invariant uniformly hy-

perbolic sets is presented. This consists of taking the linear structure (guaranteed by

the Multiplicative Ergodic Theorem) on the tangent spaces,and pulling it back onto the

manifold, to get local stable and unstable manifolds through each point of the invariant

uniformly hyperbolic set. An important question which doesn’t arise in the fixed point

case, is how all these stable and unstable manifolds fit together.

As in the fixed point case, vectorsx∈ Es(p) are eventually contracted under iteration

by d f (p). The difference is that each iterate belongs to a different tangent space. That is,

the distance between the iterates ofx and the corresponding iterates of 0 (the zero of the
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tangent space) contract. The corresponding notion on a manifold M (with a metricd) is

therefore that the distance between iterates ofx and iterates ofp (under f now) contract

(recall the discussion in section 3.2.2 indicating that decay is well defined on a manifold

whereas growth is not). Thus, define

Ws(p) = {x∈ M : d( f n(x) , f n(p)) → 0 as n→ ∞}

and Wu(p) =
{

x∈ M : d
(

f−n(x) , f−n(p)
)

→ 0 as n→ ∞
}

to be thegeneralised stableand unstable manifolds of f through prespectively. The

properties of these sets are given in the following result ([23, 48]).

Theorem 3.8 (Generalised Stable Manifold Theorem)Let Λ ⊆ M be an invariant uni-

formly hyperbolic set for a diffeomorphism f: M → M. Then, there are local generalised

stable and unstable manifolds through each p∈ Λ which are smooth submanifolds of M,

diffeomorphic to a disc, and tangent at p to the eigenspaces Es(p) and Eu(p) determined

in the Multiplicative Ergodic Theorem. Furthermore, the local generalised stable and

unstable manifolds vary continuously with p.

Global generalised stable and unstable manifolds can now beconstructed from the

local ones as

Ws(p) =
⋃

n>0

f−n
(

Wlocal
s ( f n(p))

)

and Wu(p) =
⋃

n>0

f n
(

Wlocal
u

(

f−n(p)
)

)

.

They form families invariant underf . Again, the global generalised stable and unstable

manifolds are not usually submanifolds ofM, but they clearly vary in a continuous manner

with p also. In particular, it follows that the homoclinic intersection point closest top

(but different fromp of course) also varies continuously, when it exists. Therefore, on an

invariant uniformly hyperbolic set, the compactness forces the distance betweenp and its

nearest homoclinic intersection pointto be bounded away from zero. This is exactly the

requirement suggested by the numerical experiments of section 2.3 for the noise reduction

by gradient descent to work (for sufficiently small noise).

Finally, there is also a Generalised Centre Manifold Theorem ([23]) which will be

used in a very special case in Chapter 5.
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Theorem 3.9 (Generalised Centre Manifold Theorem)Let Λ ⊆ M be a compact in-

variant set for a diffeomorphism f: M →M such that at each p∈ Λ, there is a continuous

splitting into stable, centre and unstable directions:

Tp(M) = Es(p)⊕Ec(p)⊕Eu(p) .

Then, there are local generalised stable, centre and unstable manifolds through each

p∈ Λ which are smooth submanifolds of M, diffeomorphic to a disc,and tangent at p to

the stable, centre and unstable eigenspaces determined by the splitting. Furthermore, the

local generalised stable and unstable manifolds vary continuously with p, and the local

generalised centre manifolds, whilst not unique, may be chosen to vary continuously with

p.
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Chapter 4

Linearisation Theory

4.1 Introduction

In this chapter, a generalisation, due to Kurata ([34]), of the Hartman-Grobman Theorem

is presented. This result will be used in Chapter 5 to get quantitative bounds on the errors

in the gradient descent algorithm for noise reduction. Kurata’s proof is essentially an el-

egant application of the standard Hartman-Grobman Theoremon an infinite dimensional

space. Therefore a detailed proof of the standard theorem isgiven below (Theorem 4.2).

This theorem gives a qualitative correspondence between the behaviour of a non-linear

system and its linearisation around a certain type of fixed point. Because quantitative

information is needed for the analysis of the gradient descent algorithm, an extension of

the Hartman-Grobman Theorem is also presented (Corollary 4.5). While the quantitative

information provided by this extension (in the form of theHölder continuityof the cor-

respondence) is almost certainly well known to experts in the field, it does not seem to

appear in the literature. Therefore this extension is the original work of the author. The

same applies to Kurata’s generalisation — the quantitativeextension of the result (Propo-

sition 4.17) is original work, and indeed, Kurata’s proof has been modified so as to more

easily accomodate this extension.

Before continuing, note that in all of the proofs in this chapter, the norms used will

be adaptedto the relevant dynamical system, or will be derived from an adapted norm.

Given a hyperbolic invertible linear mapT with stable and unstable eigenspacesEs and
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Eu, a norm,‖·‖, is said to be adapted toT if

‖x‖ = max{‖xs‖s,‖xu‖u}

wherex = xs+xu, with xs ∈ Es andxu ∈ Eu, and where the norms‖·‖s on Es and‖·‖u on

Eu satisfy
∥

∥T|Es

∥

∥

s
< 1 and

∥

∥

∥
T−1

∣

∣

Eu

∥

∥

∥

u
< 1

(g|U denotes the restriction (projection) of a functiong to a subsetU of its domain). For

proofs that such norms exist, see [46, 38]. It will be convenient to denote the restrictions

of a functionϕ to Es andEu by ϕs andϕu respectively. This convention will be used

throughout this chapter. Note that for an adapted norm, the Lipschitz constant ofϕ is

given by

Lip ϕ = max{Lip ϕs,Lip ϕu} .

It will become apparent in what follows, especially when considering Kurata’s gen-

eralisation (section 4.3), that a proliferation of norms isrequired, most of which will be

denoted by‖·‖. It is hoped that the context is sufficient to clearly identify which norm is

meant.

4.2 Fixed Points

4.2.1 The Hartman-Grobman Theorem

In this section the Hartman-Grobman Theorem for a diffeomorphism f is proven. This

states that the non-linear dynamics around a hyperbolic fixed point is qualitatively similar

(at least locally) to the dynamics of its linearisation about the fixed point. Specifically, it

guarantees the existence of a homeomorphismh defined on a neighbourhood of the fixed

point p, satisfying

f ◦h = h◦d f (p) (4.1)

whenever this makes sense. A homeomorphism satisfying thisrelation is called atopolog-

ical conjugacy. f andd f (p) are then said to belocally topologically conjugate. Note that

h maps orbits ofd f (p) onto orbits off . In particular, the stable and unstable eigenspaces

of d f (p) are mapped onto sets which must be local stable and unstable manifolds of f . In
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one sense, the Hartman-Grobman Theorem gives more information than the Stable Man-

ifold Theorem (Theorem 3.3) as it applies to a whole neighbourhood of the fixed point.

However, the Stable Manifold Theorem asserts that the stable and unstable manifolds are

as smooth as the diffeomorphismf , whereas the Hartman-Grobman Theorem can only

assert continuity (sinceh is only a homeomorphism, see also section 4.2.2 below).

As with the Stable Manifold Theorem, the main part of the proof is an application of

the contraction mapping theorem, and not a particularly difficult one at that. However,

there is a conceptual difficulty in that the local conjugacy is not unique — essentially all

that is required is to give a correspondence betweenlocal trajectories of the system and

trajectories of its linearisation. There would seem to be aninfinite number of ways that

this can be done. Hence a local conjugacy cannot be exhibitedas the fixed point of a

contraction. But, there is a class of diffeomorphisms for which a uniqueglobalconjugacy

can be specified.Everytrajectory of these systems can be put into correspondence with

the trajectories of their linearisations, and whilst this again might seem to be achievable in

an infinite number of ways, it turns out that there is only one way that this correspondence

may be constructed subject to a boundedness constraint. This conjugacy is then shown to

apply to general diffeomorphisms, provided we restrict to aneighbourhood of the fixed

point. The proof of the global theorem given below is due to Pugh ([43]). Since the main

result (Theorem 4.2) is local, what follows can be simplifiedby working on a Banach

space, rather than on the appropriate manifold. Note that since the non-linear behaviour

is expected to be similar to the linearised behaviour near the fixed point, the conjugacy

may be thought of as a perturbation of the identity. Thus the conjugacy will be written

as id+ h rather thanh. Also recall from section 3.1, thatm(T) denotes the minimum

dilation of a hyperbolic invertible linear mapT.

Theorem 4.1 (Global Hartman-Grobman Theorem) Let T : E → E be an invertible

linear map on a Banach space E. Letϕ,ψ : E →E be bounded withϕ (0) = 0 andψ (0) =

0, and Lipschitz with Lipschitz constant less thanmin{1−‖Ts‖ ,m(Tu)−1,m(T)}. De-

note the space of bounded continuous functions from E into itself (with the supremum

norm) by C0
b (E). Then, there is a unique h∈ C0

b (E) such thatid + h conjugates T+ φ

and T+ψ.
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Proof: The aim is to solve the conjugacy equation

(T +ϕ)◦ (id +h) = (id +h)◦ (T +ψ) (4.2)

⇒ T ◦h+ϕ ◦ (id +h) = ψ +h◦ (T +ψ)

for h. The functionh may be isolated in two ways from this equation:

h = (T ◦h−ψ +ϕ ◦ (id +h))◦ (T +ψ)−1

or h = T−1◦ (ψ −ϕ ◦ (id +h)+h◦ (T +ψ)) .

Note thatT +ψ is invertible by the Inverse Function Theorem (Proposition3.2). Project

the first of these equations ontoEs and the second ontoEu. This gives conspicuous factors

Ts andT−1
u which are both contractions. Define a mapΘ : C0

b (E) →C0
b (E) by

Θ(hs,hu) =
(

(Ts◦hs−ψs+ϕs◦ (id +h))◦ (T +ψ)−1

,T−1
u (ψu−ϕu◦ (id +h)+hu◦ (T +ψ))

)

. (4.3)

Θ preservesC0
b (E) as it clearly maps continuous functions to continuous functions, and

if h is bounded,

‖Θ(h)‖s 6 ‖Ts‖‖hs‖+‖ψs‖+‖ϕs‖ 6 ‖Ts‖‖h‖+‖ψ‖+‖ϕ‖

and similarly,

‖Θ(h)‖u 6
∥

∥T−1
u

∥

∥(‖ψ‖+‖ϕ‖+‖h‖) ,

soΘ(h) is bounded. Additionally,Θ is a contraction since for anyh,h′ ∈C0
b (E),

∥

∥Θ(h)−Θ
(

h′
)∥

∥

s =
∥

∥

∥
(Ts◦hs−ψs+ϕs◦ (id +h))◦ (T +ψ)−1

−
(

Ts◦h′s−ψs+ϕs◦
(

id +h′
))

◦ (T +ψ)−1
∥

∥

∥

s

6

∥

∥

∥
Ts◦

(

hs−h′s
)

◦ (T +ψ)−1
∥

∥

∥

s

+
∥

∥

∥
ϕs◦ (id +h)◦ (T +ψ)−1−ϕs◦

(

id +h′
)

◦ (T +ψ)−1
∥

∥

∥

s

6 ‖Ts‖
∥

∥hs−h′s
∥

∥

s+Lip ϕs
∥

∥hs−h′s
∥

∥

s

6 (‖Ts‖+Lip ϕ)
∥

∥h−h′
∥

∥

and similarly,
∥

∥Θ(h)−Θ
(

h′
)∥

∥

u 6
∥

∥T−1
u

∥

∥(1+Lip ϕ)
∥

∥h−h′
∥

∥ .
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Hence there is a uniqueh ∈ C0
b (E) fixed by Θ, andh therefore satisfies equation 4.2.

Repeating the above construction withϕ andψ interchanged gives a uniqueh′ ∈C0
b (E)

which satisfies

(T +ψ)◦
(

id +h′
)

=
(

id +h′
)

◦ (T +ϕ) . (4.4)

Using both equations 4.2 and 4.4 now gives

(T +ψ)◦
(

id +h′
)

◦ (id +h) =
(

id +h′
)

◦ (T +ϕ)◦ (id +h)

=
(

id +h′
)

◦ (id +h)◦ (T +ψ) .

That is, the function(id +h′) ◦ (id +h) commuteswith T + ψ. By what has just been

proven (applied to the special caseϕ = ψ), there is a unique continuous function of the

form id +h′′, h′′ bounded, which commutes withT +ψ. Obviously, the identity function

commutes (h′′ = 0), and so it must follow that

(

id +h′
)

◦ (id +h) = id .

A similar argument now shows that

(id +h)◦
(

id +h′
)

= id ,

so that id+h is a homeomorphism.

This is the global version of the theorem. In particular, it proves the existence of

a unique conjugacy id+ h with h bounded, defined everywhere, betweenT andT + ϕ,

whenϕ is everywhere small in a Lipschitz sense. Now, any diffeomorphism f with a

hyperbolic fixed point (translated to the origin for convenience) has the formf = T +ϕ,

with ϕ (0) = 0 anddϕ (0) = 0. Hence for anyε > 0, there is a neighbourhood of the

origin in which Lipϕ < ε.

Theorem 4.2 (Hartman-Grobman Theorem) Let f : E → E be a diffeomorphism on a

Banach space E with a hyperbolic fixed point p. Then, there is aneighbourhood U of p

and a neighbourhood V of the origin such that f|U is topologically conjugate to d f(p)|V .

Proof: Without loss of generality, translate the fixed point to the origin. Given anyr > 0,

it is possible to choose an infinitely differentiable function γ : R → R such thatγ (x) = 1
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if |x| < r/2, γ (x) = 0 if |x| > r and Lipγ is bounded. Ifϕ = f −d f (0), then define a

functionϕ̃ : E → E by ϕ̃ (x) = γ (‖x‖)ϕ (x). It follows thatϕ̃ is Lipschitz since

‖ϕ̃ (x)− ϕ̃ (y)‖ = ‖γ (‖x‖)ϕ (x)− γ (‖y‖)ϕ (y)‖

6 ‖γ (‖x‖)(ϕ (x)−ϕ (y))‖+‖(γ (‖x‖)− γ (‖y‖))ϕ (y)‖

6

(

Lip ϕ|Br(0) +
∥

∥

∥
ϕ|Br(0)

∥

∥

∥
Lip γ

)

‖x−y‖.

Clearly by choosingr sufficiently small, it is possible to make

Lip ϕ̃ < min{1−‖d f (0)s‖ ,m(d f (0)u)−1,m(d f (0))} .

Then, by Theorem 4.1,d f (0) andd f (0)+ ϕ̃ are globally topologically conjugate onE,

with conjugacyh say. But,d f (0)+ ϕ̃ = d f (0)+ϕ = f on Br/2(0), so there are neigh-

bourhoodsU = Br/2(0) andV = h
(

Br/2(0)
)

such thatd f (0)|V is topologically conjugate

to f |U as required.

Note that this proof holds for any Banach space, regardless of dimensionality. This is

important as an infinite dimensional application of this theorem will be used to prove the

generalisation required in section 4.3.2.

4.2.2 The Ḧolder Continuity of the Conjugacy

Recall that the conjugacy given by the Hartman-Grobman Theorem is only guaranteed to

be continuous. This gives a qualitative correspondence between the dynamics of the sys-

tem and its linearisation. To get quantitative information— analytic estimates for instance

— a sharpening of the result is required. The major theorem concerning the smoothness

of the conjugacy is that of Sternberg (see [37] for a detaileddiscussion) which says that

the conjugacy will be smooth provided certain algebraic conditions on the eigenvalues of

d f (p) arenot satisfied. However, many important classes of dynamical systems auto-

matically satisfy one or more of these conditions (Hamiltonian systems for instance). For

general maps then, the conclusion is that the conjugacy may not be differentiable, and we

must turn to weaker forms of quantitative information.

Lipschitz continuity of the conjugacy would be ideal. However, Irwin ([27]) gives a

simple example of a hyperbolic system for which the conjugacy is not Lipschitz in any
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neighbourhood of the fixed point. It seems that the best result we can get in this direction

is that the conjugacy will be locallyHölder continuous. Recall that a functiong is Hölder

continuous if there are constantsβ > 0 and 0< α < 1 such that for anyx andy,

‖g(x)−g(y)‖ 6 β ‖x−y‖α .

That the conjugacy is Hölder continuous will be demonstrated by showing that the con-

traction mapΘ of equation 4.3 preserves an appropriate space of Hölder functions. The

set of all Hölder functions on a Banach spaceE form a linear subspace ofC0
b (E). Unfor-

tunately, this linear subspace is not usually closed, making it unsuitable for a contraction

mapping argument. To see this, considerE = [0,1]. If there is a functionχ : E →E which

is continuous but not Hölder, then by the Weierstrass Approximation Theorem ([33]),χ

is the uniform limit of polynomials, which are clearly Hölder (sinceE is bounded). It

remains to exhibit such a function, and it is not difficult to show thatχ : [0,1] → [0,1]

defined by

χ (x) =







1
1−lnx if x > 0

0 if x = 0

will do.

A subset of the Hölder functions which turns out to be usefulis the set

H
α,β

r (E) =
{

g∈C0
b (E) : ‖g(x)−g(y)‖ 6 β ‖x−y‖α whenever ‖x−y‖ 6 r

}

where 0< α < 1, β > 0 andr > 0 are fixed constants. This is not a linear space, but it is

closed inC0
b (E).

Proposition 4.3 H
α,β

r (E) is a closed subset of C0b (E).

Proof: If gn ∈ H
α,β

r (E) for eachn andgn → g uniformly, then given anyε > 0, there

existsn such that‖gn−g‖ < ε. Thus for‖x−y‖ 6 r,

‖g(x)−g(y)‖ 6 ‖g(x)−gn(x)‖+‖gn(x)−gn(y)‖+‖gn(y)−g(y)‖

6 ε +β ‖x−y‖α + ε.

Sinceε > 0 was arbitrary,g∈ H
α,β

r (E).
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Proposition 4.4 Let Θ : C0
b (E) →C0

b (E) be given by

Θ(hs,hu) =
(

(Ts◦hs+ϕs◦ (id +h))◦T−1,T−1
u (−ϕu◦ (id +h)+hu◦T)

)

.

Then, for anyβ > 0, Θ preservesH α,β
r (E) for sufficiently smallα, Lip ϕ and some

r > 0.

Proof: Θ is the contraction map of equation 4.3 withψ = 0. It is convenient to choose

r = β 1/1−α whereα will be determined later. Ifh∈ H
α,β

r (E), then

‖Θ(h)(x)−Θ(h)(y)‖s 6
∥

∥Tshs
(

T−1x
)

−Tshs
(

T−1y
)∥

∥

s

+
∥

∥ϕs◦ (id +h)
(

T−1x
)

−ϕs◦ (id +h)
(

T−1y
)∥

∥

s

6 ‖Ts‖
∥

∥hs
(

T−1x
)

−hs
(

T−1y
)∥

∥

s

+Lip ϕs
[∥

∥T−1(x−y)
∥

∥+
∥

∥h
(

T−1x
)

−h
(

T−1x
)∥

∥

]

6 ‖Ts‖β
∥

∥T−1(x−y)
∥

∥

α

+Lip ϕs

[

∥

∥T−1
∥

∥‖x−y‖+β
∥

∥T−1(x−y)
∥

∥

α]

6 ‖Ts‖
∥

∥T−1
∥

∥

α β ‖x−y‖α

+Lip ϕs

[

∥

∥T−1
∥

∥‖x−y‖+β
∥

∥T−1
∥

∥

α ‖x−y‖α
]

.

Now, r was chosen so that

‖x−y‖ 6 r ⇒ ‖x−y‖1−α
6 β ⇒ ‖x−y‖ 6 β ‖x−y‖α .

It follows then that whenever‖x−y‖ 6 r,

‖Θ(h)(x)−Θ(h)(y)‖s 6

[

‖Ts‖
∥

∥T−1
∥

∥

α
+Lip ϕs

∥

∥T−1
∥

∥+Lip ϕs
∥

∥T−1
∥

∥

α]β ‖x−y‖α .

So, if α is sufficiently small and Lipϕ is sufficiently small, the term in square brackets is

less than unity. A similar calculation shows that whenever‖x−y‖ 6 r,

‖Θ(h)(x)−Θ(h)(y)‖u 6
[∥

∥T−1
u

∥

∥

(

‖T‖α +2Lipϕ
)]

β ‖x−y‖α .

Hence,Θ(h) ∈ H
α,β

r (E) for α and Lipϕ sufficiently small.

Corollary 4.5 There arelocal topological conjugacies between a dynamical system and

its linearisation about a hyperbolic fixed point that are Hölder continuous.
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Proof: Choose a neighbourhood of the fixed point for which Lipϕ is sufficiently small,

andα > 0 small enough that the terms in square-brackets in the proofof Proposition 4.4

are less than unity. Setr to be the supremum of the distances between points in the cho-

sen neighbourhood (which is finite since the neighbourhood can be taken to be bounded),

andβ = r1−α . Then, by Proposition 4.4 the contraction map of the Hartman-Grobman

Theorem preserves the subsetH
α,β

r (E) which is closed inC0
b (E). Thus, the conjugacy

obtained by adding the identity to the fixed point of the contraction is Hölder on the given

neighbourhood (since the identity function is obviously H¨older on any bounded set, and

the space ofall Hölder functions is linear).

4.3 Hyperbolic Sets

The Hartman-Grobman Theorem can be easily generalised fromfixed points to hyperbolic

periodic orbits, and such a treatment is found in most texts on the subject ([27, 46, 30]).

The generalisation to invariant uniformly hyperbolic sets, however, appears to be quite

obscure. Anosov mentions one such theorem in [5] and notes the following:

Strangely enough this theorem has not achieved much publicity. Possibly the

reason is that (by contrast with the Grobmann-Hartman theorem) it does not

provide a good “model” for motions around (the hyperbolic set).

The theorem referred to by Anosov is due to Kurata ([34]), although the linearisation

about hyperbolic sets had been investigated earlier in the work of Hirsch, Pugh and Shub

(see [44] for instance). In the following, the theorem of Kurata is presented — it is more

elementary than the results of Hirsch, Pugh and Shub, and as Irwin notes in his review

([26]), extremely elegant. This is then extended to investigate matters of Hölder continuity

as was done for the fixed point case. To facilitate this, Kurata’s proof will be modified

somewhat. In particular, the contraction map employed willbe analogous to the one used

in section 4.2.1.

The proof of Kurata’s theorem is phrased in the language of vector bundles, as are

many proofs pertaining to hyperbolic sets — for instance, the Generalised Stable Man-

ifold Theorem (Theorem 3.8). The appropriate concepts are reviewed now. A simple
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x
X

BBx Bx

x X

Bσ

Figure 4.1: A vector bundle showing a fibreBx and a (continuous) sectionσ

introduction to these concepts may be found in [9].

4.3.1 Vector Bundles

A vector bundleis a triple(B,π,X) whereX is a topological manifold,π : B→ X is sur-

jective, and for eachx∈ X, Bx = π−1(x) is ann-dimensional vector space. Additionally,

there is a third requirement, known as the axiom of local triviality. It states that for a suf-

ficiently small neighbourhoodU of any pointx∈ X, the restricted bundleπ−1(U) can be

mapped bijectively ontoU×Rd for somed (constant), and the bijections can be chosen to

take eachBx linearly to {x}×Rd. The product topology onU ×Rd induces a topology on

B by making these bijectionshomeomorphisms, and this gives the vector bundle a man-

ifold structure (the homeomorphisms form the charts). See [9] for details.B is thetotal

space, X thebase, eachBx is afibre, andπ is theprojectionof the bundle. The archetypal

vector bundle is of course the tangent bundleT (X) of a manifoldX. It is common to refer

to the vector bundle asB (or sometimesπ) instead of(B,π,X). Elements of the vector

bundle will be denoted byux where the subscript indicates which fibre it belongs to. That

is, ux ∈ Bx. The projectionπ therefore has the actionπ (ux) = x. A sectionof a vector

bundle is a mapσ : X → B taking each element ofX to an element of the corresponding

fibre: σ (x)∈Bx. Therefore, a section satisfiesπ ◦σ = idX. Thezero-sectionis the section

taking eachx to 0x. It is common to associate a section with its image just as with other

functions. The zero-section is thus associated withX. A schematic picture of a vector

bundle with a fibre and a section is shown in Figure 4.1.

Since every fibre of a vector bundle is a linear space, it can begiven a norm. The
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norm on each fibreBx corresponding tox ∈ X is usually denoted by‖·‖x. Under quite

general conditions onX ([1]), these norms can be chosen so that they vary continuously

with x (this gives aFinsler on B). An important class of maps on a vector bundleB are

those which preserve the fibres, meaning that each fibre is mapped into another fibre. If

a mapG : B → B always takes the fibreBx into the fibreBg(x) for a particular function

g : X → X, thenG will be called abundle map over g. This is, however, not quite standard

terminology (see [9, 1]). Note that even though the set of maps from B to itself do not

have a linear structure, the set of bundle maps over a function g do. A norm may be

defined on this set by

‖G‖ = sup
ux∈B

‖G(ux)‖g(x) .

The set ofboundedbundle maps overg is a Banach space.

The concept of theexponential mapalso needs to be introduced. This is a very useful

map from the tangent bundle1 T (X) onto the manifoldX. Its definition is rather compli-

cated (see [9] for a discussion in terms ofsprays), but it can be thought of as consisting of

“projections”, expx from each tangent spaceTx (X) ontoX whenX and the tangent space

are embedded in Euclidean space (see Figure 4.2). The expx fit together smoothly to give

the exponential map (denoted by exp) on the tangent bundle:

exp(ux) = expx (u) .

Each expx is a local diffeomorphism around 0 withdexpx (0) = idTx(X). It follows then

that the map(π,exp) : T (X) → X×X is a diffeomorphism when restricted to a suitable

neighbourhood of the zero-section. Since(π,exp)(0x) = (x,x), the image of this neigh-

bourhood is a neighbourhood of the diagonal inX×X.

As (π,exp) acts onT (X), it is necessary to introduce the tangent space ofT (X) in

order to discuss its derivative. Along the zero-section, the tangent space ofT (X) can be

decomposed into the “manifold” and “fibre” directions (Figure 4.3). Therefore,

T0x (T (X)) = Tx (X)⊕T0x (Tx(X)) = Tx (X)⊕Tx (X)

sinceTx (X) is a linear space. While these two factors are the same, it is important to

remember that the first represents the direction along the zero-section (identified withX)

1Actually it is only defined on an open neighbourhood of the zero-section.
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Figure 4.2: The action of an exponential map.
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Figure 4.3: The double tangent space along the zero-section. It splits into two copies of

Tx(X), one tangent to the manifoldX and the other tangent to (is) the fibre throughx.

and the second, the direction along the fibre. This ordering will be maintained in what

follows.

The derivative of(π,exp) on the zero-section may now be computed as follows. Since

π and exp are both the identity on the zero-section (0x 7→ x), their derivatives at 0x in the

manifold direction are both the identity (onTx (X)). Along the fibre,π is constant (by

definition) so its derivative in the fibre direction is 0. exp however, reduces to expx on

Tx(X), and its derivative at 0 is the identity. Therefore (remembering the ordering),

d(π,exp)(0x) =





id 0

id id



 (4.5)

: Tx(X)⊕Tx (X) = T0x (T (X)) −→ T(x,x) (X×X) = Tx (X)⊕Tx (X) .

4.3.2 The Generalised Hartman-Grobman Theorem

The goal of this section is to determine some kind of conjugacy between the non-linear

map f and its derivativesd f (p) in the neighbourhood of a invariant uniformly hyperbolic
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set,Λ. Specifically, a family of homeomorphisms
{

hp : p∈ Λ
}

will be exhibited which

vary continuously withp and satisfy the generalisation of equation 4.1:

∀ p∈ Λ, f ◦hp = hf (p) ◦d f (p) . (4.6)

This will be achieved by abstracting this equation to a spacewhere the standard fixed-

point Hartman-Grobman Theorem may be applied. The bulk of the proof of the Gener-

alised Hartman-Grobman Theorem therefore consists of building up this abstraction and

then pulling it apart again to get the desired result. Note that in contrast to section 4.2,f

must act on the manifoldM rather than a model spaceE as the setting is no longer local.

The Jacobiansd f (p) fit together to give the derivativeT f : T (M) → T (M). The

derivative acts on the tangent bundle by

T f (ux) = (d f (x)u) f (x) .

That is,T f takes au from a tangent spaceTx(X), maps it tod f (u) and puts it in the

tangent spaceTf (x) (X). T f is therefore a bundle map overf . In order to make sense of a

conjugacy betweenf andT f then, it is necessary to “lift” the action off onto the tangent

bundle. Actually, the object of interest is the invariant uniformly hyperbolic setΛ ⊆ M,

so the appropriate vector bundle to consider isTΛ (M), the bundle of tangent spaces for

points inΛ.

The “lifting” of f to TΛ (M) is achieved using an exponential map as follows. LetU

andV be neighbourhoods of the zero-section (inTΛ (M)) and the diagonal ofΛ×M for

which (π,exp) : U →V is a diffeomorphism. DefineF : U → TΛ (M) by

F = (π,exp)−1◦ ( f × f )◦ (π,exp) , (4.7)

shrinkingU if necessary to match up domains. Note thatF must be defined in terms of

two copies off as the dimension ofTΛ (M) is twice that ofM. The first copy ensures that

F acts along the zero-section likef (F is a bundle map overf ), and the second thatF acts

in the fibre directions likef (distorted slightly by the exponential maps). The derivative
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of F on the zero-section is therefore given by (using equation 4.5):

dF (0x) =
[

d(π,exp)
(

0f (x)

)]−1
d( f × f )(x,x)d(π,exp)(0x)

=





id 0

id id





−1



d f (x) 0

0 d f (x)









id 0

id id





=





d f (x) 0

0 d f (x)



 : Tx(M)⊕Tx(M) −→ Tx (M)⊕Tx (M) . (4.8)

The idea now is to prove a bundle version of equation 4.6. Thatis, that there exists a

homeomorphismH : TΛ (M) → TΛ (M) satisfying

F ◦H = H ◦T f, (4.9)

whereH is a bundle map formed by fitting together thehp of equation 4.6. SinceF and

T f are bundle maps overf , it is easy to see thatH must be a bundle map over the identity.

Abstraction to the tangent bundle is, however, not sufficient to prove the Generalised

Hartman-Grobman Theorem. Linearising aboutΛ corresponds to linearising about the

zero-section of the tangent bundle. To abstractΛ to a fixed point (to which the standard

Hartman-Grobman Theorem may be applied), the zero-sectionas a set is identified with

the zero-section as a function — a single point in function-space. Therefore, the space

Γ(TΛ (M)) of bounded sections ofTΛ (M) is introduced. This is a Banach space with the

norm

‖σ‖ = sup
x∈Λ

‖σ (x)‖x

([1]). For simplicity,Γ(TΛ (M)) will be denoted byΓ.

The link betweenΓ and the bundleTΛ (M) is provided by the observation that each

ux ∈ TΛ (M) corresponds to a bounded sectionδux ∈ Γ defined by

δux

(

x′
)

=







ux if x = x′

0x′ otherwise.

If G is a bundle map over a diffeomorphismg, then a mapG∗ : Γ → Γ may be defined by

G∗ (σ) = G◦σ ◦g−1.

A quick calculation shows that ifG preserves the zero-section (that is,G(0x) = 0g(x) for

all x∈ Λ) then

G(ux) = vg(x) ⇒ G∗ (δux) = δvg(x)
.
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Therefore, bundle maps over a diffeomorphism which preserve the zero-section induce

particularly well-behaved functions onΓ. To characterise these functions, it is necessary

to know their action on arbitrary sections. This is given by

G∗ (σ)(x) = G◦σ ◦g−1(x) = G◦δσ◦g−1(x) ◦g−1(x) = G∗
(

δσ◦g−1(x)

)

(x) .

Note that if a mapG∗ satisfies this relation and takes anyδux to someδvg(x)
, then a zero-

section preserving bundle map overG may be defined by

G(ux) = G∗ (δux)(g(x)) .

Summarising this gives the following result.

Proposition 4.6 If G : TΛ (M) → TΛ (M) is a zero-section preserving bundle map over a

diffeomorphism g: Λ → Λ, then G induces a map G∗ : Γ → Γ by G∗ (σ) = G◦σ ◦g−1.

G∗ satisfies the relations:

1. G∗ (δux) = δvg(x)

2. G∗ (σ)(x) = G∗
(

δσ◦g−1(x)

)

(x).

Conversely, if G∗ : Γ → Γ satisfies relations 1 and 2 for some diffeomorphism g: Λ → Λ,

then G∗ induces a zero-section preserving bundle map over g, G: TΛ (M) → TΛ (M), by

G(ux) = G∗ (δux)(g(x)).

Let M (Γ) denote the space of all maps fromΓ into itself. The norm onΓ induces a

norm onM (Γ) via

‖G∗‖ = sup
σ∈Γ

‖G∗ (σ)‖ .

The set of bounded maps fromΓ into itself, B (Γ), is a Banach space with this norm.

Recall that the set of bounded bundle maps over a diffeomorphism g is a Banach space

(section 4.3.1). The set of bounded bundle maps overg which preserve the zero-section

clearly form a closed linear subspace, and hence a Banach space which will be denoted

by Bg. The set of functions inM (Γ) andB (Γ) which satisfy relations 1 and 2 (for a

particular diffeomorphismg) will be denoted byMg(Γ) andBg(Γ) respectively. The

following result completes the link betweenΓ andTΛ (M).

Proposition 4.7 The map∗ : G 7→ G∗ is an isometric linear isomorphism betweenBg

andBg(Γ).
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Proof: It has already been shown that∗ takesBg into Mg(Γ), and∗ is obviously linear.

∗ is an isometry because

‖G∗‖ = sup
σ∈Γ

sup
x∈Λ

‖G∗ (σ)(x)‖ = sup
σ∈Γ

sup
x∈Λ

∥

∥G
(

σ
(

g−1(x)
))∥

∥= sup
ux∈TΛ(M)

‖G(ux)‖ = ‖G‖ .

Linear isometries are always injective, so it remains to show that∗ is surjective. Suppose

then thatG ∈ Bg(Γ). DefineG by G(ux) = G (δux)(g(x)). By Proposition 4.6,G is a

zero-section preserving bundle map overg. G is bounded since

‖G(ux)‖g(x) = ‖G (δux)(g(x))‖g(x) = ‖G (δux)‖ 6 ‖G ‖

for eachux ∈ TΛ (M), soG∈ Bg. Finally,

G∗ (σ)(x) = G
(

σ
(

g−1(x)
))

= G

(

δσ(g−1(x))

)

(x) = G (σ)(x)

for everyx∈ Λ andσ ∈ Γ (using relation 2 of Proposition 4.6). Thus,G∗ = G , and∗ is

invertible.

As bothF andT f are (generally unbounded) zero-section preserving bundlemaps

over f , they induce mapsF∗ andT f∗ in M f (Γ). It is easily verified thatF∗ andT f∗ leave

the zero-section (inΓ) fixed. The standard Hartman-Grobman Theorem may therefore

be applied to these functions (after some more technicalities have been dealt with) to

guarantee the existence of a functionH∗ satisfying

F∗ ◦H∗ = H∗ ◦T f∗. (4.10)

This H∗ induces anH satisfying equation 4.9, which as remarked earlier, shouldbe a

bundle map over the identity. Therefore,H∗ is expected to be an element ofBid (Γ).

However, to makeH aconjugacy, continuity is required. Define then, for each diffeomor-

phismg : Λ → Λ, the spaceB0
g consisting of those bundle maps inBg whose elements

are continuous. Also introduce the spacesM 0
g (Γ) andB0

g (Γ) consisting of the functions

of Mg(Γ) andBg(Γ) (respectively) which give continuous bundle maps under∗−1. H∗

should therefore be an element ofB0
id (Γ).

Lemma 4.8 Bg(Γ) is a closed linear subspace ofB (Γ).
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Proof: Linearity is obvious. SupposeGn∗ ∈ Bg(Γ) andGn∗ → G∗, butG∗ (δux) 6= δvg(x)

for anyv∈ Tg(x) (M). Then,G∗ (δux)(x′) 6= 0x′ for somex′ 6= g(x). But,

‖Gn∗−G∗‖ >
∥

∥Gn∗ (δux)
(

x′
)

−G∗ (δux)
(

x′
)∥

∥=
∥

∥G∗ (δux)
(

x′
)∥

∥ 6= 0,

for everyn. Hence‖Gn∗−G∗‖ is bounded below by a positive number, a contradiction,

soG∗ (δux) = δvg(x)
for somev∈ Tg(x) (M). Also,

G∗ (σ)(x) = lim
n→∞

Gn∗ (σ)(x) = lim
n→∞

Gn∗
(

δσ◦g−1(x)

)

(x) = G∗
(

δσ◦g−1(x)

)

(x) ,

soBg(Γ) is closed.

Lemma 4.9 B0
g (Γ) is a closed linear subspace ofBg(Γ).

Proof: SinceB0
g (Γ) = ∗

(

B0
g

)

(by definition) and∗ is an isometric linear isomorphism,

B0
g (Γ) is a closed linear subspace ofBg(Γ) if and only if B0

g is a closed linear subspace

of Bg. This in turn is a consequence of the well-known result that the uniform limit of

a sequence of continuous functionsbetween metric spacesis also continuous ([45]). The

details are as follows.

As M is a compact manifold, it admits a metricd — that is, there is a metric which

gives the topology onM ([50]) — and Λ inherits this metric. By the axiom of local

triviality (see section 4.3.1), there are open neighbourhoodsUx about eachx ∈ Λ and

homeomorphismsχx : π−1(Ux) → Ux×Rd. Each spaceUx×Rd is a metric space with

metricD given by

D((x1,y1) ,(x2,y2)) = max{d(x1,x2) ,‖y1−y2‖}

(eachRd is given the norm‖·‖). SupposeGn → G where eachGn ∈ B0
g. DefineG′

n :

U ′
x×Rd →Ug(x)×Rd by

G′
n = χg(x) ◦Gn◦ χ−1

x

∣

∣

U ′
x×Rd

whereU ′
x = Ux∩g−1

(

Ug(x)

)

is an open neighbourhood ofx (g is continuous). Sinceχx

and χg(x) are homeomorphisms, theG′
n are continuous, and convergeuniformly (to G′

say) as the convergence of theGn is uniform. But, theG′
n act between metric spaces, so

G′ is continuous too. It follows that

G̃ = χ−1
g(x) ◦G′ ◦ χx|π−1(U ′

x)
: π−1(U ′

x

)

→ π−1(Ug(x)
)
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is also continuous. Finally then,

G̃ = lim
n→∞

χ−1
g(x) ◦G′

n◦ χx|π−1(U ′
x)

= lim
n→∞

Gn|π−1(U ′
x)

= G|π−1(U ′
x)

soG is continuous onπ−1(U ′
x) for anyx∈ Λ. These sets coverTΛ (M) soG∈ B0

g.

To proveH∗ exists, the contraction map of Theorem 4.1 is employed (equation 4.3).

This will act onB (Γ), the space of bounded functions onΓ. However, it will also be

shown to preserve the closed subspaceB0
id (Γ), implying that the fixed point must belong

to this subspace. As the contraction map will involve compositions of functions inM 0
g (Γ)

andB0
g (Γ) for various g, it is necessary to investigate how these spaces are relatedunder

function composition.

Lemma 4.10 If G∗ ∈ Mg(Γ) and G′
∗ ∈ Mg′ (Γ), then G∗ ◦G′

∗ ∈ Mg◦g′ (Γ). In fact,

G∗ ◦G′
∗ =

(

G◦G′)
∗ .

Additionally, if G∗ ∈ M 0
g (Γ) and G′

∗ ∈ M 0
g′ (Γ), then G∗ ◦G′

∗ ∈ M 0
g◦g′ (Γ).

Proof: The first assertion is a simple matter of checking relations 1and 2 of Proposition

4.6, and is easily verified. An equally simple calculation gives

G∗ ◦G′
∗ (σ) = G∗ ◦G′ ◦σ ◦

(

g′
)−1

= G◦G′ ◦σ ◦
(

g′
)−1◦g−1 =

(

G◦G′)
∗ (σ) ,

so thatG◦G′ inducesG∗ ◦G′
∗. Note thatG◦G′ is continuous ifG andG′ are.

Lemma 4.11 If G∗ ∈ Mg(Γ) is invertible, then(G∗)
−1 ∈ Mg−1 (Γ), G is invertible, and

(G∗)
−1 =

(

G−1
)

∗.

Proof: Again, the first assertion is easily verified. It follows thenthat(G∗)
−1 induces a

zero-section preserving bundle map overg−1, G′ say. By Lemma 4.10,

G∗ ◦ (G∗)
−1 = idΓ ⇒ G◦G′ = idTΛ(M),

and similarly,G′ ◦G = idTΛ(M). HenceG is invertible andG−1 = G′.

Clearly, both these assertions remain true whenM is replaced byB.
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Lemma 4.12 If G∗ ∈M 0
g (Γ) is invertible with a Lipschitz inverse, then G−1

∗ ∈M 0
g−1 (Γ).

That is, G is a homeomorphism.

Proof: By Lemma 4.11,G is invertible, so it remains to demonstrate the continuity of

G−1. Let B(r) be the ball of radiusr around the zero section inTΛ (M):

B(r) = {ux ∈ TΛ (M) : ‖ux‖x 6 r} .

Then, forux ∈ B(r),

∥

∥G−1(ux)
∥

∥

g−1(x) =
∥

∥G−1
∗ (δux)

(

g−1(x)
)∥

∥

g−1(x) =
∥

∥G−1
∗ (δux)

∥

∥

6 Lip G−1
∗ ‖δux‖ 6 r Lip G−1

∗ .

Therefore,G−1(B(r)) ⊆ B
(

r Lip G−1
∗
)

, which is compact (sinceΛ is). As G is contin-

uous by assumption, and invertible, it is easily seen thatG−1(B(r)) is closed, therefore

compact. Consider thereforeG|G−1(B(r)) : G−1(B(r)) → B(r). This is a continuous bi-

jection from a compact set, hence a homeomorphism2. Therefore,G−1 is continuous on

eachB(r) and sincer was arbitrary,G : TΛ (M) → TΛ (M) is a homeomorphism.

A global Hartman-Grobman Theorem can now be proved onΓ. The isomorphism∗

can then be used to pull this back down to the tangent bundle. Finally, this is dissected

fibre-wise to get the required result at each point of the hyperbolic set. First, however, a

definition. LetT : TΛ (M) → TΛ (M) be an invertible linear bundle map over a diffeomor-

phismg : M → M. Suppose there is a splitting of each fibreTx (M) into Tx(M)s⊕Tx (M)u

which varies continuously withx, is invariant underT in thatT (Tx (M)s) = Tg(x) (M)s and

T (Tx (M)u) = Tg(x) (M)u, and is such that

‖Tux‖g(x) 6 µ ‖ux‖x and ‖Tvx‖g(x) > ν ‖vx‖x

for someµ < 1< ν and allux∈Tx(M)s andvx∈Tx (M)u. Then,T is said to be hyperbolic,

andTΛ (M) is said to have a hyperbolic splitting intoTΛ (M)s⊕TΛ (M)u. This splitting

defines a notion of hyperbolicity onΓ. Define subspacesΓs andΓu to be the bounded

2Let f : X →Y be a continuous bijection,X compact, andY Haussdorf. Then, ifA⊆ X is open,X \A is

closed hence compact, sof (X \A) is compact inY (since f is continuous). Thus,Y \ f (X \A) is open, but

this is f (A) since f is a bijection. Therefore,f−1 is continuous.
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sections ofTx (M) that take values inTΛ (M)s andTΛ (M)u respectively. An invertible

linear mapT∗ : Γ → Γ is then hyperbolic if

‖T∗σs‖ 6 µ ‖σs‖ and ‖T∗σu‖ > ν ‖σu‖

for someµ < 1 < ν and allσs∈ Γs andσu ∈ Γu. It is easy to see that a hyperbolic linear

bundle mapT induces a hyperbolic linear section mapT∗.

Theorem 4.13 Suppose that T∗ ∈ M 0
g (Γ) is linear, hyperbolic, and invertible. Then,

there is anε > 0 such that for anyΨ∗,Φ∗ ∈ B0
g (Γ) with Lipschitz constants less thanε,

there is a unique map H∗ ∈ B0
id (Γ) satisfying

(T∗ +Φ∗)◦ (id +H∗) = (id +H∗)◦ (T∗ +Ψ∗) .

(id +H∗) is invertible, and(id +H∗)
−1 ∈ B0

id (Γ).

Proof: This is the section map analogue of Theorem 4.1. In fact, the main contraction

mapping argument is exactly the same, applied now to boundedfunctions on the infinite

dimensional Banach spaceΓ. Comparing with equation 4.3, we define the mapΘ by

Θ(H∗) =
(

(T∗s◦H∗s−Φ∗s◦ (id +H∗))◦ (T∗ +Ψ∗)
−1

,T−1
∗u (Ψ∗u−Φ∗u◦ (id +H∗)+H∗u◦ (T∗ +Ψ∗)) ,

)

(4.11)

whereT∗ +Ψ∗ is invertible forε small enough by the Inverse Function Theorem (Theo-

rem 3.2). The same calculations as in the proof of Theorem 4.1show thatΘ preserves

B (Γ) and is a contraction on this space. Suppose now thatH∗ ∈ B0
id (Γ). By theLips-

chitzInverse Function Theorem (Theorem 3.2),T∗+Ψ∗ ∈M 0
g (Γ) has a Lipschitz inverse

for sufficiently smallε. Thus, Lemma 4.12 implies that(T∗ +Ψ∗)
−1 ∈ M 0

g−1 (Γ). Sim-

ilarly, T−1
∗u ∈ M 0

g−1 (Γ). Repeated use of Lemma 4.10 now shows thatΘ(H∗) belongs

to M 0
id (Γ), henceB0

id (Γ) (sinceΘ preservesB (Γ)). SinceB0
id (Γ) is closed inB (Γ)

(Lemmas 4.8 and 4.9), it follows that the fixed point of the contraction belongs toB0
id (Γ).

Invertibility is proven as in Theorem 4.1.

Theorem 4.14 (Global Generalised Hartman-Grobman Theorem) Let T : TΛ (M) →

TΛ (M) be a linear hyperbolic invertible bundle map over a diffeomorphism g: Λ → Λ.
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Then, there is anε > 0 such that for anyΦ ∈Bg which is Lipschitz withLip Φ < ε, there

is a unique bounded zero-section preserving bundle map overthe identity, H such that

id +H conjugates T and T+Φ.

Proof: T andΦ induce mapsT∗ andΦ∗ onΓ as in Proposition 4.6.T∗ is linear, hyperbolic

and invertible, whilstΦ∗ is bounded and it is easily verified that LipΦ∗ = Lip Φ. Thus the

conditions of Theorem 4.13 are fulfilled, so there is a uniqueH∗ ∈ B0
id (Γ) such that

T∗ ◦ (id +H∗) = (id +H∗)◦ (T∗ +Φ∗) .

H∗ therefore induces a continuous zero-section preserving bundle map over the identity,

H, which satisfies

T ◦ (id +H) = (id +H)◦ (T +Φ) ,

by Lemma 4.10 (apply∗−1 to each side of the previous equation). Finally,(id +H∗)
−1 in-

duces(id +H)−1 by Lemma 4.11, and this is continuous by Theorem 4.13. Hence id +H

is a homeomorphism.

Theorem 4.15 (Generalised Hartman-Grobman Theorem)Let f : M → M be a dif-

feomorphism andΛ ⊆ M be an invariant uniformly hyperbolic set for f . Then, thereis a

neighbourhood U of the zero-section of TΛ (M) and a map h taking U homeomorphically

onto a neighbourhood of the diagonal ofΛ×M, which satisfies

( f × f )◦h = h◦T f

on U∩T f (U).

Proof: f induces a mapF : U ′ → TΛ (M) as in equation 4.7, whereU ′ is a neighbourhood

of the zero-section. The derivative ofF at 0x is d f (x)⊕d f (x) by equation 4.8, so the

restriction ofTF to the zero-section is justT f (in the fibre-directions). Define therefore,

Φ = F − T f |U ′. By shrinkingU ′ if necessary, it follows thatΦ is bounded and Lipschitz

with a suitably small Lipschitz constant. As in the proof of the Hartman-Grobman The-

orem (Theorem 4.2),Φ is replaced by a globally defined functioñΦ which is bounded,

has the same small Lipschitz constant, agrees withΦ on an open subset ofU ′, U say,

and is identically zero on the complement ofU ′. A global version ofF is then given by
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F̃ = T f + Φ̃. By Theorem 4.14, there is a zero-section preserving bundlemap over the

identity,H, conjugatingF̃ andT f . Restricting this toU gives a local conjugacy between

F andT f . Finally, settingh = (π,exp)◦ H|U gives

( f × f )◦h = h◦T f

as required.

Corollary 4.16 Let Λ ⊆ M be a invariant uniformly hyperbolic set for a diffeomorphism

f : M → M. Then, there is a family
{

hp : p∈ Λ
}

of functions varying continuously with

p, satisfying

f ◦hp = hf (p) ◦d f (p) ,

and such that for every p∈ Λ, hp(p) = p, and hp maps some open neighbourhood of p

homeomorphically onto another open neighbourhood of p.

Proof: Let πM be the canonical projection fromΛ×M onto M. Applying πM to both

sides of the conjugacy equation,

( f × f )◦ (π,exp)◦ H|U = (π,exp)◦ H|U ◦T f,

gives

f ◦exp◦H = exp◦H ◦T f.

Restricting this to a fibre,Tp(M), then gives

f ◦expp◦Hp = expf (p)◦H f (p) ◦d f (p)

⇒ f ◦hp = hf (p) ◦d f (p)

wherehp = expp◦Hp.

4.3.3 The Ḧolder Continuity of the hp

It is now relatively simple to show that thehp of equation 4.6 are Hölder continuous. Us-

ing exactly the same estimates as in Proposition 4.4, the fixed point,H∗, of the contraction
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mapping of equation 4.11 is locally Hölder continuous:H∗ ∈ H
α,β

r (Γ) for sufficiently

small exponentα. This induces the bundle map over the identity,H, and this satisfies

∥

∥H (ux)−H
(

u′x
)∥

∥

x =
∥

∥H∗ (δux)(x)−H∗
(

δu′x

)

(x)
∥

∥

=
∥

∥H∗ (δux)−H∗
(

δu′x

)∥

∥

6 β
∥

∥δux −δu′x

∥

∥

α

= β
∥

∥ux−u′x
∥

∥

α
x

whenever
∥

∥δux −δu′x

∥

∥= ‖ux−u′x‖x 6 r. Thus, the restriction ofH to each fibre,H|Tx(M),

is also locally Hölder continuous. Since each expp is a local diffeomorphism, it follows

thathp = expp◦
(

id + H|Tp(M)

)

is Hölder continuous too.

Proposition 4.17 Each hp of Corollary 4.16 is Ḧolder continuous on a neighbourhood

of p, and the Ḧolder constants and exponents may be chosen independent of p.
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Chapter 5

Analytical Results

Recall the gradient descent algorithm described in section1.2. Given a noisy time series

representing an approximation of some deterministic time series, this algorithm produces

another deterministic time series which issupposedto be a much better approximation

of the actual time series. This algorithm assumes that the dynamical system producing

the time series is known. In this chapter, it is rigorously proven that the gradient de-

scent algorithm satisfies this supposition, provided that certain conditions are met. More

specifically, it is shown thatprovided the time series comes from an invariant uniformly

hyperbolic set, the noise is bounded, and the dynamical system induces a gradient de-

scent satisfying Condition 5.12 below, the approximation becomes arbitrarily good as the

length of the time series tends to infinity, except near the initial and final points. This is

accomplished by relating the gradient descent to itslinearisation, for which the analysis is

tractable. The transition back to the original non-linear gradient descent is then achieved

using the linearisation results of Chapter 4. Note that the numerical results of section 2.3

suggest that the noise reduction will fail when the amount ofnoise added becomes com-

parable to the distance between homoclinic intersection points (at near-tangency points).

As homoclinic intersections are impossible for linear systems, it seems reasonable that

the noise levels which allow noise reduction correspond (approximately) to the neigh-

bourhoods where the linearisation theory is valid! The forthcoming analysis needed for

the linearised gradient descent is somewhat involved, so the case of a linear dynamical

system is initially considered. First however, some general properties of gradient descent

are addressed.
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5.1 Gradient Descent Revisited

Suppose thatf : M → M is aC2-diffeomorphism defining a discrete dynamical system on

a d-dimensional manifoldM which will be assumed smooth andcompact. Throughout

this chapter, the manifoldM will be locally identified withRd using appropriate charts.

The map induced byf on Rd will also be denoted byf . The determinism functionL :

Rnd → R may therefore be defined by equation 1.1:

L(x) =
1
2

n−1

∑
i=1

‖xi+1− f (xi)‖2 ,

wherex = (x1, . . . ,xn), xi ∈ Rd, and (as before) the standard Euclidean norm is chosen

on Rd for analytic convenience. The gradient descent algorithm then consists of solving

equation 1.2:

ẋ(t) = −∇L(x(t)) , x(0) = x,

wherex represents the given noisy trajectory, and lettingt tend to infinity. Now,L(x) = 0

if and only if thexi form a deterministic trajectory forf , and clearly the deterministic

trajectories are critical points ofL. Conversely, by differentiatingL:

∂L
∂xi

=



















−d f (x1)
∗ (x2− f (x1)) if i = 1

(xi − f (xi−1))−d f (xi)
∗ (xi+1− f (xi)) if i = 2, . . . ,n−1

(xn− f (xn−1)) if i = n
,

(5.1)

it is easily checked that these are the only critical points (here∗ denotes matrix trans-

position). If these critical points wereisolated, then the gradient descent would have to

converge to one of them, regardless of the initial point ([24]). However, the deterministic

trajectories are not isolated — they vary continuously withthe first coordinate (for in-

stance). Therefore, more consideration is required beforeconvergence to a deterministic

trajectory can be claimed.

Choose a deterministic trajectoryy. This is a fixed point of the gradient descent flow

as are the other deterministic trajectories. Withq= (q1, . . . ,qn)≡∇L : Rnd→Rnd defined

by equation 5.1, thelinearisationof the gradient descent flow about the fixed pointy is

given by

ẇ(t) = −dq(y)w(t) , w(0) = x−y. (5.2)

Since f is C2 by assumption,qi (y+δ ), i = 2, . . . ,n−1, may be expanded (forδ small)

68



as

qi (y+δ ) = (y+δ )i − f
(

(y+δ )i−1

)

−d f ((y+δ )i)
∗ ((y+δ )i+1− f ((y+δ )i)

)

= yi +δi − f (yi−1)−d f (yi−1)δi−1− . . .

−d f (yi +δi)
∗ (yi+1 +δi+1− f (yi)−d f (yi)δi − . . .)

= δi −d f (yi−1)δi−1−d f (yi)
∗ (δi+1−d f (yi)δi)+ . . .

where terms up to first order inδ have been retained. Similar computations wheni = 1

andi = n combine to give:

dq(y) =































A∗
1A1 −A∗

1

−A1 I +A∗
2A2 −A∗

2

−A2 I +A∗
3A3 −A∗

3

. . . . . . . . .

−An−2 I +A∗
n−1An−1 −A∗

n−1

−An−1 I































,

(5.3)

whereAi = d f (yi) (and all blank entries are zero). The deterministic trajectories for the

linearised gradient descent are defined to be those satisfying

wi+1 = Aiwi = d f (yi)wi ⇒ wi+1 = d f i (y1)w1

for all i = 1, . . . ,n−1. The effect of the linearised gradient descent is now easy to deter-

mine.

Proposition 5.1 The linearised gradient descent algorithm given by solvingequation 5.2

and letting t→ ∞, is equivalent to projecting orthogonally onto the subspace of determin-

istic trajectories.

Proof: Clearly the set of deterministic trajectories form a linearsubspace. Considerdq(y)

defined by equation 5.3. This is a symmetric matrix (by inspection, but also because it is
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aHessianmatrix forL). In fact,dq(y) is positive semi-definite as

〈w,dq(y)w〉 =
n

∑
i, j=1

〈

wi ,(dq(y))i j w j

〉

= 〈w1,A
∗
1A1w1〉+

n−1

∑
i=2

〈wi ,(I +A∗
i Ai)wi〉+ 〈wn,wn〉

−
n−1

∑
i=1

〈wi ,A
∗
i wi+1〉−

n

∑
i=2

〈wi ,Ai−1wi−1〉

=
n−1

∑
i=1

[

‖Aiwi‖2−〈Aiwi ,wi+1〉
]

+
n

∑
i=2

[

‖wi‖2−〈wi ,Ai−1wi−1〉
]

=
n−1

∑
i=1

[

‖Aiwi‖2+‖wi+1‖2−〈Aiwi ,wi+1〉−〈wi+1,Aiwi〉
]

=
n−1

∑
i=1

‖Aiwi −wi+1‖2 (5.4)

> 0

where〈·, ·〉 refer to the standard inner-products1 on Rd andRnd, andAi = d f (yi). The

solution of the linearised gradient descent equations is

w(t) = e−dq(y)tw(0) ,

and sincedq(y) is positive semi-definite, it follows that

e−dq(y)t −→ P

as t → ∞, whereP is the orthogonal projection onto kerdq(y). That is,w(t) → ŵ =

Pw(0). It remains to show then, that kerdq(y) is the deterministic subspace. But,

〈w,dq(y)w〉 = 0 ⇐⇒ dq(y)w = 0 (becausedq(y) is positive semi-definite and there-

fore possesses a symmetric square root). Hence this is an easy consequence of equation

5.4.

It follows from this result that for a linearised dynamical system, gradient descent

finds theclosestdeterministic trajectory to the noisy one (in terms of the Euclidean norm

on Rnd). This is of interest in relation to the algorithm of Farmer and Sidorowich dis-

cussed in section 1.2, which aims to do exactly this, but for anon-linear system. It also

follows that the linearised gradient descent flow (about a deterministic trajectoryy) has a

d-dimensional kernel, consisting of the deterministic trajectories for the linearised system,

1With the convention used in physics:〈x,y〉= x∗y, rather than that standard in mathematics:〈x,y〉= y∗x.
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and that the dynamics orthogonal to the kernel is contracting. That is, the linearisation

gives centre and stable eigenspaces. By the Centre ManifoldTheorem then (Theorem

3.4), the non-linear gradient descent flow possesses centreand stable manifolds, tangent

to these respective eigenspaces. The stable manifold is clearly the set of all initial condi-

tions which givey after gradient descent. Consider the set of deterministic trajectories for

the non-linear system. This is a smooth manifold as it can be represented as the graph of

the smooth function
(

f , f 2, . . . , f n−1) : R
d → R

(n−1)d.

Sinceq is constant (zero) on this manifold, it follows that its tangent space aty is con-

tained in the kernel ofdq(y), the centre eigenspace. As both these linear spaces have

dimensiond, they are in fact equal, and it follows that the smooth manifold of determin-

istic trajectories is tangent aty to the centre eigenspace. Being obviously invariant under

q, the set of deterministic trajectories is therefore a centre manifold for the non-linear

gradient descent! Asy was an arbitrary deterministic trajectory, the set of deterministic

trajectories is a centre manifold foreveryfixed point of the non-linear gradient descent,

and will therefore be denoted byWc.

Now, note thatWc is closed (sinceL is continuous) hence compact (thinking of the

set back onM). From its smoothness, it follows that the centre eigenspace at each point

of Wc varies continuously with the point. Each stable eigenspaceis the orthogonal com-

plement of the corresponding centre eigenspace (by Proposition 5.1) so these also vary

continuously with the point. Therefore, there is a continuous splitting along the compact

invariant setWc into stable and centre eigenspaces. By the Generalised Centre Manifold

Theorem (Theorem 3.9), the generalised stable manifolds corresponding to each point in

Wc vary continuously. These are of course just the stable manifolds for each fixed point.

Because these vary continuously (on a local level at least),it follows that there is an open

neighbourhood ofWc which is laminatedby stable manifolds, meaning that the (disjoint)

union of these stable manifolds contains the entire neighbourhood. Any point in this

neighbourhood will therefore end up onWc after the gradient descent algorithm has been

completed. By extending this to global manifolds and makinguse of the compactness

of M once more, it can be concluded that the global stable manifolds laminate all ofM.

Therefore, the following result is finally justified!
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Proposition 5.2 The gradient descent algorithm is guaranteed to converge onto a deter-

ministic trajectory.

As the linearised gradient descent algorithm will be the object of study in much of

what follows, and as it is equivalent to projecting orthogonally (Proposition 5.1), it is

convenient here to characterise the relevant projectionmatrixP (in terms of some basis

of Rnd). This projects onto thed-dimensional space of deterministic trajectories for the

linearised gradient descent (about somey∈ Wc). Therefore the following representation

is valid:

P =
d

∑
k=1

UkU∗
k

‖Uk‖2 (5.5)

where the

Uk =

























uk

d f (y1)uk

d f2(y1)uk

...

d fn−1(y1)uk

























, k = 1, . . .d,

form an orthogonal basis of the subspace of deterministic trajectories for the linearised

system.

5.2 Gradient Descent for Linear Dynamical Systems

In this section the properties of the gradient descent algorithm are investigated in the

special case where the dynamical mapf : Rd → Rd is linear. For clarity, this linear

map will be denoted byA rather thanf . As A is a finite-dimensional linear opera-

tor, its spectrum (denoted byσ (A)) may be decomposed into three disjoint subsets:

σ (A) = σs(A)∪σc (A)∪σu(A) corresponding to eigenvalues of modulus less than, equal

to, or greater than unity (respectively). This induces a splitting of R
d into stable, centre

and unstable eigenspaces, denoted byEs, Ec andEu respectively. The eigenprojections

corresponding to these eigenspaces will be denoted byPs, Pc andPu. These projections

are not generally orthogonal.

As the derivative of a linear operator is that same linear operator, the gradient descent

equations (equation 1.2, see also equation 5.1) are linear,and so by Proposition 5.1, the
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gradient descent algorithm is equivalent to projecting orthogonally onto the deterministic

subspace

Ec =
{

y∈ R
nd : yi+1 = Ayi , i = 1, . . . ,n−1

}

.

The investigation of gradient descent therefore consists of investigating the properties of

this orthogonal projection, especially its relation to thenon-orthogonal projectionsPs,

Pc andPu. This is somewhat more difficult than it might appear, and so the analysis is

initially simplified by assuming that the linear operatorA is symmetric.

5.2.1 Symmetric Linear Systems

Suppose then thatA is a symmetric linear operator onRd. Defineπi : Rnd → Rd to be

the operator projecting out theith point of a trajectory (πix = xi). If P is the orthogonal

projection effecting the gradient descent, thenπiP is the operator which gives theith

point of the noise reduced trajectory. It will be useful to consider the decomposition

of these points in the stable, centre and unstable directions, and so the operatorsPπiP

(whereP is one of the eigenprojectionsPs, Pc or Pu) are the focus of what follows. Define

a norm onRnd, ‖·‖∞, by

‖x‖∞ = max
16i6n

‖xi‖ .

This norm reflects the noise level added to a trajectory. Ifx is a noisy version of a deter-

ministic trajectoryy where the noise distribution is bounded byε say, then‖x−y‖∞ 6 ε.

This norm will be used onRnd for the remainder of this thesis (‖·‖ will still denote the

Euclidean norm when applied toRnd however).

Proposition 5.3 Suppose that A is a symmetric linear operator fromRd into itself, with

stable, centre and unstable eigenprojections Ps, Pc and Pu respectively, andP is the

orthogonal projection inRnd ontoEc, the subspace of deterministic trajectories under A.

Then,

‖PsπiP‖ 6 ∑
λ∈σs(A)

|λ |i−1 1+ |λ |
1+ |λ |n ,

and the same inequality holds when Ps andσs(A) are replaced by Pc andσc (A) or Pu and

σu(A).

Proof: The norm onPsπiP : Rnd → Rd is the operator norm:

‖PsπiP‖ = sup
x6=0

‖PsπiPx‖
‖x‖∞ .
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SinceA is symmetric, there is an orthonormal basis ofRd consisting of eigenvectors of

A. Denote these byuk, k = 1, . . . ,d, and letλk be the corresponding eigenvalues. Theuk

define deterministic trajectoriesUk ∈ Ec by

Uk =

























uk

Auk

A2uk

...

An−1uk

























=

























uk

λkuk

λ 2
k uk

...

λ n−1
k uk

























.

Since the{uk} are orthonormal,

〈Uk,Um〉 =
n

∑
i=1

〈

λ i−1
k uk,λ i−1

m um
〉

=



























|λk|2n−1

|λk|2−1
if k = m and |λk| 6= 1

n if k = m and |λk| = 1

0 if k 6= m.

(5.6)

So, the{Uk} form an orthogonal basis forEc. Using equation 5.5 forP, it follows that

for all x∈ Rnd,

PsπiPx = Psπi

d

∑
k=1

〈Uk,x〉‖Uk‖−2Uk

= Ps

d

∑
k=1

n

∑
j=1

〈

A j−1uk,x j
〉 |λk|2−1

|λk|2n−1
Ai−1uk

= ∑
uk∈Es

n

∑
j=1

λ j−1〈uk,x j
〉 |λk|2−1

|λk|2n−1
λ i−1uk

using equation (5.6) and the fact thatPsuk = 0 for alluk /∈Es. Therefore, using the Cauchy-

Schwarz inequality,

‖PsπiPx‖ 6 ∑
uk∈Es

n

∑
j=1

1−|λk|2

1−|λk|2n |λk|i−1 |λk| j−1‖x‖∞

= ∑
λ∈σs(A)

|λ |i−1 1+ |λ |
1+ |λ |n ‖x‖∞

since theuk were chosen to be normalised. The argument for the unstable case is identi-

cal, and the only difference with the centre case is that the|λk| = 1 part of equation 5.6

must be used.

This estimate is used to prove the first result concerning theperformance of the gradient

descent algorithm.
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Theorem 5.4 Let A be a symmetrichyperboliclinear operator defining a discrete dynam-

ical dynamical system onRd, x∈ Rnd be a noisy trajectory, and̂x be the noise reduced

trajectory given by the gradient descent algorithm. If the noise distribution isbounded,

then the points ofanydeterministic trajectory that could be the true trajectory, differ from

the points of̂x by an amount which tends to zero as n, the length of the trajectories, tends

to infinity, except for points near the initial and final points. The errors at these points

remainboundedas n→ ∞.

Proof: Let y ∈ Ec be a candidate for the true trajectory. Then, ifε is the bound on the

noise,‖x−y‖∞ 6 ε. Defineµ < 1 < ν by

µ = max
λ∈σs(A)

|λ | and ν = min
λ∈σu(A)

|λ | .

Then, by Proposition 5.3, the error in the stable direction between each point of the noise

reduced trajectory, ˆx, andy is given by

‖Psπi (x̂−y)‖ = ‖PsπiP (x−y)‖

6 ∑
λ∈σs(A)

|λ |i−1 1+ |λ |
1+ |λ |n ‖x−y‖∞

6 dimEsµ i−1 (1+ µ)ε.

The unstable error is given by

‖Puπi (x̂−y)‖ = ‖PuπiP (x−y)‖

6 ∑
λ∈σu(A)

|λ |i−1 1+ |λ |
1+ |λ |n ‖x−y‖∞

= ∑
λ∈σu(A)

|λ |−(n−i) |λ |n−1 + |λ |n
1+ |λ |n ‖x−y‖∞

= ∑
λ∈σu(A)

|λ |−(n−i)

(

1+
|λ |n−1−1
|λ |n+1

)

‖x−y‖∞

6 dimEuν−(n−i) (1+ν−1)ε.

Now, ε, µ, ν, dimEs and dimEu are all constant, so the errors at pointi (between ˆx andy)

decrease exponentially in the stable direction asi increases, and they are bounded above

by dimEs(1+ µ)ε sinceµ < 1. Similarly, the errors at pointi increase exponentially in

the unstable direction asi increases, but they are bounded above by dimEu
(

1+ν−1
)

ε

sinceν > 1. As these bounds are independent ofn, the length of the trajectory, it fol-

lows that the errors in both directions will be simultaneously arbitrarily small for a long
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enough trajectory, except near the initial point where the stable error may be of the order

of magnitude of the noise bound, and near the final point wherethe unstable error may be

of the order of magnitude of the noise bound. Finally, sinceA is assumed hyperbolic (and

symmetric), the total error at each point is the Pythagoreansum of the errors in the stable

and unstable directions, so the total errors can be made arbitrarily small by taking a long

enough trajectory, except near the initial and final points!

Note that from Proposition 5.3, the bound on‖PcπiP‖ is independent ofi (it re-

duces to dimEc). Therefore, when considering the generalisation of Theorem 5.4 to non-

hyperbolic symmetric linear operators, one finds that the bounds in the stable and unstable

directions behave as before, but the bound in the centre direction remains constant, and

hence the bound on the total error doesnot become arbitrarily small anywhere as the

length of the trajectory is increased. That is, the errors between that noise reduced trajec-

tory x̂ and the true trajectoryy can be large, and the gradient descent algorithm fails. This

is in accordance with the numerical results of Chapter 2. In what follows, attention will

be restricted to hyperbolic systems.

It is easy to see how to generalise Theorem 5.4 to unbounded noise distributions.

In this case, there is no strict bound on‖x−y‖∞ and the probability that a given noise

realisation will exceed any bound imposed (as the length of the realisation goes to infinity)

is 1. Instead, one considers some sort of average error at each point of the trajectory. This

then relates to the corresponding average for the noise distribution. For instance, theroot-

mean-squareerrors at each point are bounded by the same expressions appearing in the

proof of Theorem 5.4 withε replaced by thestandard deviationof the noise distribution.

This obviously extends to confidence levels. The conclusionis then that with probability

p < 1, the given bound holds with the appropriateε. Clearly for an unbounded noise

distribution,ε → ∞ asp→ 1−.

5.2.2 Hyperbolic Linear Systems

Before generalising the results of section 5.2.1, it is necessary to know how general linear

operators expand and contract vectors. For symmetric linear operators, the existence of

a basis of eigenvectors implies that these (and hence general vectors) are expanded or
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contractedexponentiallyunder iteration. However, this is not quite true for generalised

eigenvectors — an example where a vector is expandedpolynomiallyunder iteration was

given in section 3.2.2. A better estimate is provided by the results of section 3.3, especially

Proposition 3.7 (adapted to the case wheref = A and henced fn(p) = An). It is easy to

see that the Lyapunov numbers forA are just the moduli of the eigenvalues ofA. By

Proposition 3.7 then, givenµ < 1 < ν such that

µ > max
λ∈σs(A)

|λ | and ν < min
λ∈σu(A)

|λ | ,

there existCs > 1 and 0< Cu 6 1 such that

‖Anvs‖ 6 Csµn‖vs‖ and ‖Anvu‖ > Cuνn‖vu‖ , (5.7)

for all vs ∈ Es andvu ∈ Eu. µ andν will be referred to as thehyperbolicity boundsfor A.

In this section, the generalisation of Theorem 5.4 to a general hyperbolic linear oper-

ator,A, is proven. Because these operators admit non-orthogonal eigenspaces (and gen-

eralised eigenspaces), the analysis is more complicated. However, the idea of the proof

remains the same: The orthogonal projectionP onto Ec is decomposed into a sum of

terms involving vectors (inEc ⊂ R
nd) whose magnitudes can be related to the expansion

and contraction rates ofA. The following computation will also be required.

Lemma 5.5 Suppose that aj is a sequence of non-negative numbers satisfying

a j 6 Cκ j−iai

for all j > i > 1 where a1 > 0, 0 6 κ < 1 and C> 0 are constants. Then,

(

∑n
j=1a j

)2

∑n
j=1a2

j

6
1+(2C−1)κ

1−κ .

Proof: Expand the numerator as

(

n

∑
j=1

a j

)2

=
n

∑
j=1

a2
j +2

n−1

∑
i=1

n

∑
j=i+1

aia j .

By hypothesis,

n−1

∑
i=1

n

∑
j=i+1

aia j 6

n−1

∑
i=1

n

∑
j=i+1

Cκ j−ia2
i =

Cκ
1−κ

n−1

∑
i=1

a2
i

(

1−κn−i)
6

Cκ
1−κ

n

∑
i=1

a2
i ,
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which yields the estimate:

(

∑n
j=1a j

)2

∑n
j=1a2

j

= 1+2
∑n−1

i=1 ∑n
j=i+1aia j

∑n
j=1a2

j

6
1+(2C−1)κ

1−κ
,

as required.

Because of the presence of non-orthogonal eigenspaces, it will be convenient to con-

sider theminimal anglebetween subspaces. For two subspacesE andE′ of a Euclidean

space, the minimal angleθ is defined to be the acute angle satisfying

cosθ = sup

{ 〈x,x′〉
‖x‖‖x′‖ : x∈ E \{0} andx′ ∈ E′ \{0}

}

.

Proposition 5.6 Suppose that A is a hyperbolic linear operator fromRd into itself, with

stable and unstable projections Ps and Pu respectively, andP is the orthogonal projection

in Rnd onto Ec, the subspace of deterministic trajectories for A. Then, the following

bounds hold:

‖PsπiP‖ 6 dimEs
Csµ i−1

sinφ





√

1+(2Cs−1)µ
sinφ

√
1−µ

+

√

1+
(

2C−1
u −1

)

ν−1

tanφ
√

1−ν−1





‖PuπiP‖ 6 dimEu
C−1

u ν−(n−i)

sinφ





√

1+
(

2C−1
u −1

)

ν−1

sinφ
√

1−ν−1
+

√

1+(2Cs−1)µ
tanφ

√
1−µ





whereµ < 1 < ν are hyperbolicity bounds for A, Cs and Cu are the associated constants

(see equations 5.7), andφ is the minimal angle between Es and Eu.

Proof: Let Es andEu be the deterministic trajectories whose points are inEs and Eu

respectively. That is, let

Es =







































































v

Av

A2v

· · ·

An−1v

























: v∈ Es















































and Eu =







































































v

Av

A2v

· · ·

An−1v

























: v∈ Eu















































.

SinceA is hyperbolic,Rd = Es⊕Eu, and this induces the decompositionEc = Es⊕Eu. If

π (E,E′) denotes the projection onto the subspaceE parallel to the subspaceE′2, thenP

2That is,π (E,E′) is the unique projection with imageE and kernelE′.
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may be decomposed as

P = π
(

Es,E
⊥
s

)

+π
(

E
⊥
s ,Es

)

(5.8)

where⊥ denotes orthogonal complementation. This obviously corresponds to a decom-

position ofEc into Es⊕E
⊥
s , so the idea is to rewriteπ

(

E
⊥
s ,Es

)

so that it involvesEu.

The constructions which achieve this are indicated schematically in Figure 5.1 for conve-

nience.

Suppose then, that{Wk} constitute an orthogonal basis forE⊥
s . Since dimE⊥

s =

dimEu, it follows that these linear spaces are isomorphic, and a convenient isomorphism

is given by

π (Eu,Es)|E⊥
s
,

(the projection ontoEu parallel toEs, restrictedto E⊥
s ). This defines a (non-orthogonal)

basis{Uk} by Uk = π (Eu,Es)Wk. However, it is clear that

[

π (Eu,Es)|E⊥
s

]−1
= π

(

E
⊥
s ,Es

)∣

∣

∣

Eu
,

the restriction of anorthogonalprojection, so it follows thatUk has the orthogonal de-

compositionUk = Wk +Vk, whereVk = π
(

Es,E
⊥
s

)

Uk ∈ Es. Note that the{Vk} need not

form a basis forEs — for instance, some (or even all) of theVk may be zero. Now, ifθk

is the acute angle betweenUk andVk (defined to beπ/2 if Vk = 0), then

‖Wk‖ = ‖Uk‖sinθk = ‖Vk‖ tanθk (5.9)

(where the norm is the standard Euclidean norm onRnd).

As {Wk} is an orthogonal basis forE⊥
s andWk = Uk −Vk, the second term in the

decomposition ofP (equation 5.8) may be expanded as

π
(

E
⊥
s ,Es

)

=
du

∑
k=1

WkW∗
k

‖Wk‖2 =
du

∑
k=1

‖Wk‖−2(UkU
∗
k −UkV

∗
k −VkU

∗
k +VkV

∗
k ) ,

wheredu = dimE⊥
s = dimEu = dimEu. SincePuπi (Es) = Pu(Es) = {0}, the first term in
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Figure 5.1: Construction of “unstable trajectories”,{Uk}, and “stable trajectories”,{Vk},

from the basis{Wk} of E⊥
s .

the decomposition ofP (equation 5.8) is annihilated byPuπi. Therefore, forx∈ Rnd,

PuπiPx = Puπiπ
(

E
⊥
s ,Es

)

x

= Puπi

du

∑
k=1

‖Wk‖−2(UkU
∗
k −UkV

∗
k −VkU

∗
k +VkV

∗
k )x

= Pu

du

∑
k=1

‖Wk‖−2(Ai−1uk 〈Uk,x〉−Ai−1uk 〈Vk,x〉

−Ai−1vk 〈Uk,x〉+Ai−1vk 〈Vk,x〉
)

=
du

∑
k=1

‖Wk‖−2Ai−1uk

n

∑
j=1

(〈

A j−1uk,x j
〉

−
〈

A j−1vk,x j
〉)

,

whereuk = π1Uk ∈ Eu andvk = π1Vk ∈ Es. This expressesP in terms of vectors from

the stable and unstable eigenspaces ofA. Using equations 5.9 and the Cauchy-Schwarz

inequality, this gives the bounds:

‖PuπiPx‖ 6

du

∑
k=1

∥

∥Ai−1uk
∥

∥

‖Wk‖2

n

∑
j=1

(∥

∥A j−1uk
∥

∥+
∥

∥A j−1vk
∥

∥

)∥

∥x j
∥

∥

6

du

∑
k=1

∥

∥Ai−1uk
∥

∥

‖Wk‖
n

∑
j=1

(
∥

∥A j−1uk
∥

∥

‖Wk‖
+

∥

∥A j−1vk
∥

∥

‖Wk‖

)

‖x‖∞

=
du

∑
k=1

∥

∥Ai−1uk
∥

∥

‖Uk‖sinθk

n

∑
j=1

(
∥

∥A j−1uk
∥

∥

‖Uk‖sinθk
+

∥

∥A j−1vk
∥

∥

‖Vk‖ tanθk

)

‖x‖∞ . (5.10)

In the case where any of theVk are zero, the correspondingvk are zero, and so the second

term in the parentheses above is zero.
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Consider now the term

n

∑
j=1

∥

∥A j−1vk
∥

∥

‖Vk‖
=

∑n
j=1

∥

∥A j−1vk
∥

∥

[

∑n
j=1‖A j−1vk‖2

]1/2

.

If a j =
∥

∥A j−1vk
∥

∥, then by equation 5.7,

a j =
∥

∥A j−1vk
∥

∥6 Csµ j−i
∥

∥Ai−1vk
∥

∥= Csµ j−iai

whereµ < 1 is a (stable) hyperbolicity bound forA, andCs > 1 is the associated constant.

By Lemma 5.5 then,

n

∑
j=1

∥

∥A j−1vk
∥

∥

‖Vk‖
=







(

∑n
j=1

∥

∥A j−1vk
∥

∥

)2

∑n
j=1‖A j−1vk‖2







1/2

6

[

1+(2Cs−1)µ
1−µ

]1/2

.

(5.11)

Similarly, if a j =
∥

∥An− juk
∥

∥, thena j 6 C−1
u ν−( j−i)ai whereν > 1 is an (unstable) hyper-

bolicity bound forA andCu 6 1 is the associated constant. Therefore,

n

∑
j=1

∥

∥A j−1uk
∥

∥

‖Uk‖
6

[

1+
(

2C−1
u −1

)

ν−1

1−ν−1

]1/2

.

(5.12)

One last application of equation 5.7 and Lemma 5.5 gives

∥

∥Ai−1uk
∥

∥

‖Uk‖
6

∥

∥Ai−1uk
∥

∥

‖An−1uk‖
6 C−1

u ν−(n−i),

so combining this with equations 5.11, 5.12 and 5.10, yieldsthe estimate

‖PuπiP‖ 6

du

∑
k=1

C−1
u ν−(n−i)

sinθk





√

1+
(

2C−1
u −1

)

ν−1

sinθk
√

1−ν−1
+

√

1+(2Cs−1)µ
tanθk

√
1−µ





.

This bound expresses the norm ofPuπiP in terms of the constantsµ, ν, Cs, Cu anddu

— which depend on the hyperbolic linear operatorA and not on the length of the trajectory

n — and the anglesθk. As theθk are angles between thetrajectories Uk andVk, they will

generally vary withn. It remains then to show that they are bounded away from zero,so

that sinθk and tanθk do not vanish asn tends to infinity. Ifφ is the minimal angle between

the eigenspacesEs andEu (which only depends onA), then using the Cauchy-Schwarz
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inequality for sums,

|cosθk| =
|〈Uk,Vk〉|
‖Uk‖‖Vk‖

=

∣

∣

∣∑n
j=1

〈

A j−1uk,A j−1vk
〉

∣

∣

∣

[

∑n
j=1‖A j−1uk‖2

]1/2[

∑n
j=1‖A j−1vk‖2

]1/2

6
∑n

j=1

∥

∥A j−1uk
∥

∥

∥

∥A j−1vk
∥

∥cosφ
[

∑n
j=1‖A j−1uk‖2

]1/2[

∑n
j=1‖A j−1vk‖2

]1/2

6

[

∑n
j=1

∥

∥A j−1uk
∥

∥

2
]1/2[

∑n
j=1

∥

∥A j−1vk
∥

∥

2
]1/2

[

∑n
j=1‖A j−1uk‖2

]1/2[

∑n
j=1‖A j−1vk‖2

]1/2
cosφ

= cosφ ,

sinceA j−1uk ∈Eu andA j−1vk ∈ Es. Therefore, sinθk > sinφ and tanθk > tanφ , so substi-

tution gives the required unstable bound. The stable bound (for PsπiP) is derived using

the same technique, withs andu interchanged.

Theorem 5.7 Let A be a hyperbolic linear operator defining a discrete dynamical dynam-

ical system onRd, x∈ R
nd be a noisy trajectory, and̂x be the noise reduced trajectory

given by the gradient descent algorithm. If the noise distribution isbounded, then the

points of any deterministic trajectory that could be the true trajectory, differ from the

points ofx̂ by an amount which tends to zero as n, the length of the trajectories, tends

to infinity, except for points near the initial and final points. The errors at these points

remainboundedas n→ ∞.

Proof: If y is a candidate for the true trajectory andε is the bound on the noise distribu-

tion, then‖x−y‖∞ 6 ε. It follows now from Proposition 5.6, that

‖Psπi (x̂−y)‖ = ‖PsπiP (x−y)‖ 6 Ksµ i−1‖x−y‖∞ 6 Ksµ i−1ε

whereKs is a constant independent ofi or the length of the trajectoryn. Similarly,

‖Puπi (x̂−y)‖ 6 Kuν−(n−i)ε

whereKu is also independent ofi andn. The result now follows from the same argument

as was used in the proof of Theorem 5.4.
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It is easy to see now that as the errors in the stable directiondecay exponentially to

zero asi increases, the difference between the final point of the noise reduced trajectory

x̂ and the final point of a candidate true trajectoryy, must converge onto the unstable

eigenspaceasn tends to infinity. Another way of saying this is to consider the generalised

unstable eigenspace throughy (which is just the unstable eigenspace through 0 translated

to y). Then, the final point of the noise reduced trajectory ˆxn can be madearbitrarily close

to the generalised unstable eigenspace of the final point of the true trajectoryyn, by taking

n sufficiently large. A similar statement is true for the first point and the generalised

stable eigenspace. As this proves the conjecture of Judd andSmith mentioned at the end

of section 1.3 (for hyperbolic linear dynamical systems andbounded noise), it is stated as

a result.

Corollary 5.8 If A is a hyperbolic linear operator defining a discrete dynamical dynami-

cal system onRd, x a noisy trajectory of the system (derived from the true trajectory y and

a bounded noise distribution), and̂x the noise reduced trajectory given by applying the

gradient descent algorithm to x, then by taking n, the lengthof the trajectory, sufficiently

large, x̂1 may be made arbitrarily close to the generalised stable eigenspace of y1 andx̂n

may be made arbitrarily close to the generalised unstable eigenspace of yn.

Note that by the bounds of Proposition 5.6, the closerµ or ν are to unity, the larger

n needs to be to make the errors near the middle of the trajectory small. The bounds also

suggest that the errors at the initial and final points might be larger for systems withµ or ν

close to unity, and for systems where the angle between the stable and unstable eigenspace

is small! This should be contrasted with the numerical investigations of section 2.3, where

tangencies and homoclinic intersection points were discussed. It would seem then, that

even when there are no homoclinic intersection points, the small angle can magnify errors

in the noise reduction procedure (by a factor up to the order of 1/sin2 θ ).

5.3 Gradient Descent for Non-linear Dynamical Systems

In this section, Theorem 5.7 is generalised to a non-linear dynamical system. This is

done by extending the linear result to the linearisation of the system (see section 5.1)

and then using the theory of Chapter 4 to recover the non-linear result. Letf : M → M
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be aC2-diffeomorphism defining a discrete dynamical system on a smooth compactd-

dimensional manifoldM. The results of section 2.3 indicate that for noise reduction to

work, the distance between homoclinic intersections for near-tangency points must be

bounded away from zero. This uniform bound holds whenf has an invariant uniformly

hyperbolic setΛ (see section 3.4), and so the existence of such aΛ will be assumedin

what follows.

5.3.1 Linearised Systems

Recall that the linearisation of the gradient descent flow for f , about a deterministic trajec-

tory y is given by equation 5.2. Proposition 5.1 then asserts that the effect of the linearised

gradient descent is to project orthogonally onto the subspace

Ec =







































































v

d f (y1)v

d f2(y1)v
...

d fn−1(y1)v

























: v∈ R
d















































.

By the chain rule, these deterministic trajectories for thelinearised system correspond

to trajectories for alinear system, where the linear operatorchangeswith each iteration.

That is, at the first point, the operator isd f (y1), at the second,d f (y2), and so on. With

this in mind, as well as the results of the Multiplicative Ergodic Theorem (Theorem 3.5),

it is easy to generalise the results of section 5.2.2 to this case. Note that becauseΛ is

hyperbolic, there existµ < 1< ν such thatµ is larger than any Lyapunov number forf |Λ
less than unity, andν is smaller than any Lyapunov number forf |Λ greater than unity.µ

andν will be calledhyperbolicity boundsfor f |Λ.

Proposition 5.9 Suppose that f is a C2-diffeomorphism of a smooth compact d-dimensional

manifold M possessing an invariant uniformly hyperbolic set Λ with splitting into stable

and unstable eigenspaces Es(p) and Eu(p), p∈Λ, and that y is a deterministic trajectory

of length n for f . IfP is the orthogonal projection (inRnd) ontoEc(y), the subspace of

deterministic trajectories for the system linearised about y, and P(i)s and P(i)
u are the stable

and unstable projections onto Es(yi) and Eu(yi) for i = 1, . . . ,n (respectively), then the
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following bounds hold:

∥

∥

∥
P(i)

s πiP

∥

∥

∥
6 ds

Csµ i−1

sinφ





√

1+(2Cs−1)µ
sinφ

√
1−µ

+

√

1+
(

2C−1
u −1

)

ν−1

tanφ
√

1−ν−1





∥

∥

∥
P(i)

u πiP

∥

∥

∥
6 du

C−1
u ν−(n−i)

sinφ





√

1+
(

2C−1
u −1

)

ν−1

sinφ
√

1−ν−1
+

√

1+(2Cs−1)µ
tanφ

√
1−µ





whereµ < 1< ν are hyperbolicity bounds for f|Λ, Cs and Cu are the associated constants

(see Proposition 3.7), ds and du are the common dimensions of the Es(p) and Eu(p)

(respectively), andφ 6= 0 is the minimal angle between Es(p) and Eu(p), p∈ Λ (non-

zero by the discussion in section 3.3.2).

Proof: This proof is the same as that of Proposition 5.6 with a few modifications. In

particular,Am is replaced byd fm(y1) throughout. The subspacesEs andEu are then

the trajectories inEc(y) whose first point belongs toEs(y1) andEu(y1) respectively. The

invariance of theEs(p) and theEu(p) given by the Multiplicative Ergodic Theorem (The-

orem 3.5) and the fact thaty was chosen to be a deterministic trajectory forf , show that

Es andEu consist of trajectories whose points stay in stable and unstable eigenspaces

(respectively). Hence,Ec(y) = Es⊕Eu. Given an orthogonal basis ofE⊥
s say, the con-

struction of stable and unstable trajectories can proceed as in the proof of Proposition 5.6,

and these can be used to derive the analogue of equation 5.10.The inequalities of Propo-

sition 3.7 and Lemma 5.5 are then used to simplify this expression, noting that because

Λ is compact, the constantsCs andCu may be chosen independently of the points of the

trajectoryy (see the discussion after Proposition 3.7), and hence independent ofn. The

resulting expression still contains angles between stableand unstable trajectories — these

are dealt with in exactly the same manner as in the proof of Proposition 5.6, noting that

the angles between theEs(p) and theEu(p) are uniformly bounded away from zero.

Obviously, analogues of Theorem 5.7 and Corollary 5.8 are also true. These are stated for

completeness.

Theorem 5.10 Let f be a C2-diffeomorphism of a smooth compact d-dimensional mani-

fold M possessing an invariant uniformly hyperbolic setΛ, x∈ Rnd be a noisy trajectory

of the linearised system, and̂x be the noise reduced trajectory given by the linearised
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gradient descent algorithm. If the noise distribution isbounded, then the points ofany

deterministic trajectory (for the linearised system) thatcould be the true trajectory, differ

from the points of̂x by an amount which tends to zero as n, the length of the trajectories,

tends to infinity, except for points near the initial and finalpoints. The errors at these

points remainboundedas n→ ∞.

Corollary 5.11 If f is a C2-diffeomorphism of a smooth compact d-dimensional mani-

fold M possessing an invariant uniformly hyperbolic setΛ, x a noisy trajectory of the lin-

earised system (derived from the true trajectory y of the linearised system and a bounded

noise distribution), and̂x the noise reduced trajectory given by applying the linearised

gradient descent algorithm to x, then by taking n, the lengthof the trajectory, sufficiently

large, x̂1 may be made arbitrarily close to the generalised stable eigenspace of y1 andx̂n

may be made arbitrarily close to the generalised unstable eigenspace of yn.

5.3.2 Non-linear Systems

Recall the discussion leading up to Proposition 5.2. There it was shown that for a non-

linear system, the set of deterministic trajectories,Wc, forms a centre manifold forevery

fixed point of the gradient descent flow, and there is a lamination of stable manifolds,

{Ws(y) : y∈ Wc}, orthogonal to this common centre manifold. The situation is exactly

the same in the linearised case — here there is asubspaceof deterministic trajectories

which forms a centre eigenspace, and a lamination of stable eigenspaces given by the

family of (n−1)d-dimensional hyperplanes parallel to kerP =Ec(y). These laminations

are indicated in Figure 5.2. It would seem plausible then, that the non-linear gradient

descent flow and its linearisation about some fixed point are qualitatively similar, that is,

topologically conjugate, despite the presence of a centre manifold.

This statement does in fact hold. In most discussions of centre manifold theory ([10,

11]), a statement to the effect that thestability of a fixed point with a stable and centre

manifold is dictated by the dynamics on the centre manifold is quoted or proven. That is,

if the dynamical system (continuous say) can be written in the form

u̇ = Au+g(u,v)

v̇ = Bv+h(u,v) ,
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Figure 5.2: Stable manifold and eigenspace laminations in trajectory spaceRnd

whereA has eigenvalues on the imaginary axis,B has eigenvalues with negative real part,

g(0,0) = h(0,0) = 0 anddg(0,0) = dh(0,0) = 0, then the stability of the fixed point 0

is determined by the stability of the fixed point 0 of

u̇ = Au+g(u,ϕc(u))

whereϕc is a function from the stable eigenspace into the centre eigenspace whose graph

gives a local centre manifold. What this suggests (but is more difficult to show) is that

there is a local topological conjugacy between the full system and the system

u̇ = Au+g(u,ϕc(u))

v̇ = Bv.

Two proofs of this fact may be found in [31]. When the centre manifold consists entirely

of fixed points, the dynamics on the centre manifold is nil. HenceA= 0 andg◦ (id ,ϕc) =

0 so the full system is locally topologically conjugate to its linearisation, verifying the

claim of the previous paragraph.

Let the effect of the gradient descent algorithm be given byΦ : Rnd → Wc. That is,

the gradient descent equations 1.2 give rise to a flowϕt which converges, given any initial

condition, ast → ∞ (by Proposition 5.2). The pointwise limit ofϕt ast → ∞ definesΦ.

The idea in what follows is to make the diagram

Rnd Φ−−−→ Wc
πi−−−→ Rd

H





y

x




H

x




hi

Rnd P−−−→ Ec(y)
πi−−−→ Rd

(5.13)
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commute for some functionsH , H andhi, whereP is the orthogonal projection effecting

the linearised gradient descent abouty ∈ Wc. Knowledge of the functionH and thehi

then allows the study of the non-linear gradient descent to be reduced to the study of

the linearised gradient descent. Of course, it is not enoughto show that these functions

exist. To generalise the results of section 5.3.1 to non-linear systems, it is necessary to

demand that thehi take points near the stable and unstable eigenspaces of the linearised

system to points near the stable and unstablemanifoldsof the non-linear system, and

that thedistortionsinduced by usingH and thehi to switch between the non-linear and

linearised spaces can beboundedas the length of the trajectories tend to infinity.

ConsiderH : Ec(y) → Wc. To make the right square of diagram 5.13 commute, it

follows that the functionH must decompose asH = (h1, . . . ,hn). As H maps determinis-

tic trajectories for the linearised system onto deterministic trajectories for the non-linear

system, its action may be written as

H =

























h1

h2

h3

...

hn

























:

























u

d f (y1)u

d f2(y1)u
...

d fn−1(y1)

























7→

























v

f (v)

f 2(v)
...

f n−1 (v)

























.

ThusH is completely determined by how it takesu into v. If the function onRd takingu

into v is denoted byg then, it follows that

hi = f i−1◦g◦
[

d f i−1(y1)
]−1

= f i−1◦g◦d f−(i−1) (yi) .

Note that the action ofhi on a neighbourhood ofyi will be to map the unstable eigenspace

for yi back onto the unstable eigenspace fory1, distort it a little (the action ofg), and then

map them forward to a neighbourhood ofyi again. Fori large enough then (and provided

the action ofg isn’t too disruptive), the resulting set should be an excellent approximation

(at least locally) of the generalised unstable manifold ofyi . In fact, there is a choice for

g which makeshi map the unstable eigenspace locally onto the local generalised unstable

eigenspaceexactly.

Consider the homeomorphismsh̃p, p∈ Λ, defined between neighbourhoods ofp, sat-

isfying equation 4.6:

f ◦ h̃p = h̃f (p) ◦d f (p)
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(these exist by the Generalised Hartman-Grobman Theorem and specifically, Corollary

4.16). Ifg is defined to bẽhy1, then by equation 4.6,

h1 = g = h̃y1,

h2 = f ◦ h̃y1 ◦ [d f (y1)]
−1 = h̃y2,

h3 = f 2◦ h̃y1 ◦ [d f (y1)]
−1◦ [d f (y2)]

−1 = f ◦ h̃y2 ◦ [d f (y2)]
−1 = h̃y3,

...

hn = f n−1◦ h̃y1 ◦ [d f (y1)]
−1◦ [d f (y2)]

−1◦ · · · ◦ [d f (yn−1)]
−1

= f ◦ h̃yn−1 ◦ [d f (yn−1)]
−1 = h̃yn.

As eachh̃p maps the local stable and unstable eigenspaces ofp onto the local generalised

stable and unstable manifolds ofp, the same is true of eachhi (for yi). Furthermore, since

eachhi is a homeomorphism, so isH, and the domain ofH can be naturally extended to

the product of the domains of thehi , soH maps a neighbourhood ofy homeomorphically

onto another neighbourhood ofy.

Consider now the left square of diagram 5.13. AsΦ is the identity onWc andP is

the identity onEc(y), it follows that

H|Ec(y) ◦ H |Wc
= id |Wc

⇒ H |
Wc

= H|−1
Ec(y)

= H−1
∣

∣

Wc
.

It would be very convenient if definingH to be H−1 made diagram 5.13 commute.

However, there is no reason to expect this. Instead, note that

P ◦H = H−1◦Φ ⇒ H = (I −P)◦H +H−1◦Φ,

and that(I −P) ◦H takes values inEs(y) whereasH−1 ◦Φ takes values inEc(y). In

fact, it is clear that the commutativity requirement will still be fulfilled if the H appearing

on theright of this equation is replaced by any function mappingWc onto Ec (y). A

convenient choice is the homeomorphismH−1, as it is the only function satisfying this

requirement whose properties are known. That is, define

H = (I −P)◦H−1+H−1◦Φ. (5.14)

H therefore maps a neighbourhood ofy into another neighbourhood ofy, and satisfies

P ◦H = H ◦Φ = H−1◦Φ (whenever this makes sense). Geometrically,H takes the
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centre manifoldWc onto the centre eigenspaceEc (y), and maps each stable manifold

of the non-linear lamination onto some stable eigenspace ofthe linearised lamination

(see Figure 5.2). The termH−1 ◦ Φ specifieswhich stable eigenspace corresponds to

a particular stable manifold, and the term(I −P) ◦H−1 specifieswhereon the stable

eigenspace each point of the stable manifold is mapped3.

It remains to consider the distortions induced byH and thehi . That is, any stretch-

ing or contracting of distances caused by switching betweenthe non-linear and linearised

gradient descents. All these functions arecontinuous(Φ is continuous because the stable

manifolds in the lamination vary continuously — see the discussion leading up to Propo-

sition 5.2) on their respective domains, so this distortioncan be made arbitrarilysmallby

restricting their domains to be sufficiently small. However, the generalisation of Theorem

5.10 to non-linear systems must address the behaviour as thelength of the relevant trajec-

tories,n, tend to infinity. Therefore it is necessary to know how the distortion varies with

n — specifically, it is necessary to show that the errors due to this distortion aredominated

by the (expected) exponential decrease of the errors (away from the initial and final point

of the trajectory) asn tends to infinity.

This can be done for thehi using the quantitative information of Chapter 4. Thehi

were chosen to be the homeomorphisms corresponding toyi guaranteed by the Gener-

alised Hartman-Grobman Theorem and Corollary 4.16. By Corollary 4.17, thehi are

evenHölder continuouson their respective domains, and the associated constantsmay be

chosen independently of the yi and hence of n. That is, there existα,β > 0 such that

∥

∥hi (u)−hi
(

u′
)∥

∥6 β
∥

∥u−u′
∥

∥

α

for all u,u′ belonging to the domain ofhi, and whereα andβ may be chosen indepen-

dently of i (andn). This bounds the distortion of thehi nicely, and it is clear that the same

3Obviously, the “where” is unimportant in this application (as the linearised gradient descent projects

along the stable eigenspace). However, if it were necessaryto show thatH conjugated the gradient descent

flow and its linearisation forfinite descent timesrather than just in the limitt → ∞, then this would be

important. In fact, one can keep track of where points shouldbe mapped by considering (in addition to

the stable laminations) a lamination of (generalised) centre manifolds and eigenspaces (the eigenspaces are

clearly thed-dimensional subspaces parallel toEc (y)). See [31] for details. In fact, theH constructed

above has not been shown to be invertible, so it cannot even qualify as a conjugacy betweenΦ andP.

Because it makes the diagram 5.13 commute however, it is an example of asemi-conjugacy.
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result holds for the inverses of thehi (andα andβ can be chosen to be Hölder exponents

and constants for eachh−1
i too). Using this, the diagram 5.13, and Proposition 5.9, it

follows that fory∈ Wc, x∈ Rnd andx̂ = Φ(x),

‖x̂i −yi‖ = ‖πiΦ(x)−πiΦ(y)‖

= ‖hi (πiPH (x))−hi (πiPH (y))‖

6 β ‖πiP (H (x)−H (y))‖α

6 β
(

Ksµ i−1 +Kuν−(n−i)
)α

‖H (x)−H (y)‖α
∞ , (5.15)

whereKs andKu are constants (independent ofn). It remains then to estimate the effect

of (distortion due to)H .

Note that since thehi are Hölder continuous, it follows thatH is Hölder continuous

with respect to the norm‖·‖∞:

∥

∥H (x)−H
(

x′
)∥

∥

∞ = sup
16i6n

∥

∥hi (xi)−hi
(

x′i
)∥

∥

6 sup
16i6n

β
∥

∥xi −x′i
∥

∥

α

= β
∥

∥x−x′
∥

∥

α
∞ ,

with constantsα andβ independent ofn. As the inverses of the homeomorphismshi are

also Hölder continuous,H−1 is Hölder continuous with respect to‖·‖∞ too. It might seem

plausible now thatH is Hölder continuous as well (with respect to‖·‖∞). Establishing

this seems to be quite difficult however. Obviously the restriction of H to the centre

manifold is Hölder asH |Wc
= H−1, and it is quite easy to show thatH restricted to

each stable manifold is Hölder. This follows from the computation (x,x′ ∈ Ws(y)):

H (x)−H
(

x′
)

= (I −P)
(

H−1(x)−H−1(x′
))

+H−1(Φ(x))−H−1(Φ
(

x′
))

= (I −P)
(

H−1(x)−H−1(x′
))

⇒
∥

∥H (x)−H
(

x′
)∥

∥

∞ 6 ‖I −P‖∞ β
∥

∥x−x′
∥

∥

α
∞ ,

where

‖I −P‖∞ = sup
x6=0

‖(I −P)x‖∞
‖x‖∞ .

Note that

‖I −P‖∞ 6 1+‖P‖∞ = 1+sup
i
‖πiP‖ 6 1+sup

i
(‖PsπiP‖+‖PuπiP‖) ,
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which is bounded uniformly inn by Proposition 5.9, so the Hölder constant and exponent

of H |Ws(y) can be chosen independently ofn (andy). It does not, however, follow from

this thatH itself (unrestricted) is Hölder with constant and exponent independent ofn.

The problem seems to be that no quantitative information hasbeen derived for the

non-linear gradient descent flowΦ. If say a local Lipschitz condition was derived for

Φ (with respect to‖·‖∞) and the Lipschitz constant could be bounded independent ofn,

then the Hölder continuity ofH would be established immediately from the definition

(equation 5.14). However, getting any quantitative information aboutΦ appears to be

hard. The following condition onf (and on the induced gradient descentΦ) suffices:

Condition 5.12 Let y1 ∈ R
d define deterministic trajectories y(n) ∈ Wc ⊂ R

nd (for each

n) by y(n)
i+1 = f

(

y(n)
i

)

, i = 1, . . . ,n−1, and let

Bε

(

y(n)
)

=
{

x∈ R
nd :
∥

∥

∥
x−y(n)

∥

∥

∥

∞
6 ε
}

.

Then, forε > 0 (denoting the noise level) sufficiently small but fixed, the function

Ωε (n) = sup
x∈Bε(y(n))

∥

∥

∥
Φ(x)−y(n)

∥

∥

∥

∞

increasessub-exponentiallywith n.

SinceΦ is continuous,Ωε (n) → 0 asε → 0. However, the variance of this quantity

with ε is not really important (although it might be nice to know). This is because of the

following computation (with‖x−y‖∞ 6 ε):

‖H (x)−H (y)‖∞ 6
∥

∥(I −P)
(

H−1(x)−H−1(y)
)∥

∥

∞ +
∥

∥H−1◦Φ(x)−H−1◦Φ(y)
∥

∥

∞

6 ‖I −P‖∞ β ‖x−y‖α
∞ +β ‖Φ(x)−y‖α

∞

6 ‖I −P‖∞ βεα +βΩε (n)α .

If Condition 5.12 is satisfied, then‖H (x)−H (y)‖∞ is bounded (for sufficiently small

noise) by a quantity that increases only sub-exponentiallywith n. Therefore, by equation

5.15,

‖x̂i −yi‖ 6 β
(

Ksµ i−1 +Kuν−(n−i)
)α

‖H (x)−H (y)‖α
∞

6 β 1+α
[(

Ksµ i−1 +Kuν−(n−i)
)

(

‖I −P‖∞ εα +Ωε (n)α)
]α

,
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and asn increases, the exponential decay of the termsµ i−1 andν−(n−i) for i ∼ n/2 dom-

inates the sub-exponential increase ofΩε (n). That is, near the middle of the trajectory

(hence away from the initial and final points), the errors converge to zero as the length

of the trajectories,n, tends to infinity. Thus, when Condition 5.12 is satisfied, the gener-

alisation of Theorem 5.10 to non-linear dynamical systems (with an invariant uniformly

hyperbolic set) is proven.

Theorem 5.13 Let f be a C2-diffeomorphism of a smooth compact d-dimensional mani-

fold M possessing an invariant uniformly hyperbolic setΛ and satisfying Condition 5.12,

x∈Rnd be a noisy trajectory of the (non-linear) system, andx̂ be the noise reduced trajec-

tory given by the gradient descent algorithm. If the noise distribution isboundedbyε > 0

sufficiently small, then the points ofany deterministic trajectory that could be the true

trajectory, differ from the points of̂x by an amount which tends to zero as n, the length of

the trajectories, tends to infinity, except for points near the initial and final points. The

errors at these points are bounded ifΩε (n) is bounded (in n) and otherwise may increase

subexponentially as n→ ∞.

Additionally, if Condition 5.12 holds, then the generalisation of Corollary 5.11 to

non-linear systems with an invariant uniformly hyperbolicset is also easy to prove. As-

suming the hypotheses and notation of Theorem 5.13 (and Proposition 5.9), it is easy to

see that the stable error after linearisation,
∥

∥

∥
P(i)

s πiP (H (x)−H (y))
∥

∥

∥
, will be negligi-

ble for all i sufficiently large (whenn is sufficiently large). In particular, there will be

an i = n−m say, for which this stable error is negligible,and for which the correspond-

ing unstable error after linearisation,
∥

∥

∥
P(i)

u πiP (H (x)−H (y))
∥

∥

∥
, is small enough that

πn−mP (H (x)−H (y)) belongs to the neighbourhood ofyn−m wherehn−m conjugates

the linear and non-linear systems. As the stable error is negligible, andhn−m takes the

local generalised unstable eigenspace onto the local generalised unstable manifoldquan-

titatively, it follows that x̂n−m = πn−mΦ(x) = hn−m(πn−mPH (x)) will be extremely

close to thelocal generalised unstable manifold ofyn−m. But, by Proposition 5.2, ˆx is a

deterministic trajectory forf , as isy, so x̂n−m close to the generalised unstable manifold

of yn−m implies that ˆxn is even closer to the generalised unstable manifold ofyn (although

the distancealong the unstable manifold may be very large). The same argument gives

the corresponding result for ˆx1 and the generalised stable manifold ofy1.
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Corollary 5.14 If f is a C2-diffeomorphism of a smooth compact d-dimensional manifold

M possessing an invariant uniformly hyperbolic setΛ, and which satisfies Condition 5.12,

x a noisy trajectory of the system (derived from the true trajectory y and a bounded noise

distribution with sufficiently small bound), and̂x the noise reduced trajectory given by

applying the gradient descent algorithm to x, then by takingn, the length of the trajectory,

sufficiently large,x̂1 may be made arbitrarily close to the generalised stable eigenspace

of y1 andx̂n may be made arbitrarily close to the generalised unstable eigenspace of yn.

Theorem 5.13 essentially states that the gradient descent algorithm is a good noise

reduction algorithm for non-linear dynamical systems withan invariant uniformly hy-

perbolic set (that is, without arbitrarily bad tangencies), provided the noise level is suf-

ficiently small. Corollary 5.14 then states that (as one might expect) the noise reduced

trajectory begins on (or very near) the generalised stable manifold of the initial point of

the true trajectory, and ends on (or very near) the generalised unstable manifold of the

final point of the true trajectory.Both results, however, rely on the Condition 5.12 being

satisfied.When does this condition hold? Perhaps a better question to ask would be: How

could this condition possibly fail to hold? For a consequence of failure would be that the

errors at the initial and final points could growexponentiallyor even faster as the length

of the trajectory increases. This is certainly at odds with the numerical experiments of

Chapter 2, although these experiments are of course, not even remotely exhaustive. In

fact, this limited set of experiments suggest that the errors areboundedas the length of

trajectory tends to infinity, and this was proven for linear and linearised systems in The-

orems 5.7 and 5.10. Furthermore, by Bowen’s Shadowing Theorem ([8]), for sufficiently

small noise, there is auniquedeterministic trajectory that could produce any given noisy

trajectoryof infinite length. One would hope that a respectable noise reduction algorithm

would converge (pointwise, not uniformly) onto this uniquetrajectory as the length of

trajectory tends to infinity.

It seems reasonable therefore toconjecturethat for anyf possessing an invariant uni-

formly hyperbolic set (from which the time series was generated), Condition 5.12 is sat-

isfied. Another reasonable conjecture to make is that Condition 5.12 is not only satisfied

by such f , but Ωε (n) is in fact, bounded inn (for eachε small enough). The author

believes strongly that the first conjecture holds. However,it is possible that the second
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(strengthened) conjecture is not true in general. If this isthe case, then it may happen

that after gradient descent with small bounded noise, the initial and final errors might be

quite large. This is obviously less than optimal for the state estimation problem (see sec-

tions 1.1 and 1.3). An alternate gradient descent algorithm([28]) might therefore be of

use in this case. The idea here is to try to limit how far the gradient descent can “move”

each point of the trajectory being noise reduced, by replacing the determinism functionL

(defined in equation 1.1) by

L̃
(

x; x′
)

= L(x)+η
n

∑
i=1

∥

∥xi −x′i
∥

∥

2
,

wherex′ is the original noisy trajectory andη > 0 is an arbitrary weighting. Forη 6= 0,

there is no reason why the trajectory obtained after gradient descent withL̃ should be

deterministic, so to get a (nearly) deterministic trajectory, the algorithm is recursively

applied to the point reached after gradient descent, using smaller values ofη, until L is

satisfactorily small4. It is expected that (with an appropriate choice of weightingsη) this

algorithm should give a deterministic trajectory that is “close” to the original noisy one.

In a sense then, the question of whetherΩε (n) is in fact bounded inn or merely of sub-

exponential growth, is equivalent to there being a theoretical justification for considering

L̃ rather thanL.

How then, might one establish the truth or falsity of the conjectures of the previous

paragraph? The corresponding results for the linear and linearised systems was proven by

deriving the analytic bounds of Propositions 5.6 and 5.9. This derivation was made pos-

sible because the linearised gradient descent is equivalent to the action of an orthogonal

projection (by Proposition 5.1). This yields enough quantitative information to show that

the errors are uniformly bounded. It seems likely therefore, that to get such a bound for

the non-linear gradient descent, one must consider the stable manifolds (rather than the

stable eigenspaces) with respect to whichΦ behaves somewhat like a projection. It may

be true that for small enough noise, the local stable manifolds are uniformly Lipschitz

(as graphs of functions) with Lipschitz constants independent ofn, but it is not clear, as

4Note that the extra term added toL̃ removes thedegeneracyof the fixed point set. That is, the set of

fixed points of the gradient descent withL̃ is zero-dimensional, and so they are isolated (by the compactness

of M). Hence, the critical points of̃L could be found using an algebraic solver, rather than a differential

solver. With this in mind, this algorithm should be comparedto the algorithm of Farmer and Sidorowich

discussed in section 1.2
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yet, how to relate this idea to the curvature of the centre manifold. The author would like

to apologise for not pursuing this result further, pleadingtime constraints that force the

matter to remain in question at this point.
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Chapter 6

Conclusions

In this thesis, an algorithm for performing noise reductionwas introduced, discussed,

numerically tested, and an attempt was made to prove rigorously that the algorithm con-

verges onto the clean data except near the initial and final points, in the limit that the

number of data points used tends to infinity (and under additional mild assumptions). The

algorithm studied was the gradient descent algorithm. Specifically, it was shown that the

algorithm always reduces the noise level to zero, and that provided the data comes from

an invariant uniformly hyperbolic set for a discrete dynamical system, the noise comes

from a bounded distribution with sufficiently small bound, and Condition 5.12 is satis-

fied, then the possible noise-free data sets which could havegiven rise to the noisy data

(assuming observational noise) only differ significantly near the initial and final points

of the data set. It was argued that Condition 5.12 is in fact superfluous for uniformly

hyperbolic systems, and an idea as to how this might be shown,mentioned.

The thesis begins by introducing noise reduction in generalterms and its relation to the

problems of modelling and state estimation. The gradient descent algorithm is introduced

and compared with a couple of other simple “dynamical” noisereduction algorithms.

The motivation behind investigating the theoretical properties of the gradient descent al-

gorithm comes from the theory of indistinguishable states (in state estimation), so this

was briefly introduced. This was followed by some numerical experiments consisting of

applying the gradient descent algorithm to some simple non-linear maps (mostly the maps

of Hénon and Ikeda). These experiments gave an indication of what sort of results should

be expected for gradient descent, and also highlighted the importance of hyperbolicity

and tangencies. In particular, it was shown that tangenciesprevent the gradient descent
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algorithm from achieving noise reduction, essentially because a tangency usually implies

the presence of a (non-trivial) nearby homoclinic intersection point of generalised stable

and unstable manifolds. It was further argued, on the basis of indistinguishability, that

such tangencies will prevent noise reduction for any given algorithm, and that therefore,

to show that noise reduction is always achieved, it is necessary to restrict attention to

systems which do not exhibit tangencies.

The numerical experiments with tangencies also showed thatin order to avoid homo-

clinic intersection points, it is necessary to consider small noise levels only. Specifically,

the noise should be smaller than the distances between homoclinic intersection points.

It was therefore argued that because the allowed noise levels correspond to neighbour-

hoods where one would expect the non-linear dynamics to be qualitatively similar to the

linearised dynamics, it should be possible to prove the result about noise reduction for a

non-linear system, by investigating what happens for the linearised system. However, the

systems of interest do not generally consist of dynamics around a fixed point, for which

the linearisation theory is well known (in the form of the Hartman-Grobman Theorem).

Therefore, a more general linearisation theory had to be introduced. This took the form

of a generalisation of the Hartman-Grobman Theorem to invariant uniformly hyperbolic

sets.

The investigation of the gradient descent algorithm was then initiated. The algorithm

itself amounts to solving a differential equation (with respect to time say) and computing

the limit, as time tends to infinity, of the solution. It was shown that the linearised gra-

dient descent algorithm (formed by linearising the differential equation about any fixed

point) was equivalent to projecting orthogonally onto a subspace corresponding to tra-

jectories of the linearised dynamical system. Using this result and general results from

stable manifold theory, it was then shown that the non-linear gradient descent algorithm

has to converge onto a noise-free trajectory. The gradient descent algorithm was then

investigated for a hyperbolic linear dynamical system, andusing the equivalence with an

orthogonal projection, analytic bounds were derived at each point for the errors between

the trajectory given by the algorithm, and the true trajectory. These were shown to imply

that for a linear dynamical system, the errors converge to zero everywhere except near the

initial and final points of the trajectory, as the length of the trajectory tends to infinity.

After proving this result, it was a simple matter to pass to the corresponding result for
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the linearisation of a hyperbolic dynamical system (using the Multiplicative Ergodic The-

orem). To generalise this to non-linear hyperbolic systemsproved more difficult however.

Mimicking the idea behind the proof of the Hartman-Grobman Theorem, a diagram was

constructed around the non-linear and linearised gradientdescent algorithms and func-

tions sought to make this diagram commute. It was shown that there are many ways to

do this, but that there were choices for the functions that were particularly convenient. In

particular, corresponding to each point of the trajectory,it was shown to be convenient to

choose the homeomorphism (guaranteed by the generalisation of the Hartman-Grobman

Theorem) effecting the qualitative correspondence between the non-linear and linearised

dynamics around that point. The homeomorphisms were actually shown earlier to pro-

vide a quantitative correspondence (in the form of Hölder continuity), and so the analytic

bounds derived for the linearised system can be extended to deal with these homeomor-

phisms. It remained to choose a function which transformed the non-linear flow into a

linearised flow. The functions that do this were shown to havean explicit form, and a

convenient representative was chosen. Under the assumption that the non-linear gradient

descent satisfies Condition 5.12, the commutative diagram was then shown to extend the

analytic bounds derived for the linearised system to the full non-linear system.
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