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Abstract

This thesis presents the computation and investigatiohetharges and the corre-
sponding charge groups for untwisted symmetry-presemibganes in a Wess-Zumino-
Witten model over a compact, connected, simply-connediuple Lie group. First,
some general ideas from conformal field theory are revieweddaplied to Wess-Zumino-
Witten models. Boundary conformal field theory is then idtroed with the aim of de-
riving the Cardy constraint relating the consistent boup@anditions to fusion. This is
used to justify certain dynamical processes for branekedabndensation, which lead to
a conserved charge and constraints on the correspondirgeoip@up (following Freden-
hagen and Schomerus). These constraints are then usedrnmhetthe charge groups for
untwisted symmetry-preserving branes over all compacineocted, simply-connected,
simple Lie groups. Rigorous proofs are detailed for the LaugsSU (r + 1) andSp (2r)
for all ranksr, and the relevance of these results to K-theory is discusBeese proofs
rely on an explicit presentation of the corresponding fasings (overZ), which are also
rigorously derived for the first time.

This computation s followed by a careful treatment of thesg¥&umino-Witten model
actions; the point being that the consistent quantisatasagigm developed can also be
applied to brane charges to determine the charge groups.udind (string-theoretic)
D-brane charges are introduced, and are proved to exaptlgdece the charges of Fre-
denhagen and Schomerus when certain quantisation efiecty@ught into play. This
is followed by a detailed investigation of the constraimduced on the corresponding
charge groups by insisting that the string-theoretic abstge well-defined. These con-
straints are demonstrated to imply those of FredenhageSeamaimerus except when the
Wess-Zumino-Witten model is over a symplectic Lie grofp(2r). In the symplectic
case, numerical computation shows that these constraant$e strictly stronger than
those of Fredenhagen and Schomerus. A possible resolstioffiered indicating why
this need not contradict the K-theoretic interpretation.
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CHAPTER 1

Introduction

1.1. Background and Motivation

Wess-Zumino-Witten models are examples of string thepalkisough they need not
necessarily satisfy all the consistency conditions tha expects 90, 131, 137. The
string field is given by a mag from the string worldshe€eX to the target space. This
is illustrated in Figure 1.1. What distinguishes Wess-ZwrWVitten models, and makes
them particularly tractable, is that the target space isutigerlying manifold of a Lie
groupG. This tractability allows for a more detailed study of varsoaspects of string
theory than is usually possible on a topologically nonittitarget space. These models
also provide convenient examples for testing new ideagiimgstheory. The action gov-
erning Wess-Zumino-Witten models will be constructed irafter 6 (where the reasons
for their appellation will also become evident).

As string theories, Wess-Zumino-Witten models should b#amnally invariant on
>. That is, these models should define a conformal field theomhe string worldsheet,
and this is also referred to as a Wess-Zumino-Witten modeds& theories have a special
place in the study of (two-dimensional) conformal field thes. They provide relatively
accessible examples, with an extended symmetry algebtastiary well understood.
Moreover, it is widely believed (though no proof has beere@t) that Wess-Zumino-
Witten models are the fundamental building blocks out ofalirall rational conformal
field theories may be constructed (using the coset congiruahd “orbifolding” [87,88]).
Wess-Zumino-Witten models will be introduced as conforfreddl theories in Chapter 3.

Both closed and open strings propogating on the Lie giG@upay be described by
Wess-Zumino-Witten models. In the case of open striiggs a (non-trivial) boundary,
and it is necessary to impose boundary conditions at theaamidan order to define the
action consistently. The allowed boundary conditions mayassociated with subspaces
of G on which the open string endpoints are constrained to lid,these subspaces are
known as Dirichlet-branes (D-branes, or just branes, fortyh The consistency of the
open string action endows these branes with an interesaomqgtric structure, but this
becomes trivial when pulled back to the worldsheet. In thda@wonal field theory, branes
are only evidenced by the corresponding boundary conditas.

Branes, as extended objects, were first considered in theigihties. It was quickly
realised pQ] that these extended objects should be treated as dynaotigadts in their
own right (in some more elaborate theory). With the adverthef(still mysterious) M-
theory, a setting was established to consider brane presdéssugh various dualities,
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<>
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FIGURE 1.1. A schematic illustration of the string fiegdfrom the string
worldsheetx to the target space (Lie grouf) An example of a closed
string worldsheetd> = 0) and an open string worldsheetX £ 0) is
given.

and thence conserved charges. In particular, Polchidgd used T-duality to identify
D-branes as the missing sources of (Ramond-Ramond-)civatgpe Il string theories
on aflat space The brane charge then took the fori3()

Q=[ ¢,
brane
whereF is a “U(1) field strength” (closed 2-form) on the brane. This suggéststirane
charges should be classified by some cohomology group.
This conclusion was extended to curved spacesB#h]17. On the basis of the
cancellation of a certain quantum anomaly, it was suggédbtdthe form of the brane

charges must be generalised to

Q= eF —3C1(N(brang) A (T(brang)

brane i*\/A (T(space)

Y

whereT(-) andN(-) denote the tangent and normal bundles (respectivelg)the in-
clusion of the brane into the space, and- andA (-) denote the first Chern class and
the A-roof genus respectively (Appendix C.2). When spacelise group, this may be
substantially simplified (see Section 7.1.3).

This expression for the brane charges may look rather impgasiall its generality,
but it turns out (as remarked by Kontsevich and Segal) tHesta natural interpretation
in terms of K-theory. Namely, that the integrand is the imagder a modified Chern
isomorphism of the class(E), wherei, is the (K-theoretic) Gysin map associated with
andE is the vector bundle defining the geometric structure of tla@é. In other words,
this result suggests that brane charges are more natutaflgifted by some K-group
rather than a cohomology group.

Of course, the charge definition given above is written imteof forms and therefore
involves (real) deRham cohomology. The above K-theordiseovation then holds over
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the real numbers (and K-theory is isomorphic to deRham cathagy in this case). How-
ever, quantisation is generally expected to lead to a quoreting quantisation of charges,
in particular, to integral charges. In the fully quantiskddry, it is therefore reasonable
to suppose that brane charges are valued in some (integgadp. The question is now
to determine which one.

In [163, Witten proposed various K-groups for the various strihgdries, and in
particular, proposed that in the presence of a “Neveu-Schiadield”, the brane charges
should take values intavistedK-theory. Specifically, such a B-field has a globally defined
field strengtiH which represents a degree-3 class in conomology. Whenl#ss is pure
torsion, Witten describes a twisted K-theory which is theoppsed to classify brane
charge. In a Wess-Zumino-Witten model on a simple Lie graugh a field strengthi
naturally arises (Section 6.2.2), but the correspondirfgpomlogy class is not torsion.
Generalising Witten’s proposal to arbitrary field strersgtBouwknegt and MathaBf]
proposed that brane charges should actually be classifidteld§-theory of a certain C
algebra. This K-theory was first constructed by Rosenberg jsaalso known as twisted
K-theory. Their proposal reduces to that of Witten when tbleatnology class oH is
pure torsion.

Subsequently, a dynamical process for branes called ceatien was investigated
by Alekseev, Recknagel and Schomerbjs Applying this process to certain branes in a
Wess-Zumino-Witten model, Fredenhagen and Schomég}svere able to derive con-
straints that any brane charge must satisfy. These comstsaelded a remarkably simple
expression for the charge, and for the models based on thgrbig SU (r + 1), were
used to predict the form of the group that the charges takeesah. In other words, the
analysis of this charge and constraints led to highly namatrpredictions for the twisted
K-groups ofSU (r +1) (only the twisted K-group for = 1 was at that time known),
assuming the proposed classification of brane chargesrisotor

A primary motivation for the work of this thesis is to exterttetanalysis of the
constraints of Fredenhagen and Schomerus to other WessdWitten models, and
therefore derive predictions for the corresponding tvddtegroups. These predictions
are not only of interest in themselves, but provide nondtighecks of the proposal of
Bouwknegt and Mathai when the K-groups are rigorously caengbu It is also worth
pointing out that the conserved brane charges construgt&éddalenhagen and Schome-
rus bear little resemblance to the string-theoretic cladigcussed above. Another mo-
tivation for this thesis is then to investigate the relasioip between these charges, and
thus link the charges of Fredenhagen and Schomerus withrdpeged twisted K-theory
classification.
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1.2. Overview

This thesis consists of a detailed study of conserved chamecertain branes in
Wess-Zumino-Witten models. To be specific, the branes tilbbe/studied are thein-
twisted symmetry-preservirigirichlet-branes, defined in Sections 3.2.4 and 6.3.2, and
the Wess-Zumino-Witten models will describe orientednsgfsi propagating on a com-
pact, connected, simply-connected, simple Lie grGuf he following chapters give an
account of my original research, published 88,[35], as well as unpublished material
which will be described below. For motivation, personalsies, and some measure of
completeness, this thesis also contains reviews of ceataiss. | hope that the approach
taken in these reviews will not detract from the thesis as alevhindeed, | would like
to think that | have attempted to introduce the necessargeqs and theory in a manner
which complements, rather than reiterates, the treatmenke literature, at least when
not inconvenient.

My publications are divided in their different approache#te study of brane charges
in Wess-Zumino-Witten models. Accordingly, this thesisligided (perhaps artifically)
into an account of the approach via conformal field theory laedalgebras, and an ac-
count of the approach via the global topology of Lie groupke Tormer (which | have
designated thalgebraicapproach) constitutes Chapters 2, 3, and 4, with the exarepfi
Sections 4.1.1 and 4.3.2, and the latggdmetricapproach) constitutes Chapters 6 and
7. The interlude, Chapter 5, is dedicated to the study obfugi Wess-Zumino-Witten
models. The reader could treat this as an appendix to thalattins of Section 4.2, but
| prefer to believe that its results are of significant ins¢r@ themselves, and therefore
warrant their inclusion as a separate chapter. Of coursediyng the divisions outlined
above, the occasional forward reference becomes unaveidelopefully, this will not
prove troublesome — this thesis is not intended to be readinaly sequential manner.

Chapter 2 gives a brief account of the principles of confdifireéd theory which will
be used in the chapter following. It serves to establish tt@ton (and conventions)
which will be used, and most importantly, motivates thedagprocess which proves to
be of fundamental importance to this thesis. Instead obfahg the example-oriented,
field-theoretic approach to conformal field theory that igqulious in the literature, this
chapter introduces the relevant theory in a represent#tieoretic manner. In particular,
fields are introduced as an auxiliary (though highly usetoistruct through the state-
field correspondence of the theory of vertex operator alggebt believe there is some
advantage in such a description, in that by concentratiage¢hders attention on repre-
sentations from the start, the idea of null fields (and theetation function constraints
they impose) becomes transparent. Of course, this is memalgtter of taste.

In any case, Chapter 3 introduces the Wess-Zumino-WittedetsmnG as conformal
field theories. As a detailed discussion of the defining actibthese models requires
topological notions, these models are definegbgtulatingconserved (chiral) currents,
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which take values irg, the Lie algebra ofs. From these, the symmetry algebra is de-
rived and an energy-momentum field is constructed, whicligerthe conformal nature
of Wess-Zumino-Witten models (these computations aredstal). After establishing the
representations comprising the quantum state space, tioa 10d fusion for these models
is examined as in Chapter 2. In particular, the concept ofseofumultiplicity is thor-
oughly scrutinised.

The second half of this chapter deals with boundary confofield theory. The con-
formal boundary condition is introduced and the consisbenindary conditions on the
Wess-Zumino-Witten conserved currents are derived. Thesadary conditions corre-
spond to branes as will be explained in Chapter 6. The focukisfthesis is on those
boundary conditions which preserve the maximal amount airsgtry, and these are
shown to be locally constant boundary conditions assatiaith automorphisms of.
Quantum states satisfying these boundary conditions aregbught, following the sem-
inal work of Ishibashi and Cardy. However, | have chosen faieitly search for such
states in the space dual to the quantum state space. Rahagitle a solution which may
be then be verified, it is quite easy to derive the solutiordistsibutions (functionals) in
all generality. The chapter concludes with an account ofiZarconstraint, linking the
consistent functionals with the fusion multiplicities @eneralisations thereof).

Chapter 4 begins the study of brane charges. | start by bsk#{ching some of the
work of Alekseev, Recknagel and Schomerus on brane dynamigarticular, the process
known as condensation. This process may be related to trenfosultiplicities through
Cardy’s constraint. This is followed by a more detailed act®f the charges conserved
under brane condensation, and leads to what | have callefdiglen constraints on the
charge groups. These constraints are due to Fredenhag&thonherus, and | give their
result for the charge group of a particular class of branehemie groupSU (r + 1).

Sections 4.2 and 4.3 then describe the research publisiig8iifter abstracting the
above approach to charge groups, | show how an explicit kexygé of the fusion ring of
the Wess-Zumino-Witten model may be used to compute theelrharge group. Using
the fusion potential of Gepner, | detail this computation e Wess-Zumino-Witten
models ovelSU (r + 1), easily reproducing the result of Fredenhagen and Schaméru
also show how an omitted step in their derivation can be tove

A fusion potential for the Wess-Zumino-Witten models ovee symplectic groups
Sp(2r) is also well-known. | then use this to compute the correspancharge groups in
this case. Unfortunately, no analogous fusion potentipéaps to be known for the other
compact, connected, simply-connected, simple Lie grolus.these cases, | therefore
present the charge groups which were suggested by extemsmerical computation.
This is followed by an investigation of the symmetries olsdrin these brane charges,
and a brief discussion of the implications of these chargeps for twisted K-theory.

Chapter 5 is devoted to a detailed study of the fusion pracea&ess-Zumino-Witten
models over compact, connected, simply-connected, sikiplgroups. In particular, to
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studying the fusion potentials which were used in Chapterebmpute the brane charge
groups. | begin with a simple discussion of the fusion miittipes, and prove the Kac-
Walton formula and a result of Gepner in a manner | think igejtiansparent. | then
discuss fusion potentials and some related, rather umfaigy shortcomings in the litera-
ture. In particular, | point out that the frequent assertlat Gepner’s result characterises
the fusion ring is incorrect, even when the scalar ring iscttiaplex numbers

Section 5.3 consists of my solutions to these shortcomingse a little commutative
algebra to write down a quite general presentation for ts@furing (over the integers).
For SU(r +1), | then show how the theory of symmetric polynomials lets merite
this presentation in a form equivalent to that given by theidn potential. Fo6p (2r),
the same technique works using a well-known generalisatidhe theory of symmetric
polynomials. It follows that in both cases, | have a rigoralgsivation of the fusion
potentials (ovefZ) from general principles. | am not aware of any similar (ctetg)
rigorous derivation, or even verification, in the literauil hese derivations are followed
by logically independent verifications that these fusioteptals correctly describe the
fusion process ovet. Of course, this is already implied by the result o%erHowever,
these (complete) verifications extend the usual procedured in the literature and so
should be of interest in their own right.

Section 5.4 then discusses how these rigorous results megtgralise to the other
compact, connected, simply-connected, simple Lie grolibs grew out of my attempts
to find justifications for the numerically found brane chagyeups of Chapter 4. How-
ever, for the derivations ovéf, a (seemingly undiscovered) generalisation of the theory
of symmetric polynomials appears to be needed, and©yvkshow that the type of fusion
potential which worked beforeannotwork generally for any other case. Sections 5.3 and
5.4 therefore constitute original research, but this ha$een published as yet.

In Chapter 6, | finally begin the geometric approach to Wessyno-Witten models
(as oriented strings). Here the closed string action istcocied and the terms of this
action balanced so as to get the conserved currents pestutaChapter 3. In keeping
with the spirit that this approach must take matters of glabpology into account, |
develop a“global” variational method. Again, this is pyralmatter of taste, but I find that
this method emphasises the mathematical structure anslieaaore concise derivations.
For later purposes, | spend some time on the topologicatadies in defining the action,
and in particular evaluating its ambiguities and their @mpgences.

1} should point out, however, that Gepner’s original chageisation in B3] is completely correct when the
scalar ring isSC. One typically uses this characterisation to verify a desion of the fusion process (by

a fusion potential for example). However, in every case ttaah aware of (including the original), this
verification doesiot seem to have been properly completed. What is generallyccalcharacterisation of
the fusion ring in the literature, and attributed to Gepiseonly a partial characterisation, and this is what
| am saying is incorrect. Here, Theorem 5.4 is equivalentéprir’s original result and does characterise
fusion overC. For application to brane charges, a characterisationsiéfuover the integers is required,
and | indicate immediately afterwards how Gepner’s resuttxitended in this case.
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This action is then generalised to open strings which cpared to the boundary con-
formal field theory description of Chapter 3. The form of treubdary term that must
be added to the action is motivated by a careful consideratfchow the original ac-
tion can be defined in this case. The boundary conditions afp€in 3 then lead to the
geometric interpretation of (Dirichlet)-branes, and isi®wn how each boundary condi-
tion specifies the boundary term of the action (and conwgrséhtriguingly, | show in
Proposition 6.3 that when the boundary condition is locadiystant and associated with
an automorphism of (as was required to preserve the maximal amount of symmetry)
the construction of the open string action is internally sistent. For a general bound-
ary condition, this construction seefite be inconsistent, and | give an example which
demonstrates this. As before, | finish by carefully exangrtime ambiguities inherent in
defining this action, and their consequences.

Chapter 7 consists of a discussion of brane charges andeotparngps in this geometric
approach. Except where explicitly indicated (descripgian other’s work), this entire
chapter constitutes original research, much of which haea@d in 5. | begin by
noting that the results of the previous chapter are sensiclals and that in the quantised
theory, one expects certajuantum shiftsOne of these is standard and well-known, but
there is a second which seems to receive far less attentorittehould. This is puzzling
as the two naturally go together from a Lie-theoretic pointiew. | follow this with a
detailed study of flux stabilisation. The physical intetpt®n of this is not dwelt upon,
being adequately described in the literature, but | go toestnouble to define what this
means mathematically. In particular, it turns out that tth@)-flux describing this can
only be defined up to an easily characterised ambiguity.

The brane charge obtained from thig1)-flux (a la Polchinski) is then evaluated
for SU(2). Including both quantum shifts yields the same charges and charge groups
that were obtained in Chapter 4. The same is true if only thedstrd quantum shift is
used, but the modified brane charge of Minasian and Moore=d instead. | extend this
coincidence of charges by computing themSoi(3) using Schubert theory, again finding
that both geometric charges (incorporating the apprapgaantum shifts) coincide with
the algebraic charge. In Theorems 7.2 and 7.4, | prove thawously for all compact,
connected, simply-connected, simple Lie gro@ps Demonstrating that the algebraic
charge of Fredenhagen and Schomerus coincides with theseetygc charges fills what
| believe is an important gap in the literature.

This demonstration is followed by a detailed examinatiothefambiguities inherent
in the geometric charge definitions. In particular, | shoat tihere are ambiguities which
induce constraints on the brane charges which are equivimehe fusion constraints
of Fredenhagen and Schomerus, but only wkeis not symplectic. In addition, the
ambiguity in theU (1)-flux yields constraints on the geometric brane chargestwaie
2Boundary conditions that are not associated with automenphdo not necessarily lead to inconsistent

actions, but it appears that most boundary conditions kead inconsistency. Unfortunately, | have not had
the time or opportunity to pursue this intriguing result.
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strongerthan the fusion constraints whénis symplectic. | finish by evaluating these
stronger constraints and the charge groups they suggest.

The thesis concludes with three appendices on Lie theorpeAgix A summarises
some aspects of the theory of finite-dimensional simple lgel@as which are used
throughout the thesis. Appendix B does the same for thegoreding infinite-dimensional
affine Lie algebras, as their theory is fundamental to Chia@end 4. | have taken some
trouble to make clear the structure of the group of affine maomorphisms, its action
on the weight space of the horizontal subalgebra, and asioelto the affine Weyl group.
Unfortunately, it is not hard to find misleading and even ee@us statements in the liter-
ature concerning these points, so | thought it best to irchagt own understanding, as |
use these results in Section 4.3.

Appendix C gives an account of some useful aspects of theyleacompact Lie
groups. In particular, | give a detailed account of the adisters of points in a compact,
connected, simply-connected, simple Lie grdulp The corresponding quotient spaces
are the conjugacy classes®f(which are the worldvolumes of the untwisted symmetry-
preserving branes), and | show that there exist conjugassek with torsion homology
(refuting another claim commonly found in the literaturié)s also convenient to include
a few standard results from topology here, and collect a fegful results which | have
used in the main body of the text.



CHAPTER 2

Conformal Field Theory

This chapter presents a brief introduction to some of theciples of conformal quan-
tum field theory. It is not meant to constitute a comprehensaview, but is meant to
refresh the readers memory and to establish notation usedie¢re in this thesis. In
particular, one goal is to introduce the fusion process hiitl form a basic tool in what
follows. There are several reviews of this subject avadablvarying degrees of sophis-
tication [68, 74,86, 141]. The text B1] is an excellent source for much of the field, and
other treatments which emphasise different ideas may bedfou[102 103 106 143).

2.1. Conformal Invariance

2.1.1. Conformal Symmetry. A relativistic quantum field theory is generally ex-
pected to be invariant under the isometry group of the mét28. When the metric
is that of Minkowski space, the group of such transformatisnknown as the Poincaré
group, the (semidirect) product of the spacetime trarmsiatwith the group of Lorentz
transformations. There are, however, field theories adgithore general symmetries.
In particular, free massless theories are (in certain dgio@s) invariant under transfor-
mations which preserve the metric up to a non-zero scalictifgwhich is generally a
function of spacetime). It follows that such transformatigpreserve the “infinitesimal”
angle between two curves; accordingly, they are terowedormal transformationsand
constitute the group of conformal isometries of the spawe{in general, of a riemannian
manifold), hereafter referred to as the conformal group.

As with the Poincaré group, the conformal group of a giveamannian manifold
may often be described explicitly. A first step towards sudescription is to determine
the infinitesimal conformal transformations, that is, theneents of theconformal alge-
bra. For euclidean or Minkowski space of dimensibr- 2, one finds that there are ex-
actly 3 (d+ 1) (d +2) such linearly independent infinitesimal transformatictl[ 143.
Amongst them, the infinitesimal generators of the Poingao&ip may be distinguished,
as well as a generator corresponding to a dilation. The gffveerators are termed “spe-
cial”. Whend = 2, the situation changes unexpectedly, and one finds antenfinimber
of independent generators. In particular, when the metag duclidean signature, the
condition for an infinitesimal transformation to be confalnmay be interpreted (with
the aid of a complex structure) as the Cauchy-Riemann emsafamiliar from complex

9
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function theory. As is well knowr], the solutions to these equations consist of holomor-
phic and antiholomorphic functiohévhence the infinite-dimensionality of the conformal
algebra).

It should be mentioned that the dimension of the conformalgrneed not coin-
cide with that of the conformal algebra. Which infinitesinransformations lift to well-
defined group elements is generally determined by the gtopalogy of the riemannian
manifold. For example45], on the riemannian manifol@, invertibility restricts the con-
formal transformations to those of the fomm— az-+ b, wherea,b € C anda # 0 (and
the analogous antiholomorphic transformations). On tlerRinn sphere, the conformal
transformations are more numerous, taking the form
az+b
cz+d’
(again with the analogous antiholomorphic transformatjorowever, the formalism of
Noether symmetries only makes use of infinitesimal symmgtrso for field-theoretic
purposes, one may safely ignore these topological rastig{at least to a large extent),
and work with the conformal algebra directly.

As such, it is prudent to determine the Lie algebra structirthe conformal al-
gebra. ForRY with d > 2 and signaturép,q), the conformal algebra turns out to be
so(p+1,g+1). Inthe more interesting two-dimensional (euclidean) caise infini-
tesimal elements are naturally expressed as vector ffalddz+ fd/dz, wheref and
T are, respectively, holomorphic and antiholomorphic. Deért, = —z"19/dz and
lh = —2"19/0z for n € Z, one finds that the (complexified) conformal algebra is (a
topological completion of) two copies of tWitt algebra

[ln, m] = (N—mM) nim, [fnazm} =0, [Znazm} = (n—m) Zn+m-

Z—

wherea, b,c,d € C andad —bc+# 0

The real conformal algebra is spanned by the combinatigns, andi (¢, — ). How-
ever, it is convenient to work with the complexification in attiollows.

In a conformally invarianguantunfield theory, symmetry generators get promoted to
operators on the quantum state space. One might therefpeetethat the quantum state
spaceS admits a representation of (two copies of) the Witt algelbtawever, quantum
states are only defined up to a non-zero complex multiplet iShténe quantum state space
proper is projective in nature. Technically then, it is thisjective spacés that admits
a representation of the Witt algebra. Of course, one usualh«s with the quantum state
space as a vector space, rather than as a projective spatés sonvenient to lift this
“projective” representation fror®S to 8. One finds howeverll, 143, that a projective
representation may be lifted to a representation cératral extensiowof the Witt algebra

170 be precise, the solutions consist of functions which mafotmally viewed as depending only on the
complex variable or its conjugate (here given the status of independent variables), or liceabinations
thereof. In the physics literature, such functions arerreteto as being holomorphic or antiholomorphic
respectively. This conflicts with the usual mathematicéihitéon wherein holomorphic equates to analytic
— physicists certainly allow their holomorphic functiomshtave poles (and monodromy). This thesis will
follow the convention of the physics literature.
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on the vector space of quantum states. This leads to a repaé&sa ons of (two copies
of) the unique 16, 101] (up to isomorphism) non-trivial central extension of thettw
algebra, th&/irasoro algebra(denoted byJir):

Here,C is the central element &it, and the brackeﬁ-, ] is the commutator ifend S (to
be distinguished from an abstract Lie bracketC ikere represented by the zero operator,
then this would reduce to a representation of the Witt algebr

2.1.2. The Quantum State SpaceThe quantum state spa8ds therefore a (com-
plex) vector space admitting a representation of two copi¢lse Virasoro algebra. One
now imposes the physical expectation that this representst unitary, and that there is
a unique quantum state of minimal energy. Here, unitary méaatsS admits an inner-
product, (-,+), and that¥ir ® Vit admits an antiautomorphism which is represented in
End$ by the hermitian adjoint, denoted By The energy operator in a conformal field
theory is given by the combinatidm + L (by which is meanty®id +id ®Lg). Implic-
itly, this combination must be a self-adjoint operator&rwhose spectrum is bounded
below by a simple (unit multiplicity) eigenvalue.

It is standard practice in conformal field theory to compieteparate the holomor-
phic and antiholomorphic components of the theory. Eachikdhen referred to as a
chiral theory. In particular, one supposes that the abowsiderations apply to each
chiral half separately, so that the quantum state spacengeuses §ssuming complete
reducibility®) into

s=PMavy),
N
whereV; andV; are unitaryUit-modules. It is also standard practice to now work with
quantities from a single chiral theory (for notational cenience), trusting that the ex-
tension to the full theory will be clear from the knowledgevdiich 'V, is tensored with
whichV; (this knowledge is the content of tineodular invariant— see Section 3.1.3).

The adjoint in the chiral theory is given lhy, = L _,, andC" = C, so the chiral energy
operator may be taken as the (self-adjoirt) Requiring the spectrum to be bounded from
below by a simple eigenvalue is therefore equivalent toiraguthat theV; arehighest

20f course, the quantum state space may be completed witbatetgpthe metric induced by this inner-
product to get a bona-fide Hilbert space. As questions ofltgcal completion have thus far been ignored
(as in the relation of the Witt algebras and the conformaglaitg), it is not clear that one must define the
gquantum state space to be a Hilbert space. Indeed, it seassnable to suppose that there is a nuclear
topology [18, 81, 82] with respect to which one should complete (to getgmed Hilbert space). Such a
topology allows for desirable continuity properties of th@bounded operators one typically deals with in
quantum theories. As such, questions regarding the catytiofiquantum fields will be ignored in this
thesis.

3Relaxing this assumption somewhat leads to the considerafi so-calledogarithmic conformal field
theories Q).
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weight Uit-modules, and that over ail] there is a highest weight vector of minirfal
energy, thevacuum This minimal energy must be at least O (for unitarity), sevacuum
is usually assumed to have zero energy. It is traditionaiyaded by |[0). One usually
demands that the vacuum is unique in the full theory, meathiagO)  |0) is the unique
(up to constant multiple) eigenvector of the total energgrafor,L o+ Lo, with eigenvalue
0.

The restriction to unitary highest weight modules is of samathematical interest.
Highest weightit-module$ are (partially) characterised by the eigenvalue€ ahdLg
on the highest weight vector. These eigenvalues are regpgalenoted by andh; c is
the central chargeof the module, andh is its minimal energy. In fact, these parameters
fully characteriseunitary highest weightUit-modules in the following sensd (1]: If
there exists a unitary highest weidghitt-module of giverc andh, then it is unique (among
such modules) and irreducible. It is necessary for unytdhniatc andh be non-negative
real numbers, though this is not sufficient. Indeedgcfer0, there is only oné for which
the irreducible highest weight module is unitany= 0, and this module is trivial (which
is why it is the non-trivial central extension of the Witt aelga which plays the starring
role in conformal field theory).

In summary then, the quantum state space of a (two-dimealyioanformal field
theory is expected to have the form

s~ (vc,h ®vt7ﬁ> : (2.1.2)
c,h,ch
whereV, 1, is the unitary (hence irreducible) highest weidfit-module of central charge
¢ > 0 and minimal energyn > 0. The combinatioV; o ® V0 appears exactly once in
Equation (2.1.2), and the corresponding highest weighbvésthe vacuum of the theory,
10) ®|0).

Of course, it is likely that any given example of a conformalditheory will have
symmetries more general than the conformal symmetriegestirathis section. This will
be the case for the theories introduced in Section 3.1 amlikestin the remainder of this
thesis. In this case, one expects that these symmetrie® @afimfinite-dimensional Lie
algebra “extending” the Virasoro algebra, and that the tjuarstate space decomposi-
tion, Equation (2.1.2), may be reorganised into unitargducible highest weight repre-
sentations of thisymmetry algebraOf course, these representations must also admit an

“This matching of highest weight vectors with minimal enesgs another unfortunate result of the standard
conventions employed in the literature. Lowest weight meslwould be more consistent with this physical
intuition, but Lie theorists (arbitrarily) have traditiatly worked with highest weights. In any case, it is not
difficult to remember, but it is annoying.

SIn this thesis, a keft) will be used to denote vectors in the quantum state spacebiBhe then denotes
the linear functional taking value 1 on the correspondingmeand 0 on any vector orthogonal to it (with
respect to the appropriate inner product).

6 highest weight module is defined to be a quotient module ot module$9]. The direct sum of
two such modules is therefore not considered to be a highegtivmodule, even though it may possess a
highest weight.
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action of the Virasoro algebra, and may in turn be decompogedgenerally infinitely
many) irreducible highest weight representation®odf.

2.1.3. Conformal Fields. Thus far a conformal field theory has been seen to possess
two sets of linear operators, each forming a representafitite Virasoro algebr&it on
the state spacg, which is composed of unitary highest weighitt-modules. The field
content of the theory is na priori evident in this abstract construction. In examples
however, one generally encounters the fields first througimgation of (for example) a
classical field theory defined by a lagrangian. Fields areetbee operator-valued func-
tions (more generally, distributions) on the classicakspiane. One usually then defines
the symmetry algebra by considering the Noether chargessymynding to conserved cur-
rent fields, and the state space is determined by asking ¢msaing) which other fields
are allowed in the theory.

This last point suggests that there should be some kind oéspondence between
the states and the fields of the theory. This is unimaginigtieemed thestate-field cor-
respondencéand has been elevated to the status of an axiom in the théorgriex
algebras 100)). Without being too precise a chiral statgy) € S of definite energyh
corresponds to a chiral fielg (z) of the form

Y@=Sunz"",  yYh€EndS

(in the full theory, one would include an antiholomorphipdadence). The fielg (z) is
said to haveonformal weight hThis correspondence is then extended to general states in
8 by linearity. Generally, the fielg (z) determines the statgy) through the relationl[0Q

PO =ty = im0 =y). (2.1.3)

Fields are therefore regular at the origihen applied to the vacuur@onversely, a state
|@) determines a unique fieldi () if it is agreed that all fields corresponding t&® be
considered equivalent (to the zero field). Such fields ateaalll fields and in this way
are quotiented out of the theory. Note that the vacuum cporeds to the identity field.

To illustrate this correspondence, consider the (holommacjdield constructed from
the Virasoro operatofis,, T (z) = ez Ln z "N In simple examples (which are derived
from actions), this field may be identified with the holomagbomponent of a quan-
tised version of the classical energy-momentum tensorcghéime customary labelling
T (2) rather than the more logichl(z)). To determine which quantum state this field cor-
responds to, consider limoT (2)|0) = lim, .03 hezZ ""Ln|0). As the vacuum vector
is a highest weight vector of minimal energylQ,|0) automatically vanishes far > 0.
Additionally, ||L_1|0)||? = 0, so (by unitarity)Ln|0) in fact vanishes fon > —1. Now,

To be somewhat more precise, a figldz) is a formal power series inwhose coefficientay,, are linear
operators or$ which satisfy the following condition: For evety) € 8, there is arlN such thatn |@) = 0
whenevemn > N. This last condition is necessary in order for various paotslof fields to make sense. In
fact, one also allows monodromy around the origin, so theguewfz which appear need not be integral.
Such fields should therefore be properly defined on an apigtefRiemann sheet.
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L 2/0)[2=3c>0, 50
imT (2)[0) = lim [zz’hL_z\O) +23 L 500+
z—0 z—0

It follows that the limit will only exist, and be non-zero, lif= 2. Thereforé, the field
T()= 5 Laz™? correspondstoL 2|0) €. (2.1.4)
neZ

In this case, the field corresponds to an element ofdiixemodule whose highest
weight is the vacuum. Generally, this need not be the case. détomposition of the
state space into highest weight modules distinguishesinefields, namely those that
correspond to the highest weight vectors. Such fields atedqalimary fields all others
aresecondary Thus, the identity field is primary whereas the energy-munma field is
secondary.

2.1.4. Radial Ordering and Operator Product Expansions.Consider a holomor-
phic conformal fieldy (z) of conformal weight. Its expansion as a serieszsuggests a
formal expression for the moddgs, as a contour integral:

V=S = = fe@z i
The label 0 on the contour integral indicates that it is tadesr a circle around the origin
(on the appropriate Riemann sheet). If, in a classical fagjean theoryp (z) corresponds
to a conserved current, then one expects to be able to forseoaed charges by integrat-
ing the current over space. The modgswould seem to present themselves as obvious
candidates for such (quantised) charges. Indeed, the nmagbe so interpreted in the
following framework. Here, the (compactified) space diniemss defined to run in the
angular direction of, and time runs radially with the origin corresponding to ithiite
past. The quantisation of the original classical theoryfisroperformed in this frame-
work, and is then known amdial quantisation

This framework also provides a nice interpretation of trabpem of ordering products
of operators in the quantised theory. The time-orderinglfanirom quantum field theory
is transformed intoadial ordering*®:

Y2 p(w) if |z > |w,
pW) Y (2) if |z <wl.

An important application of this notion is to the commutatof the modes of conformal
fields. One writes, withhy andhy, denoting the conformal weights @f (z) and ¢ (w)

®{w @ ow)} =

8The astute reader will note that this conclusion is actuatjyivalent to the assumption made in Sec-
tion 2.1.2 that the vacuum has zero energy.

9f, in applications, space and time are already predefined, usually possible to make a conformal
transformation to end up in this radial framework.

101 fields considered in this thesis will be bosonic. Fernidfields will incur an additional sign change
if the order is switched.
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FIGURE 2.1. Contour subtraction: Subtract the inner contour frbmm t
outer contour (and take limits &8 — |w|) to get the contour arouna.

(respectively),
dz dw
_ n+h¢, 1 m+h -1
[, ] = ) @ oz wmee
dz dw
_ n+hy—1,, m+hy—1 ¥< Y
§§ oty w@z e wmie 1 22

To make contact with radial ordering, suppose thatzieentour in the first integral is
taken with|z| > |w| and in the secondz < |w|. Then, letting the contours approach
|z| = |w| appropriately (see Figure 2.1), one finds that
dz dw
— n+h¢ 1 m+h -1

[ngn] = § § R{w @}z tam e 220 215)
As z may be taken arbitrarily close tw in this integral, it is reasonable to suppose that
the radially ordered product may be expanded as a (formaljdra series abouwt. This
simple observation leads to the concept ofdperator product expansion

_ < AW
ﬂz{w(z) qo(w)} - ,-_Z_wm' (2.1.6)

Consider therefore the commutator for the Virasoro algelitapanding the corre-
sponding radial product in the right hand side of Equatiom.(sa gives

dz dw dz dw
nt1,,m+1 92 n+1 92 my1 OW
%%VR{UZ)T(W)}Z W oo ?{ ?{ J+1 o 2m

i( 2m‘

The modes on the left-hand-side may also be representemowantegral form, giving

n3_n n+1\C - dw
(n—m)Ln+m+ 12 5n+m7OCZj({){(n_m)T(W)WnerJrl—i_( 3 )Ewnﬂn 1} 2—7'[1
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Writing n—m=2(n+1) — (n+m+2), (n+m-+2) wM1 = gw™ ™2 and then inte-
grating by parts, the left-hand-side becomes

N-+m-2 n+m+1 n+1 9 n+m-—1 d_W
jé[dT(w)w L2+ )T (Ww +( ; )zw }2711‘

Equating, one deduces the relation

ﬂé [(AO (W) — AT (W)) w2 4 (n4+ 1) (Ag (W) — 2T (w)) wHm+l

+ (”; 1) Ao () WM 4 (”;1) (Az (W) — %) L

" (n: l) A4 (W) Wn+m—2 +... +An+l (W) Wm-i-l}

Now, this relation holds for alinandnin Z. In particular, it has the form

dw
— =0
21

?{ Bww™ ™ _o  forallmez

0 21

where fj, is independent ofn; f, is therefore identically zero (for eaahe Z). But,
for n = —1, the vanishing off, just states thafo(w) = dT (w). Successively taking
n=0,12,...then gives

Ag (W) =2T (w), Az (w) =0, Az (w) = andA; (w) =0 for j > 3.

It follows (finally) that the Virasoro algebra commutatioglations force the operator
product expansion

1
ZR{T T (W)} _ 5C ; 2T (W)2 0T_(W)
(z—w)"  (z—w) Z—W
By reversing this argument, it is easy to see that this expans actually equivalent to
the commutation relations. Note that the regular termsigkpansion (the.".”) are not
determined, as they contribute nothing to the contour naleg It is common practice to
ignore these terms completely when writing operator proépansions. Accordingly,
equality up to regular terms will henceforth be denoted-by
As a somewhat different example, recall that a figltlv) was called primary if the
corresponding state was a highest weight vectpy, Operator product expansions can
also be used to characterise this concept in a purely figldrédtic manner. Apply the field
T (2) to both sides of the defining relation §mo @ (w) |0) = |¢). On the left-hand-side,
T (z) ¢ (w) can be replaced by its radially ordered version (because 0). Expanding
this radially ordered product as an operator product exparngves
. > A(w
vlJLno. Z #

J:*OO

(2.1.7)

0) =T (2)|v)

= i z—i—lJvimOA,- (W) [0) = i " 2L |y).

j:700 n=—o
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Comparing powers of gives limy_oAn+1(W)|0) = Ly|¢). If |¢) has energyh, the
singular coefficients of the operator product expansiorefloee satisfy

lim Ao (w)[0) =L-1|¢),  lim As(w) [0) = Lo|y) = h|y),
and |in(1)Aj (wW)|0) =Lj_1|g) =0 forall j > 2.

Therefore A; (w) = hy (w) andA; (w) =0 for all j > 2. To determinedo (w), note that
Equation (2.1.3) implies that

dpwWo) =" aly) = limaww)[0)=L 1|y).

Thus, Ag(w) = dy (w). Conversely, these singular coefficients guarantee|thats a
highest weight vector, provided thip) is also an eigenvectbrof C. It follows that
Y (w) is a primary field if and only if its operator product expamsieith T (z) takes the
form

hy(w) oy (w)
R{T @AWW}~ wtt ow
Note thaty (w) then has conformal weiglit

In contrast to the previous example, where the singularderthe operator product
expansion ofT (z) with itself were determined by the mode commutator, the atoer
product expansion of (z) with a primary fieldy (z) is completely determined (that is,
the regular terms are also fixed). Indeed, the coefficieriz efw)" is just the field that
corresponds to the state ,_» |). What is not determined is an explicit form for these
fields. They will therefore be denoted bly_n_2¢) (2).

It is worthwhile pointing out that in the operator producpexrsion of two arbitrary
fields, @ (z) (of conformal weighth), and @ (w), the coefficient of(z—w)_(””‘) is the
field corresponding to the stat |@). This follows from

(2.1.8)

(n9) W[0) = Ynle) = fim 271y (2)p(w) 3 (0]
changing the subscript on the integraltpreplacing the power afby the corresponding
power ofz— w, and noting that the field product is actually radially oeterTherefore,
o)) = f @-w" 7 {w @ ow) )=,
and the standard operator product expansion gives thereg@sult.

lim
w—0

(2.1.9)

2.1.5. Normal Ordering and Wick’s Theorem. The singular terms of an operator
product expansion indicate that radially ordered prodoftgiantum fields are not defined
when two of the field arguments coincide. However, produtfetas are perfectly well
defined classically, so it follows that any quantisationgedure must explain what the
11Using Equation (2.2.1) an@ = 2[Ly,L_»] — 8Lg, one can show tha€ actually commutes with every
primary field. Therefore, every representation has the san#al charge, and eactf) is an eigenvector
of C. This is in fact implicitly assumed in most treatments of fusmal field theory. If representations of

differing central charge are to be allowed, then it is nemgs® introduce additional vacua, one for each
allowed value.
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guantised version of these classical products is. The ymeakription is to note that
classically, the ordering of the fields is irrelevant, wizr@&pon quantisation, the modes
of the fields become non-commuting operators. It is theeefidausible that one might
be able to find an ordering of these modes, calletbanal ordering with which the
guantised product is well-defined. Such a normally orderedyzct will be denoted by

W(@2e2):.

Normal ordering prescriptions are not unique. From the tpofiiew of the operator
product expansion, the most natural way to define a non-Engroduct of two quantum
fields is simply to ignore the singular terms. That is, to d&fin

R{w(z)qo(w)} = singular terms+ : Y (2) (W) : .

The normally ordered product atis then well-defined by
YW ew): =lim g2 ew):,

which is just the first regular term (coefficient @— W)O) in the operator product expan-
sion offR{Lp (2) go(w)}. Therefore,
dz
. . P —_— 71 —_—
wwew: = § R{w@owm)}E-w . (2.1.10)
It is not hard to check that this does imply an ordering on tlogles, hence qualifies
to be called a normal ordering. First, reverse the contouripogation of Figure 2.1 to

rewrite Equation (2.1.10) as

wwow: = f YOOWE [ oWVEE gy

|2|>|wi| |7 <|wi
These integrals can be evaluated by expanding the fields i]heasmcand(z—w)_1 as
a (convergent) geometric progression. In the first intedeal> |w|, so (z—w) ™! =

S 5-oWP/zP™1, and in the secondz—w) = — S p-0ZP/WPTL. The final result is

TP (w)e(w): = ; Um@h + ; GhPm | W,
m+ wgo m+ w>0
n n

wherehy andhy, are the conformal weights af (w) and @ (w), respectively. The mode
ordering is therefore

if m+hy <0,
 Wnth {wm% 1 m+hy 2.1.12)

GPm it m+-hy > 0.
Of course, once one starts introducing normally orderedyts of fields, it becomes
necessary to enquire as to how one computes the operatargbrexpansion of these
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products with other fields. This is the content of Wick’s thezn, familiar for freé? fields
from quantum field theoryl1[28.

THEOREM 2.1 (Wick). Lety (z), @(z), andx (z) be mutually free fields. Then,

fR{w(Z) (W) X (W) } =@ oW x W)+ (@) ew)x (W) +e(w) g (2)x (W),

wherey (z) @(w) is called thecontractionof /(z) and ¢ (w), and denotes the singular
part of the operator product expansion @f(z) with @(w).

This result can be extended inductively to arbitrary nureloémnormally ordered free
fields, and this extension is also known as Wick’s theoremeh\the fields are not mutu-
ally free (as will be the case in Section 3.1), this resultnvesmodified slightly 14,100
giving a generalised Wick theorem.

THEOREM 2.2 (Generalised Wick)For arbitrary fieldsy (z), ¢(z), andx (2),
1
~1dZ

®{w@o@)xW)+e@)¥@x W) | (Z-w) .

21

*{w@:owxw: }~ ¢

w

2.2. Fusion

2.2.1. Correlation Functions. As in any quantum field theory, the goal of a con-
formal field theory is to compute thaorrelation functions Recalling that time-ordering
becomes radial ordering in the formalism of Section 2.1d dorrelation functions have
the form

(O1R{ 4a(z1) Y2 (Z2) - Ym(zm) } 0) .
Not surprisingly, the symmetry algebra constrains the fofrthese functions. For sup-
posen= —1, 0, or 1, and that)y (z1),. .., Ym(zm) are primary fields of (respective) con-
formal weightshy, ..., hm. Then,Ln|0) = L} |0) =0, so

0= (O LnR{ 4 (20) Y2 (22) -+ Ymm(zm) }0)
- immz{wl (z2)--- [Ln, 0 (z)]] ---wm(zm)} 0).

As in Section 2.1.4, the commutator may be replaced by

ool - feafiam) - o (15222 2

= (N+ DNz (2)+ 70w (z). (2.2.1)

12ror the purposes of Wick’s theorem, a collection of fields rhayconsidered to beautually freeif the
singular coefficients of all the operator product exparsioifields from this collection are just multiples
of the identity field LOQ. T (2) is therefore never free (except in trivial theories).
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Let g, denote the partial derivative operator with resped tdt follows that a correlation
function of primary fields must satisfy the differential egions (forn= —1, 0, or 1):

m

> [(n+1)hz+24a)] O1R{41(21) Y2 (22) - Ym(zm) } [0) 0. (2.2.2)

i=

A correlation function involving a single primary field tlegore vanishes unless the
field is a multiple of the identity field, in which case the edation function is just a
constant function. Similarly, when there are two and thremary fields, these equations
also determine the form of the correlation function as

C120n;h,
(O] jz{4’1(21) 173 (Zz)} 0) = m7 (2.2.3)
and
(O1R{ 41 (z1) Y2 (22) s (25) } [0)
= C1zs (2.2.4)

(Zl N 22>h1+h2—h3 (22 . 23>h2+h3—h1 (23 . Zl>h3+h1—h2 ’

whereC,, andCy»3 are constants depending on the primary fields. When themmare
than three primary fields, the functional form of the cortiela function is not fixed by
these differential equations (although it is still consteal).

It is useful to digress briefly and fix a convenient basis fauffe purposes. Suppose
now (and forever) that for eadhn > 0, there are only a finite number of linearly inde-
pendent primary fields of conformal weiglht This finiteness condition ensures that the
constantsCjj occurring in the correlation function, Equation (2.2.3)two such fields
may be interpreted as entries of a symmetric matrix. Thexehars linear combinations
of the primary fields of conformal weighit, which diagonalise this matrix. The matrix
is non-singular (as a zero eigenvalue would correspond wdldield), hence the linear
combinations may be rescaled so that the correspondingardasreCi; = ;.

The symmetries corresponding to the motgsn > 1 may also constrain the corre-
lation functions, albeit in a more subtle manner. Beforeussing this, it is necessary
to consider correlation functions involving secondarydgelFor simplicity, suppose that
there is only one secondary field in the correlation functiand that it has the form
(L_ng) (W) (n > 0), wherey (w) is primary. According to the discussion at the end of
Section 2.1.4, this secondary field is the coefficientzf w)”*2 in the operator product
expansion ofl (z) andy (w). It follows that

(01 R{ (L) (W) g (Wa) - thn (W) }0)
- d
= § @' OIR{T @Y W) g (W) Yon (i) }0) 5.
The radially ordered product will only have singularitieziatw, wy, . .., wm, So the con-

tour integralg,, may be replaced by, —5; 4., where the subscriptindicates a contour
that is sufficiently large to enclose all the singularities.
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If this «-contour is taken to be so large that> |w|,|w1|,...,|wm|, thenT (z) can be
taken out of the radial ordering (to the left) and expandadddes. The integral over the
x-contour then becomes

(o]

Sz w22 (OLR] 0 (W) s (W) - Yim(i) }0).

jzfoo

The terms in the sum with < 1 clearly vanish, a&; annihilates(0|. Furthermore, if
j > 1, itis easy to see that the integral evaluates to'Zeftherefore, the--contour is in
fact identically zero.

This therefore establishes the relation

(O R (L) (W) . (Wa) -+ Yim (i) } [0)
— =3 f, W OR{T @ w0 ()} 0) 51
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Expand the radially ordered productDfz) andy; (w;) as usual. Asl; (w;) is a primary
field of conformal weighh;, one finds (after performing the integration) that

(O1R{ (L) (W) g (Wa) - thn (W) }0)
m [(n—l) hi 1

B i; W—w)" (w —W)”’1al
Therefore, a correlation function involving a secondarlgfié ) (w) may be obtained
from the corresponding correlation function involving pprimary fields, by applying a
suitable differential operator. This conclusion gensesiappropriately to more general
secondary fields (and to more than one secondary field in threlabon function). In
principle then, all correlation functions can be obtainexhf those involving primary
fields.

Returning to the question of further constraints on theatation functions, it is obvi-
ous that if a correlation function involves a null field (Sent2.1.3), then it must vanish
identically. However, in the formalism developed abovestsa null field would be de-
scended from a primary field (or a linear combination of thesn)he correlation function
would be related to the corresponding primary correlatiorcfion by a differential opera-
tor. Therefore, null fields yield further (differential) mstraints on the primary correlation
functions. Clearly constraints of this type can only be v=tiwhen there are formally
independent secondary fields — thus under the state-fieldsmondence, quantum states
— that are in fact linearly dependent. This is precisely tbedition that the given pri-
mary field corresponds to a highest wei@hit-module which is not isomorphic to its
associated Verma module (Appendix B.3). Demanding utytas well, it follows that
null field constraints can only be derived for primary fieldghvh = 0 orc < 1 (for certain
h) [101]. This may seem like a strong restriction, but in fact manpamant conformal

(01 R{ W (W) Y. (Wa) -+ Yo (Wen) } [0). (2:2.5)

13Actual|y, this is true when the conformal field theory is defiron the Riemann sphere.
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field theories (for example, the minimal models) are compagesuch modules. In this
way, the representation theory of the symmetry algebratains the form of correlation
functions involving fields associated with these modules.

As a trivial example, recall that 1 |0) vanishes, so (formally) the corresponding field
is null. The corresponding constraint is (by Equation @).

_Zf' (0| R{ L(W) g1 (Wa) - Yo (Win) } 0) =

(where 1(w) is the identity field), which is identical to Equation (2.pwWith n= —1. As
a less trivial example, it is easy to check that # 2h(5— 8h) / (1+ 2h), then the vector

B

is null (has zero norm), whedwc7h> is the highest weight vector of central chagand
energyh. This null vector corresponds to a null field which induces¢bnstraint

i; (Wi—W) £2( 1 2(1+2n)

This derivation requires an easy generalisation of Equd#d.5).

(01 R{ o (W) g (Wa) Y (Wir) } 10) = O

2.2.2. Fusion. It follows from the analysis of Section 2.2.1 that any catien func-
tion is computable, once the primary correlation functiang known. Unfortunately,
there is still the problem of having to somehow compute dati@n functions involving
arbitrarily large numbers of primary fields. However, if thygerator product expansions
of all the primary fields are known (including regular termlen one can reduce the
evaluation of a correlation function o primary fields to a (generally infinite) sum of
correlation functions involvingn— 1 fields. Using Equation (2.2.5), these may be com-
puted from the correlation functions involvimg— 1 primary fields, and so on.

This is a somewhat daunting task. However, knowing whicll$i@ppear in an oper-
ator product expansion may simplify the problem. For examnipla correlation function
involving primary fieldsys (z1), ..., Ym-1(zm-1) vanishes, then it follows that all the
correlation functions involving the corresponding seamwydields must also vanish. In
determining the function ah primary fields,

OR{ Y1 (22), - Y2 (Zm-2) . (W) @2 (we) }0),

through the operator product expansiorppfwi ) and ¢, (w-), it follows that any field in
the expansion which is descended frgg_1 (Zn—1) contributes nothing to the correlation
function. Under these circumstances, one only needs to khefamiliesthat the fields
in the operator product expansion belong to, in order towérthey contribute nothing
to the correlation function.

This leads to the concept &ision which may be defined as an operation on the set
of primary fields of the theory. Two primary fields fuse to garéormal sum of primary
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fields (or rather the corresponding families), these beiegtrimary fields which appear,
or have descendants appearing, in the operator produch&xpaof the original two
primary fields. This operation may be neatly characterisedguthe correlation function
of three primary fields:

o (O R{A;(22) Y5(z3) } 0
OR{gn ()42 (2) s (z5) } 0) = 5 o1

[t (z—2)

Here, theA (z) are the operator product coefficients in the expansiogydiz;) and
Y»(z). From the normalisation of the correlation function of twanpary fields (Sec-
tion 2.2.1), it follows that the right-hand-side can onlyrmn-zero if at least one coef-
ficient Aj (z2) has a component which is a descendang9fzz). That is, if and only if

a member of the family headed lgy; (z3) appears in the operator product expansion of
Y1 (z1) and yn (z2). That is, this correlation function is non-zero if and onfiyis (z3)
appears in the fusion af1 (z1) andyr (z2).

Equation (2.2.5) now shows that i3 (zz) and its descendants do not appear in the
operator product expansion §f (z;) andy» (z2), then they do not appear in the operator
product expansion of any descendaniefz;) with any descendant af, (z2). What this
means is that it makes sense (and is most natural) to talk #he@dusion of families of
fields. In this setting, fusion is customarily denoted thus:

[n] x [Ye] =[] +...,

where[y;] denotes the family of fields headed by the primary figldz ). This equation
signifies that there is a member of the fanjilyi| and a member of the familyy,|, whose
operator product expansion contains a member of the fgigily

A generic fusion rule, with respect to the basig; (z)} of primary fields, takes the
form

(W] x [‘pj} = ZNijk (U], (2.2.6)

whereNijk € {0,1} is called afusion coefficient The associativity of the operators on
the state space and the commutativity within radial ordeensure that fusion is an as-
sociative, commutative operation. The identity field (dedonow by (2)) supplies a
unit, as the correlation function involvingg (z), ¢ (z), andy; (z), vanishes unless= j.
That is,

[Wol x (W] =[w] = Ng' =43 (2.2.7)
Itis also easy to see that commutativﬁ\j/igk = Njik) is in fact subsumed by the complete
symmetry of the indices:

Kk Kk i i i -

In particular,Nijo = §&j. However, it should be noted that these relations are basis-
dependent. These nice properties follow from the fact thaptimary fields were chosen
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to be (roughly speaking) orthonormal with respect to theatation function of two fields
(Section 2.2.1).

It should be clear from this discussion that a knowledge efftlsion operation as-
sociated to a conformal field theory will help determine etation functions. However,
it should also be clear that this knowledge alone is not sefftc For example, Equa-
tion (2.2.2) determines the form of a correlation functidrirtwee primary fields up to a
multiplicative constant. Fusion determines whether thisstant vanishes, but otherwise
says nothing about its valtfe To determine this value, other (dynamical) consideration
are required. For example, in the minimal models, a mechakiswn as the conformal
bootstrap seems to sufficé]].

14This constant is of non-trivial interest, unlike the comssaappearing in the correlation functions of two
primary fields which were normalised by choosing an appatptbasis of primary fields.



CHAPTER 3

Wess-Zumino-Witten Branes |: Algebraic Considerations

3.1. Wess-Zumino-Witten Models

The conformal field theories that will be studied in this ikemre known as Wess-
Zumino-Witten models (also Wess-Zumino-Novikov-Wittenaels) for reasons that will
be discussed in Chapter 6. These models are especiallgstitey for a variety of reasons,
one being that they describe the dynamics of strings prdjpaga the underlying mani-
fold of a suitablé Lie group. As such, the basic dynamical field in these thedsia map
g from the two-dimensional string worldshe&einto the Lie groupG. However, the action
constructed frong which describes these theories is rather intricate, rglyi@avily on
topological notions. As a conformal field theory may be defi@nd studied) without
giving an action, it is convenient to avoid these intricadier the time being, and define
the Wess-Zumino-Witten models through their conservedeass. In Chapter 6, the ap-
propriate actions will be constructed and analysed; iniqddr, the conserved currents
postulated here will be derived from these actions.

In this chapter, these Wess-Zumino-Witten models will bevahto be conformal
field theories with a symmetry algebra extending the Virasdgebra, and the notion of
fusion in these models is carefully defined. The conceptwbaeis then introduced as a
boundary condition (on string endpoints), and the relatietween quantised branes and
fusion is derived using results from boundary conformadifiéleory.

3.1.1. Conserved Currents and Symmetry AlgebrasLet z be a (local) complex
coordinate on the string worldsheet. The string figld then a map (formally depending
on z andz) which takes values in the Lie growp In terms of this field, Wess-Zumino-
Witten models admit a holomorphic conserved current giwe(sbe Equation (6.2.6))

J(2) = kg 1ag, (3.1.1)

where the scaling factdeis a positive integer called the level thatigriori specified (it
arises as a coupling constant in the theory, see Equatiari@). In addition, there is a
corresponding antiholomorphic conserved current,

J(z)=—kdg-g L. (3.1.2)

Unlike the string fieldy, the holomorphic and antiholomorphic currents both takaes
in the Lie algebra of;, denoted by.

The groups that will be studied in this thesis are the compatnected, simply-connected groups, but
most of the theory can be developed more generally.

25
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The (anti)holomorphicity of these currents is clearly in&at under the transforma-
tion g+—— fgf, provided thatf is a holomorphic map anfl is an antiholomorphic map
(taking values inG). Such transformations therefore constitute classicadrsgtries of
the Wess-Zumino-Witten model. The corresponding infimbes transformations may
be obtained by setting = exp(te(2)), f = exp(t€(2)), and differentiating at = 0. ¢
and€ then take values ig. In the formalism of radial quantisation (Section 2.1.4kR
infinitesimal symmetry defines a Noether charge which maybkert to have the form

Qg:?gK(s(z),J(z))d—z, and Qg — }z{ ),3(2) 2d;1’ (3.1.3)

21
wherek (-,-) denotes the Killing form ofy (Appendix A.1). This large collection of
conserved charges will define the symmetry algebra of theryheAs expected for a
conformal field theory, there are holomorphic and antihagphic charges.
In the quantised theory, these conserved charges becomsagevhose commuta-
tion relations may be obtained from the variation of a fieldeman infinitesimal symme-
try [86,141]. For the holomorphic current, this gives

w) = [Qe, J(W)], (3.1.4)

and the corresponding antiholomorphic relation is analsgd he left-hand-side of this
equation is easily found to B8 (w), € (w)] + kde (w). To avoid confusion between the
operator commutator and the Lie bracketgothere denoted by, -]), it is convenient
to decomposg-valued fields into scalar fields, with respect to a bdsi$ of g. This
basis will be chosen to be orthonormal with respect to thérigifform (more correctly,
with respect to the negative of the Killing form). ff,c denotes the structure constants
of g with respect to this orthonormal basis, then Equation 43.hkecomes (summation
conventiod implied)

foad® (W) £%(w) + k022 (W) = f £2(2) [°2) 20 (W) 5,
whereJ? and €2 denote the components dfand g, respectively, with respect tt,}.
Expanding the commutator, the contour may be chosen sdzhat|w| for the posi-
tively signed term, angl| < |w| for the negatively signed term. As in Section 2.1.4 (and

Figure 2.1), this now becomes

dz
c a b o a a b
feapd” (W) €% (W) +kde™ (w) = %Ne (z)fR{J (2)J (w)}—zm.
Expande?(z) in a Taylor series abowt (supposing that?(z) has no pole az = w), and

the radially ordered product in the usual Laurent seriegnTh

ab
() 200+ ke ) = 5 B0 .

2In this thesis, the usual summation convention involvimgeaged indices will be employed where it does
not cause confusion. However, the convention regardingalving of a raised index with a lowered index
will not be abided by.
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so it follows thatAd® (w) = feapd® (W) = faneJ® (W), as the structure constantsgdre com-
pletely antisymmetric with respect to an orthonormal b@&igpendix A.l),A‘i‘b(w) =
kdab, andA?‘nb (w) = 0 for everym > 2. The operator product expansions between the
conserved current¥ (z) are therefore given by

kdab | fancd®(W)
a b a
fR{J (2)J (w)} W (3.1.5)
The corresponding expansions for the antiholomorphicetusrare entirely analogous:
=a -\ D Kdap fab<.jc (_)
9%{3 (2)J°( )}~ (z-w)2+ o (3.1.6)

Finally, it is easy to show tha¥:J (w) = 0, from which follows

R{Ja(z)jb (v—v)} ~0. (3.1.7)

It follows from these expansions that the symmetry algebth®Wess-Zumino-Witten
models is not the Virasoro algebra. It also follows that wige(and hencgy) is non-
abelian, the current§J?(z)} (and {J }) do not form a collection of mutually free
fields (Section 2.1.5).

To determine the structure of the symmetry algebra, decemdz) as

y Rl o Jﬁ:fJa(z) n 42
0

N=—o0
The operator product expansion of Equation (3.1.5) nowrdetees the commutators of
these modes through Equation (2.1.5):

dz dw
a b a b Zwm 2
‘]”’J ff ‘] 23 } 27 27
_%% k6ab ab(,\-JC (W) ZnEWmd_W
Z—W 2 2m
—j{{kaabnwrm_n 1-|—f boJC( Wm+n} 27-[1

= fabcdhn + NGab Omno K. (3.1.8)

The commutators corresponding to the operator productnsipas, Equations (3.1.6)
and (3.1.7), are given by

. _b —
[35.30]] = fabedmen + NG Gk (3.1.9)

and [[Jﬁ,jﬁ,ﬁﬂ —0, (3.1.10)

3The energy of the states corresponding®dz) under the state-field correspondence is 1. This will be
obvious from the form of the energy-momentum field (Equa(i®ri.11)), and the fact that the energy-
momentum field must correspond to a state of energy 2.
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respectively. It follows that these holomorphic and anbhmorphic modes together re-
alise a levek representation gf @ g on the quantum state space, whgis theuntwisted
affine Lie algebrassociated witly (andG). This algebra is discussed in Appendix B (see
Equation (B.1.1)).

3.1.2. The Energy-Momentum Tensor.Wess-Zumino-Witten models are confor-
mal field theories. To justify this statement, an energy-raptam tensor needs to be
identified. Of course, the standard method of identificateoto consider the Noether
current associated with spacetime translations. Howdwefundamental requirement in
conformal field theory is that the energy-momentum tensoondgoses into a holomor-
phic field T (z) and an antiholomorphic fieldl (z) whose modes furnish representations
of the Virasoro algebra. This section is devoted to estainigsthis requirement.

WhenG is the abelian groufR", the classical energy-momentum field is found to
be the producti?(z) J2(z) (this is the free bosorBfl]). In the general case then, it is
reasonable (in the quantised theory) to make the ansatz

T@2=y:3%23(2:, (3.1.11)

and similarly for the antiholomorphic componepgndy are constants to be determined).
Because the curreni8 (z) are not free fields, operator product expansions invol¥iKg
must be computed using the non-commutative Wick formul&ofém 2.2. For example,
using Equation (3.1.5),

TR{J""(Z)T (w)} - yfR{Ja(z) + 3P (w) 3P (w) : }

~y i 2{F@P@)P WP @) PP W] (2 Wt Z

kP W KB@) fae [ in b

—y?a (z—2)? (Z—W)‘ﬁ_z—z’fR{J #) (W)}
+@5R{Jb (2) JC(W)}] (z’—w)l%. (3.1.12)

The radially ordered products can now be expanded usingtiegu@.1.5) again, but
now the regular terms must be included. Indeed, in the temma@aing the first radially
ordered product, the singular terms of the operator progijzansion and the first regular
term may contribute to the integral (because of the fa@erZ)). The term containing
the second radially ordered product is somewhat simplekjtaa easy to see that in this
case only the first regular term may contribute. The termsluing the radially ordered
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products therefore become

Kdeh fobad? (W)
/e, [(z—z’) Z—wP  (2—2) (7 —w)?

e (w)IP(w): 1IP(w)JS(w): | dZ

z-2)(Z-w) ' (z-w)(Z—-w) | 2m’
Using the antisymmetry of the structure coefficients (AmperA.1), the first term in
this expression immediately vanishes, as do the normatigred terms after integrating.
Therefore, only one term in fact contributes, so Equatioh.{2) reduces (after perform-
ing the integration) to

. _ 2yk3(w) J% (w)
R{J 2T (W)} = w? + Vfabcfcbd(z_w)z
_ 2y(k+h")3%(w)
o z-w?

whereh" is the dual Coxeter number gf{(Equations (A.1.2) and (A.1.3) have been used).
It follows that

Ja(w) 033 (w)
(z— W)2 Z—W

TR{T (z)Ja(w)} ~

] . (3.1.13)

It is now straight-forward, if somewhat messy, to deternthreeoperator product ex-
pansion ofT (z) with itself. Using Equation (3.1.13) and Theorem 2.2,

R{TRHTW} ~ V?év‘rR{T @9 (2)F W)+ (2) T (23w } (z_"")_ls_rzn
R{22)2w)! R{232(Z)3 W)
2y2(k+hv)?€v! {(z_z)z\N}+ { z—7 )
R{P )2 w)! R{1(Z)932(w)
' {(ZW)ZW}+ { z—w W} (Z/_W)l%'

In this integrand, the singular terms and the first regulentef the operator product
expansions contribute when integrating the first two régiatdered products, whereas
only the first regular term contributes when integratingltiet two. The singular terms
of the operator product expansionad#? (Z) andJ? (w) are computed from

R{3*(Z) P (W)} ~ (E(TVE)JZ = ®{or@)rw}~ %
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where the ding factors come from summing ovar It follows that the contributing part
of the integrand is

kdimg _ 2kdimg N : 32 (w)J3 (w) :
(2-22@2Z-w? (z-2)Z-w)' (z-2)’(Z-w)
$JBA(w)J2(w): 1 03F(w)J(w): 1 JF(w)dI*(w):

z-w?Z-w) (@-2)Z-w) = (Z-w)(Z-w)’
and so integration gives
R{T @7 (W)} N 22 (k+ hV)I:dimg Ay (k+ hv)l' (w) N 2y(k+h_v)dT (W)
(z—w) (z—w) Z—W
By comparing with Equation (2.1.7), it follows that the mede,, of T (z) will form
a representation of the Virasoro algebra if and only#f 1/2(k+h"). In this case,

kdim 2T (w oT (w
TR{T(Z)T(W)}N LR ( )2+ W) (3.1.14)
2(k+hY) (z—w)"  (z—w) Z—W
so the central charge of the (chiral) theory is
kdimg

The corresponding result for the antiholomorphic comporéithe energy-momentum
tensor is analogous (in particul&@= c), so this establishes the conformal nature of the
Wess-Zumino-Witten models.

The commutation relations between the Virasoro and affindasonay be deduced
from Equation (3.1.13) (and Equation (2.1.5)). The result i

[[Ln,Jg]] = -m&, (3.1.16)

which together with Equations (3.1.8) and (2.1.1) definectiieal symmetry algebra of
the Wess-Zumino-Witten model. In fact, Equation (3.1.18)vss that the chiral symme-
try algebra is the semidirect sutfit ¢- g. However, Equation (3.1.11) may be expanded
in modes to give (sum overimplied)
Ly = _t i N o L
2(k+hv) mYn—m - >

m=—o0

(3.1.17)

so Wit may be identified with a Lie subalgebra of the universal espielg algebra ofy
(this is theSugawara constructign Therefore, one can instead regard this enveloping
algebrail(g), as the chiral symmetry algebra of the theory.

3.1.3. The State SpaceThe space of quantum stateor the Wess-Zumino-Witten
model has not yet been discussed. From the general prin@plBection 2.1.2 (and the
results of Section 3.1.1§ decomposes into unitary, irreducible highest weight regme
tations ofil(g). The central elemerK of g is represented blids (wherek € Z, is the
level of the theory), and the central chai@ef Uit is represented bgidg (wherec is
given by Equation (3.1.15)).
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The representation theory of untwisted affine Lie algebsadiscussed in Appen-
dix B.3. There it is shown that an irreducible highest weigipiresentation is determined
by the levelk of the representation and the eigenvalues of the zero-gtadan subal-
gebra on the highest weight vector (this defines a weightehtirizontal subalgebrg.
For the representation to be unitary, it is necessary arftiguit thatk be a non-negative
integer, and that the induced weighof g belongs to the fundamental affine ach@ie
This is the set of dominant weights satisfyi(, 8) < k, where® is the highest root of
g. These unitary representations fQfare also known as integrable highest weight repre-
sentations. It is important to note that at any given léye¢here are only a finite number
of such representations.

Whilst the requirement of unitarity severely restricts #lewed representations, it is
not an easy matter to elucidate a more detailed picture afubatum state space. In par-
ticular, it is not clear which of the integrable highest weigepresentations actually occur
in the theory, and with what multiplicity. Nor is it clear hdhe (chiral) representations of
g should be paired, holomorphic with antiholomorphic, to mefihe quantum state space
of the full theory, as in Section 2.1.2. The simplistic (tgburaditional) quantisation
scheme used in Section 3.1.1 has the profound disadvaraigédoes not construct the
guantum state space directly.

It should therefore be of comfort to know that the formalishgeometric quantisation
[108 164 admits a direct construction of the quantum state space.Wess-Zumino-
Witten models (on simple groups), this construction wadyaea in (7, 58] with the
result thatS does indeed decompose into integrable highest weightseptations, and
the particular decomposition depends upon the topologge§touf. Specifically,

S=PMyy (Va®@Vy), (3.1.18)
A.u
whereV, denotes the integrable highest weighiodule characterised by the weight
A of g, andM is a matrix of multiplicities, called thenodular invariant which depends
uponG. As a familiar example, whe@ is simply-connectedy! is the diagonal invariant
May = Oap-

The modular invariant is so-named because of a constrapused on the multiplic-
ities by the requirement that the theory be well-defined wihenstring worldsheet is a
torus (generally, a string theory must be well-defined whenworldsheet is any Rie-
mann surface). It is well known that complex structures anttitus are parametrised by
an elementr of the upper half-plane9l], and that equivalent structures correspond to

4n this formalism, the wavefunctions are represented byyéinasections of a line bundle. The highest
weight states corresponding to the integrable represensadre distinguished from the non-integrable ones
by having globally defined wavefunctions. In this way, matief global topology affect the structure of the
conformal field theory.

Ssome papers refer to tleharge-conjugatévariant instead, where each representatipmappears once,
paired with its conjugate representatddn. (Appendix A.2). As conjugation is induced by a symmetry of
the Dynkin diagram of, this invariant is equivalent to the diagonal invariant e@na change of labelling of
the weights in the antiholomorphic sector.
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parameters that are related by the action of the modulapgrou

ar+b
cr+d’
The constraint imposed on the theory is thatphetition function

Z(1) =trg 2MiT(Lo—c/24) g—2mit* (Lo—c/2 ), (3.1.19)

T+H——

a,b,ccdeZ, ad—bc=1

is invariant under this actior6[l] (t* is the complex-conjugate af). This may be inter-
preted as the trace of the exponential of the hamiltoniamadpe hence corresponds to
the imposition of periodicity in time. As such, the theoriateng to the partition function
is effectively defined on a torus, whence the relation to tloelmar group. Note that the
partition function may clearly be expressed in terms of tharacters of the representa-
tions in S (whose behaviour under modular transformations is notefpipendix B.3).
This leads to a constraint on the matrix of multiplicitiéls although this constraint is
not generally sufficient to select physically well-definbedries 79]. (The direct con-
struction of the state space given 5¥] does, of course, yield modular invariant partition
functions.)

3.1.4. Primary Fields and Correlation Functions. Comparing Equation (3.1.13)
with Equation (2.1.8) shows that (z) is a (Virasoro) primary field of weight 1. That is,
the conserved current fields correspond to states whichiginest weight vectors under
theic-action. However, this does not guarantee that these fisddsranary with respect
to the action of the full symmetry algebra. Such fields, witcirespond to highest weight
vectors under th@-action, are termedffine primary fields. A similar development to
that leading to Equation (2.1.8) describes such a fje{d) through its operator product
expansions with the curreni§ (z). Specifically, this yields

lim A (W) [0) = 3214

whereA2 (w) denotes the appropriate operator product coefficientee$in is a highest
weight vectorJ3 |@) = 0 for all n > 0, so it follows that there is only one non-vanishing
singular coefficientAg(w). This coefficient is precisely the field that corresponds to
B 1w).

The subalgebra @f spanned by the zero-grade elemelitss just a copy of the finite-
dimensional Lie algebrg. Indeed, an explicit isomorphism is given B§ — t5, where
{ta} is the (orthonormal) basis gf with respect to whichl (z) was decomposed (Sec-
tion 3.1.1). It is traditional to use this isomorphism to siiute the quantity, |g) for
J§|y) in the above considerations (hegealso denotes the endomorphism representing
ta € g, and hencdf € g, in the module of highest weight vectap)). Whilst this can be
rather confusing, it does emphasise the role played by tite-filimensional Lie algebra
g in this setting. The operator product expansioddfz) with an affine primary field now
takes the form

(tay) (W)

32 (2) P (W) ~ W (3.1.20)
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More importantly, such a field is only primary if the singutarefficient vanishes when-
evert, € g.. An affine primary field, associated with a highest weigh§,ahay therefore
also be associated with a highest weighye- this is just the projection of the highest
weight of g onto the weight space of the horizontal subalgebra. It shbalclear now,
from Equation (3.1.5), thal? (z) is notan affine primary field.

It follows from Equations (3.1.17) and (2.1.12) thatyf) is an affine highest weight
vector, then fon > 0 (sum ovem),

1

Lnly Fdimt Y Fomdn| [9) = 5y Rk 9) =
n‘ > k h\/ Z m mZO ‘ (k—|—h\/) n0| >
sinceJ§ andJ§ commute. Furthermore, by Equation (A.1.5),
Lo|) = 20 BRI = 72(k+hv>tata|w> = 20 ly), (3.1.21)

where y is (also) denoting the weight @f corresponding to the highest weight vector
|@), andp is the Weyl vector (weight) of. Thus, an affine highest weight vector is also
a Virasoro highest weight vector; correspondingly, an affinimary field is a Virasoro
primary field. Indeed, if the primary field is associated wilie weighty of g, then its
conformal weight iy = (¢, @ +2p) /2(k+h"). The converse is not true — a Virasoro
primary field is not necessarily an affine primary field J&§z) shows.

It follows immediately that a correlation function of (a#rmnd/or Virasoro) primary
fields must satisfy the differential equations that werevéerin Section 2.2.1. In particu-
lar, Equation (2.2.2) fixes the form of correlation funcsanvolving up to three primary
fields (up to a multiplicative constant). The constraintgling (Virasoro) null fields
also apply, although the restriction that such null fields/roaly exist whenh = 0 or
¢ < 1[101] limits their usefulnesy

However, one can repeat the derivations of Section 2.2rgusfine modes and affine
primary fields rather than their Virasoro counterparts. &halogue of Equation (2.2.2)
is obtained by noting that the zero-grade mods t,) annihilate botH0) and(0|. An
easy computation using Equation (3.1.20) then yields theviing equation:

it5<0| 93{4’1 (z1)- Wm(zm)} 0) =0. (3.1.22)

Here,t} is supposed to indicate that the elemigrt g is acting ony; (z) to give (tal) (z)
inside the correlation function. This equation holds foy afementf,, of the horizontal
algebrag. Of course, ift; € g4 then each term vanishes separately (by definition of
primary), so the interesting constraints are generatetiépther elements.

6Among the Wess-Zumino-Witten theories based on simple Igetaas (with a single exception), the only
primary field with null fields as descendants is the identigydfi The single exception is the theory with
g = su(2) and levek = 1, which has two affine primary fields, both with null fields &sdendants.
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In particular, wher, € t, the Cartan subalgebra gf Equation (3.1.22) becomes

<.§wi,ta> <O|fR{L’U1 (zg) -+ Wm(h)} 10) =0,

where(-,-) denotes the pairing of the weights §h with elements oft. It follows that
the correlation function must vanish unless the sum of thighte ), is zero. Since the
weights correspond to highest weights of integrable remtadions, this can only happen
if each weight is zero. In other words, tle@ly non-vanishing correlation function of
affine primary fields is the trivial one, containing only tldentity field.

Note however that the operator product expansion for the figw) given by Equa-
tion (3.1.20) is derived from the requirement tiag = O for eachn > 0. This require-
ment is clearly still satisfied iy is a zero-grade descendant of a highest weight vector, so
this operator product expansion is still valid for the cepending fields. It follows that
Equation (3.1.22) holds for correlation functions wheregh(z) are all such zero-grade
fields. Clearly it is possible for the sums of the weights esponding to such fields to
vanish.

As generic correlation functions involving affine primarmgléls vanish, one cannot ex-
pect that all other correlation functions are determinethiege primary correlation func-
tions, as was the case for the Virasoro algebra (Sectiof)2.thstead, one expects that
arbitrary correlation functions will be determined by ta@®ntaining (the non-vanishing)
zero-grade fields. Indeed, the analogue of Equation (2£.5)

(01 R{ (32) (W) Y (W) Yra (Wi} [0)

:—iimm{w(w) G (w) - ()} 0], (31:29)

(Wi —w)"

whose derivation is exactly the same, except that Equatahq) is used as a start-
ing point. This derivation presumes that eagh(w;) is a zero-grade field, so Equa-
tion (3.1.23) reproduces Equation (3.1.22) whea 0 (andy (w) is also a zero-grade
field).

Of course, Equation (3.1.23) may be generalised to coieldtinctions involving
more general descendant fields. Descendant fields whichufirgharefore imply con-
straints on the zero-grade correlation functions. St¥¢eis acting as a subalgebra of
11(g), and zero-grade fields are Virasoro primary fields, Equgoh.17) yields an infi-
nite number of null fields. For example,|ip) denotes a zero-grade state,

PR > L@ Pty (@) isnull

1
Laly)=1—5 Th

ThY

7Again, this derivation assumes ttzdakes values in the Riemann sphere. That is, that the stionigisheet
> is topologically a sphere.
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From Equation (2.2.5) and (a generalisation of) Equatioh.23), the corresponding con-
straints on the zero-grade correlation functions arekhzhnik-Zamolodchikov equa-
tions

1 titd
a+ k+hV J;Wi —Wj
The indexa is still implicitly summed over.

One last class of constraints is provided by purely affinéfreltls. These correspond
to null vectors in the Verma modules corresponding to thegrable highest weight rep-
resentations that appear in the (chiral) theory. Thesewegliors are known in all gener-
ality [99]. If the highest weight state of this Verma modulgAs, then the null vectors
are generated hy+ 1 primitive states. There are= rankg such states of the form

(0] TR{Lpl (Wi) -~ m (wm)} 10) = 0. (3.1.24)

i), (=12...,1),

wherea; denotes a simple root gf ande_g, is the copy of the corresponding root vector
acting ing at zero grade. These null vectors arise from the finite-dsioerality of the
g-module defined by the zero-grade states. They reflect threseptation theory of.
The last null vector is somewhat more exotic, and has the {@ppendix B.3)

(391> k+1—(A.6) "

where@ is the highest root of, andJ?1 is the copy ofeg € g acting ing at grade—1.
The corresponding constraint is obtained through the tepeapplication of Equa-
tion (3.1.23). This is th&epner-Witten equation

0= (o1={((2%)" ) ) Y1 (W) Y (i) }0)

-E- Ll o oot}

i1=1 |p:1

()™ ()"

pl
el,.4§m>0 ol b (w—wig)2 - (W= i)
l+..+Hm=p

— (0] R A (W) g (Wa) -+ n (W) }0),

(3.1.25)

wherep > k+1—(A,0), andyy (wy), ..., Pnm(wWn) are zero-grade fields. Note thhatw)
is assumed to be an affine primary field in this equation.

3.1.5. Fusion.Consider the correlation function of an affine primary figldz) and
a zero-grade fielgl’ (w), descended from the primary field(w). By Equations (2.2.3)
and (3.1.22), this function vanishes unless the conforneafjits matchlf, = hy,), and
1 = —A as weights ofy. In fact, Equation (3.1.22) constrains such functions ewene
severely. Recalling the triangular decompositipa g & t$® g, of Appendix A.1, if
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¢’ (w) has a non-vanishing descendant (g0 =t |u"”) for somet € g ), then

O R{A @ 1 (W)} 0) = = (O|R{ (tA) (2 W" (W) } |0) =©.

This correlation function therefore vanishes unlgss is alowest-weighstate with re-
spect tog (is annihilated byy_). This, together withu’ = —A, uniquely determineg to
be the highest weight of the representation conjugate (pperdix A.2) to the represen-
tation of highest weighd.

More generally, in a correlation function involving the @gtA) (z) (A (z) primary,

t € g_) and a zero-grade field’ (w), it follows from Equation (3.1.22) and the above
argument that the correlation function vanishes uni¢s$ is the lowest weight state in
the representation conjugate to that of highest welghf\s ' = —tA, the weightu’ is
therefore completely determined. However, the multipficif u’ in the representation
conjugate to that of highest weightmay be greater than one, so there may be several
linearly independent candidates fipr’) in this (finite-dimensional) weight space. Of
courset acts linearly on this space, and sends it to the one-dimealksobspace spanned
by the lowest weight vector. Therefore, one may chdg$eto be orthogonal to the kernel

of this transformation, and in this way’) and thusu’ (w), are uniquely specified (up to
an unimportant normalisation).

The above conclusion obviously extends inductively to ngameeral descendant fields
of A (2), so it follows that every zero-grade field is uniquely paiveith another zero-
grade field (hereafter referred to as tumjugate field, such that the correlation function
involving these two fields is non-vanishing. In this way, titeemalisation of affine corre-
lation functions involving two zero-grade fields is estab&d. This should be contrasted
with the normalisation chosen for the analogous Virasometation functions in Sec-
tion 2.2.1. Here, the pairing involves a state in one repradi®n and a corresponding
state in the conjugate representation (hence the nameég¢athsf pairing a state with
itself.

With the normalisation of these correlation functions deiaeed (from which all oth-
ers may be derived through the operator product expansoma),can now discuss the
process of fusion in Wess-Zumino-Witten models. As in SgcR.2.2, fusion may be
characterised through the correlation functions invajvinree zero-grade fields. How-
ever, the analysis is further complicated by the fact thatelare, in general, many zero-
grade fields corresponding to a given primary field, and thiatpilethora of zero-grade
correlation functions is constrained by Equation (3.1.22)

More specifically, the zero-grade correlation functionolwng A’ (z;), 1’ (z), and
Vv’ (z3) will vanish unless a descendant of the field conjugate’ {@s) appears in the op-
erator product expansion @f (z;) and i’ (z2). Because of the aforementioned plethora
of such (related) correlation functions, the correspogdirsion process traditionally in-
volves the entire families headed by the primary fields. Thaf the above correlation
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function is non-vanishing, then the corresponding fusida is
A< (] = [vF] +...

wherev™ denotes the weight conjugatewo

It will generally happen that there is more than one nonskaing correlation function
involving zero-grade descendants of fixed primaries. Farmgle, the operator product
expansion of two zero-grade fields from the (respective)lfasy[A] and[u], might con-
tain descendants of more than one zero-grade field in theyfduji(as the multiplicity
of the appropriate weight need not be one). The same appliether combinations of
zero-grade fields in these families, leading to more nonsyamg correlation functions.
Of course, many of these non-vanishing correlation fumstiwill be related by Equa-
tion (3.1.22), so it is only thendependent couplingsf the zero-grade fields in given
families which is of interest.

This number of independent couplings — that is, the numberoofvanishing cor-
relation functions of three zero-grade fields from given ifeas, modulothe relations
between them implied by Equation (3.1.22) — definedtisgon multiplicity This fusion
multiplicity (fusion coefficient) associated with the fdi@s [A], [u], and[v'] is denoted
by NA“" . The conjugation of in this definition reflects the normalisation of correlation
function of two zero-grade fields. It leads to the generahféor a fusion rule:

A]x W] =3 N,," V] (3.1.26)

In contrast with Equation (2.2.6), where the fusion coedfits take the value O or 1,
the fusion coefficients in the Wess-Zumino-Witten modely nake more general (non-
negative integer) values.

To better understand these fusion multiplicities, consitle set of correlation func-
tions involving the zero-grade descendants\@t ), u (z), andv (z3). To describe a
non-vanishing correlation function, the correspondingghtsA’, i/, andv’ of g must be
related by—v’' = A’ + /. That is,—v’ must appear as a weight of ttensor producbf
the representations gfof highest weighf andu (Appendix A.3). Of course, this tensor
product decomposes into irreducible highest weight remiasions, and the representa-
tion of highest weighv™ (to which —v’ belongs) appealnﬁ)w"+ times. It follows that

theseN/\“"+ independent representations correspondl/\tg‘ﬁ independent couplings
for the set of zero-grade correlation functions being abersd.
The preceding discussion appears to suggest that the fosidiplicities NA“V are

in fact just the tensor product coefficierIN§“ Y of g. However, this discussion only takes
into account the constraints given by Equation (3.1.22er&lare further constraints, in
particular the Gepner-Witten equation, Equation (3.1.28)ich force additional zero-

grade correlation functions to vanish (and hence all thetfans related to these by
Equation (3.1.22) to vanish also). That is, the precedisgudision only demonstrates
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that
N)\“v <N v7
a result of not negligible importance. Indeed, a detailedbf the Gepner-Witten equa-
tion leads to the so calledepth rule the original method for computing fusion multiplic-
ities in Wess-Zumino-Witten model8%].
The properties of the fusion multiplicities are similar tmse of the tensor product
coefficients ofg. As in Equation (2.2.7), the identity field (primary of wetd)) supplies

the unit for the fusion process, with
Noy!' =0, (3.1.27)

Equation (2.2.8) generalises slightlyhgu" corresponds to a non-vanishing correlation
function involving fields from familie$A], [u], and[v*]. Thus,

v v At At pt ut
Ny =N =N =N =N R = R (3.1.28)

A
Suppose now thab is an automorphism of corresponding to a Dynkin diagram
symmetry (Appendix A.2). Sincev merely corresponds to a certain arbitrariness in the
numbering of the fundamental weightsgfwhich can have no bearing on the theory), it
follows® that the correlation functions must be invariant upon reiptgevery weight by
its image undew. In particular, applying this logic to correlation funati®of three fields

gives an additional symmetry of the fusion coefficients, agm

v _ w(vr)”
Now = Nomww :

Conjugation is such an automorphism, hence it follows fraqndtion (3.1.28) that

Ap

+
N V:Nmﬁ” =N,. 0 (3.1.29)

Au
3.2. Boundary Conformal Field Theory and Branes

Recall that in the string picture of Wess-Zumino-Witten ralsd the conformal field
theory is defined on the string worldsheet, a two-dimengioraifold. This theory de-
scribes closed strings, little loops, tracing out the tvimehsional worldsheet in time.
This picture can be generalised to a theory of open stringsrethe loops are replaced by
finite lengths with endpoints. The string worldsheet therebecomes a two-dimensional
manifoldwith boundaryand the theory becomedaundaryconformal field theory. This
geometric picture of open string Wess-Zumino-Witten medeill be studied in much
detail in Section 6.3. For the present purposes, howewegil] guffice to enquire as to the
boundary conditions that should be imposed upon the operg &ndpoints.

Bitis tempting to conclude that this will also follow for thetamorphisms ofj. However, these more gen-
eral transformations need not preserve the conformal we{plence the correlation functions of three fields
are not invariant), nor need they preserve the vanishingeo§tim of the weights appearing in a non-trivial
zero-grade correlation function. It cannot be stressedrtaoh that even though the symmetry algebra is
$1(g), Wess-Zumino-Witten models are defined ofirdte-dimensionaLie group G so the fundamental
symmetries (of the type used here) are thosé (dnd henceg).
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FIGURE 3.1. Changing coordinates from the sty (o the half planeZ).
Note that the strip boundaries (upper and lower) are mappédiscon-
nected pieces of) the half plane boundary, z. The boundary conditions
are (generically) labelled by andp.

3.2.1. Gluing Conditions on the Half Plane.Away from the boundary of the string
worldsheet, one can choose (local) complex coordinatesthg iprevious section, and so
most of the theory derived there applies. In this contexs, ithusually referred to as the
bulk theory At the boundary, however, this is no longer the case, argdabnvenient to
choose the local coordinate chart so thiaglongs to the upper half plarénz> 0. Since
z is (while formally independent of) to be eventually identified witlz*, the conjugate
of z, this coordinate may be taken to belong to the lower half@lamz < 0. The most
suitable local chart to keep in mind is actually one whichcdégs the (open) string
worldsheet as a “strip” with two boundaries. This chart maycbnformally mapped to
the half plane (minus the origin) as illustrated in Figuré. 3.

As in Section 2.1.1, one now asks what the infinitesimal conéd transformations
of the half plane are. It should be clear that these corraspmmector fields of the form
£(z)0/0z+€(z) d/0zwith the added constraint that these vector fields must presee
boundary. DecomposimmpsTt +i0 andz=z* ast —io (sot parametrises the boundary),
these vector fields may be rewritten in the form

L@ ER) 2t L ED) () o
To preserve the boundary=z (o = 0), the coefficient o8 /d o must vanish there, hence
the constraint amounts ®©(z) = €(z) atz=z In other words, and€ are no longer
independent. They are both completely determined by by tadiies on the boundary,
where they coincide

It follows that on the boundary, the Lie algebra formed byittimitesimal conformal
transformations is therefore (a completion ofyiagle copy of the Witt algebra. After
quantising, one gets a representation sirglecopy of the Virasoro algebra on the quan-
tum state space. In comparison with the bulk theory, whemedepies act, one writes
L, = L, atz= z (for eachn € Z). In terms of the energy-momentum field, this is called

the conformal boundary condition
T(2=T(2 atz=z (3.2.1)

90f course this does not imply thatand€ coincide as functions. One is holomorphic and the other is
antiholomorphic, and more to the point, they are defined &ardint domains.
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This boundary condition has a nice interpretation as raggihat no momentum flows
across the boundary, and is therefore often taken as thearfuental requirement of
boundary conformal field theory.

However, in a Wess-Zumino-Witten model the energy-momarfteld is constructed
from the currents? (z) (andJ®(2)). Therefore, it is of considerable interest to determine
the possible boundary conditions on these fields. Makingtisatz J? (z) = Qabjb (2)
at z=z, whereQ,, may vary along the boundary, the conformal boundary camditi
becomes (see Equation (3.1.11))

b,_

P22 =QuQac: 2@ : =:°2°@): atz=z2

which is satisfied if and only i,pQac = . If Q: g — g is the matrix with entrie€
(with respect to the orthonormal bagis }), then this just requires th& be orthogonal
with respect to the Killing form ofyg. Note that orthogonal transformations preserve
angles.

The consistent boundary conditions that can be imposedecuttients therefore take
the form

J(2=QJ(2) atz=1z, (3.2.2)

whereQ is an orthogonal transformation gf(possibly varying along the boundat{)
Such boundary conditions are sometimes cafjedng conditions as they “glue” the
bulk holomorphic and antiholomorphic currents at the b@amdThe conformal bound-
ary condition, Equation (3.2.1), breaks exactly half of domformal symmetry, in that
one ends up with a single copy of the Virasoro algebra ratiman two. It is therefore
interesting to investigate how much of the affine symmetryrisken by a given gluing
condition on the currents (clearly at least half the symmagimust be broken).

One way to do this is to see how this affects the operator mtoekpansions at the
boundary. Equations (3.1.5) and (3.1.6) give (assumingahe valid)

R{3* @) W)} = Qa (2) s (W) R{T* @3 (w) .

whose singular terms are

b

KB fancQer W) I (W) _ KQaw (2) Qow (W) | Qo (2) Qo (W) FaycI” (W

(z—w)? Z—W (z—w)? zZ—w
_ KQaar (W) Qpg (W) | Qag (W) Qoar (W) fare 3° (W) +k0Qaq (W) Qpe (W)
(z— W)2 Z—W '

Comparing coefficients o(fz—w)_2 recovers the condition th& must be orthogonal.
Noting that the operatod§ are linearly independent of the identity operator, the W)_l

101t should be pointed out that more general boundary conditan be imposed on the currents which
are also consistent with the conformal boundary conditieguation (3.2.1). Examples may be found
in [134, 135 which seem to correspond to imposing conditions aubalgebraof g. These more general
boundary conditions will not, however, be considered is thesis.
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coefficients givedQ - Q=1 = 0 and fapcQce = QagQuy faye. This first constraint re-
quiresQ to be locally constant, and the second constraint is prigdie condition that
Q is an automorphism af. Automorphisms ofy are always orthogonal (with respect to
the Killing form), so locally constant automorphisms exsiaine possibl€ which pre-
serve the affine operator product expansions. The regulastef the operator product
expansion can be checked to give no further constrainf3.on

It follows that the gluing (boundary) condition, EquatidhZ.2), preserves the max-
imal number (half) of affine symmetries if and only<¥ is constant on each connected
component of the boundary, and takes valueding. Such boundary conditions will
be referred to asymmetry-preservingThe boundary conditions considered in the re-
mainder of this chapter will always be assumed to be symnpegerving®. In the case
illustrated in Figure 3.1, the boundary conditions imposadhe two connected com-
ponents of the boundary, corresponding to the two endpointise open string, will be
(generically) labelled byr and3. These labels are meant to specify the automorphism
as well as any other degrees of freedom. The broken affine synes are evidenced by
Equation (3.1.7), which is not preserved by these gluinglt@ms. In fact, this opera-
tor product expansion can only be preserve@ i 0, which contradicts the conformal
boundary condition.

WhenQ € Autg then, the gluing condition identifies the holomorphic andhario-
morphic currents up to a “twist” (given ) which preserves half the affine symmetries.
The boundary conformal field theory therefore has only ohefssnserved currents. Be-
cause the operator product expansion of these currenessiped, the modd§ = Qabjg
form a representation @. It follows that the state spa& of the quantised half plane

theory decomposes as
I ~ A
8§ = @naﬁ V),
A

whereV, denotes an integrable highest weight modulg ahdnaﬁ)‘ Is the multiplicity
with which it occurs. The subscripts and refer to the dependence of these multiplici-
ties on the boundary conditiomsandf imposed. The partition function of the theory on
the half plane (with these boundary conditions) is theeefor

Zap (q) = trg g0 /24 = Zn ﬁ)‘ XX (q), (3.2.3)

Wherexm“(q) denotes the (normalised) character\Gf as aUit-module (see Equa-
tion (B.3.1)).

3.2.2. Gluing Conditions on the Annulus. For the purposes of conformal field the-
ory, one can define a brane as the particular boundary condiiposed on the open
string endpoints. The symmetry-preserving boundary d¢erdi therefore determine

in fact, it will be shown in Proposition 6.3 that the geomettéfinition of branes is consistentifc Aut g,
but seems to be inconsistent in most other cases.
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FIGURE 3.2. Changing coordinates from the half plaget¢ the annulus
(¢) via the strip (). Periodic boundary conditions are labelled with,a
and symmetry-preserving gluing conditions are labettezhd 3.

symmetry-preserving branego define the concept of a brane properly, one must con-
sider the target spade where the strings live. There, branes are defined geomigtrica
and possess a rich structure which encodes this boundadytioon(and will be inves-
tigated in detail in Section 6.3). However, this structuoesinot pull back to the string
worldsheet where the conformal field theory is defined. Nbebess, branes may be prof-
itably studied using the techniques of boundary confornedd tiheory, in particular using
those techniques pioneered by Cardg{44).

First, one imposes periodic boundary conditions in timatilitate the physical inter-
pretation of the partition function, Equation (3.2.3). Wihe conventions of Figure 3.2,
this sets the variablg of the half plane partition function te~™/¢. Then one makes a
transformation of variables from the half plane to the ansuhgain illustrated in Fig-
ure 3.2. The currentd?(z) transform as a 1-form under coordinate changes (see Sec-
tion 6.2.2), so

2

. )
D2R @)= B = BN () = (B =52 R0,

Similarly, ?jznn(?) = (—it/2¢)23%(2). Under this change of coordinates, the gluing
condition, Equation (3.2.2), becomes

4 Jgnn.(() = _Z Qabjgnn_(?> at|{| =1, 2/t
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Dropping the subscripts “ann.”, the gluing condition of #renulus modes at the bound-
aries|{| =r (r=1,e"Y)is

_ =b=>—n b _ b _
SR =0y Il =— Qapdnt ("= =5 Qapd”(r?"¢ "
n n n n

= \]r? — _ranabjtin.

Of course, this condition holds with respect to any bdsi$ of g, not just an or-
thonormal one. This basis-independent condition is obthby tensoring witl, to get

Rota=—1"2 00 ) =  Jh=-rQ71 (I,

sinceQ is orthogonal. It is very convenient to decompose this dioiwith respect
to differentbases ofg for the holomorphic and antiholomorphic sector. A partacly
nice choice would then be to choose the antiholomorphicsbéisil, to be related to the
holomorphic one{t,}, by T, = Q1 (t;). Decomposing the antiholomorphic sector with
respect to this choice dft,} would effectively replac€,, by dqp.

However, the structure af (andg) suggests an even more convenient choice. Recall
that the gluing conditions relate holomorphic modes of grmadvith antiholomorphic
modes of grade-n. This suggests that holomorphic raising and lowering dpesafg
should be related to antiholomorphic lowering and raisipgrators, respectively. That s,
that the annulus gluing conditions should swap the subadggb andg_. of the triangular
decomposition ofj. By considering the zero grade modes, one finds that thiswiéed
be the case if and only 2 swaps the corresponding subalgelyasandg. of g.

Given a choice of triangular decompositigr: g_ & t® g, there is an almost uniqte
automorphism of preserving and swapping_ andg. . This is theChevalley automor-
phismac (Appendix A.2). It is convenient at this point to fix the (colexgfied) holo-
morphic basis ofj to consist of the root vectoe, and the simple coroots;”. a acts
on these basis elements to give

we(eg)=—-eq and  ac(0)=-a.
The best choice for the antiholomorphic basis elements tiakief, = (weo Q) () =
(Q~ Yo ax) (ta). One finds thdf

Rota= 12T 500 (ta) =r"I_ 1@ (Q towr) (ta) = r*I_p@fa

In what follows, this choice of basis will be made, so the dnasmode gluing conditions

take the convenient form
a

R=r37  at|g|=r. (3.2.4)

1270 pe precise, unique up to multiplication by a Dynkin symmef g. It will be seen shortly why taking
this Dynkin symmetry to be trivial is the best choice.

13The labelain J& may correspond to a root vect@ £ o) or a simple corootd = i). In the former case,
—arefers to the root-a, but in the latter case;a should be understood to referito
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With this (relative) choice of basis for the antiholomompbkector, the gluing conditions
relate holomorphic raising and lowering operators withiremilbmorphic lowering and
raising operators, as promised.

However, this cavalier “removal” of the automorphigihdoes not come without a
price. By changing the basis gfwith respect to which the antiholomorphic sector is
decomposed (as above), one changes the triangular decimpotthe antiholomorphic
copy ofg, henceg. That is, the triangular decompositions used in the hol@micrand
antiholomorphic sectors now differ (in a relative senseji®yautomorphisnac o Q, so
the action of the antiholomorphic copy gfon the representation spagéias also been
changed. (If this basis change was not induced by an autdmsonp then the structure
of g would not be preserved, as the Cartan subalgebra and rooc¢spauld not be
mapped to equivalent subspaces, and one would destroyfithe ffmmetry between the
holomorphic and antiholomorphic sectors.)

The set of weights of any integrable highest weight repriasiems will be left in-
variant if the automorphism is inner (Appendix A.2) thougke tantiholomorphic Cartan
subalgebra will have changed if this inner automorphismoisin the Weyl group. If
the automorphism is outer, the Dynkin labels of the weighésjast permuted by the
corresponding symmetry of the Dynkin diagramgof The set of weights of angiven
integrable highest weight representation may not be preddyy such an automorphism,
but this set of permuted weights will form the set of weightamotherintegrable highest
weight representation, related to the first by the Dynkin syatry. It is shown in Ap-
pendix A.2 thatwe o Q may be written as the product of a unique Dynkin symmaetry
and an inner automorphism. The effect of the above choicargifolomorphic) basis is
therefore to permute the integrable highest weight reptagens in the antiholomorphic
sector byc. The explicit form of themodular invariant(Section 3.1.3)M,, is thereby
altered toM) 5,1

In any case, the point of this change of coordinates from #itephane ¢) to the an-
nulus ) is to note that the annulus in Figure 3.2 may be embeddeceifuthcomplex
plane in a manner which may be naturally interpreted in them&ism of radial quanti-
sation. Indeed, if the half plane theory was radially qused; it is easy to check that the
same is true of the annulus theaycept that time and space get interchangétat is,
upon embedding the annulus in the complex plane, one findghthapatial direction on
the half plane becomes the radial direction on the annulddfatemporal direction on
the half plane becomes the (negative) angular directiomemihnulus. Since the distinc-
tion between space and time is largely a matter of conveaigna euclidean theory, this
suggests that the annulus theory may be recovered from aogie theory on the full
plane by imposing the gluing conditions at the annulus baued. It follows that one
now has two realisations of the boundary conformal field théo study, both related to
an appropriate theory on the full plane.
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3.2.3. Branes as Ishibashi Statedt is natural now to ask when a quantum state
from the full plane theory satisfies the gluing conditiongegi by Equation (3.2.4) (mean-
ing they become identities when applied to the state). Ihésefore mildly# irritating
to learn that there are in general no such (non-zero) st&tesiever, one can identify
infinite (possibly divergent) linear combinations of statehich satisfy the gluing con-
ditions. These formal solutions are identified as représgriranes in the quantised
Wess-Zumino-Witten theory. Mathematically, it is cleaattthese formal infinite linear
combinations of states are best treated as distributipesjf&cally as elements of the dual
spaces* of the full plane state spate This distributional interpretation accords well with
the intuition that branes should correspond to statesikszhbn the boundary.

A solution to the annulus mode gluing conditions, Equati.4), will be denoted by
(b| € 8*. The *b” denotes “brane” and serves to distinguish these lineastfonals from
the (Y| € 8* used previously to denote the functional that took value therstateéy) € §
and vanished on its orthogonal complement. These brang@ware characterised by

(b33 |w) = (b[r*T5|y),

for all ne Z, a, and|{) € 8. It is convenient to switch to a tensor product notation,
whereJ2 becomes)3 @ id acting on$ = @, , My, (Va & Vy), andJ; becomes ichJ2.
The equation characterising brane solutions in this rmtas

(bI{IR|w) @9} =r" (bl {|y) 2 IR} }. (3.2.5)

It is also convenient to take care regarding the possiblegmee of non-trivial multiplic-
ities in the modular invariant of the full plane theory. Iretremainder of this chapter
(unless specified otherwise), the labalsvill implicitly include information about this
multiplicity. In particular,A andu may now be equal as weights, but the highest weight
stategA) and|u) can still be different.

PROPOSITION3.1. Given r> 0, the solutiongb| of Equation (3.2.5) act on the states
@) ®@|@) € V) xVy by

bl{lweler="5 G rele), bi{reA)erew}, (3.26)

A=u
as weights

Where(~,-)“ denotes the inner product on,Vand =, ,: 8 — 8 is the antilinear (chi-
ral) operator which mapsA) to |u), annihilates every other highest weight state, and
commutes with each lowering operatorgf

14OnIy mildly, because one really should not expect a closéigsto satisfy these boundary conditions!
15Recall the footnote in Section 2.1.2 discussing reasonwrmummpletes, with respect to the Hilbert space
topology, to get a bona-fide Hilbert spa&e This is another. It seems likely that one can find a natural
nuclear topology giving rise to a rigged Hilbert spad8e- 3 = H* C 8*), wherein the branes are realised
as elements a§*..
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PROOF. Let|y) and|p) be elements o, andV,, (respectively) of the form
a b b
Yy=3% 3% Ay and  [y)=3% 3N, @27)

where all the modes are lowering operatorg (fuch elements form spanning sets). Then,
if (b| is a solution of Equation (3.2.5),

(ol ) @[@)} =121 (] {1A) @35, -3, 240%, -5 1)

From the choice of antiholomorphic basis made (relativééotolomorphic one) in Sec-
tion 3.2.2, it follows that eachl;® is a raising operator. These can be commuted through
the lowering operatorsl?“mj to annihilate the highest weight vectgr), leaving behind
terms involving commutators. These commutators can benglgthand any raising op-
erators commuted to the right, and so on. If, after this pgsderminates, there are any
lowering operators remaining, they can be used to annijilat It follows that the only
contributing terms are those consisting of modes from thee@aubalgebra (and the cen-
tral term). |u) is an eigenvector for these, so it follows that the net efééthese modes
is just a multiplicative constant.

This constant may be evaluated by noting fiaid)" = J-2, so that

(19),190) = (1A 30,3523, - 1))

This is therefore that same multiplicative constant tinesihner product of the highest

weight vectorgA ) and|u). Unfortunately, the latter i§) ,, so it is necessary to introduce

an operatokE, , on 8 which mapsA) to [u), annihilates all other highest weight states,
and commutes with every lowering operator. Then, one catewri

Erulw)-19)) = (1) I+ 32 9%, - 1))

which is exactly the multiplicative constant required.
It follows now that

bl{|Y) @)} =r Amt+W) (=, 1w), @) (b]{|]A) @ )}
= (Saur 20w, @) (b {r?e[A) @ |u) ),

by noting that the energy.§ eigenvalue) ofy) is that of|A) plus the grades; +. .. +nj,.
This holds whenevefy) and |¢@) are elements of the form given in Equation (3.2.7).
However, the left hand side is linear jgv) whereas the right hand side is (seemingly)
antilinear in[). This mismatch is resolved by requiriag , to be an antilinear operator
on 8 (which completely determines it).

It remains to consider Equation (3.2.5) fijr=t, wheret, is an element of the Cartan
subalgebra. Remembering thaa should now be interpreted asthis gives

(Ata) (b {|A) @ [k)} = (bI{IFIA) @ k) } = (b {|]A) @ I |1)} = (W, ta) (DI{A) @ |1) }-

16The adjoint in an integrable highest weight representatiatefined in Appendix B.2 through the action
of the Chevalleyantiautomorphism. This choice of adjoint explains why the cba antiholomorphic
basis made earlier is the best.
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Since the implicit multiplicity labels are irrelevant idgi the pairing-, -), (b {|A) ® |u)} =
0 unlessA = u as weights. It follows thal, = h,, so one can write (more democrati-
cally),

b{lyeler= 5 Ewrlw.rejg)bl{rea)erew;. =

A=u
as weights

It follows from this result (and bilinearity) that a solutido Equation (3.2.5) is com-
pletely determined by its action on the highest weight stgt¢ ® |u), and that it an-
nihilates this state unless and u coincide as weights of. Since the multiplicity of
the highest weight staté3 ) @ |u), with A = u as weights, is jusi, , (in the modular
invariant,A is just a weight), the following corollary is obvious.

COROLLARY 3.2. There are preciselyrM linearly independent brane solutions of
Equation (3.2.5), where M is the modular invariant matrix.

There is therefore at least one solution to Equation (32sBJgo = 1. The obvious
basis of independent brane solutions consists of tlilmsehich take the value 1 on some
given highest weight statd ) ® |1t), and vanish on every other highest weight state. These
solutions are known alshibashi state$97, 127, and will be denoted bjb)\“] (where
A = p as weights). As an example, when the modular invariant gaiial M, ;, = 9 ),
there is a bijective correspondence between the integhadphest weight representations
of g and the Ishibashi states. But, if the modular invariant éscharge-conjugate invari-
ant M), = O +), then the Ishibashi states are in bijection with the irdbtg highest
weights which are self-conjugate.

However, it is very important to recall the choice of baseslenan Section 3.2.2,
and the consequences of these choices. The form of the nmaokdaiant depends upon
the (relative) choice of the basesgfised to decompose the holomorphic and antiholo-
morphic sectors, and the choice used in the above computaépended upon the au-
tomorphismwe o Q. Therefore, if oneoriginally had the diagonal invariant arfel = id,
then we 0 Q = we decomposes into the product of the conjugation automanplaisd
the longest element of the Weyl group (Appendix A.2), soraftaking the relative basis
choice as above, the modular invariant becomes the chargagate invariant. It follows
that the Ishibashi states would then be in bijection withititegrable highest weights
which are self-conjugate. Similarly, if the original modulnvariant were diagonal b
was the conjugation automorphism, the Ishibashi statesdamurespond to the set of all
integrable highest weights. This behaviour, relative ®riodular invariant, is how the
automorphism allowed in the gluing condition, Equatior2(3), affects thespectrumof
branes (Ishibashi states).

It remains to verify the opening comments of this section eetdte these Ishibashi
states to infinite linear combinations of elementsSofThe value of an Ishibashi state
<b)\“] is given by an inner product on tigemoduleV,,. Let {]e{‘}} be an orthonormal
basis of (the Hilbert space completion of) this module, \whace eigenvectors dfy of
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eigenvaluéh, + nj (say). Then,

(baul{lW) @ (@)} =12 (Spu @), r200@)) =r?% S (Sau ). &) (|&) . r22]g))
=y (1l w) 2ol o)
=y (=l eld) . wel).

where the adjoint of an antilinear operatois defined by(A" |y, |@)) = (A|@), |@)).

Since=,, commutes with all the mode%, so doesEI“. This adjoint is therefore
determined by its action on highest weight vectors, whiaassly shown to coincide with
the action o, . The Ishibashi statébw] may therefore be associated with the formal
infinite linear combination of elements 8f

Izr—ZniE;u €)ole) = Izr—ZniEuA o) = IZr‘Z”i q’\>®]q“> (3.2.8)

The last equality follows &€, =V, (recallA = u as weights) s&,,, takes an orthonor-
mal basis ol to an orthonormal basis &f,. Interestingly, ifr > 1 then this sum con-
verges in the Hilbert space completionSofwhereas if = 1, the sum is divergeht That
is, the Ishibashi states may be interpreted as elementg dtithert space completion of
Sifandonlyifr > 1.

3.2.4. The Annulus Partition Function and Cardy States.Consider the depen-
dence of these Ishibashi states on the annulus boundansraddenoting these states,
temporarily, by<b)\u .» one has the relation

(bl {1W) ©19)} = (Eaur 0 1w) 10 lg)) M
= oyl oIy @rtol))
= rh)\—C/24rh/,1_C/24<bA“ }1 {r—(Lo—C/24) @) @r—(Lo=c/24) |(p>} .

One recognises the action of the (chiral) Hamiltoniay,- ¢/24, and the modular anom-
aly my, = h, —c/24 (Appendix B.3. This relation therefore warrants a mogtantant
interpretation. The Ishibashi state acting on a closedgsiate, at the boundafg| =r,

is equivalent (up to the modular anomaly) to the correspumtihibashi state, af | = 1,
acting on the closed string statanslated backo the boundaryZ| = 1. In other words,
the Ishibashi states at the bound&fy = r may be interpreted as having evolved under
the Hamiltonian from the corresponding Ishibashi stateg|at 1:

<b)\u}1 evolution r‘zmA <b)\u’r~

The partition function for the annulus theory may now be categ as follows. The
labelsa and 3 will not generally correspond to periodic boundary corutis, so the
1T he norm squared of this formal infinite linear combinatiejuisty; r~4" which turns out to be a constant

times the Virasoro character 0f; evaluated ay = r—*. Virasoro characters converge whieh< 1. This
can be elucidated fairly easily fror89)], Proposition 1110.
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partition function will not be expressed as a trace over thespace. Instead, it takes the

form ~
ZGB <e2rr£/t> _ <ba‘1{e—Zné(Lo—i—Lo—c/lZ)/t <b3\1},

reflecting the evolution of the boundary sta(tlezﬁll fromr =1 tor = e/, These
boundary states are linear combinations of IshibashiSt(dmg ]r =YoawYpnp <b,\“ .
where the sum is over labels with= u as weights. Evoking the evolution interpretation
for branes, this partition function may be rewritten as

Zap (") = 2 (bal1 {& ™™ " Ugay (baul, }-

as weights

Now, it is nota priori evident that this expression for the partition function ek
sense, consisting of a functional acting on another funetio However, the argument
of the functional(by|, is a functional atr = e™/t, which may be associated with a
genuine element of the Hilbert space completion of the spéee by Equation (3.2.8).
It is therefore possible for the above partition functionnt@ke sense by making this
replacemenf. Note that(bﬁ \r =>awYsnp <b2\u ]r is associated with the Hilbert space

element
3 Vi 3 [ ele),
H |

by Equation (3.2.8). In particular, note the conjugatioat ttollows from the derivation
of this equation.
The evaluation of this partition function is now straigbtsard. One finds that

Zag <e2nt/€) _ AZ“ T Ize—4n€(m)\+ni)/t <ba\1{‘e{\> 2 ’ely>}

as weights

= )\Z Z / Ua(A’y’)UE()\“) Ize4n£(m)\+ni)/t <bA/u/}1{’q)‘>® ’ely>}
as w_elifghtsas)\ W:e,ilghts

- Z UaamYpo
A=u

as weights

g4t (hy +nj—c/24) /t

B AZ UOf(/\u)UB*(A,J)tr\,A e 4ml(Lo—c/24) /t

as weights

Recognising the character ¥f as aUit-module, this expression for the partition func-
tion on the annulus may be compared with the expression,tlequ@.2.3), for the corre-
sponding partition function on the half plane. Insistingttthese coincide gives Cardy’s

18indeed, Equation (3.2.8) suggests that the boundary stites 1 correspond to infinite linear combina-
tions of orthonormal basis elements whose coefficientsfaiapid decreaseThat is, these boundary states
belong to an abstract Schwarz space. In the rigged Hilbadesformalism, the state space should be such
an abstract Schwarz space, and the branes should belosglt@it Hence, one can have some confidence
that the partition function described here will not be atrrzonsense.
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constraint 44]:

Zn B"x&’“( "W): > Ua(/\u)UE(Au)XAm< W/t)

A=u
as weights

= )\Z EUG()\M)S)\VUE(A[J)XV%VC( —nt/€>‘
as W_e%hts

The last equality comes from the modular properties of tmasdro characters and notic-
ing thatq = €T = e ™/ transforms under the modular transformat®inr — -1/1,

into § = e 4™/t (and vice-versa).
One would like to conclude now that
v *
as W_elilghts

This conclusion would be justified if the Virasoro charastgf™™ (q) were linearly in-
dependent. However, they are not, as these charactersfiairvégiant byv — w(v),
wherew is a symmetry of the Dynkin diagram @f Nevertheless, it is usually argued,
not entirely convincingly, that this conclusion is truer[44], so Equation (3.2.9) will be
assumed in what follows. One might anticipate that thisti@bamay be derived prop-
erly by considering amxtendedoartition function involving the full set of commuting
observables (thus the full affine characters), not just tiezgy.

In any case, Equation (3.2.9) may be interpreted as a neaslizonstraint on the coef-
ficientsUg (s ). Itis, however, remarkably difficult to solve because thly amformation
known about the coefficient%ﬁ" is that they represent the multiplicities of tfgin the
half plane state spac (Section 3.2.1). As such, they are non-negative integers.

There is, however, a fundamentally interesting class aitsmis when the modular
invariantis diagonal (meaning the Ishibashi states argention with the set of integrable
highest weights). There are no non-trivial multiplicitie® the labelling A1) can be
replaced by a simpl#, and the solution is given by

Ugp = % =  (bg|= Z bm (3.2.10)

which expresses th@ardy state(b, | in terms of the Ishibashi statels, , |. Note that the
boundary conditions labels;, are associated with weights in this solution. It is easy to
verify using the symmetry of th&matrix and the Verlinde formula (Proposition 5.1) that

ZS(“ZA A NG P =N Y (3.2.11)
A

atp
is indeed a non-negative integer. It follows that for thegdiaal invariant, there are consis-
tent boundary states, called Cardy states, in bijectioh thi¢ integrable highest weights
of g. The Cardy states correspond to the so-call@svistedsymmetry-preserving branes,
because the “twisting” automorphiss o Q is trivial (relative to the modular invariant).
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Note however, that this analysis does not rule out the exgstef other consistent solu-
tions that correspond to this automorphism and modulariawta

It does, however, suggest a method to get consistent sadutts more general mod-
ular invariants. Given an invariaM, let £y denote the (multi)set of weights (with multi-
plicity) which are paired with themselves in the modulam@inant. ThusA = (Ap) € v
and|Ev| = trM.

PROPOSITION 3.3. Define matrices Y by (n¥),5 = naB", wherea and 3 label
boundary states and € &y. Then, if the H constitute a (normal) non-negative inte-
ger matrix representation (NIMrep) of the fusion ring (seet®n 5.1), there exist corre-
sponding solutions to Equation (3.2.9).

PROOF Define a matri®¥/ byV,, =/ Uqa- Then, Equation (3.2.9) takes the form

As thenV constitute a normal representation of the fusion ring (nmepthe representing
matrices are normal), their eigenvalues have the f8ppY S, (Section 5.1.1). ThaV
must all commute, s may therefore be taken as the unitary matrix which simultane
ously diagonalises eadtY. |

Note that a¥/ is chosen to be unitary in this proof, the boundary statesugnaking
in bijection with &y. It follows that if one can find a NIMrep of the fusion ring casts
ing of m by m normal matricesr = trM), then one automatically knows af linearly
independent consistent boundary states solving Equai@rt). WherM is the diagonal
invariant,m is the number of integrable highest weights, &day be taken to be the
modularS-matrix. The NIMrep is then the regular representationiirad by the fusion
matrices (Section 5.1.1), and the boundary states are ttily Gtates as described above.
Of course, nothing precludes the possibility of there beialgitions to Equation (3.2.9)
which do not correspond to a NIMrep of the fusion ring. Howewe view of the dif-
ficulty of actually obtaining solutions, it is not surprigithat NIMreps have become a
fundamental object of study (see for exam€]].

However they are obtained, the boundary states which sajvation (3.2.9) may be
interpreted as consistent (or quantisednes which specify the boundary conditions on
the open string theory. As exemplified by the Cardy states gemerally finds more than
one consistent brane for each modular invariant. In Se@&i8nbranes will be studied
globally from a geometric point of view, and it will be shown there th@se different
branes correspond to geometric objects at different positin the target space (the Lie
groupG).






CHAPTER 4

Brane Charge Groups

In this chapter, a conserved charge for the quantised brdred/ess-Zumino-Witten
model is introduced and studied. The main goal is to compheebelian group which
these brane charges take values in, and for the untwistecheympreserving branes,
this goal is achieved in Section 4.2. These computationgine@ detailed knowledge
of the fusion process in Wess-Zumino-Witten models, a cetmpnsive study of which
follows in Chapter 5.

4.1. Brane Dynamics and Conserved Charges

Recall that branes have thus far been introduced as bou(glangg) conditions im-
posed on the currents of the conformal field theory. It haslaé®en mentioned that branes
have a geometric interpretation in the correspondinggthieory as extended objects in
the target space on which open string endpoints are comstrain this setting, there is no
notion of brane dynamics whatsoever. Nevertheless, intbegsed extension of string
theory, M-theory, the status of the branes of the theory jeeted to be raised to that of
dynamical objects, on a par with strings.

Unfortunately, M-theory is not a well-defined theory at @S so the study of brane
dynamics is not a straight-forward matter. Indeed, it isdtbinat knowledge of brane dy-
namics will help to determine the form of M-theory. One p@sdpproach is to consider
an effective field-theoretic description, valid at low egies, of the open string theory
associated with a given brane. Such a quantum field theovgseas an approximation
of this string theory. More importantly, it should also selas a low-energy approxima-
tion to the corresponding M-theory describing the braneatTé to the expected brane
dynamics.

If some well-defined dynamical processes for branes candifebd from this ap-
proximation, then one can attempt to determine correspgnebnserved charges. Even
though such processes and charges would be derived in anlexgyeapproximation, it is
reasonable to hope that they might still be valid (at leagtart) in the full theory. Itis
in this way that such approximations are supposed to prayuitgelines for constructing
M-theory.

These ideas were applied to Wess-Zumino-Witten models lekg8lev, Recknagel
and Schomerudg], for brane dynamics, and Fredenhagen and Schomé8jisfr con-
served charges. In this section, their results are presem¢hilst these results are of
fundamental importance for the rest of this chapter (andvai@ much of this thesis), the
corresponding derivations will not be detailed. They ratyaalvanced ideas from string

53
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Superposition

Open String

Spectator Brane Spectator Brane

FIGURE 4.1. A prototypical condensation process for branes: Akstéc
coincident branes, all of the same typedecays into a superposition of
other branes (labelled by).

theory, condensed matter physics, and non-commutativeegep which are largely ir-
relevant to the remainder of this thesis.

4.1.1. Dynamical Studies.Recall from Section 3.2.4 that the consistent branes in a
guantised Wess-Zumino-Witten model (with the diagonal atadinvariant) are in bijec-
tive correspondence with (a subset of) the set of integiaigleest weight representations
of the associated affine Kac-Moody algelrarhe brane configuration considered & [
consists of a “stack” o coincident branes, all of the same type, labelled by the kteig
(boundary conditionyx of g. The idea is that this configuration is unstable and if per-
turbed, condensesnto another (more stable) configuration or superpositibbranes.
This is illustrated in Figure 4.1.

In a low-energy effective field theory approximation, thédieontent will consist of
fields A which (classically) take values in the Lie algelgrécompare with the conserved
currents of Equations (3.1.1) and (3.1.2)). Decomposirth veispect to a basis gf the
component$\? are then just real-valued functions. This is the situat@rafsingle brane.
Whenm coincident branes (of the same type) are being considdred;dmponenta?
must be promoted to functions taking values in the sehbly m matrices. Components
such as these are sometimes known as Chan-Paton factors.

An action for the effective field theory was computed®hto first order. It turns out
to be independent of the specific type of branes involved yalds a classical equation
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of motion which specialises to (summation convention agx)m

[Aa, [Aa, Ab] - fabcAC} —0,
when the matrix-valued function? are assumed constant (tlig,. denote the struc-
ture constants of). There are two obvious solutions. The first is obtained hyirge
[Aa,Ab} =0 for all &, b. This solution is expected based on the analogous study with
flat target spacedpZ, and corresponds to translations of each ofrthieranes (without
changing their type). The second solution is obtainedlig the dimension of some repre-
sentation ofy (assumed to be irreducible for convenience), andithare taken to realise
this representation. This solution coincides with the fireeng is abelian (which corre-
sponds to a flat target space) but is otherwise quite diffefidre interpretation proposed
in [5] for this solution is that it corresponds to the condensagimcess of Figure 4.1.

More specifically, suppose that is the dimension of the irreduciblg-module of
highest weightA. Then, the proposal is that the stackroforanes labelled by con-
denses into a superposition of branes, where the numbeaonébiof typey is given by
nay The coefﬂmentsay)‘ are precisely those which appeared in the half plane partiti
function, Equation (3.2.3). (Recall that the labelsand y there described the different
boundary conditions imposed on the string endpoints.) Agrgortant example, for
the untwisted symmetry-preserving branes (Section 3.thé¥e coefficients are just the
fusion coefficients,

”av)\ =N =N,
by Equations (3.1.28) and (3.2.11).

Direct evidence for this proposal is given bj for these untwisted symmetry-preserving
branes, when the levélis sent to infinity. Under these circumstances, the coeffisie
nay)‘ become the tensor product coefficieml%y, and the evidence given is largely
representation-theoretic. To justify this proposal whemnlevel is finite, recourse is made
to a formal analogy with the much studi&bndo modebf condensed matter physics.
This analogy is (tersely) described i63 (some more detail may be found ida11]),
and the condensation interpretation is then derived franfdbsorption of boundary spin
principle” developed by Affleck and Ludwig ir2].

In the context of brane dynamics, this principle of Affleclddrudwig is interpreted
to imply the following rule expressing the effect of pertundpthe stack om branes:

mXﬁm (@) — ZN)\+HVX3]It(q)7
v

where)(th (q) is the character of the irreducible representatiop of highest weighi,

treated as &ic-module. Multiplying both sides of this rule t%ﬁ“ and summing over
U, one finds that

mZaB —>ZI’IGB“ ZN)\HJVX\%M )



56 4. BRANE CHARGE GROUPS

where the left hand side is recognisednasmes the half plane partition function for an
open string with boundary conditions (branes) labelleddbsind 3 (Equation (3.2.3)).
The factorm accounts for the fact that there is a stacko€oincident branes of type
rather than just one. Assuming that %“ define a (normal) NIMrep of the fusion ring
(see Proposition 3.3), the right hand side becomes (usingtin (3.1.29))

)3 [Z N, naﬁ“] xt@=3 [Z Ny’ nyBV] X0 (a).
i y

Vv Vv

The perturbation rule can therefore be expressed as
A
MZy (q) — Z Nay Zyg (a),
4

which is precisely the proposal for brane condensationufféigt.1), at the level of the
Virasoro-specialised characters.

It should however be noted that this brane condensatiorepsoas described above
is not at all well-defined. The problem is that a stackrdfranes does not automatically
distinguish a representation of dimensianEven if one restricts to irreducible represen
tations (which one is not obliged to), those whose highesgjhis are related by a Dynkin
symmetry ofg will have the same dimension. Moreover, two irreduciblerespntations
of g may have the same dimension whilst being completely uraelay any symmetry.
The solution is to recall that it is the Chan-Paton fac#tsvhich carry the information
about which representation is involved. Indeed, the pedtion used in%, 63] to initiate
the condensation process involves coupling these ChamPattors on the brane to the
currentsJ?(z). Nevertheless, the use of Virasoro-specialised chasaoteans that one
cannot distinguish a quantity (character) labelledldyom the quantity corresponding to
the image ofA under a Dynkin symmetry. The above argument therefore cengaich
ambiguities. As with the derivation of the Cardy constraifquation (3.2.9), one should
really be working at the level of the extended partition fiime (involving a complete set
of commuting observables) and thus the full affine character

4.1.2. Brane Charges.Having developed the dynamical process of brane condensa-
tion, one can study charges conserved by this process. @ilbesme labelled by an inte-
grable highest weighk, the conserved charge of this brane will be denote@hy(A )

(the subscript “alg” stands falgebraicand distinguishes this charge from the geometric
charges to be introduced in Chapter 7). Brane condensatimegses are now translated
into equalities that must be satisfied by the brane chargesuriing that charges are
additive (hence valued in an abelian group), these takeotine f

dim(A) Qaig(@) = ¥ Ny Qaig(y). (4.1.1)
y

where dimA) denotes the dimension of the irreduciglenodule of highest weight.
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The coefficientsnay)‘ seem to be rather difficult to study in general, so for the re-
mainder of this chapter, it will prove convenient to spasito the untwisted symmetry-
preserving branes. These coefficients now become the fueEfﬁcientéNMV which are
significantly more tractable. In particular, takiog= 0 and applying Equations (3.1.27)
and (3.1.28) gives

dim(A) Qag(0) = ZNAonalg(V) = Qaig(A).
y

Normalising the charge by settir@yq(0) = 1 (if this charge vanished, then all charges
would vanish) gives the conserved charge associated with@avisted symmetry-preserving
brane as the dimension of the corresponding irreduciblesemtation:

Qaig(A) =dim(A). (4.1.2)

Note, however, that this definition does not (naively)sgtiEquation (4.1.1) (with the fu-
sion coefficients). Whilst the form of the brane charges temeined by Equation (4.1.2),

it remains to determinerhichabelian group the charges take values in. Since the charges
of the untwisted symmetry-preserving branes are all mekipf Qy4(0), the charge
group has the foriy. The parametexis thenconstrainedy brane condensation, giving

dim(A)dim(p) =y N, " dim(v) (modx). (4.1.3)

These constraints will be referred tofasion constrainten what follows. Note that they
would become trivial (be satisfied for & if the fusion coefficients were replaced by the
corresponding tensor product coefficients.

The fusion constraints were analysed in detail by Fredeznagd Schomerus for the
algebrasu (r + 1) [63]. By making use of some fairly complicated induction argutse
and a modified Littlewood-Richardson rule for fusion produiél], they were able to
reduce this set of constraints to those of the form

dim(kAz) dim(A)) = 3 Ny o dim(v) (modx),

fori =1,...,r. Herek s the level of the Wess-Zumino-Witten model afsddenotes the
fundamental weights gf. The fusion coefficients may be computed from the correspond
ing tensor product computation,

(kA1) ® (A) = (KA1 +A) @ (K= 1) Ar+Aisa),
with /A\; 11 understood to vanish. By the Kac-Walton formula (Propogit.2), only the
weight (k— 1) A1 + Aj+1 survives in the corresponding fusion product. The fusiom-co
straints are therefore equivalent (fpe= su (r + 1)) to

. i [k
dim(kA1+Aj) = kl—+|( :L:leL 1) (rTl) =0 (modx), (4.1.4)
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fori=1,...,r. Thefirst equality follows from Weyl’'s dimension formulag&ation (A.3.4).
They then claim (but only sketch a proof) that the largesatisfying these constraints'is
o k+r+1
ged{k+r+1,lcm{1,2,...r}}
A proof of this claim will be given in Section 4.2.2.
This result was subsequently rederived by Maldacena, MandeSeiberg in]11].
Their derivation is based on a different set of constramits&en by

(4.1.5)

dim(@(A)) = detw dim(A) (mod x),

where® is a Dynkin symmetry of the untwisted affine Lie algepracting on the weight
space. The motivation for these constraints is geometnid,véll be discussed in Sec-
tion 4.3.1. It should be noted however, that while these ttamés end up predicting the
same charge group as those of Fredenhagen and Schomesusotaipriori clear that
these constraints are as strong. Indeed, one could nottdkpamrresponding constraints
to be exhaustive for more general Lie algebras as the groQyyakin symmetries need
not be non-trivial.

4.2. Charge Group Computations

In this section, the charge groups of the untwisted symmategerving branes are
computed for a Wess-Zumino-Witten model based on a generplesLie algebra. These
results have appeared i83.

Consider an arbitrary fusion rule, expressed (as in Ch&)tas an operation on the
integral weights in the fundamental alcove:

A xu:ZN)\qu.

Such a fusion rule is sent to the corresponding fusion camsfEquation (4.1.3), by the
replacemeni — dim(A) (modx). The strategy adopted in this section to analyse the
fusion constraints is to instead consider the fusion ruespvering the required results
through this replacement.

Algebraically, the fusion rules of a Wess-Zumino-Wittendrbat levelk define a
commutative ring with unity:ﬂ%, called thefusion ring This ring is studied in Sec-
tion 5.1.2 where it is represented as a quotient of the cteardog (Theorem 5.4):

35% o~ Z[Xl,-z-aXr] )
J
k
Here x; denotes the fundamental characters, those describingdueicible representa-
tions of highest weight\j, i =1,...,r, andJ% is thefusion ideal The dimension map

dim: Z[x1,..-, Xr] — Z, Xa — dim(A),

Lit can indeed happen that the largest sudb x = 1. This first occurs fosu (4) at level 2, but is not
uncommon when the level is small. The interpretation is thanthe corresponding brane charges always
vanish and therefore give no dynamical information whatsoe
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extends to a ring homomorphism (in fact, it is just evaluat@ the weight 0), so the
problem may be rephrased as the determination of the maximhaé ofx such that dim
induces a homomorphism between the quotient spaces

. Z[X1,---5 Xr] 7
dim': gf> =22 A0, — —7,.

m Sjk :]% 7, X
A necessary and sufficient condition for this to happen isttteimage of the fusion ideal
under dim must be contained ¥Z. Since every ideal d¥. has the fornrmZ for somem,
it follows thatx will be maximised by takingZ = dimJ%. If {pi} is a set of generators

of the fusion ideal, it follows that the maximum valuenay take is gcddimp; }.

4.2.1. The Charge Group ofsu(2). Toillustrate this strategy, consider first the sim-
plest casesu (2). The character rind. | x1] is a principal ideal domaintp], so the fusion
ideal is generated by a single polynomialn It should be clear that to find this gener-
ator, it is sufficient to restrict to fusion rules involvinge fundamental weightt;. The
tensor product rules involving; are well known:

ORN1=/\1 = Xo=1,
[I/\l] RN = [(I + l) /\1] ) [(I — 1) /\1] = Xi+1)A, = X1Xing — X(i-1)A, foralli> 1.
This gives a recursion relation for the charactgrg as polynomials i1 which may be
solved to yield Chebyshev polynomials of the second k6. [
It follows from the Kac-Walton formula, Proposition 5.2 atithe corresponding fu-
sion rules at levek are just
0 x /\1 = /\1,
[IA1] x A1 =[(I+ D) A1)+ [(Ii —1)Aq] forl<i<k-1,
[k/\l] X /\1 = [(k— 1) /\1] .
Comparing with the tensor product rules therefore showssthi®only difference is that

[(k+1)A1] no longer appears. Equivalentlyg 1)n, must be set to zero in the fusion
ring, hence the fusion ideal efi(2) is

T = (Xkin,) -

Following the strategy outlined above, the charge groupheruntwisted symmetry-
preserving branes afi(2) at levelk is obtained by applying dim to the generator of the
fusion ideal. This is trivially seen to yield the charge qudiy. ».

4.2.2. The Charge Group ofsu(r +1). The fusion ideal§Z of su(r +1) have been
explicitly described §3]. A convenient set of generators for eagh is given by the
partial derivatives (with respect to the fundamental ctiens) of a single function, called
the fusion potential This will be shown rigorousK/in Section 5.3 (Theorem 5.8). At

2The two arguments given i8] to show that the fusion ring is described by this fusion ptite are not
quite complete. The author indicates that completing tlsé fidquires “some rather lengthy manipulations
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levelk, this potential has the form

V _ 1 ‘o k4+r+1 4.2.1
k+r+1—7k+r+lz\qi : (4.2.1)
i=

where the variableg; denote the formal exponentials of the weights of the irrdaac
su(r 4+ 1)-module of highest weighh\; (thusqigz---gr+1 = 1). It will be seen in Sec-
tion 5.2.1 (or Proposition 5.15) that the derivatives/pf,. 1 with respect to the funda-
mental characters may indeed be expressed as polynomihksinndamental characters
with integer coefficients (that is, as elements of the chiaraing). To compute these
polynomials, it is convenient to form a generating funct{Section 5.2.1):

[ee]

Vo () =Y (=)™ VtM = log [14 xat + xot? + ...+ xet L (4.2.2)

m=1
Given this information, it is simple to compute the (maxijr@iarge group parameter
X. The homomorphism dim may be extended triviallyZdxa, ..., xr] [t] (which just
means formal power series irwith coefficients from the character ring). Differentiate
the generating function and apply dim, noting that ¢ikp) = (rﬁl), to get

Nau(ry) (1) _ t! dim t!
oXi 1+ Xt + ...+ et -t 1+t

According to Equation (4.2.2), the result of applying dinthie corresponding generator
of the fusion ideal is given (up to a sign) by the coefficientd¢f +1 in this formal power
series. Since

(o]

(1_:7&“ _ ni(_l)n (n-ri—r)tn+i _ mzl(_l)m_i (m—ri +r)tm,

it follows that

x:gcd{ <k+2rr—|—1—|) s :1,...,r} :gcd{ <k+rr+l) : i:l,...,r}. (4.2.3)

Expressions like these may often be simplified by using timpks identity

O-C (DL () e

whose derivation is trivial. It is also convenient to have@dical representation to visu-

alise the simplificatior’s Applying this identity to the binomia{“"'*?) gives (*"*1) 4

'
(*rr1). Thisis llustrated in Figure 4.2 by the arrows south andisauest from(*™2).

of determinants”, the details of which were omitted. Theosecargument falls significantly shorter, and
is in fact not even sufficient to prove that the fusion potrdescribes the complexification of the fusion
ring (where torsion is irrelevant). Note that the applicatio brane charges developed here requires a
description of the fusion ring (ovéf). Unfortunately, it is this second argument which seemsateltbeen

the focus of attention in the literature.

3Such a visualisation serves to make teictureof the simplification obvious. Formal inductive proce-
dures will therefore be omitted. The simplifications neettethis section are easily understood, so the
graphical representation adds little perhaps. Those redjin the next section are more complicated how-
ever.
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(k+r+4)
r

<k+r+3)

(k+r+2)

(k+r+1)

(750 (972 (39 r

FIGURE 4.2. This diagram depicts the manipulation of the binomials
the gcd of Equation (4.2.3). The points represent binon{ld)swherem
increases upwards amdncreases to the right. The grey circles represent
the original binomials in the gcd, and the black circles wthaly are re-
placed by. The arrows indicate the application of Equatib.4) to the
given binomial.

Since (1) is already present in the gcd, it follows th@t'™2) may be replaced (in
the ged) by(*I"t1). Similarly, applying Equation (4.2.4) iteratively (6" ™3) gives (see
Figure 4.2)(“"+1) plus binomials already in the ged. Thy&! %) may be replaced by

r
(“r*+1). Continuing this replacement gives

x:gcd{<k+r+l):izl,...,r}. (4.2.5)

This can be compared with the result of Fredenhagen and SzlsmEquation (4.1.5),
with the help of a lemma froml[L]], itself a special case of a result &g).

LEMMA 4.1.

o)) () -somics

It follows from Lemma 4.1 that theu (r + 1) fusion potential, Equation (4.2.1), easily
reproduces the (untwisted symmetry-preserving) branegelgroupZy given by Freden-
hagen and Schomerus, Equation (4.1.5). In fact, as showeatid® 5.3.1, this fusion
potential may be derived from the fact (Equation (5.3.2% akso B3]) that the fusion
ideal JZ is generated by the charactgfgija,, 1 = 1,2,...,r. Since dim((k+i)A1) =
(<), this leads directly to Equation (4.2.3), giving a slighsier derivation of Equa-
tion (4.1.5).

One can also make contact with the method used by FredenlaageSchomerus.
Recall from Equation (4.1.4) that they had shown that

I K41\ r+1) .
X_ng{k—H( 1 )( i ).|_1,2,...,r}.
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Whilst these numbers are a little cumbersome to maniputasegasy to check that

L kK4+r+1\ /r+1 B k4+i—1\ /k+r+1
K+i\ r+1 i i1 r+1—i)’

Rewrite Equation (4.2.4) as

0~

and iterate to gef!) = zijzo(—l)j (’I‘fjl) Replacing with i —1 andn with k+i —1 now
gives

(T3 ()

Multiplying both sides b)('ﬁflfll) and simplifying then yields

k+i—1)(k+r+1) -1 ( r—j )(k+r+1)
. ) = AL ..
(I—l r+1—i go( ) I—j—1 r—j
It follows easily from this identity that
K+i—1\ (k+r+1\ .
x_gcd{< i1 )<r+1_i).l—l,2,...,r}
r kK+r+1 r—1\ /k+r+1
~o (L) () () (V) +
i (r+2—1\ [/k+r+1 i1 (K+r+1y .
+(-1) ( 1 )<r+2_i)+( 1) <r+1_i =121
K+r+1\ .
_gcd{<r+1_i).|_1,2,...,r}
:gcd{(k+:+1):i:1,2,...,r},

which is just Equation (4.2.5).

4.2.3. The Charge Group ofp (2r). The fusion ideal§Z of the symplectic algebras
sp (2r) have also been described in terms of fusion potentials.€érpetentials were first
proposed in31], and then subsequently iB4]. This description of the symplectic fusion
rings will also be rigoroustyderived in Section 5.3 (Theorem 5.8). At lekekhe fusion
potential takes the form

1
k+r+1i

Vk+r+1 =

g(q!‘”“Jrqi“‘““)), (4.2.7)

where the variablesg and q(l denote the formal exponentials of the weights of the
irreduciblesu (r + 1)-module of highest weighf\; (these weights have the formg;,

4Alas, both B1] and [84] justify their fusion potential through the second arguirafti83], which (as noted
before) does not even establish that the potential coyrdeticribes the complexification of the fusion ring.
A set of generators of the fusion ring is proposed3ty] in analogy with the first argument o88], but the
proof that these are indeed generators is not given (itisdthat this proof “will appear elsewhere”).
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i=1,2,...,r). Again (Section 5.2.1 or Proposition 5.15), the derivegiofVy. 1 with
respect to the fundamental characters are elements of énaatér ring, and the generat-
ing function corresponding to Equation (4.2.2) is compuie8ection 5.2.1 to be

Vep(zr) (1) =log [1+Et+ ...+ B ot P Et" + B ot 4 Bt 14 t7]
(4.2.8)
whereEn = Xn+ Xn—2+ Xn—a+ . .., and itis understood that = 1 andy, = 0 whenever
n<O0.
As in Section 4.2.2, computing the (maximal) charge groupipeterx is now straight-
forward. Differentiate the potential and apply dim to get

dVSP(Zr) (t) B ti+ti+2+'”+t2rfi72 +t2rfi
Oxi  14Eqt+.. . +E qtr 14 Et +E gt i 4 Eqt2 142
X
dim t|+t|+2++t2r—|—2_|_t2r—|
(1+t)2r ?

where use has been made of dify)) = (er) ( ,), thusgj; — dim, (jr). Expanding as a
formal power series ib,

t! © i /m—j+2r—1
— —1)m] ( )tm,
(1+1)" PR 2r—1
gives

K+3r—i kK4+3r—i—2
X_ng{( 2r—1 )+( r—1 )+
K+r+i+2 K+r+iy) .
+< or 1 )+ < or 1 ) : |_1,2,...,r}
k+3r—1 K+r+1 k+3r—2 K+r+2
_ng{( or—1 )+( or—1 )( or—1 )+( or—1 )
k+2r+1 k+2r—1 K+2r
’( 2r—1 )+( 2r—1 )’ (Zr—l)}' (4.2.9)
To simplify this expression, consider the elem@f? t*) + (52 7%) of the gcd. Ap-
plying Equation (4.2.4) to the first binomial and Equatior2(8) to the second, one ob-
tains (57%) — (*525%) plus twice(5) (which is already in the gcd). Applying Equa-

tion (4.2.6) once more, one finds that the negative sign sitlantity leads to a fortuitous

cancellation and that5* %) + (“4#11) may be replaced b, 1. This s illustrated

in Figure 4.3.

This cancellation persists in general. This is most eagigndy considering the di-
agrams of Figure 4.3. By removing a small number of (dashedya, each diagram
naturally splits into two isomorphic graphs, which meetha points corresponding to
the blnomlals(k““) The multiplicity of this binomial in(33 ") + (%" 1) is then the
sum of the number of paths froffiZ¥ ;") to (k““) (including the dashed arrows) and

from (%) to (k;jrf‘) It is clear that the multiplicity of ;" 1") is 1 as the only path
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k+2r+-3
O o
(521
63
Pl O

( o k+2:;2 7 “42}21;2)
( 2r-5 ) & | (k42rr2£13)

(5279

FIGURE 4.3. These diagrams depict the manipulation of the binammal
the gcd of Equation (4.2.9), as in Figure 4.2. The arrowsespond to
Equation (4.2.4) (south and south-west) and Equation@¥(2orth and
west). Arrows pointing west therefore carry a relative sigibserve that
by removing the dashed arrows, each diagram is split intagamorphic
graphs by the black circles. Observe also that there areewhitles from
which no arrows leave. These mark where “cancellation” cecu

is the straight south-west one. The two isomorphic compneinthe diagram are also
connected (by a dashed arrow) at points corresponding tbitfeenials (kfzrj“). The
isomorphic nature of the components means that the numbgatbé to("*zrj“) from
(337" and (K "') is exactly the same. However, the multiplicity é‘f;rj“) is thedif-
ferencebetween these numbers of paths (because of the negativie &igoation (4.2.6)),
and so vanishes.

It follows that each(*3¥ ") + (5" is equal to(X}"1") plus integral multiples of
binomials already in the gcd. Therefore,

«— acd k4+r—+1 K4+r—+2 K+ 2r
=9 1)U o3 ool

This is now in a form amenable to a generalisation of Lemmgwlich is proven in the
same manner).

LEMMA 4.2.

od K\ [k+1 K+r—1\1 k
g 1)\ 3 )77 ar—1 ~ ged{k,lcm{1,2,...,r,1,3,5,...,2r —1}}’

Therefore the (untwisted symmetry-preserving) branegsharoup for thesp (2r)
Wess-Zumino-Witten model at leviklis

K+r+1
~ged{k+r+1,lcm{12,....,r,1,3,5,....2r — 1}}'
As in Section 4.2.2, a small saving in effort can be made bystasting with the fusion
potential, Equation (4.2.7), but rather with the genesatbat it is derived from. These
generators are given in Equation (5.3.3), and give Equ#&idh9) directly.

(4.2.10)

Ly where X
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4.2.4. The Charge Group in General.lt would be nice to generalise the result for
su(r+1) andsp (2r) to general simple Lie algebrgs Unfortunately, fusion potentials
for the corresponding Wess-Zumino-Witten models are notkm at least not in a form
analogousto Equations (4.2.1) and (4.2.7). The reason why such aoaofusion po-
tentials have not been found will be described in detail icti®a 5.4. Generating sets for
the fusion ideaU% are also described there (explicitly fgs), but they are not found to
be suited to the above (exact) charge group computationanime that they yield com-
plicated expressions which seem difficult to simplify). tked, one is forced to resort to
numerical computation, the results of which will now be d#sed.

The fusion rules of a Wess-Zumino-Witten model may be coexbuwxhaustively
when the levek and the rank of the simple Lie algebra are fairly small (10 was generally
found to be too large). A relatively efficient algorithm fasidg this is implemented in the
program Kac [142. The output of this program was processed through a sipyiteon
script which computed the (maximal) charge group paramet&he low rank and level
results thus obtained suggest (with a few low level excegtihat will be addressed in
Section 4.3.3) the general formula

— k+h"

gcd{k+hV,y}’
whereh” is the dual Coxeter number (listed along with other usefith dia Table A.1),
andy = y(g) is an integer independent of the level. The suggested vdliee antegery
is given in Table 4.1. This value always has the forem Icm{y, } for somey,. The set
{ya} does not coincide with the set of exponentgiafs one might have naively hoped
(though it does contain it). However, it should be noted thitlh the exception of the
symplectic algebras, thg, run from 1 toh — 1 consecutively (wheré is the Coxeter
number ofg). This observation will be returned to in Section 4.3.1.

(4.2.11)

Further evidence for these parametg(s), g # su(r+1),sp(2r), was detailed in
[33]. There, certain characteps with (A,8) = k+ 1 (where® is the highest root of
g) were listed which were believed to generate the fusionl iﬂ%zﬁthey belong tcﬂ% by
Proposition 5.5). They were found, numerically, to repralthe values of listed in
Table 4.1, for allg with r < 10 and levelk < 5000. It will be seen in Section 5.4.1
that this belief is unwarranted — the elements given do neadlly) generate the fusion
ring. However, a correct set of generators is given there tla@se have been numerically
checked to also reproduce the listed valueg @hough for less ambitious ranges of ranks
and levels).

Some intuitive feeling for where this formula far Equation (4.2.11), comes from
may be obtained from Weyl's dimension formula, Equatior8(A):

dim(A) = Q <A(;ﬁ;,)a> _ Q <A<;ﬁ;,g) )

SSee Section 5.2.2 for a discussion of general, if not pdaituuseful, forms of the fusion potentials.
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g y(g)
su(r+1) |lem{1,2,...,r}
s0(2r+1)|lem{1,2,...,2r—1}
sp(2r) |lem{1,2,...,r,1,3/5,...,2r—1}
so(2r) |lem{1,2,...,2r -3}

¢6 lcm{1,2,...,11}
e7 lem{1,2,...,17}
eg lem{1,2,...,29}
fa lcm{1,2,...,11}
g2 lcm{1,2,...,5}

TABLE 4.1. The integergappearing in Equation (4.2.11) for each simple
Lie algebrag.

HereA, denotes the positive roots gf Consider the charactepg with (A,0) = k+
1. As remarked above, these are elementiofindeed, this set of characters can be
augmented to form a generating set Tér(Section 5.4.1). Under dim, these characters
map to dim(A ) which always contains the factok + p, 6) =k-+h". Similarly, characters
X» with A on a shifted affine alcove boundary will hayg, a) € (k+h")Z for some
a € A, so the factok+-hY may again be identified in the corresponding dimension.
The other generators GE may be taken to have the forg), — detw xg.,, Wwherew
is an element of the affine Weyl groi at levelk. Write W-A = w- A + (k+h")q",
wherew € W (the Weyl group ofy) andq’ € Q" (the coroot lattice ofj). Since Weyl's
dimension formula is anti-invariant under the shiftedacofW, it is sufficient to restrict
to pure translations. One finds that
dim(A + (k+h") ") —dim(A)
 Maea, [A+p,a)+(k+h") (a0, )] —Naea, (A +p,0)
B naeA+ (p, a)
(A+p,a) g",B)

_ Z (k—i_hv)AARal:L |—| MHP)

RGAL (p7a) Beh\R <p7B) ,

so the factok +h" may again be identified4. \ R| > 1). It is therefore not surprising
that the formula fox gives a divisor of this factor.

Consider now the denominatfl,ca, (0,0). Wheng is simply-laced, the factors
(p,a) are all integers and run (with repetitions) from 1 ugp0) =h" —1=h—1. In
other words, these are the integggsappearing in the Icm of Table 4.1. Whens not
simply-lacedp, a) need not be an integer. One finds however that defining

Vo = (p,a) if (p,a) € Z,
" ) (p.aY) i (p,a) ¢,
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and settingy = lem{ys: a € A, } reproduces all the resuftin Table 4.1. It should be
mentioned that generallijp,a) € Z need not imply thatA +p,a) € Z, so the above
prescription need not guarantee integer factors in the raborewhen applied to Weyl's
dimension formula.

4.3. Addenda: Symmetries and K-Theory

In this last section some interesting observations are meggding the brane charges
computed in the previous section. The chapter then consluith some remarks con-
cerning the relevance of the results of this chapter to iteKeheories, and a brief dis-
cussion of a seeming ambiguity in the presentation of thiefusng.

4.3.1. Charge Symmetries.Consider the brane charg@gg(A) =dim(A) (modx),
wherex is given by Equation (4.2.11) (and Table 4.1). For convergerxtend the do-
main of the charges to all integral weightse P through Weyl's dimension formula,
Equation (A.3.4).

By Proposition 5.5, the combinatiog, — detw xg., always belongs to the fusion
ideal J% forw e Wk, the affine Weyl group. The brane charges are thereforeiantg(up
to a sign) under the shifted action W, = W x QV, so in particular, under the shifted
action of W (this also follows from Weyl's dimension formula) and undemnslations by
(k+h")QV:

Forallg” € QY,  Qag(A) =Qayg (A + (k+h")q") (modXx). (4.3.1)

Weyl's dimension formula is also invariant under the acfiisinifted or otherwise) of
the Dynkin symmetries (outer automorphismsypDutg. With W, this gives a charge
symmetry under the shifted action of the group of automamisiofg which preserve the
Cartan subalgebraAut; g. Eachw € Aut;g may be uniquely decomposed@s= Wy N
(Appendix A.2), wherew,, € W andn, € Outg. Since the Dynkin symmetries @f
preserve the set of positive roots,

dim(w-A) = detw,, dim(A) = Qalg(w-A) =detwy, Qag(A).  (4.3.2)

Note that deto and detv,, need not coincide in general. Together with Equation (4,3.1
this extends the symmetry group of the brane chargésitgy x QV.

This (rather trivial) observation explains a symmetry ia 4h (3) brane charges, de-
picted in Figure 4.4 by reflection about the dashed lines.r&flection lines correspond to
the non-trivial element of Out su (3) (note that,, = id, so the charges are left invariant
despite the symmetry being a reflection). There are alserathvious additional sym-
metries under reflection about the other two bisection ardgatation by 21/3. These
transformations correspond to the action of the Dynkin sytni@s ofg, Outg.

6Forf4, one finds thafyy: a € A} ={1,2,...,9,11} (that is, 10 is missing). Obviously, this does not
affect the Icm.
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FIGURE 4.4. Brane charges fan (3) at levelsk = 3 (left) andk = 4
(right). The charge is given adjacent to the weight in thedamental
alcove that labels the brane. The dashed line representsfibetion plane
corresponding to the action of the non-trivial Dynkin syntme

A Dynkin symmetry@ € Outg has a shifted action on the weight spaceg given by
(compare Equation (B.2.2))

WOA=w-A+ (k—i—h\/)/\i =Ww- (/\ —i—(k"—hv) arl(/\i)),

wherew € Autg and the Dynkin symmetrg takes node 0 toin the Dynkin diagram of
g. Decomposingw as above, it follows that

dim(@-A) = detwy, dim (A + (k+h") w1 (A)). (4.3.3)

By calculating brane charges for more general Lie algelomas s led to hypothesise
that a Dynkin symmetry € Outg induces a brane charge symmetry of the form

Qaig(@-A) = detwy, Qag(A) (mod x). (4.3.4)

For su (3), Equation (B.2.3) gives def, = (—1)2(’\“") =1 for all @ € Outsu(3), in
accordance with the observed symmetries of Figure 4.4. AsBEquation (4.3.1), these
Outg symmetries may be considered symmetries under transta¢ieithout any loss
of generality). Indeed, it is shown in Appendix B.2 that exting Aut g x Q" by the
affine outer automophisms leads to the symmetry grautpg x Q*, whereQ* is the dual
root lattice. With Equation (4.3.1), the hypothesisad g symmetries may therefore be
reduced to:

Forallg® €Q*,  Qag(A) = Qag (A + (k+h")q) (modx). (4.3.5)

It should be noted that such symmetries are certainly navetkifrom the fusion
ideal J%. As noted before, the elements of the fusion ideal give nossymmetries under
translation by elements gk+h')QY, andQ" C Q* (with equality if and only ifg €
{eg,fa,92}). To illustrate this, consideg = su(2), for which Q* = P and Q" = 2P.
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TakingA = 0in Equation (4.3.5) ang® = A1 gives
1:Qalg(0):Qalg<(k+2)/\l):k+3 (mOdk+2)7

which is obviously true. However, };2)a, — Xo = X(k+2)a, — 1 were in the fusion ideal
JZ, then 1+ xin, € I asX12)a, + Xins € JF by Proposition 5.5. But this contradicts the
fact thatJ} is generated by(,.1)s, (Section 4.2.2 or Section 5.3.1) as-Jin, € J§ is a
degreek polynomial inx, whereas((,1)a, is degreek+ 1.

It would be quite interesting to find a mathematical proofwvgimg that by satisfy-
ing the fusion constraints, Equation (4.1.3), one autoradyi satisfies the symmetries
Equation (4.3.4) (and hence its equivalent, Equation $).3Such a proof has remained
elusive unfortunately. From a physical point of view, hoegwhese symmetries are
quite unremarkable, and indeed are expected. This is dire tiact that these additional
symmetries are naturally parametrised by teatreZ (G) of the (compact, connected,
simply-connected) Lie groufs corresponding tg (for precise statements, see Appen-
dices B.2 and C.1). In the geometric picture of branes (8e@&i3.2), the action dbutg
corresponds to translating the brane ®@rby the corresponding central element. This
translation does not affect the geometric structure of thadexcept possibly to change
its orientation, and son physical groundsne does not expect its charge to change, ex-
cept possibly by a sign. This expectation is precisely thaileyed by Maldacena, Moore
and SeibergI1]] (this was remarked upon in Section 4.1.2) to compute thedocharge
groups ofsu (r + 1) (see also145 148 for su (3) where these symmetries are referred to
as the “multiplet structure”).

It seems reasonable to search for any additional symmet@emnsider the brane
charges ofp (4) at levelk = 4 depicted in Figure 4.5. There is one non-trivial element
of Outsp (4) which takes node O of the Dynkin diagram to node 2. The cooedp
ing charge symmetry is exhibited by reflection about the dddime. Note that in this
case, the charges are negatétiod 7) under this reflection in accordance with the sign
(—1)2M2P) = (-1)%

What is even more interesting is the observation that thexetvao further reflec-
tions in the fundamental alcove 6p (4) (marked by dotted lines in Figure 4.5) about
which the charges are negated. Similar symmetries are aiderg when investigating
the brane charges @f (for which Outgj is trivial). That these symmetries are unrelated
to the elements oDutg is evident from the fact that the reflections dot preserve the
fundamental alcove. Nevertheless, the examples showrguré#.5 indicate that these
mysterious symmetries divide the fundamental alcove iat@al congruent subalcoves
(fundamental domains), just as tBetg symmetries do. This seems to be indicative of
an interesting structure generalising the outer automsind

To investigate further, one can try to decompose the reflesttorresponding to these
mysterious symmetries into reflections through the origid &ranslations. Th®utg
symmetry bisecting the fundamental alcovespf4) decomposes into a Weyl reflection
and a translation byk+ 3) A, (A2 € Q*) as expected. The two mysterious symmetries
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FIGURE 4.5. Brane charges fep (4) at levelk = 4 (left) andg, at level
k =7 (right). The charge is given adjacent to the weight in threlamen-
tal alcove that labels the brane. The dashed line repret@nteflection
plane corresponding to the action of the non-trivial Dyrggmmetry. The
dotted lines represent additional symmetries.

can be checked to correspond to Weyl reflections (accoufinthe sign change) and
translations by(k+3)A; and (k+3) (A2 —A1). Similarly, the mysterious symmetries
observed in the fundamental alcovegafcorrespond to Weyl reflections and translations
by (k+4)/A2 and(k+4) (A1 —/\2). In each case, the translation is by an element of the
weight latticeP which is not in the dual root lattice.

In fact, one can check (Figure 4.6) that in both cases, thght®icorresponding to
the mysterious symmetries generate the non-trivial cade®gQ*. Similarly, the weight
N\, of sp (4) generates the non-trivial element@f/QV. It follows that, assuming these
symmetries are real and not coincidengaieryelement oP generates a charge symmetry
(those not seen in Figure 4.5 will be found in other alcoves):

Forallp €P,  Qag(A) = Qag (A + (k+h") ) (modXx). (4.3.6)

These hypothesised symmetries further enhance the sygngnetip of the brane charges
to Auteg x P.

Wheng is simply lacedQ* = P, so the weight lattice symmetries of Equation (4.3.6)
reduce to thé®utg symmetries of Equation (4.3.5). Therefore, when investigaf the
weight lattice symmetries observed fgr(4) andgy are present more generally, one must
restrict attention to the algebras(2r + 1), sp (2r) andf, (this explains why no additional
symmetries were seen in Figure 4.4 #or(3)). Numerically investigating brane charges
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FIGURE 4.6. The lattice® (white), Q* (grey), andQ" (black) forsp (4)
(left) and the lattice® (white) andQ* = Q" (black) for g, (right). Fun-
damental domains representifgQ* (dashed) an®/Q" (solid) are also
indicated.

(wherex is given by Equation (4.2.11) and Table 4.1) at low rank andl|e@ne observes
these weight lattice symmetries for the algelw@&r + 1) andfs. However, symmetries
corresponding to Equation (4.3.6) aret always observed fosp (2r). Specifically, the
expected weight lattice symmetries are absent whismot a power of 2 an#+h" is
divisible by the smallest power of 2 greater thafthat is, 2'°%1 | k4-r +1).

Equivalently, one can investigate (numerically) what geagroupZs is implied by
including the weight lattice symmetries of Equation (4)316 agreement with the above
observations, one finds th&t# x only for sp (2r) wherer is not a power of 2 (and thie
given previously). In every such case where the weightkaiymmetries imply a deviant
charge group, one finds thats even and = x/2. Indeed, fosp (2r), one finds tha is
generally given by (compare with Table 4.1)

K+ h
~ ged{k+h',lcm{1,2,... 2r—1}}’
Note that this implies (refer to Section 4.2.4) ti§ahas the aesthetically pleasing form,
common toall simple Lie algebras, given by
k+h'
~ ged{k+h",lcm{1,2,....h—1}}"

The observed presence of these weight lattice symmetnasoio-symplectic alge-
bras, coupled with the fact that imposing these symmetnethe symplectic algebras
leads to a universal formula for the charge group, suggkatsperhaps the fusion con-
straints of Fredenhagen and Schomerus do not account ftreaphysical constraints.
After all, it has never been claimed that the fusion constsaare exhaustive, hence the

¢

3 (4.3.7)

/Indeed, the condition thatnot be a power of 2 guarantees that there is a power of{2,i8,...,2r — 1}
which is missing from{1,2,...,1,1,3,5,...,2r — 1}. This power of 2 is #°%'1 which was noted to divide
k+r+ 1 when the weight lattice prediction deviates from that effilrsion constraints.
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true charge group parameter could be a proper divisor of tfieen in Section 4.2.4. Of
course, no evidence (or interpretation) has been givendigate that the weight lattice
symmetries are physically relevant. Indeed, one couldealiased on the orders of the
guotient group%P/Q* that the observation of these symmetries is coincidental the
reason why these symmetries are not observed in the synepdase is that there would
have to be so many of them. This argument is not particulaiigfying however, as it
fails to address the regular structure of these symmetnesly case, it seems reasonable
to keep in mind that there might be physically (or mathenadlify relevant constraints,
independent of the fusion constraints of Fredenhagen ahdn$erus, which lead to the
imposition of these weight lattice symmetries. This ideth e revisited in Section 7.3.3.

4.3.2. The K-Theory Connection. It has been shown above, quite explicitly, that the
brane charges for untwisted symmetry-preserving brakesvia@ues in an abelian group
Zy. Generally, one demands that the charge group for more gldmamnes will also take
values in some abelian group. This abelian group shouldaoistyy depend (in some nice
way) on the string theory being investigated, in particutar the target space that the
strings (and branes) live in. For the Wess-Zumino-Witterdei® that are studied in this
thesis, the target space is then (the underlying manifglthefLie groupG.

It is a favourite pastime among mathematicians to assoaiakan groups to (suitably
nice) spaces, and many such associations have been deliglpeof the oldest and best
understood is the familiar example of the cohomology grodfee geometric approach
to brane charges (outlined in more detail in Section 7.1ty led to the suggestion that
brane charges for a target spacehould take values in the cohomology grotisG;Z).
This suggestion proved to be too naive however, as evidemgehe above results and
the well known fact (apparently due to Pontrjaglt88) that the group$U (r 4+ 1) have
torsion-free cohomology. Instead, a more realistic classodidates for the brane charge
group is given by the various-theoriesK* (G).

K-theory is a type of generalised cohomology thedt§)] introduced by Atiyah and
Hirzebruch, and Grothendieck (amongst others). Its @tat the cohomology groups is
perhaps most easily seen in the topological theory, whéheirlements of the K-theory
of X are formal differences of isomorphism classes of vectodaswoverX. This should
be compared with the characteristic classes of such veotatiés which live in (various)
cohomology groups. In fact, one has an isomorphism overdtienals given by the
Chern characterlfl]:

Kiop (X) ©Q = H* (X; Q).
Topological K-theory therefore may differ from cohomologyly through its torsion.

The K-theory that is currently accepted to classify brangrghs onX is not a topo-
logical theory, but rather the K-theory of &-@lgebra of sections of a particular infinite-
dimensional bundle ovet. This brane charge classification was first proposed by Boegk

8These orders may be extracted from Table B.1, and are 1 f@lsiaced algebras, 2 faw (2r 4+ 1), 3 for
g2, 4 forfs, and 21 for sp (2r).
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and Mathai B4] (see also 32]), and the appropriate K-theory is calléglisted K-theory
This K-theory was first defined by Rosenbed®§, and will be denoted by'K* (X).

H here denotes an elementldf (X;Z) which describes the “twisting”. For the case of
interest in this thesis, the clabse H3(G;Z) = Z is fundamentally involved in the (geo-
metric) definition of the Wess-Zumino-Witten model, andZinis represented b+ hY
(see Sections 6.2.5 and 7.1.1). The cldssill be studied in detail in Section 6.2.

The computation of this K-theory is not, however, straifgrtvard. When Freden-
hagen and Schomerus first published their results on the lotaarges ofu (r + 1) (de-
scribed in Section 4.1.2), only the twisted K-theorySi§ (2) was known. This K-
group agreed with their result fau (2). The subsequent paper of Maldacena, Moore
and Seiberg contained a physical (that is, not mathembtiggbrous) computation of
HK*(SU (3)) which also agreed with the result of Fredenhagen and Schusmétow-
ever, it also announced a (previously unpublished) redulapkins concerning these
K-groups:

kIR (SU(r + 1)) 22 Zx ® Az [We, Wy, . .., Wor 1],
where Az [wi] denotes the (graded) exterior algebra o¥egenerated by the degrée
elementsy;, andxis given by Equation (4.1.5). The result of Fredenhagen @hd®@erus
for the untwisted symmetry-preserving braneswfr + 1) therefore agrees nicely with
k+r+1K* (SU (r +1)), meaning that the torsion orders match. Note that by igiaitie
ring structure (hence treatirfg"t1K* (G) as an abelian group), this reduces@@zpl.
Hopkins’ computation therefore also suggests thatrfor1 there are other generating
branes (in a K-theoretic sense) with the same charge dgéQup

When the results of Sections 4.2.3 and 4.2.4 were first phadisthe twisted K-
theories corresponding to these cases had also not beerutpll that was knowh
was that the torsion order had to be a divisokafh'. The results of Equation (4.2.11)
and Table 4.1 therefore made highly non-trivial predicsioagarding the torsion orders
of these K-groups. These predictions were first checked byiB[B6] who showed how
an assumption regarding the existence of a fusion potgiidiathe fusion ring) and an
announced result of Freed, Hopkins and Teleman (Theorernedodv) allows one to re-
duce the general K-theory computation to the strategy adiaptSection 4.2. Combining
his result with Equation (4.2.11) then gived"'K* (G) = Z22 " as an abelian group (the
ring structure was not determined), whers compact, connected, simply-connected, and
simple. Subsequently, the twisted K-theory of the grobpg2r), Spin(r), andG, were
directly (and independently) computed by Dougla$ jwith the result that

k+th* (G) = Zx® Ny, [W17W27 oo 7erl] s

%This follows from a generalisation of the Atiyah-Hirzebhuspectral sequence to twisted K-thect3§.
Only one differential is explicitly known from this sequenand this guarantees the statement about tor-
sion orders. For the case 86 (2) (and only in this case), one can be sure that the other (umdieted)
differentials are trivial for dimensional reasons.
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wherex seems to be in agreemé&hwith Equation (4.2.11) and Table 4.1 (here thie
need not denote elements of degreeThis generalises Hopkins’ unpublished result for
G=SU(r+1).

It should be noted at this point that the speculation in $aci.3.1 regarding the
charge groups of the symplectic algebras is not borne outdsetK-theory computations.
Specifically, the charge groups computed #pr(2r) in Section 4.2.3 from the fusion
constraints are in perfect agreement whtth' K * (Sp(2r)), as computed by Braun and
Douglas. It follows that if the weight lattice symmetriesEduation (4.3.6) (observed
for other algebras) are imposed upon $hé2r) (untwisted symmetry-preserving) brane
charges, then the order of the charge group implied by thgsengtries willnot match
the torsion order of the classifying K-group.

It would be quite surprising if imposing weight lattice syratnies did lead to a match
in torsion with K-theory. This is because of a remarkableiltesf Freed, Hopkins and
Teleman, announcétiin [64]:

THEOREM 4.3. Let G be a compact, connected, simply-connected, simple Liggrou
with Lie algebrag. If 3"% denotes the fusion ring of the Wess-Zumino-Witten modet ass
ciated withg (and the diagonal modular invariant), then

Fe = K (G),
where the right hand side is the twistédequivarianfunder conjugation) K-theory di.

A partial proof of this result, showing that the fusion ringdathe twisted equivariant
K-theory coincide as abelian groups, has appeare®5h [This theorem gives a very
precise statement of the relationship between fusion atiteléry, hence it would be very
surprising if the brane charge groups derived from the fusanstraints, Equation (4.1.3),
did not match the corresponding K-groups.

4.3.3. A Seeming Ambiguity. It remains to address the remark made in Section 4.2.4
concerning low level exceptions to the charge group reBgliation (4.2.11). An example
will make this exceptional behaviour clear. Consider tredn ring corresponding to the
algebragy at levelk = 1. There are only two weights in the corresponding fundaaient
alcove, 0 and\,, and the only non-trivial fusion rule is given byA€ (or by hand) as

Nox No =0+ No. (4.3.8)

Applying dim to this fusion rule therefore gives 498 which is satisfied (mod 41). How-
ever, Equation (4.2.11) and Table 4.1 gwe- 1 for gy, level 1. Furthermore, 41 is cer-
tainly not a divisor ofk +h" = 5, so this result must also be in direct conflict with the
K-group>K* (Gy).

10Douglas gives the torsion orders of the twisted K-theorig¢siims of some rather complicated expressions

involving binomials. Numerically, they have been checkadntatch the results given above over a large
range of ranks and levels.

11The announced result is in fact much more general.
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The resolution of this discrepancy comes from considetiegatbstract presentation
of the fusion ring ofgy, level 1. According to the above considerations, the fusiogis
generated by\, modulo the non-trivial fusion rule, Equation (4.3.8). Tisat

Z[X2]
(X3—x2—1)
This ideal then predicts = 41. However, this isiot expressed as a quotient of the char-
acter ring (as was generally assumed throughout SectionT.2lo this, one needs to
include the redundant weighy; to get

e it
(XLXZ—X2—1)
Applying dim now givesx = gcd{14,41} = 1 as expected. Similar redundancies, and
therefore possible discrepancies, will occur whenevenddmental weight does not be-
long to the fundamental alcove (that is, when the level is than the maximal comark,
k < max {a’'}).

It follows that there are two presentations of the fusiorg rhich, despite being
isomorphic as rings, yield different predictions for theuge group paramet&r Naively,
one might prefer the former description as the latter hastamoas redundancy in its
description. Indeed, one could add arbitrarily many addai redundant variabl&sto
this presentation of the fusion ring in the same manner. Kewehe comparison with
K-theory noted above indicates that it is this latter dggimn which is relevant (at least
mathematically).

Further insight may be gleaned from consideration of thedeproduct decomposi-
tion corresponding to Equation (4.3.8). This is

12

57

No RNy = 0@/\2@/\1@(2/\2).

Noting thatA1 and 2\, are both on the boundary of the shifted fundamental alcave, i
follows from Proposition 5.5 thaxa, = x1 and x2a, should both (separately) be set to
zero in the character ring [x1, x2]. However, truncating this tensor product rule to get
Equation (4.3.8) shows that it is in fact the combinatjan+ x2a, Which is set to zero.
This latter truncation corresponds to the presentatioﬁ{ohs a quotient ofZ[x2]. In
other words, whilst these two presentations are isomorakiangs, their treatment of
boundary weights differs, and this makes all the differetacthe corresponding charge
group predictions.

To decide which presentation of the fusion ring gives thesptally relevant charge
groups, one must recall the condensation process desdrilfgection 4.1.1. There, a
stack ofm identical branes, described in the low energy effectived fiekeory bym x
m Chan-Paton matrice&?, was seen to be unstable with respect to condensation when
the A2 spanned a representationgf Any representation was admissible, and choosing

12These variables, however, would need to be naturally agied by dim (evaluation at 0).
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irreducible ones led to the fusion constraints, Equatiot.8}, which are in turn, the
images under dim of the fusion rulasx u = ZVN)\“V V.

The point?is that any irreducible representation is admissible, sonthightA ap-
pearing in the fusion constraints (and hence the fusiorsyuleat determine the brane
charge groups may be taken todorgydominant integral weight (not just those in the fun-
damental alcove). In particular, whanis on the boundary of a shifted affine alcove, the
fusion rule

Ax0=0 = X)\ZO

must be included in the constraints (here 0 is denoting datige identity of the fusion
ring). It follows that the presentation of the fusion ringsdebing this physics must set
the character oéveryboundary weight to zero. The (smallest) presentation wHaxs
this is clearly that which describes the fusion ring as a ignoof the full character ring.

To summarise, the physical description of the condensaironess giving rise to
constraints on the brane charge grofpsesthe use of the presentation of the fusion
ring as a quotient of the character ring. This in turn, leadsharge groups given by
Equation (4.2.11) and Table 4.1 (witlto exceptions), and these charge groups correctly
predict the torsion orders of the corresponding classifydrtheories.

13This point was made transparent during private commumicatith \olker Braun.



CHAPTER 5
Fusion Rings

In this chapter, a detailed investigation of the fusion psscis undertaken for the
Wess-Zumino-Witten models based on a simple Lie algghvéh the diagonal modular
invariant. The aim is to prove rigorously that the fusionqaes forg = su (r +1),sp (2r)
may be described by the fusion potentials introduced ini@eet.2. The main ideas
behind these proofs, and indeed many of the componentshevileveloped for general
simple algebras whenever possible, so these investiga#ilso shed light on why it is
that analogous fusion potentials for the other algebras hat been found. Indeed, it is
shown that strictly analogous potentials do not exist.

5.1. Fusion Rings and Algebras

5.1.1. Fusion Coefficients.As discussed in Sections 2.2.2 and 3.1.5, the process of
fusion may be viewed as an algebraic operation on the setrofpy fields in the confor-
mal field theory. In the case of the Wess-Zumino-Witten madsbciated with the simple
Lie algebrag (with the diagonal modular invariant), the primary fields ar bijection with
the integrable highest weight representationg.ofhese in turn are uniquely determined
(Appendix A.2) by the projection of their highest weight oithe corresponding weight
of the horizontal subalgebra. It follows that fusion in W&asnino-Witten models may
be viewed as an algebraic operation on theRgtof integral weights (of) in the affine
fundamental alcove at levkl This operation is denoted by:

A xu:ZNMVv. (5.1.1)

The summation here is formal, and should not be confusedtigtisual sum of weights.
The important properties of fusion derived in Sections2&dhd 3.1.5 will be briefly
reviewed. First, the weight O defines a unit:

No,” = S (identity).

Oou
Second, the commutativity and associativity of the openatoduct expansion translates
into

N)\“" = Nu)\" (commutativity),

and ZNMUNGVT = ZNHVGN)\O'T (associativity).
o o
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Finally, Equation (3.1.29) gives
Nop' =Np)! (symmetry),
whereA T is the weight conjugate td.
Definingfusion matricedy [N, ],,, = N)\uv, these conditions imply

NNy =NuN, NaNy =N, "Ny,

where T denotes transposition. The fusion matrices are therefaenanuting set of
normal matrices furnishing a representation of the fusides, called the regular repre-
sentation §6]. As such, the fusion matrices may be simultaneously dialieed by a
unitary matrixU, and this eigenspace decomposition corresponds to themesition
of the regular representation into its irreducible compaséwhich are of course one-
dimensional ovet). The diagonalisatioilN ,U =UD, (D, is diagonal) is equivalent to
ZVNA“VUVU = Uyed) s Whered, ; are the eigenvalues &f , (and no summation over
o isimplied). Puttingu = 0 then givedJ, , = Uggd, 5, Which determines the eigenvalues
of the fusion matrices whddy is non-vanishing.

PROPOSITIONS.1 (The Verlinde Formula)The fusion matrices of a Wess-Zumino-
Witten model (associated to a simple Lie algepnaith the diagonal modular invariant)
are diagonalised by the modular S-matrixgfSince § > 0 (Appendix B.3), the fusion
coefficients may be expressed in the form

Z S)\ O'SHUS*/G

The Verlinde formula was first conjectured, rather more gahg in [154], and was
demonstrated there fer= su(2). This surprising, deep, yet utterly fundamental result
generated much excitement in the mathematical literaamd,has now been proven in
various levels of generalitypp, 153. However, these levels still fall short of the original
expectation that this formula should apply to all ratiomahformal field theories.

There is another well-known formula for the fusion coefiitgewhich provides a use-
ful geometric algorithm for studying the fusion processislih the Kac-Walton formula,
originally set as an exercise i89] and independently conjectured ibq7], then proved
in [70,156].

PROPOSITION 5.2 (The Kac-Walton Formula)The fusion coefficients of a Wess-
Zumino-Witten model (associated to a simple Lie alggtaad with the diagonal modular
invariant) are given by

Y ~ W-v
N = Z detw N, u
WEWk
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whereWk is the affine Weyl group (at level k), anq,L\Y denotes the multiplicity of the
representation of highest weightin the tensor product of the representations of highest
weightA and .

ProOE Letk be the level of the Wess-Zumino-Witten model, and let
éo=—-2mi(c+p)/(k+h").

From the shifted affine action, Equation (B.2.1), and ite&ffon the characters, Equa-
tion (A.3.6), it follows that

Xa.a (ég) = detw x, (o) -

Therefore, ifA is on the boundary of any shifted affine alcove, it is fixed byaffine
reflection, sox, () = O for everyo € Pr.
Recall from Proposition 5.1 that the eigenvalues of theciusnatrices are given by

Sio
é = Xx (o) (5.1.2)

(see Equation (B.3.2)). It follows that

> Niy” Xo (€)= X3 (E0) Xu (B = 3 N, Xo (%o).

vieP vePy
To compare the sum ovét (the weight lattice) with the sum ovel (the integrable
highest weights at levéd), note that every’ € P is either on a shifted alcove boundary or
there is a uniquav € W, whose shifted action mapé into Py. As the boundary weights
do not contribute to the sums, it follows that

Z N)\“VXV (§o) = Z Z N)\HW.VXW.V(EJ)

vePy veP,WeWy

- Z ! Z detw N)\uwv] Xv(&a)-

vePy | weWy

Using Equation (5.1.2) once more, cancelli&g, and noting the invertibility of th&-
matrix now gives the required result. |

The Kac-Walton formula suggests an algorithm for computimg fusion of two
weights. This consists of computing the weights (with npuliitity) in the tensor product,
discarding any weights that lie on a shifted affine boundamng using affine Weyl group
transformations to map any weight outside the shifted forel#tal alcove to its interior
(remembering to include the determinant of the transfoionaised). This algorithm, or
rather the idea behind it, will prove very useful throughthus chapter.

5.1.2. Abstract Structure. Mathematically, the set of weigh@k with the fusion
product defines a finitely-generated, associative, comimaatainital ring. Moreover, this
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fusion ring is freely generated asZamodule (abelian group), and possesses a distin-
guished basis in which the structure constants are all mgative integers. It is often
convenient to generalise this structure to a fusion algbprallowing coefficients in an
algebraically closed field; say. The fusion ring (at levéd) will be denoted by”f%, and

the corresponding fusion algebra (0@rby 5 = F7 ®7 C.

PrROPOSITIONS.3. The fusion ring/algebra has no (non-zero) nilpotent eletsien

PROOF. Consider first the fusion algebra, and define the elengnts &y, 3, S’;\“u.
SinceSis unitary, ther, constitute a (vector space) basis for the fusion algebray Th
also form a set of orthogonal idempotents:

S575S,
T, XHHZSJ)\SOH Z SKUSLTNUTVVZSJ)\SOH Z S;\GSZTTVZV
o,T,v 0'7'[7\/7( Z

Sig
=S S Z 5)\55M§v =0 uTy.

v,l 4
Here, the Verlinde formula (Proposition 5.1) has been uasdyell as the symmetry of
the S'matrix.

Suppose now thab = 5, @, m, is a nilpotent element of the fusion algebra. Then

PN =3, ®Ym = 0 for some positive integer, so®} = 0 for eachd, henced, =0 and
so® = 0. It follows that there are no non-zero nilpotent elementthe fusion algebra.
Finally, a nilpotent element of the fusion ring will have dpaitent image in the fusion
algebra (under the obvious inclusion), hence the image imeistero. But the fusion
ring has no torsion asA-module, so the inclusion is injective and the original atgnt
element must also be zero. ]

Since the fusion algebra is finitely-generated, assoeaéind commutative, it may be
presented as a free polynomial ring (0¥&rin its generators, modulo an ide$. The
lack of non-trivial nilpotent elements implies that thieal is radical, hence completely
determined by the affine variety consisting of points at Wwreeery polynomial in the
ideal vanishes47]. This variety will be referred to as the fusion variety.

The fusion algebra is a finite-dimensional vector space @v&o it follows from this
radicality that the fusion variety consists of a finite numdsigooints, one for each basis el-
ement f7]. Since ther, of the proof of Proposition 5.3 form a basis of idempoteriteyt
correspond to polynomials which take the values 0 and 1 offuien variety. Further-
more, their orthogonality ensures that polynomials c@oesling to distinct idempotents
must take value 1 on disjoint subsets of the fusion variety.tBe 1, form a basis, so the
corresponding polynomials must take value 1 somewhere@nahety, hence they take
value 1 at exactly one point of the variety. The point of theidua variety at which the
polynomial corresponding tm, takes value 1 will be denoted v . It now follows from

Lanideal is radical if whenever some positive power of a rifepeent belongs to the ideal, so does the ring
element itself 12].
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A =73, (Siu/Su) M that the polynomial representingtakes the valus, , /S, atvH.
This polynomial will be denoted by, .

The Kac-Walton formula (Proposition 5.2), which relates tbsion coefficients to
the tensor product coefficients, suggests that it may bengaigaous to fix the free poly-
nomial ring as the representation ring (character ringg ¢this was also suggested by
Section 4.3.3). This ring is generated by the (characterthe&f fundamental weights
(Appendix A.3), and polynomial multiplication correspani the tensor product of rep-
resentations. That is, the polynomial corresponding toatbight/\; is just its character
XA = Xi- As the variables of the character ring are these fundarheiraeacters, it follows
that the coordinates of the points of the fusion variety as¢ |

S
V' = pa (V/\> TS

This proves the following fundamental result of Gepr&sj{

THEOREM 5.4. The fusion algebrd " of the Wess-Zumino-Witten model associated
with a simple Lie algebrg of rank r (and diagonal modular invariant), is isomorphic to
Clx1,-.-,Xxr] /IC, whereﬂ(kC is the (radical) ideal of polynomials vanishing on the psint

S\ S/\A) ; A}
A A et P
{<So/\ S K

Note that the points of the fusion variety have coordinatbgkvare the eigenvalues of
the fusion generators in the regular representation.

The fusion ring may likewise be represented as a quotiehi{®f, . . ., xr]. The fusion
ideal in this case is thej‘E = J(k:ﬂZ[Xl,---,Xr]- This ideal has the property that if any
integral multiple of an integer polynomial is i'ﬁ‘, then so is the polynomial, thus ensuring
that the quotient is a freé-module. Ideals with this property will be referred to asrggi
dividing.

5.2. Fusion Potentials

5.2.1.su(r+1) and sp (2r). The fusion rings have been explicitly described for the
Wess-Zumino-Witten models over the algebsagr + 1) andsp (2r). In both cases, the
fusion ideal is generated by the partial derivatives of glsiriunction referred to as a
fusion potential. Fosu(r + 1), the fusion potential for the levéd theory is given by

Equation (4.2.1),
1 r+1

i=

Here, thes;, i = 1,...,r + 1 denote the projections of the standard orthonormal eleshen
onto the weight space (thueg + ...& .1 = 0). Since theg are permuted by the Weyl
group, W, of su(r+1), Vkir11 is a W-invariant function of (formal) exponentials of
2These orthonormal elements form a basi®bf! wherein the weight space is the hyperplane orthogonal

to the sum of the basis elements. These basis elements &nkassthey are permuted by the Weyl group
W =S,;1 of su(r 4+ 1), and the roots are simply differences of these elements.
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weights, hence may be expressed as a polynomial in the ¢begarf the fundamental

representations30)]. It is perhaps simpler to note that = A1 and so the; coincide with

the weights of the fundamental representatiorsiofr +1). The fusion potential may

therefore be written in the forms
1

1
Vighro1 = m e(k+f+1)u _ - Z e(k+r+1)u (5.2.1)

kK+r+1 ’

peW(A;) pei™M

whereW (A ) is the Weyl orbit ofA andA? is the set of weights of the representation with
highest weight\ .
Forsp (2r), the fusion potential for the lev&ltheory is B1, 84]

Vicer i1 = Wil Zl [e(k+r+1)si 4 e—(k+r+1)si]
where theg, i = 1,...,r now constitute an orthonormal basis of the weight space achwh
the Weyl group ofsp (2r) acts by permutation and negation. Agaén—= /A; and so the
fusion potential may again be written in exactly the samm®ogiven in Equation (5.2.1).

This loudly demands the consideration of a generating fandor these fusion po-
tentials. For later purposes, define the “character®pfvhere® is an arbitrary set of
weights, byxe = 3 ,c0 €. This corresponds to a genuine character wihas the set of
weights of a representation. Let

Y

Z = —qu:,

Hed

3||—\

wherem® means the set consisting of multiplesroyf elements ofp, and defind/ (t) =
521 (=1)™ IVt Then,

0 (_1)m—1emytm |P| ]
V()= =1 14+et)| =1 npt"” 5.2.2
-5 5 T o) [ ()| i L;m 622

where A"® is the n" exterior powet of ®. In the fusion potentials fosu (r +1) and
sp(2r), @ = A™M, so one requires knowledge of the exterior powers of the domehtal
representations (for each algebra).

These are well-knowri7R]. For su (r +1), then" exterior power of the fundamental
representation is just the representation of highest wéigtand the trivial representation
if n=0,r+1). Forsp (2r), the exterior powers are not always irreducible. Whegr,
the nt" exterior power is the direct sum of the representations gifiést weight\n_»i,

i =0,1,2,... Whenn > r, then!" exterior power coincides with theer — )th exterior

3The exterior powen"d® of a set of weightsb is defined to be the s¢0} if n= 0, and otherwise, the set
{+@+...+@h: @, @,...,@ € © are distinct}
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power. The generating functions fax (r + 1) andsp (2r) therefore have the forms

r+1
Veu(r+1) (t) =log [ X tn]
su(r+1) nZO n

with xo = xr+1 =1, and

Y

r-1
Vap(ar) (t) = log [ZOEn ("7 Bt
n=

whereEn = Xn+Xn—2+ Xn—4+--., Xo=1, andx, = 0 wheneven < 0. This demonstrates
Equations (4.2.2) and (4.2.8).

5.2.2. The General CaseAn ideal which is generated by the partial derivatives of
a single function is sometimes calledjacobianideal [54]. One should expect such
ideals to be comparatively rare, so it somewhat surprisiffiopt that the fusion ideals for
thesu(r +1) andsp (2r) Wess-Zumino-Witten models are of this type. Neverthelgss,
seems to be accepted tleateryfusion ideal is jacobian (at least ov&) — this was in
fact originally conjectured by GepnesJ.

The first claim to have established the jacobian nature ofusien ideal for general
Wess-Zumino-Witten models appears #9]l There, explicit formulae for the fusion
potentials are presented for each simple algebra (imiglieitith the diagonal modular
invariant). However, this claim suffers from the problemattit does not seem to make
clear how the variables used in these explicit fusion paatstelate to the variables of the
polynomial ring. To clarify, in thesu(r 4+ 1) fusion potential given in Equation (5.2.1),
the variables are the weights of the fundamental represemtaThe polynomial ring,
however, is the character ring, so the variables are thecteasy;. The relation between
these two sets of variables is therefore evident. It is theesponding relation between
the sets of variables used g which is missing, making the explicit fusion potentials
impossible to use (and impossible to check).

In any case, Aharonyg] later gave an explicit fusion potential for arbitrary rational
conformal field theory. The variables used to construct pliential form a generating
set of the fusion ring, whose choice is constrained only leyrdguirement that at least
one element of this set must have distinct eigenvalues indfelar representation (it
is argued in §6] that every fusion ring contains such an element). The eddorm
of the potential is rather unwieldy and will not be reprodiitere. Suffice to say, it is
constructed in such a way that its partial derivatives ‘faprecisely at the points whose
coordinates are eigenvalues of the generating set in thetaregpresentation. It should
be noted however, that one requires explicit knowledge e$eheigenvalues in order to
write down Aharony’s potential.

Strictly speaking, this construction establishes thapibtential given reproduces the
correct fusiorvariety (Section 5.1.2). To conclude that the corresponding ices fact
the fusion ideal (ove€), one also needs to verify that the potential generatesiealad
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ideal. This point does not appear to have been addressgidar hnywhere else it seems).
Assuming this property, one may then conclude that thisriatiecorrectly describes the
fusion algebra To extend this conclusion to a description of the fusiory rifurther
information is required regarding integrality propertaéghe derivatives of the potential.
Whilst the rationality of the coefficients of these potelstare discussed, this alone is not
nearly sufficient to prove that the fusion ring is correctisdribed by these potentials

In any case, these fusion potentials do have their shortagsniFirst, they are in-
elegant descriptions, involving the explicit forms $Mmatrix elements (Appendix B.3),
which one would not generally wish to compute. Second, theyat unique — there are
enormous amounts of ambiguity in their construction, patérly in choosing a generat-
ing set and then choosing a distinguished element whosewllyes are distinct. Third,
they do not seem to have any obvious interpretation invglether areas of mathematics.
This last point is perhaps not valid for an arbitrary raticcenformal field theory, but for
the specific case of Wess-Zumino-Witten models, the exangdl&ection 5.2.1 suggest
that one should be able to interpret a fusion potential intheoretic terms. For the pur-
poses of this thesis, in particular the computations ofiBeet.2, it should be clear that
these inelegant fusion potentials are simply not suitable.

5.3. Proofs

In this section, the potentials given by Equation (5.2.1)sfo(r + 1) andsp (2r) are
proven, rigorously, to describe the fusiongs of the corresponding Wess-Zumino-Witten
models (with the diagonal modular invariant). This is psety what was used in the
computations of Section 4.2. There are three results tretan try to prove:

e The given potential describes the fusiariety of Theorem 5.4.
e The given potential definesradical ideal of the complexified character ring.
e The given potential definesdavidingideal of the integral character ring.

The first two establish that the potential is indeed the fugotential for the fusion al-
gebra, and the third is what is required to extend that canmfuto the fusion ring. In
what follows, an elegant proof is first presented which diyeaddresses none of these
results. It uses ideas from commutative algebra to diremdlystruct a presentation of
the fusion ideal (which is determined by the above three gntogs it must satisfy). The
fusion potentials are thesterivedfrom this presentation through some simple symmetric
group theory. It should be mentioned that such a derivag@ms not to have appeared
in the literature, where fusion potentials have been pattdl without any satisfactory
underlying motivation.

Unfortunately, the symmetric group theory used in this pimes not seem to have
been extended to general simple Lie algebras. It theretmms reasonable to study po-
tentials of a similar form to those that successfully désedtithe fusion rings afu (r + 1)

4Specifically, one needs to show that the ideal generatedebgiethivatives irZ[x1, ..., x| is dividing (as
defined at the end of Section 5.1.2).
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andsp (2r). Before undertaking such a study, it is useful to build upugiotheory to
prove directly that the fusion potentials given far(r + 1) andsp (2r) define radical
ideals corresponding to the (respective) fusion varigti8sction 5.3.2 is devoted to this,
and the theory developed in the course of these proofs willdeel to undertake a more
general study of potentials in Section 5.4.2.

5.3.1. ProofsovetZ. Leté,; = —2mi(o+p)/(k+h'). Recall from the proof of the
Kac-Walton formula, Proposition 5.2, thatAfis a weight on the boundary of a shifted
affine alcove (hence fixed by the shifted action of some redleaf \7Vk), theny, (&5) =
0 for each integrable highest weigbte ﬁk. Characters may always be expressed as
polynomials with integer coefficients in the fundamentaretttersy, = py (X1,---,Xr),
so by Equation (5.1.2),

S\ Sh
O:X)\ (EO’) =P (Xl(EO’)?"'?Xr (EO’)) = Pa (—107"'7 U) .
S0 S
The polynomialp, therefore vanishes on the fusion variety. As the fusionlidaadical,
it follows thatp, € J‘kc, and agp, has integer coefficientp, € J%. More generall§, the

same argument proves the following proposition.
PROPOSITIONS.5. Given anyA € P andw € Wk, it follows that p, —detw pg., € J%.

This argument shows, among other things, thate J% whenever(A,0) = k+1
(where6 denotes the highest root gfas usual). Let, denote the irreducible represen-
tation ofg of highest weighpu. Writing A = 5 AiA\;, it follows from the familiar proper-
ties of the representation ring thatis the (uniquehighestweight in the representation
Ly @@Ly, Therefore,

|9)) (Xl?"'?XI’):X:{\]-"'XI’Ar_"'7

and in some sense, the omitted terms (thée’) correspond to lower weights and should
be regarded as less important. To make this lack of impogtanecise, one introduces
a monomial ordering on the character ring. This monomiakond) will be designed
to have the property that the leading tenm,(p, ), of p, is the monomialxi‘lm A,
However, it will also prove very useful to have an orderingatirespects the boundary
(A,0) = k+1 of the shifted fundamental affine alcove.

LEMMA 5.6. Define a monomial ordering onZ|xa, ..., Xr] by
Xi‘l... (\’<Xfl"' He if and only if

SThis proves the first two results listed above, hence thafiuisien potentials correctly describe the fusion
algebra It seems to be difficult tdirectly prove the third result, that the ideal is dividing.

e following proposition is indeed a generalisation, fppked to a boundary weight fixed byw, one
5The followi ition is indeed lisation, fppked bound ightt fixed byw
gets D, € IZ. But, IZ is dividing (Section 5.1.2), sp, € JZ is recovered.
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(A,0) < (u,08), or

(1,6)=(1,6) and (A,p)<(ip), or

(A,0)=(u,8) and (A,p)=(u,p) and x;t--xM < xitooxH

where<’ is some other monomial ordering (lexicographic for definéss). Then,

and if A is a dominant integral weight on the boundary of the shiftedibmental alcove,
LT (pu) < LT (py) for all p € Py

PROOF First, this is indeed a monomial ordering, as follows frdrma properties of
the bilinear form(-, -) and the fact that’ is a monomial ordering. The statement concern-
ing boundary weights is trivially checked as it impligs 6) = k+ 1 whereagu, 68) <k
forall u Py. It remains to verify thatT (p, ) = xfl X

This may be proved inductively (on the height), for it is taiNy checked when is a
fundamental weight. Generally, decomp(b.%l R ® Lffr)“ into irreducible representa-
tions, so that

Ar
=

XX =X+ Y CuXus
i

where theu are all of lower height thai. By induction,LT (p, ) is the greatest (under
<) of x3*...x* and the monomials-c, x!*--- x#". Now, since eachu is a weight of
Lfff‘l R ® L%r)‘f, 1= A —35;maj, where than are non-negative integers aagare the
simple roots ofg. It follows that(A,8) > (u, 8) since the Dynkin labels of are never
negative. But(A,p) > (u,p) sincep has positive Dynkin labels (indeed, this is what
it means forA to be higher tharu), hencexfl--- M is the greatest of the monomials

(under<), completing the proof. |

Consider now the idea(ILT (J%)> generated by the leading terms (with respeckjo
of the polynomials in the fusion ideal. Since the fusion rif§ = Z[x1,. .., xr] /IZ, is
freely generated as an abelian group by the (cosets of thedcters of the weights IiA’k
the leading termg* - .- x/, with (A,8) < k are the only monomials not it (92)).
That iS,<LT (J%)> is freely generated as an abelian group by the monom@ls- XPT
with (A, 0) > k. Itis easy now to determine a set of generators, as an igedl1 (JZ) ).
Forsu(r+1) andsp (2r), the monomials(i\l - x with (A, 8) = k+ 1 suffice (as the
comarks are all unity). That is, for these algebras,

<LT (J%)> — 0T (py): (A,8) =k+1),

by Lemma 5.6. (Note that the leading coefficient of theseasttars is unity.) But, Propo-
sition 5.5 states that), € J% when(A, 8) = k+ 1, so this equation proclaims in fact that
the p, form aGrobner basiof 2 [47,48].

7 this is not obvious, see Section 5.4.1.
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THEOREM 5.7. For su(r +1) andsp (2r), the charactersyy = p, (X1,-..,Xr) With
(A,0) =k-+1form a Gidbner basis for the fusion idedf, with respect to the monomial
ordering <.

Note the crucial, but subtle, rdle played by the monomideoing <. The extension of
this result to the other simple Lie algebras will be discdsseSection 5.4.

Note also that because the Grobner basis given has elemensgs leading coefficient
is unity, this presentation shows explicitly that the fusideal is dividing in the sense of
Section 5.1.2. Radicality now follows explicitly from thadt that the rank of the fusion
ring is equal to the number of points in the fusion varietyn@mlly the rank is not less
than this number, with equality if and only if the ideal is ical [48]).

Theorem 5.7 gives a very nice generating set for the fusiealidf su(r +1) and
sp (2r), nice because of the fact that the set constitutes a Grdtmss, and also be-
cause of the obvious Lie-theoretic interpretation of the swever, this set does have
disadvantages when compared with the fusion potentiakigiien of Section 5.2, most
notably that the number of generators increases polyngnwéth the levelk. It has also
proven difficult to use these generating sets in the comipugif Section 4.2, as the
dimensions of general (irreducible) representations @arather cumbersome to manip-
ulate. The aim is therefore to reduce this generating séte@énerators defined by the
fusion potential.

For simplicity, consider the fusion ring associated with(r + 1), specifically the
characters(y = p, (X1,...,Xr) € JZ, with (A,8) = k+ 1. Recall that the characters of
su(r + 1) may be expressed &hur polynomial@ the variableg =€f,i=1,...;r+1
(& the weights of the fundamental representationgso-q,.1 = 1). By the Jacobi-
Trudy identity{ 73], Schur polynomials may be expressed in terms of completersstric
polynomialsH;:

Hj1 Haipr o Hagrg
Hy2y  Hyz - Hyzp
Xx =det(Hyiy i) = . . _ e
Harpar Hargor -+ Har

whereA = ;A'g; andA™ 1 is chosen to vanish (fixing the othaf). Noting thatd =

&1 — &1 [30], one finds thak+1 = (A,0) = A1 — A1 = A1 so the top row of this
determinant has entri¢4 i, i = 1,...,r. But, Hj is clearly the character of the represen-
tation of highest weighje; = jA1 (again by the Jacobi-Trudy identity), so it follows by
expanding the determinant along the top row that ggctvith (A, 8) = k+1 may be ex-
pressed as a linear combination of g ia,, | = 1,...,r, with polynomial coefficients.
These polynomial coefficients are products of complete sgtrimpolynomials, hence
can be expressed as integer polynomials in the fundamédrdedcters. Therefore,

j%: <p)\: (A,Q) :k—|—1> - <p(k+i)/\1: izl,...,r>. (531)
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To show that the inclusion in Equation (5.3.1) is in fact anaiy, one only needs to
show that eaclp ), is in the fusion ideal. By Proposition 5.5, this will be theseaf
(k+1) A1 is fixed by some shifted affine Weyl reflection, which in turrlwe the case
if (k+i)A1+p,a) e (k+h")Z for some root. It may easily be verified that there is
such a rodt, so it follows that

Tk = (Psipng 1 =1,....1). (5.3.2)

The story for the fusion ring ofp (2r) is similar. There is a generalisation of the
Jacobi-Trudy identity due to WeylLp( which expresses the characters in terms of the
determinant of a matrix whose entries involve complete sgnit polynomials (in the
formal exponentials of the weights of the fundamental re@néation). This expression is
also reproduced in7f3]. Exactly as before, this generalised Jacobi-Trudy idgmntiay be
used to show that

JZ C (Pl )AL Pl 1+iA; + Pkra—ipng s 1 =1,...,r = 1).

The opposite inclusion is simplicity itselfk+ 1) A1 is obviously fixed by the (shifted)
affine reflectionwy about the hyperplan@\, 8) = k+1, andp 14i)a, + Pk+1-i)a, =
P(k+14i)A, — d€Wg Pag.(kt-1+i), - Proposition 5.5 again shows that these polynomials are
elements of the fusion ideal, so

Tk = (Pacrag Piert+iyag + Pera—ipng 1 1 =1,...,1 = 1) (5.3.3)

Note that the number of generators in these presentationmependent of the level
k. Note also that instead of involving general characteeseatgenerators consist of (the
relatively simple) characters corresponding to multigethe first fundamental weight.
This set of generators for the fusion ideal is thereforequly suited for the computations
of Section 4.2.

Whilst these generators are in fact all that is needed faetltemputations, it is not
difficult to show how to derive from these the fusion potelstiaf Section 5.2. This
will be detailed forsu (r + 1), as the symplectic case is analogous if slightly more cum-
bersome. First, recall that the charactgfis,)x, are the complete symmetric functions
Hksi (O1,---,Gr41), I = 1,...,r. To facilitate their manipulation, the standard genemmatin
function is introducedH,; is then the coefficient of*! in 7%} (1—qjt) *. Recall-
ing thath” = r + 1, this is equivalent to saying that,,v_; is the coefficient otk+h’
int ﬂgﬁ (1—qjt)7l. Replacingt by minus—t, and absorbing any overall sign in the
generators, one finds that the generators may be taken asdffieients oft“h" in

1 o -1 N
U Q) =t YE") = ,
Dl( ) HZO " LT+ Xat 4.+ xetT +tr+1

8This verification is most conveniently performed in the ortbrmal basis oR"*1 introduced in Sec-
tion 5.2.1. WritingA = 3;A's;, one may také\} = &y andp' =r +1—i. The roots have the form — ¢j,
so one may choose = & — &,2_j. This gives((k+i)A1+p,a) =k+r+1=k+h".
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where theE, are the elementary symmetric polynomials, and one recegrifgaty, =
En(01,..-,0+1) [73] (@andE; ;1 =q1---qrr1 = 1). This is obviously just the partial de-
rivative with respect toy; of

Vaurrs1) () =log 1+ xat + ...+ xt" +t"1]

which is exactly the generating function for the fusion pias, Equation (4.2.2). With
the analogous symplectic case, this now proves the maiit tdghis chapter.

THEOREM5.8. The fusion ringFZ of the Wess-Zumino-Witten model associated with
su(r+1) or sp(2r) at level k is described by the fusion potentigl ¥ given by Equa-
tion (5.2.1):

3722 Z[Xl:"'uxr]
k — <avk iy v, +hv>‘

axy 0 dx

5.3.2. Proofs overC. In Theorem 5.8, the fusion idedl§ for su(r + 1) andsp (2r)
were shown to be generated by the partial derivatives of rikgpéctive) fusion poten-
tials. That is, these fusion potentials correctly desctitee(respective) fusion rings. As
mentioned earlier, it will be useful to directly verify theaogous statements for the fu-
sion algebras (which is of course implied by the theorem)s Vhrification amounts to
a logically independent proof (ovér), whose demonstration is certainly of independent
interest. It consists of showing that the fusion potentiglen define a radical ideal that
vanishes at precisely the points of the fusion variety.

The first aim is therefore to establish that the derivativeb@fusion potentials given
by Equation (5.2.1) vanish on each poidt € C" of the fusion variety. Recall from
Theorem 5.4 and Equation (B.3.2) that

Vi)‘ = SS/;%:\ = Xi <—27Ti£_:—h€) .
The fusion potentials should therefore have critical pomhen the characters are evalu-
ated atf, = —2mi (A +p)/(k+h'), forA Pk. Indeed, the functions

7 A X (—Zni)\ +p) = Z g 2m(u.A+p)/ (k+hY)

v
k+h &N

on the weight space may be easily checked to be invariant theeshifted action of the
affine Weyl groupﬂ/k. Therefore, the aim reduces to establishing that the patstitave
critical points when the characters are evaluateg at s (A), for anyA € P which is
not on a shifted alcove boundary.

It is obviously convenient to work with the potentials as dtions on the weight
space rather than as polynomials on the fundamental cleasadEvaluating the poten-
tials, Equation (5.2.1), as above gives

1

i 1
Vi (a1 (A) ooy (X)) = —— e 2M(HA+p) _
K+ hv “5/\1 K+ hY

X1(—2mi (A +p)).
(5.3.4)
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Notice that the level dependence of the fusion potentiatsimes quite trivial. This dras-
tic simplification encourages the investigation of thecaitpoints of these potentials with
respect tod . Denoting the gradient operations with respect to the forefdal characters
Xi and the Dynkin labeld; by [J, andlJ, respectively, one has

OaVin= (OxVm) J, (5.3.5)

whereJ is the jacobian of the functions; with respect to the\;. It follows that if the
fusion potential has an critical point with respectAtpandJ is non-singular there, then
there is a corresponding critical point with respect to tlnedamental characters. It is
clearly useful now to determine wh@rbecomes singular.

LEMMA 5.9. The determinant of the jacobian J is an anti-invariant fumetunder
the induced action ofV.

PROOF Differentiating thes; with respect to the Dynkin indices gives

Ox  —2m

o oy 2 () ermiie/ien, (5.3.6)
J
u

e

Lettingv = —2mi (A +p) / (k+h"), the entries of the jacobian, as functions on the weight
space, satisfy

271 271 1
. _ ) @(HW(v)) _ -1 ~L(A)) eW HB)v)
J'J (W(V>) k—l—h\/ HEZA/\i (u:l\])e k—l—h\/ HEZA/\i (W (H),W (AJ))e

—27Tl 1 _Zm r __

= WL(A)) V) = wl). Ay) V)
K-+ hY HGZA/\i (“ ( l)) K+ hV kZl( )‘kuezm (“ k)
;

= > Ji(V)wj,
k=1

wherew; is the matrix representation of in the basis of fundamental weights (this
matrix is orthogonal). Hence,

J(w(v))=J(v)w = detJ(w(v)) =detwdetd(v). n

PROPOSITIONS.10.

_ —2m \' 1 a/2 —a/2
deU_(k+hV) |P/QV\GI_| (e —e >,

en,

whereA, denotes the set of positive roots (and the ordBr&QQ" | may be extracted from
Table B.1).

PROOF By Lemma 5.9, det is anti-invariant undeiV, so it factors 80| into an
invariant element multiplied by the primitive anti-invant element (see Appendix A.3),
MNaea, (e"/z — e“”/Z). From Equation (5.3.6), the term of highest weighfiinis easily
verified to be
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so the term of maximal height in déts

Sincefgea, (e"/z - e“’/2> has highest terre2a<a+ 9/2 — eP | the invariant factor must

be a constant. The result now follows from the fact that thé&imwith entries(/\i,/\j)
is inverse to the symmetrised Cartan matrix (Appendix A.1). |

Evaluating dedl at —2mi (A +p) / (k+h"), it follows from Proposition 5.10 that the
jacobian is singular precisely when

u (e—in(a,)\+p)/(k+hv) _ein(a,A+p)/(k+hV)> -0
aclhy

[ (a,A+p)
= ag+ sin [nw] =0.
That is, whem is on the boundary of a shifted affine alcove. It follows tlnegt dbnly place
that a potential may have critical points with respec twhich are not critical points with
respect to thg; is on these boundaries.

PROPOSITIONS.11. For the fusion potentials given 1§§.2.1) the critical points with
respect tod occur precisely at the weight lattide

PROOF First consider the potential fep (2r). From Equation (5.3.4), it follows that

At+py_ 1 —om(uA+p) _ 2
Vk“’v( 2mk+hv)_k+hv 2 © =i 2 coslm(uA+p)].
NEAAl ueAﬁ\rl

whereAﬁl denotes the set of “positive” weights of the fundamentatesentation (the
full set of weights consists of these weights and their negg}t. Critical points therefore
occur when
(M, i) sin[2rt(u,A +p)] =0,
pen’t
for eachi = 1,...,r. Consider the matri® with entriesAi, = (u,/\i). Since’Aﬁl =,
this matrix is square. The positive weights of the fundamlergpresentation can be

verified to have the form (identifying the weight space with Cartan subalgebra)

1 .
/\1—01—...—01',1:E(ajv-l-...-l-arv) (1=1,...,r),

so the corresponding entry of the matrix i&1if i > j and 0 otherwise. The matri is
thus lower-triangular, therefore invertible, so the catipoints occur precisely when

sin2m(u,A +p)] =sin[m(Aj+pj+...+A +p)] =0  forallj=1,...,r.

It follows thatAj ...+ A, € Z foreachj = 1,...,r, henceA € P.
Forsu(r 4+ 1), the number of weights in the fundamental representation-i%, and
this set need not be closed under negation. Proceeding he Bymplectic case would
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therefore lead to the consideration of mr (r + 1)-dimensional matrix. This suggests
changing variables to the orthonormal ba§is, ..., &1} of C'?1. The weights of the
fundamental representation are then the projection ofjtbato the hyperplane of"*+1
orthogonal tee; + ... & 1. Writing A = 5 A'g;, theA' are related to the Dynkin labels by
Ai = A1 — A1 Finding the critical points of a potential on the weight spd®ecomes a
constrained optimisation problem in this setting, so tredn potential should be altered
by a Lagrange multiplie® to

\7k+hv (—27Ti

The weights o\t are related to thej by pt = & — (&1 +...+&41) / (r + 1). Differen-
tiating with respect to tha', and solving for the critical points therefore gives

o v r4+1 o
o-2m(Ai+p) _ KEh 41 o-2m(Al+pl)

2m r+14

That is, exd—2mi (A' 4 p')] is independent af, oA +pj = AT+ p' — AT — pi+l e 7,
It follows thatA € P, as required. [ ]

Recall that the fusion variety corresponds to integral Wisg which donot lie on
an affine alcove boundary. Proposition 5.11 indicates trepbtentials fosu (r + 1) and
sp (2r) given by Equation (5.2.1), have critical points with redpecA at these weights.
Finally, Proposition 5.10 shows that the jacobian is nawgslar away from the shifted
alcove boundaries, so the fusion potentials also haveakigoints with respect to the
fundamental characters at these weights. It thereforeinsma show that there are no
additional critical points (with respect to the fundaménteracters) on the shifted alcove
boundaries, and that the jacobian ideal€Cdfa, ..., x| described by the potentials are
radical.

Turning to the question of radicality first, it follows frontesdard multiplicity theory,
specifically the theory oMilnor numbers[48, 115, that a jacobian ideal described by a
potential will be radical if the hessian matrix of the potahis non-singular at each point
of the corresponding (zero-dimensional) varfetyrhe hessian matrices for the fusion
potentials ofsu (r + 1) andsp (2r) are therefore worth investigating.

PROPOSITION5.12. For su(r +1) andsp (2r), the hessian matrix j1of the fusion
potential \¢ v (&, ), with respect to\, is non-singular orP.

PrROOF This may be shown uniformly for all simply-laced groups,imaghis case
P = Q*, the dual of the root lattice. Takilj+ p € Q* then implies that

(M,A +p) = (A1,A +p) modZ,

9Indeed, if the hessian matrix is non-singular, thenrthdtiplicity associated with each point of the variety
is just 1. The sum of the multiplicities is the dimension o ttorresponding (finite-dimensional) factor
ring. Thus, when the multiplicities are all unity, this dingon equals the number of points in the variety.
This equality can occur (for finite varieties) if and only lifet corresponding ideal is radical (this was also
noted in Section 5.3.1).
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for all weightsu in A", It follows that

—A1P .
(Ha)ij = (KN (1, ) g2 ATP)
K+ hv “6%,\1
_AT2
=i © S () ()

pei™M
—ATC __onminga
=o€ A (LA,

by Equation (A.1.7). Herdp = (A,A+2p)dim(A) /dimg denotes the Dynkin index of
the representation of highest weight It follows that

—ArPIA
k+hY
This is clearly non-zero, so the proposition is verifieddo(r + 1).

For sp (2r), a more specific calculation is required. Recall from theopad Propo-
sition 5.11 that the weights ot take the formy, = +3 (a)f +...+a;’), for ¢ =
1,2,...,r. Itfollows that(py,Ai) (1, Aj) = % if i > £andj > ¢, and 0 otherwise. Com-
puting the hessian as before gives

r
detH, = < ) @27 (A1, A+p) }P/QV}*l whenA +p € Q™.

g2 Minfi.j}
(Ha)ij =1 > CoSmArt o+ Ar+r—(+1)].
/=1

Lethy =cog[mt(Ay+ ...+ Ar+r—{¢+1)]. Then, elementary row operations give

hy hy hy hy
N hi hy+hy  hy+hy - hi+h
detHA=<k_+—hv) det| hy hi+hy hi+ho+hz -+ hi+hy+hs
hi1 hi+hy, hi+ho+hs -+ hi+...+h

hy hy hy -+ Iy
0O hy h -+ hy

r
:(‘f”z) det] 0 0 hg --- hs

0O 0 0 - h

= (k_f—l:j) lecos[n()\g-i—...—i-)\r-i—r —(+1)].

Therefore, when € P, detH, = + (21%)" / (k+h")" # 0, so the hessian is again non-
singular. m

Of course, it is the hessian W§, v with respect to the fundamental characters that is
required to be non-singular at each point of the fusion wariBenoting this hessian by
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Hy, one has the relationship

0NV« 0Xs 0?Vicrnv OXi Niine 02X
OAi0Aj N & 0Ai OXs0 Xt OAj OXe 0AidA|

= Hy=J"H,J  whenO,V, v = 0. (5.3.7)

WhenA € P is not on the boundary of a shifted alcove, the hesbigns non-singular
by Proposition 5.12, and the jacobidms non-singular by Proposition 5.10. The remark
after Proposition 5.11 shows that Vi, v = 0 at such points, so Equation (5.3.7) forces
the hessiar,y to be non-singular there too. The multiplicity thfesepoints is therefore

1 as is required. It remains only to consider the possibiligt [, Vi v might vanish at
someA € P on the boundary of a shifted alcove.

COROLLARY 5.13. The integral weights on the shifted alcove boundaries da@at
respond to zeroes afy Vi, .

PROOEF If an integral weight on a shifted alcove boundary did cgpand to such a
zero, Equation (5.3.7) would give de¢t = (deU)ZdetHX = 0, sincel is singular on the
boundaries, and del, is a polynomial in the characters (hence finite at any giventpo
But this contradicts Proposition 5.12. |

It follows immediately that the potential4. v do indeed describe the fusion variety
correctly. Furthermore, since the multiplicityaterypoint of the variety is now known to
be 1, the ideal generated by the derivatives of the potensahkdical. This demonstrates
that the fusion potentials correctly describe the fusigehta as claimed.

THEOREM 5.14. The fusion algebra of the Wess-Zumino-Witten model agsacia
with su(r +1) or sp(2r) at level k is described by the fusion potential y given by
Equation (5.2.1):

soo Chuoxl
k 0Vk+h\/ 0Vk+h\/
ox1 ' oxr

5.4. Generalisations

The theory developed in Section 5.3 is specific to the algatrér + 1) andsp (2r),
but only in a rather limited way. For example, Propositionkl5and 5.12 both merely
verify that a certain fact is true for these algebras. Themwothsults, and more impor-
tantly the logic behind them, hold for general simple Liesddrps. It seems plausible then
that convenient descriptions might similarly be found foe fusion rings of these general
algebras. This section is devoted to some attempts to igagsthese fusion rings, illus-
trated by the (easily visualised) example of the simple lgelarag,, and highlights the
various obstacles that such investigations need to ovexcom

5.4.1. Obstructions overZ. Recall from Section 5.3.1 that there exists a monomial
ordering < with respect to which the idedlLT (JZ)) of Z[xu,..., ;] is freely gener-
ated (as an abelian group) by the monomjg{lé---xr)‘f with (A,0) > k. A set of ideal
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FIGURE 5.1. The atomic monomials for the ide@lt (J7)) associated
with the Lie algebragg, at even and odd level. Weights corresponding to
monomials in the ideal are grey or black, the latter corradptg to atomic
monomials. The arrows indicate the effect of multiplying)ayand x-.

generators fOI<LT (J%)> is therefore obtained by selecting taeomic monomials from
the set of group generators given above. The atomic monsmia set of monomials
M= {Xi\l e rAf} are defined to be those whiclannotbe expressed as the product of
a fundamental character and a monomial fridftn Equivalently, atomic monomials are
those corresponding to weights from which one cannot scibéray fundamental weight
and still remain in the set of weights correspondingvto

It should be clear that for the skt = {xi‘l X (A,8) > k}, every weightA with
(A,0) =k+1 corresponds to an atomic monomial. ko(r + 1) andsp (2r), these are all
the atomic monomials, &' = (A, 0) =1 (so if (4, 8) > k+ 1, one can always subtract
a fundamental weight fronu yet remain inM). For other algebras, it will generally
be necessary to include other monomials. For exaniple,0) = 2 for the algebrayy,
so it follows that when the levek is even, the monomiapkf“z)/2 is also atomic (see
Figure 5.1).

Given the atomic monomials, one now has to find polynomialghefusion ideal
J% whose leading terms with respect-+toare these monomials. This is straightforward
for the monomials corresponding to weights with 8) = k+ 1 — as in Section 5.3.1,
one may take the charactexg. For the remaining atomic monomial @5 (whenk is
even), Proposition 5.5 givegi, 2)a, 2+ Xin, /2 € J%, and this combination has the correct
leading term. Therefore, a Grobner basis for the (int@duaion ideal ofg, is given by

{x»: (A,8)=k+1} ifkis odd
and  {Xa2ny 2+ X2} UlXa: (A,8) =k+1}  if kis even.

This example disproves the belief expressed3g] fhat the fusion ring (at levef) was
always generated by the charactggswith (A,0) = k+ 1. Clearly it is straight-forward
to compute corresponding Grobner bases for the other sihiplalgebra¥. These give

a complete description of the fusion ring, at least in pphei

10Note that every simple Lie algebra excep(r + 1) andsp (2r) has at least one comark greater than unity.
It follows that at certain levels, the fusion ring of thesgeddras will also not be generated by thewith

(A,8) =k+1. The fusion rings of the Lie algebras(r + 1) andsp (2r) are therefore distinguished in this
regard.
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As in Section 5.3.1, these bases suffer from the disadvanitag the number of gener-
ators increases polynomially with the level. However, theans to bypass this disadvan-
tage, the Jacobi-Trudy identity (and its generalisatiospt@®r)), are no longer available.
It is quite disappointing to find that no further generaisas of this identity (to the other
simple Lie algebras) seem to have been discovératlithout an appropriate generalisa-
tion, and indeed a generalisation of the theory of symmewignomials, the argument
given to derive the fusion potentials breaks down. At thegetthen, the obvious al-
ternative is to study the behaviour of suitably general pitas, hoping that the results
obtained from this study will suggest how to proceed in deswy these general fusion
rings.

5.4.2. Obstructions overC. Consider therefore, for a general Lie algebra, the po-

tentials L
®_ -+ m
Vin m“;bem , (5.4.1)

wherem is a positive integer an® is a finite W-invariant set of integral weights. The
conditions on® ensure that these potentials may be written as polynonmateei funda-
mental characters with rational coefficients. Howevehése potentials are to describe a
fusion ring, their derivatives with respect to the fundataécharacters should be polyno-
mialswith integer coefficientdn Section 5.3, this property was built in to the constroicti
of the fusion potentials. Here, this integrality is perhapsentirely evident, and requires
checking.

PROPOSITIONS.15. The derivatives with respect to the fundamental charactttise
potentials given by Equation (5.4.1) may be expressed gmpuoiials in the fundamental
characters with integer coefficients.

PROOF Consider the formal generating function

Ve (t) = i (—1)™ v 2tM = jog [ [1(@+e)

m=1 ue®d

= |Og |:Z X/\nqptn:| .
n
The formal generating functions for the derivatives théw tlne form

VP () Tn(dxma/dxi)t"
oXi  MMueo(1+eit)

Now observe that the inverse of the denominator is a finitelycbof geometric se-
ries (int), each of whose coefficients are (up to a sign) integer poofefse e. As the
denominator idV-invariant, the coefficents of the powerstah the product of the geo-
metric series must also bMg-invariant. It follows that these coefficients may be expess
as integer polynomials in the fundamental characters.

UThereis a generalisation to (n), also due to Weyl16Q, but it only applies to tensor representations.
The fusion rings considered in this thesis involve spinpresentations as well, so a further generalisation
is required. Nevertheless, a postulated fusion potendisé8 on these tensor representations may be found
in [11§. It is not clear if this potential describes any physicafjevant fusion process.
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FIGURE 5.2. The critical pointd + p of the potentiavrxv(e) for su(3) as
a function of the weight space. Only the points in the fundatalealcove

are shown — the rest may be obtained thro%ﬁnvariance.

Finally, note thaixne is alsoW-invariant, hence an integer polynomial in the funda-
mental characters, so its derivatives are integer polyalsnwo. Multiplying the numer-
ator by the product of geometric series therefore givesmdbpower series ih whose
coefficients are integer polynomials in the fundamentatattars. |

The aim is now to determine the variety described by thesergépotentials, and
compare with the appropriate fusion variety. As in Sectidh? it is extremely useful
to view these potentials as functions on the weight spacedlyating each fundamental
character at-2mi (A +p) / (k+h"). Identifying m with k+ h¥, the potentials given by
Equation (5.4.1) become (compare Equation (5.3.4))

V& (—2m£jh€) = k+lhv “gq)ez"‘(“v”m = M—ihv Xo (—2m(A +p)). (5.4.2)
Observe that this expression as a functiomois not only invariant under the shifted
action of W (becauseb is W-invariant), but also under translations by the corootdatt
QY (becauseb C P). Therefore, as functions on the weight space, these paleaire
invariant under the shifted action of the affine Weyl gro\fns for all k. It follows from
this simple observation that the set of critical points ad gotentials will be invariant
under the shifted action of these affine Weyl groups.

The behaviour of these sets of critical points is perhaps ibestrated through ex-
amples. The set of critical points fdr = A1 was shown to coincide witR in Proposi-
tion 5.11 for the algebras: (r +1) andsp (2r) (note thatP is indeed invariant under the
shifted action of the affine Weyl groups). The most easilyaised examples remaining
are the potentials associated wigh It turns out to be computationally convenient to
consider a related example first.

LEMMA 5.16. The critical points of W' for su(3) as a function ofA are given by
the union of two (shifted) lattices:

1 1 1 1
A +p € span, {EAl’EAZ} Uspa@{ﬁ(ml—Az),é(ZAZ—Al)}
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Vr\éV(/\l) Vr\r/1v(/\2)
N1/2 Ao N1/2 N2
N1/3 @
Na/2
0

FIGURE 5.3. The critical pointsA + p of the potentialsvn\ﬁv(/\l) and

Vn\ﬁv(AZ) for g> as a function of the weight space. Again, only the points

in the fundamental alcove are shown.

(see Figure 5.2).

PROOF Evaluating this potential at2rmA’/m (whereA’ = A + p for convenience)
gives
mvin' ® = 2cos[2mA]] + 2cos[2mAL] +2cos[2rT (AL +A3)] ,

so the critical points occur when

sin[2mA1] = —sin[2m (A1 4+ A3)] = sin[2mA)] .
Since sir(2mA) = sin(2mB) if and only if A— B € Z or A+ B € Z+ 3, the conditions for
critical points become

1 1
(2)\{4—)\562 or )\éeZ—i—é) and ()\{—FZ)\éEZ or A{eZ—i—E).

Carefully solving these conditions gives

o [ (3)- () () (Yo (2D ()

The weights ofW (0) are just the roots ofu(3). This set therefore consists of the
simple rootsa; anda», their sumé, and the negatives of all three. The relevancgts
that the set$V (A1) (the long roots ofj,) andW (A;) (the short roots) have precisely the
same structure. Indeed, the corresponding potentialsthavierm

myV (A 2cos[2mA1] +2cos[2m(A] +A3)] +2cos[2mm (241 +A5)]
%. 3A{+ A} 3\ 4+ 2
and mviy "2 = 2cos[2n§2} +2cos{2n%] +2005[2n%] 7

so settinghy = A1, AJ = A1+ A5, andA{ = A{+A5/3, A) = A /3, respectively, brings
these into the form of theu (3) potential. Lemma 5.16 determines the critical points of
this potential, so it is a simple matter to substitute baalydbthe critical points of thg,
potentials.
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FIGURE 5.4. The critical points\ of the potential\/r\r/]V(AZ) for g2 in the
shifted fundamental alcove at level= 1. The white points denote those
in the interior which do not belong to the weight lattice.

PROPOSITION5.17. The critical points of the potentialsn\Q’/(Al) and \4\,1/\’(’\2) for go as
a function ofA are given by the shifted lattices

VAV N1
)\-l-pespa@{?,?}Uspa%{g,/\z},
and A+pePUspa@{%,%},

respectively (see Figure 5.3).

The set of critical points of thg, potentials with respect ta therefore includes,
but is not limited to, the weight latticB. The additional points demonstrate that these
potentialsdo notdescribe the fusion variety @b. For at any given levet > 0, some of
these additional critical points will be found in th@erior of the (shifted) affine alcoves
of this level (this is illustrated in Figure 5.4). At such pt§, the jacobian matrid is
non-singular (Proposition 5.10), so these points arecatifpoints with respect to the
fundamental characters as well. Thus the variety genefatdtiese potentials strictly
contains the fusion variety. Generalising slightly, thigutanent shows that if the set of
critical points (with respect ta) of a potential is not the weight lattice, then this potentia
cannot describe the fusion variety.

Of course, the potentials considered forare only the two simplest. However, their
critical points (with respect td) are, in a sense, characteristic of all possible potentials
Given any finiteW-invariant setb ¢ P, mV® = x4 (—271 (A + p)) (see Equation (5.4.2))
may be expressed as an integer polynomial in the fundamerdedcters, or equivalently,
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in the “characters” of th&V (A;). That s,
mvr?w) - pCD (mvf}[/]\/(/\l)a cty mVn\'/lV(/\r)) )

for some integer polynomigde. It follows now from the chain rule for differentiation
that if A + p is a common critical point of all thvr}]/v(/\i), then it is also a critical point of

Vr}]N(a). This proves the following result:

PROPOSITIONS.18. Let ® be any (finiteW-invariant set of integral weights. Then,
the critical points of the potential § as a function on the weight space include any
critical points which are common to all the potential%v‘(/\i) (or Vrﬁ/\i), i=1,....r.

For g2, the common critical points are given by Proposition 5.17has(shifted) lat-
tices

27 2
which coincides geometrically with the vertices of the afelcoves. Proposition 5.18
states thaany (allowable) potentia¥/® has these critical points (usually it will have many
others), and therefore, as argued above, doédescribe the fusion variety.
This result shows that in constrast with the casesudf +1) andsp (2r), there is
no fusion potential of the fornt > for g,. The situation for the other simple algebras is
similarly bleak, because of the following result.

A1 3N\
)\-i—pePUspar%{ 1 —2},

PROPOSITIONS.19. The potentials ‘,Q,” =Lxi(—2m(A +p)), i=1,...,r, always
have critical points (with respect ) whenA + p is the vertex of an affine alcove.

PrOOF Identifyingmwith k+hV, the condition for\/,.ﬁAi to have a critical point is just
thatJ;; (—2mi (A + p)) = O for eachj, whereJ is the jacobian matrix of Equation (5.3.5).
Proving the proposition therefore amounts to showing difat2riv) = 0 whenevew is
an alcove vertex.

Recall from the proof of Lemma 5.9 thafw(v)) = J(v)w, where thav on the right
hand side denotes the matrix representingn the weight space (with respect to the basis
of fundamental weights). Denoting tif€ row of J by 0, xi, it follows that

Oy Xi (—2mw(v)) = Oy xi (—2mv) w.

O, xi (—2miv) is therefore a row vector which may be associated with an et¢of the
dual of the weight space (the Cartan subalgebra).

Consider the fundamental alcove vertices (the generalwdktmllow from the W-
invariance of the characters). uf= 0, thenv is fixed by everyw € W, solJ, xi (—2miv)
is a row vector fixed by everw € W. Thus, ), xi (0) is the zero vector (for each),
verifying the proposition for this vertex.

The other fundamental alcove vertices have the form (AppeB®) v = Aj/a,
where ajv denotes the comarks of the Lie algebra. Thens invariant under all the
simple Weyl reflections exceptj, sol], xi (—2miv) is invariant under all these simple
reflections, henceél, x; (—2miv) is orthogonal to every simple root except But, v is
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fixed by the affine reflection about the hyperpldpe6) = 1. This reflection has the form
W(u) =wp (1) + 6, wherewy € W is the Weyl reflection associated with the highest root
6. Hence, using the invariance of the characters under &tamss inQ",

Oaxi (—2miv) = 0, Xi (=27 (We (V) + 0)) = U, Xi (—2miwg (v)) = U, Xi (—271v) W.

It follows now that(d, x; (—2miv) is also orthogonal t@. But, 6 and the simple roots,
exceptingaj, together constitute a basis of the weight space (as the ajar&ver van-
ishes). Thus[J, xi (—2miv) is again the zero vector, verifying the proposition for i t
vertices of the fundamental alcove. ]

It follows from Propositions 5.18 and 5.19 that every pardf the formV,> will
have critical points at every affine alcove vertex. Unlegsdét of affine alcove vertices
coincides with the weight lattice, there is no hope that &pial of this form will cor-
rectly describe the fusion variety. But, this coincidenaga only occur when the comarks
of the algebra are all unity, so it follows that these potdatcannot describe the fusion
variety unless the algebrads (r +1) or sp (2r).

5.4.3. A Partial Result. The result of the previous section forces the search for a
“nice” presentation of the fusion ring to move beyond thesideration of the potentials
V. It is not clear what should replace these potentials in t¢bissideration (neither
is it clear that a “nice” presentation exists). Indeed, omail hope that a successful
generalisation of the Jacobi-Trudy identity to all simple &lgebras would help to decide
exactly this. In any case, this chapter will conclude withaoservation regarding a
conjectured presentation of the fusion ringgefwhen the level igven

The observation is simply this: Stare at Figure 5.3 and rateit the critical points of
vV are dilated by a factor of two, their intersection with thiical points ofV, Win2)

k+hV k+hV
will preusely be the weight lattice. Such a dilation miglketdchieved by noting that from

A 1

Vk+hv
k+ h & k+hV

halving eachu € ® effectively doubles each critical poit + p. One would like to
therefore consider the potentiallgiﬁo andV, HEO“ 2, Unfortunately, the latter potential
is (of course) not expressible as a polynomial in the funddaieharacters as it involves
non-integral weights.

However, the same effect can be achieved by halvingunbtit k+hY. More pre-
cisely, by considering/k+ N) andV(kJr(hv , (both potentials are still to be evaluated at
—2mi(A +p)/(k+h")). It follows |mmed|ately that whek is even ¥ = 4), the latter
potential involves integral weights only, so therefore miedi a polynomial in the funda-
mental characters (it is not clear how to proceed when thel Isvodd). The ideal gen-
erated by the derivatives tibththese potentials therefore vanishes on the fusion variety

of g». Moreover, the hessians of both potentials with respedt teay be computed (by
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brute force) and are non-singular at edch P. Corollary 5.13 then shows that this ideal
vanishegreciselyon the fusion variety.

Time constraints have not allowed the consideration of hrethis ideal is radical
(and therefore correctly describes the fusion algebggfBecause the ideal is not jaco-
bian, the computation of the multiplicities appears to bearammplicated than checking
the determinant of the hessian. Similarly, an investigatbthe behaviour of the cor-
responding ideal o%[xa,...,x:] has not been undertaken (although the generators are
integral polynomials by Proposition 5.15). However, nuicedrsimulations of the brane
charge groups obtained using this ideal are not in conflittt thie results of Section 4.2.4.

It is therefore reasonable to conclude with a conjecture:

CONJECTURES.1. The fusion ring ofj» at evenlevel k may be represented by

35%5 Z[X17"'7Xr]
o W(A) W(AD) - W(A W(A :
Niras  Micras Ny vpy?
ax1 77 Oxe 0 Ox1 T Oxr

For completeness, the generating functions of these paleate
VW (t) = log [l+ (X1 = X2 = Dt+ (X3~ 3xaXe — 2x1 — X2 + 1) 2
+ (X7 — X3+ A2+ X3 +axi+ 22— 1)t°
+ (3 -3 —2X1— X+ )t + (X1 — X2 — 1)t5-|—t6]
and

VW) (t) = log| 14 (x2 — 1)t + (X1 + 1)t

- (x22—2x1—1)t3+(x1+1)t4+(Xz—1)t5+t6].



CHAPTER 6

Wess-Zumino-Witten Branes |l: Geometric Considerations

Classically, strings in a Wess-Zumino-Witten model arecdbsd by amag: = — G,
whereZ is a two-dimensional manifold, th&tring worldsheetandG is a real (finite-
dimensional) Lie group, thiarget spacdwith Lie algebrag). It may be assumed thatis
connected, as different connected components are physgmhted from one another. In
what follows, several additional technical simplificatsosill be made X will be compact
and orientable (hence onbyrientedstring theories will be realised), ar@dwill always
be compact, simply-connected, and semisimple, in fact leirgfpr simplicity). It turns
out [57,58] that these conditions 06 imply that the modular invariant (Section 3.1.3)
of the corresponding Wess-Zumino-Witten theory is the dirad invariant. Thus the
Wess-Zumino-Witten models associated with the Lie algglanad the diagonal invariant
may be more succinctly described as the Wess-Zumino-Wittedels on the simply-
connected target spaGe Other modular invariants correspond to non-simply-cetet
groups, and perhaps more general orbifolds?.

6.1. Some Algebraic Preliminaries

6.1.1. g-valued Forms. Consider @: T(X) — T(G). Clearlyg'dg takes values in
Tia (G) = g, so therefore it is g-valued 1-form ork,

g ldge Q' (2)®g.

In fact, it is the pullback by of 9, the canonical, left-invariant 1-form da. This form
is the basic building block of the string actions that williheroduced in this chapteg?
may be defined by

? =3t (6.1.1)

(summation convention implied), whefg} is a basis fo, considered as left-invariant
vector fields orG, and{J;} is the dual basis of 1-forms.
The spac®? (2) ® g inherits a natural structure as a commutative algebra via

[w@tAN L] =wAn @ t,t].
This extends t®°® () ® g with graded commutativity,
[wAn] = (-1)P* N4l

103
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wherew is ag-valuedp-form andn is ag-valuedg-form. As an important example, the
derivative of the canonical 1-form may now be expressed as

dd =-3 /\19:_71[19/,\19]. (6.1.2)
The Jacobi identity also generalise<1d(3) ® g in a graded form:

(WA AL+ ()P Al Aw]+(-1) P [ A[wan]]=0,  (6.1.3)

wherew e QP (Z)®g,n € Q4(Z)®g,andl € Q' () @g.

Both Q* (%) andg have a natural Hilbert space structure, thag@ming from the
Killing form k (-,-) (or rather its negative, gsis the compact real form of a complex Lie
algebra — see Appendix A.1), and that®t (%) defined by

(w,n>=/wA*n,
>

wherex is the Hodge star operatot§, 124, 155. The inner product o®° (Z) ® g is the
tensor product of these, hence takes the form

(w @tiAnj®t)) ZK(ti,tj)/al/\*m :/K(m Rt A*N; Q1) ,

wherex (- /A -) denotes the obvious extension of the Killing formQ6 () ® g.

Note that this extended Killing form convertsgavalued p-form and ag-valuedg-
form to a genuinép+ q)-form. It can quickly be checked that this extended Killiogrh
is graded-symmetric and associative:

K(@An) =(-DPk(naw) and  k(wAn A =k(wANAZ), (6.1.4)

wherew € QP (Z)®g,n € Q4(Z)®g,andl € Q' () ®g.

6.1.2. Action Variation. It will be useful to collect a few facts here regarding a
global definition of the usual notion of the variation of adtional, specifically an action.
Consider then an action[§ depending on a mag and its derivatives. The variation is
then supposed to be given by

6S[g] = S[g+d9] - S[g],

expanded to first order idg. Of course, when the maptakes values in a non-linear
space, in particular a simple Lie group, this definition nsakttle sense when viewed
literally, and therefore requires an appropriate integiren.

Thinking in terms of global data, it seems reasonable tawepthis first-order expres-
sion by the infinitesimal action of some flow (locally defongig) derived from a vector
field X on the groupG. Define then (locally) the variation gfon this domain by

oxg = XHa,0,
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the derivative ofj in the direction given by. Multiplying on the left byg~! suggests the
global definitiort,
g *oxg=ix (g dg), (6.1.5)
wherely is the interior product with respect ¥ (recall thaty—1dg is ag-valued 1-form).
If G were a linear space, thancould be viewed as a 0-form, and the variation would
reduce todxg = Ixdg = Lxg, whereLy is the Lie derivative with respect 9.
Consider now the variation @f 1dg. Using the standard first-order expansion,

O (9 'dg) = g~ 'd(8xg) — g *Oxg-g 'dg
=d(g'xg) +9 'dg-g'oxg—g 'oxg-g'dg
= dix (g~dg) — %lx (g *dgAgtdg]
= Lx (g tdg), (6.1.6)

by Equation (6.1.2). 1Bx was a derivation o2* (), one might think from these two
calculations thadx and Ly were identical, as implied in80]. This conclusion is ab-

surd however, as it would imply that the variation of any @ctdefined over a compact
orientable manifold is identically zero:

[ 2xn = [1dxn) +1x )] =0,
2 2

(by Stokes’ theorem and the fact thpimust be a form of maximal degree).

Of course dx is not a derivation o®° (Z), and only appears to act as one on the alge-
bra generated by—'dg. Indeed,dx acts on the mag, not onQ* (G), and this confusion
arises solely from the fact that the forms considered in theéysof Wess-Zumino-Witten
actions are all pullbacks lyyof forms onQ* (G). However, it can be quite useful to make
the identificationdy = Lx, provided that one is aware of its limitations. The advaeataiy
this identification is to provide a global framework for treriation of actions defined over
non-trivial manifolds, and as a side benefit, it can simgliyy computations significantly.

As an important example highlighting the difference betvég and Ly, let f €
Q°(R?) ® g and compardy * f = &x (f) + (1) = xJx f with the computation

Lx o+ f=Lx (faxt Adx?) =d (FX dx® — FX%dx!)
= 3y (FXHYdXE A dx® = % (), FXH + FauXH)
= xLx f+x (fauXH).
(Here the volume form was taken to be'd dx?.) The variational operataly therefore
commutes with the Hodge star whereas the Lie derivdliyeloes not.
A somewhat more common limitation is that alluded to beforghe-Lie derivative

of a formn of maximal degree is exact, as the tergpan vanishes, whereas the variation
of such a (pulled back) form generally does not vanish. Th&match appears to be an

10f course, one might like to allow more general variationswver, these prove to be sufficient for the
purposes of this chapter.
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unavoidable consequence of the fact thataind Ly act on different algebraic structures.
However, from a purely algebraic point of view, this misnietcay be circumvented by
the simple expedient of ignoring the fact that the exteremhtive of a form of maximal
degree must vanish. That is, both d and themust be allowed to act before the degree
of the form is brought into question.

6.2. Closed String Wess-Zumino-Witten Models

6.2.1. A Non-Linear Sigma Model. Recall the string field): £ — G, and the canon-
ical left-invariant 1-form3. The most natural action that can be constructed from these
ingredients is obtained from the “length” (Section 6.1.fijhe pullback form,

Solg) =a(g 'dgag 'dg) =a /Z Kk (g7 *dg A+ (g1dg)), (6.2.1)

wherea is some arbitrary constant. ASis homeomorphic to the unit disc R? with
various parts of the boundary identifiedl], there is a chart covering up to a set of
measure zero. Taking coordinat(eé,xz) in such a chart gives

Solg] = a/ K (97049, 9 20y g) dxH A xdx”
>3
a
= I—/Ztr [gflalg.gfldlg_i_g*lazg_gfldzg} Xm/\dX2
a —_ —
- T/Ztr (970ug-g to¥g].

Here the metric was chosen so thdtix') = dx? and« (dx?) = —dx!, andl represents
the Dynkin index of the representation g@fused (implicitly) in the Killing form trace
(Appendix A.1). 3[g] may therefore be recognised as@n-linear sigma modeiction.

With z= x! +ix?, it can also be expressed in the form

So[g] = 2ia / K (gf%g,gf@g) dzAdz.
>

Because of the existence of such a chart, this sigma modehauotay be varied in
local coordinates. However, to facilitate comparison withat follows, the global for-
malism of Section 6.1.2 will be used. Varying Equation (6)2n this manner gives

oxSolg =a /Z {k (3 (g7dg) A+ (g*dg)) + k ((97'dg) A dx (3 *dg))}
—2a | k(5 (g 'dg) A+ (g *dg))

—a [ {2« (d(g7*8xg) 4+ (07 dg)) —« (1x [0 *dgA g dg] 4+ (g dg)) }.

using the symmetry of the inner product and Equation (6.6 second term vanishes
identically via
ix [9-*dgAgtdg] =2[g *exgA g tdg],



6.2. CLOSED STRING WESS-ZUMINO-WITTEN MODELS 107

and the computatiorA= g~ 10xg andB = g~1dg)
[ (AnB 2+B) = [ K(BAxIALB]) = [[K(BA[AA+E)
s s s

:/K([B/,\A]MB):—/K([A/,\B]/,\*B)
5 z

(which uses graded symmetry and associativity, Equatioh4} and the symmetry of
the inner product). The variation now becomes

oxSolg] = 2a /Z {dk (g7*gA+*(g7dg)) —k (g *0xgAad=(g7dg))}  (6.2.2)
——2a [ k(g txgn d+ (g7'dg)).

and so the equations of motion are just
dx* (g_ldg) =

(Note that extracting the equations of motion required that Killing form be non-
degenerate, hence the restriction tGdte (semi)simple.)
In local coordinates(xl, xz), these equations of motion take the form

O (97'0u09) =
and in complex coordinates= x' +ix?, they become
0 (g‘%g) +0 (g t9g) =0, (6.2.3)

whered andd are the derivatives with respect t@ndz respectively. The equations of
motion do not, therefore, define holomorphic and antiholghix fields, as is charac-
teristic of a two-dimensional conformal field theory. Itltas that the non-linear sigma
model action requires modifying.

6.2.2. The Wess-Zumino Term.It is not obvious how to modify the non-linear
sigma model action to achieve conformal invariance. Thet&wi lies in constructing a
so-calledWess-Zuminterm [159, a topological quantity whose definition requires some
care [L25, and adding it to the original sigma model action. This sioluwas found by
Witten [161], and as the name implies, this leads to the conformal fieddribs known
as Wess-Zumino-Witten models. These describe stringsagadmg in the topologically
non-trivial background of the group manifold, and2as assumed to have no boundary,
the strings are closed.

The Wess-Zumino term is given by

b/ §-1dgnd(g1dg)) b/ K (9 AdD), (6.2.4)

whereb is another constant, is athreedimensional manifold whose boundaryzisand
g: I — G is an extension of the field from X to I'. Whilst there are intricacies in this
definition to deal with, it should first be checked that it daehieve its aim of restoring
conformal invariance to the theory (at least formally).
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First, it is convenient to define a forhh € Q3 (G) by

b

so that the Wess-Zumino action, Equation (6.2.4), takefoiime

Swzld =2 [ G'H.
PROPOSITIONG.1. H € Q3(G) is closed, hence defines a clas$if(G; C).

PrROOF It follows immediately from the graded Jacobi identity (Eatjon (6.1.3)) that
B A9 S]] =0.
Thus, Equation (6.1.2) and associativity give
b b b
dH = oK (d9 Add) = %K([Sﬁa] NI AD]) = %K(B/,\[SNB/,\BH) =0 =

To compute the variation in the action given by Equation.@,2one should take a
global approach. As the integrand is a simple functiog ahd its derivatives (there are
no Hodge stars present), and a variat@gof g may be extended to a corresponding
variation 8y of g, it follows from Section 6.1.2 that the variation is given the Lie
derivative. From Proposition 6.1, the only contributingnas a boundary term, so

xSz (g = b | digk (g dg (g 7dg)

b
= /z Ixk (g~*dgA [g dgAgtdg])

Note that the variation is independent of the extengion ~
Using graded commutativity and associativity, it is easgtiow that

Ixk (9~*dgA [9™*dgA g tdg]) =3k (97 '3xgA [g *dgag tdg)),
and hence that the variation of the Wess-Zumino term is just
5Suwz10] = 30 [ K (g"*5gAd(g *dg)). (6.2.5)
Adding this to the sigma model variation implies that theaouns of motion for the total
action take the form
d[3bg 'dg—2ax (g~'dg)] =0.
Setb = 2ia/3. In complex coordinates this now becomes
—4iad (g 'dg) dzadz=0,

so the equations of motion define a holomorphic field (scapedapriately) by

J(2) = 8mag 1dg. (6.2.6)

2In fact, the equations of motion define a holomorphic 1-forhich is locally represented hi(z) dz
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The existence of the corresponding antiholomorphic fielstablished by noting that
(g '9g) = —g *9g-g '9g+g *9ag
=g? (059 -.gt—dg-g tag- g‘l> g=9g10 (59 : g‘l> g9 (6.2.7)
so the equations of motion also give the (scaled) antihotphio field
J(2) = —8madg-g . (6.2.8)

It is interesting to note that ib is instead set to-2ia/3, the equations of motion
define (scaled) holomorphic and antiholomorphic fieldss timme given by—8rmadg -
g1 and 8tag1dg respectively. Changing the sign of the Wess-Zumino termefoee
leads to an entirely equivalent theory where the relatigmsétween the holomorphic and
antiholomorphic fields, and the string figjgis also reversed.

The Wess-Zumino-Witten action

2i o
Swzw [g] Za/zK(g‘ldgA*(g‘ldg))Jr?/rK(g ldgad (g 1dg)),  (6.2.9)

therefore does give rise to holomorphic and antiholomarpields, and the results of
Chapter 3 then show that the theory generated by these feetdsanformal field theory.

However, there are topological intricacies present in tindion of the Wess-Zumino

term which have so far been ignored. Their considerationti®nly vital to the standard

Wess-Zumino-Witten theory, but also provides a paradigah glnides the study of brane
charges in these models through topological and geometanm

6.2.3. Ambiguities and Quantisation. Recall that in defining the Wess-Zumino term
(Equation (6.2.4)), a three-dimensional manifblavith boundaryz was introduced, and
the fieldg was extended fror to a fieldg'onT in some way. Whilst the existence of the
abstract manifold is clear, it is necessary to check that it may be mapped irtt¢ettyet
spaceG in a manner compatible wity, that is, that the extensiapmakes sense. If this
is the case, then it remains to consider the effect of diffeegtensions, fog Will not be
unique. Indeed; is not even uniquely specified.

The existence of is easily dealt with. What is to be shown is that the imggg)
is always the boundary of some submanifoldspfwhich may then be taken to logl™).
Translating into the language of homology, any 2-cyg{&) must be the boundary of
some 3-chaimg(T). So,g may always be extended tppfovidedH» (G; Z) = 0. Happily,
this is always the case for a compact Lie group (Appendix.C.3)

Consider then, the effect of the lack of uniquenes§ @ind thusy” Recall that the
variation, Equation (6.2.5), of the Wess-Zumino term ineal a total derivative, so it
did not actually depend oh or §. It follows that the equations of motion, and hence
the classical physics defined by them, are completely imsengo this ambiguity in
the definition of the action. In the quantised theory, howgetlee action enters directly
through the (euclidean) Feynman amplitudes(exp[g]). Therefore this ambiguity must
be carefully examined if the theory is to be quantised.
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Suppose now that two choicésandl”’ are made for the three-dimensional manifold
with boundaryz. The difference between the Wess-Zumino actions, thatiathbiguity
in Sz [g], obtained from these choices is just

21 gH,
r—r/

wherel’ — " is the oriented difference. As a 3-chaln;- I’ is the difference of two 3-
chains with the same boundary, and so is a genuine 3-cydtdlolvs that the ambiguities
in the action are therefore just the periods afl2 over the 3-cycles if.. The question
now arises as to the nature of the cohomology class repessbyi . If it is null, meaning
H is exact, then there is no ambiguity and the action is weihdd. However, a% is
assumed simpléf® (G;R) = R (Appendix C.3), sdH is not necessarily exact.

In any case, suppose the fundamental periotHak p. Then the ambiguities in
Swz [g], and hence the full actionyzw [g], are integral multiples of @ p. For the quan-
tum theory to be well-defined, it is only necessary for therflegn amplitudes to be well-
defined, and the ambiguities in these are just the multiphiegphases exp-2mmp),
wherem € Z is arbitrary (being the image df — I’ in H3(G;Z) = Z). It now follows
that for the Wess-Zumino-Witten model to define a consisjeantum theory, the closed
form H appearing in the Wess-Zumino term must have an integralaionechtal period.
That is,

HeH3(G;Z). (6.2.10)

This quantisation condition may clearly be satisfied byaglit fixing a.

6.2.4.SU(2): An Example. Consider the most tractable of the simple Lie groups,

SU(2). It is easiest to work in the fundamental (defining) représt@n for which the
Dynkin index isln, = 1. The traditional parametrisation in this representatises Euler
angles, and can be used to quickly determine the valuasatisfying Equation (6.2.10).
However, to simplify a later calculation (in Section 6.3.56)s convenient to introduce a
different parametrisation. This parametrisation is basedhe stereographic projection
of the 3-spheres® ontoR3, and the fact thagU (2) is diffeomorphic toS®. It may be
expressed aB: R3 — SU (2), where

1 [(4—r?+4ircosf 4r sin6e'? )7 (6.2.11)

rne,g)=——s i
B( ) 7(»0) 4412 ( —4rsinfe ¢ 4 —r2— 4ir cosH

where 0< r < », 0< 0 < 11, and 0< @ < 2T denote the usual polar coordinatesRif
This parametrisation is injective when> 0 and 0< 8 < T, forming a coordinate chart
coveringSU (2) up to a set of measure zero. Obviously the entire group midniifself
generate$iz (SU (2);Z).
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One can quickly compute that in this parametrisation,

. i
B-1dB = 4 ( 1_0039_. sm@e)dr

4412\ —sinfe? —icos@
N 4r —i(4—r?)sind ((4—r?)cosf — 4ir) € 46
(4+12)2 \ = ((4—r?) cosf +4ir) e ¢ i(4—r?)sind
4ir sin@ —4rsind (4—r?—4ircosd) € q
(4+12)2 \ (4—r2+4ircosd) € 4rsin@ @
SO
* —a —
B HIEK(B g A [B~1dB A B 1dB]) = 3 (B 1dl3)
2 .
_ 256a r SmesdrAdG/\dqo
T (4+12)
21T 00
N _ & / / résing _drdodp=8ma
SU(2 ) (4+12)3

It follows that forG = SU (2), the quantum Wess-Zumino-Witten model can only be well-
defined whera = k/8rr, for k € Z.

6.2.5. The General CaseConsider now the inclusiop: SU (2) — G of theSU (2)-
subgroup corresponding to the rant This is a group homomorphism. The pullbgék
is a closed 3-form 08U (2), so itis of interest to compare it to the foiiy o) appearing
in theSU (2) Wess-Zumino-Witten action.

PROPOSITIONG.2. Let j be the group homomorphism including 81¢(2)-subgroup
corresponding to the roat into G. Then,

- 2
J’H = WHSU(Z)-

ProOF Let {x},x?x*} be a basis ofu(2). As j is injective, j. is a linear injection,
so the set{j*xl, X2, j*x3} may be extended to a badig*} of g. Let {3,} be the dual
basis (of left-invariant 1-forms), amgy = j*J,. Then,

Ma (®) = (19a) () = 9a (1) = 9a (V) = o,

wherea=1,...,dimg andb = 1,2,3. So,{n1,n2,N3} is the dual basis tgx},x?x3},
andna = 0 whena > 3.
It follows now that
dimg

P"H = 79 [; 9andp- K (¥ yb)]
:;_ é a/\dr]b-K(j*Xa,j*Xb> :;—le*K(@sU(z)/,\dﬁsu(Z))-

dlmg

g *9andi* 8-k (y2,¥)
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Now j*k (-,-) is easily checked to be bilinear, symmetric, and assoei@nsU (2) (as-
sociativity follows fromj being a group homomorphism). Hence it must be a multiple of
the Killing form onSU (2) (Appendix A.1). Thusj*H is this multiple ofHgy2).

To determine this multiple, observe thatsends the coromxsvu(z) € 5u(2)(C to+aVe
gC, and therefore (in the complexified algebra),

. 4
] K (GSYU(Z)vasYU(2)> =k (a’,a") = W.
But the Killing form onSU (2) assigns this coroot a length of 2. |

The relevance of Proposition 6.2 is that®h(2)-subgroup ofc corresponding to the
roota, denoted bysU (2),, is homologically non-trivial:

/ H= J'H = 2 —Hsu) = 1671217
SU(2)q sU(2) 2) |laf el
by the result of Section 6.2.4. In fact, it is a result of Batle&SamelsonZ8] that any
subgroupSU (2),, with a long, generateH3 (G;Z). It now follows that in a general
compact, connected, simply-connected, simple Lie grdw3tformH has fundamental
period 8ta. To satisfy the quantisation condition, Equation (6.2.20nust be fixed
to k/8m wherek € Z (k is, of course, the level). Note th&tcould be taken to be a
negative integer, but negatikgmerely amounts to a change of orientation@rand so
is physically irrelevant (however, it does affect the forfrtiee fieldsJ (z) andJ(2), as
remarked at the end of Section 6.2.2). It is clear #hat 0 gives a physically vacuous
theory.
This discussion therefore, fixes the normalisatiordb

H= Tknz"(’? NdF). (6.2.12)

The Wess-Zumino-Witten action fatosedstrings now takes its final form:

k
Swzw g / g~YdgA * (g1dg)) — —— / k (§-2dgAd (G 1dg))
T 8n 12 Jr (6.2.13)

8n/ ("9 AxQ"F) +2m/gH

6.3. Open String Wess-Zumino-Witten Models

6.3.1. The Open String Action. The closed string action may be generalised so that
it can describe both closed and open strings propagatingi@mroup manifold. To
accommodate the open strings, the string worldskestallowed to have a boundary.
Hence,> will now denote a compact, orientable, two-dimensional ifimdeh with bound-
ary 0z, a compact one-dimensional manifold (that is, a finite @bibe of circles). For
clarity of notation, it is convenient to assume that thistmary has only one connected
component (circle) — the general case follows easily froimdme (and the no-boundary
case discussed in Section 6.2).
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It appears that the first detailed study of Wess-Zumino-&fNithodels with open string
worldsheets was conducted itJ7]. Here, the effects associated to the non-trivial bound-
ary were studied using the theory of T-duali§; 9, 40, 41]. The geometric study of
boundary conditions for open strings leads to similar itequd| 104, 147, and this is the
approach which will be detailed below.

The generalisation of the Wess-Zumino-Witten action (Egua(6.2.13)) strikes an
immediate problem. A% has a boundary, there is no 3-chdinwith JI' = %. The
Wess-Zumino term is therefore not defined. To overcome thigoves necessary to
(temporarily) remove the effect of the boundary by writibgas 3’ — D whereZ’ is a
compact, orientable, two-dimensional manifold (withoatibdary) and is a compact,
orientable, two-dimensional manifold with (oriented) bdary —d%. As G is simply-
connectedH; (G;Z) = 0, so the string field can be extended frgmz — Gtog': ¥’ —
G. The idea now is that this is the same situation encounter&kction 6.2.2, so the
Wess-Zumino action may be constructed as before. Howedwecdntribution from the
manifold D needs to be cancelled somehow. That saidy'lef”— G be an extension of
g wheredl' = %’. The Wess-Zumino term is therefore

2ni/ (§)H.
r/

To motivate the manner in which the contribution fr@nis cancelled, note thdd
is two-dimensional, st is exact when restricted to any tubular neighbourchs of
d (D). Thatis,H = dw on Tp for somew € Q?(Tp). Suppose, for the moment, that it is
possible to find a 3-chaiA C Tp whose boundary ig’' (D). ThenH would be exact on
A\, and the contribution dD to the Wess-Zumino term could be cancelled by subtracting

zm/ H= 27Ti/ .
A g(D)

Of course, there is no suok, asdg (D) # 0, so this procedure is absurd. However,
the right-hand-side of this expression is perfectly welfided, so it seems plausible that
subtracting this quantity will lead to a reasonable thedrge action incorporating this
“quasi-cancellation” is then

Swzw (9] = %/Zx(g*m*g*awzm Ur (d)H —/D(g’)*w}, (6.3.1)

and will serve as the definition for the open string Wess-ZuslVitten action. In this
context, the cancellation term involving will be referred to as théoundary term

Sos [0]-

3A tubular neighbourhood of a submanifdidof a manifoldM is an open neighbourhood bfin M which
is diffeomorphic to the normal bundle &f in M. Tubular neighbourhoods always exi®2]. As the
cohomology of anyectorbundle is the same as that of its base, exactness follovialltyiv
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Consider now the variation of this action. The sigma modehtgives the same
variation as in Section 6.2.1, but with an extra term a¥Er(refer to Equation (6.2.2)),

5Solg] = 4kn U k(9 'oxgAdx (g 'dg)) —LZK(Q‘léng*(g‘ldg))],
the Wess-Zumino term has variation
&Sz [d] = Zm/ “H— 27T1/lx H+27T1/lx “H,
whereas the boundary term gives a contribution of (re2l= —0%)

OxSys [0] = —27Ti/ (1xd(d) w+dix (¢)" w) = —Zm/ ix (§)"H +2m/a Ixg"* .
D 2z

Note that the boundary term does introduce the requirecetiation, at least in the action
variation.

The total variation is thus exactly that of the closed stnmadel, but with a boundary
contribution

Kk
/. [zm:xg*m k(g e (g_ldg))} . (6.32)

It follows that the equations of motion for the strimgvay from the boundar{in the
bulk) are identical to those of the closed string of Sectich @n particular, the theory
is conformal, and the holomorphic and antiholomorphic §el(z) andJ (z) are defined
(where the coordinate chart is such thhelongs to the upper half plane, and the real axis
corresponds t0%).

Note that the boundary contribution to the variation cary ai@termine the dynamics
of the open string on the boundadyz. Hence,w determines the equation of motion for
the string endpoints, that is, the boundary conditions. él@«, these boundary conditions
clearly depend upon the specific choicewafwhereas this form has thus far been only
constrained by @ = H on Tp. It follows, perhaps unsurprisingly, that the boundary
conditions must be chosen first, and these will determinddira w appearing in the
open string action Equation (6.3.1).

6.3.2. Boundary Conditions. Recall from Section 3.2.1 that the open string bound-
ary conditions consistent with conformal invariance tdkeform

J(2=Q((2) atz=z2,

whereQ: g — gis orthogonal (so angle-preserving) with respect to theriiform, andz

in the upper half plane parametrises a complex chak with the real axis corresponding
to (part of)d%. This is the form of the conformal boundary conditiongat Tig (G). In
order to extract the geometric meaning (on the group mat)ifdi is necessary to left-
translate this condition t@ (G) [147], giving

dg=—gQ (59-9*1> =Q40g atz=z (6.3.3)
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Note thatQq: Tg(G) — T4 (G) is a linear operator, orthogonal with respect to the Killing
form (also translated t@y (G)).

Suppose thalgwas an eigenvector f@dgy with eigenvalue-1. Then, Equation (6.3.3)
become®g= —dg, giving d1g = 0 (wherez= x! +ix?) at the boundary. This corresponds
to aDirichlet boundary condition fixing the endpoint of the string. Simtaif the eigen-
value is+1, d,g = 0 at the boundary (as the string endpoird sriori constrained to stay
on the boundary, this equation is redundant). In this casegmdpoint of the string satis-
fies aNeumanrboundary condition leaving it free to wander along the baupdFinally,

a pair of complex conjugate eigenvalues corresponds to alimensional subspace of
Tg(G) in which dg anddg need only preserve their angle. Hence this also corresgonds
a Neumann boundary condition.

The general picture therefore is that the tangent spagelatomposes orthogonally
into a Dirichlet subspace in which the string endpoint isdikgigenvalue-1) and a Neu-
mann subspace in which the string endpoint is free. Considerthe effect of varying
g € G. Whilst the eigenvalues corresponding to the Neumann sudesgtay away from
—1, this orthogonal decomposition of the tangent spacegvamoothly 105. It fol-
lows that this decomposition defines two transversal fasitif submanifolds o, one
corresponding to trajectories (through some pgjralong which the string endpoint may
continuously move, and one corresponding to trajectot@sgawhich the endpoint may
not continuously move. The submanifolds along which enafganay move are (perhaps
incorrectly) called Dirichlet branes, abbreviat@ebranes

Of course, it would be naive to think that the Neumann eigkras will always stay
away from—1 as the string endpoint moves along an allowed trajectoene@lly, there
will be pointsg where two Neumann eigenvalues coalesce Ator two—1 eigenvalues
split to become genuine complex conjugates. There the diimes of the Dirichlet and
Neumann subspaces will change by 2 and the smoothness afttfoggonal decomposi-
tion will be lost. The corresponding objects in the group iftda will therefore not be
smooth submanifolds; however they are still referred to dsdhes.

As an important example, consid@r= id, the identity transformation. Thef)y acts
on Ty (G) asQgq(xg) = —gx The Dirichlet subspace is therefore the space of vesiprs
(with x € g) satisfyingxg= gx. It follows that for everyt € R,

exp(2mitx) g = gexp(2rmitx),

and therefore that eX@mitx) belongs to the centraliser gf Z(g). Hencex belongs to
the Lie algebra of this centralisey(g) = Tiq(Z(g)), and the Dirichlet subspace is the
right-translate byg of this space. But ag is obviously in the centre of its centraliser,
the Dirichlet subspace is jus} (Z(g)). It follows that the Neumann subspace is its or-
thogonal complement, the tangent space to the conjugasy thieougty, Ty (C (g)) (Ap-
pendix C.3). The D-brane throughe G corresponding to the choi€@ = id is thus the
conjugacy clas€ (g). Such branes will be referred to aetwisted symmetry-preserving
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branes (compare with Section 3.2.4), and will form the maicug of the rest of this
thesis.

This may be generalised to the caean inner automorphism Adh) say, h € G.
The same argument shows that the Dirichlet subspace isghetranslate by of 3 (gh),
which is Tgn(Z (gh)) h~1. The Neumann subspace is therefore the right-translate by
of the tangent space ghto the conjugacy class througih. The corresponding D-brane
throughg € G is thusC@ (gh) h—%, a translated conjugacy class.

More general cases can be analysed, in particular, the daseQvis an outer auto-
morphism derived from a symmetry of the Dynkin diagrangofThis gives rise to D-
branes described by thwinedconjugacy classes 05f]. In the language of Section 3.2,
these ar@wistedsymmetry-preserving branes (the “twisting” is the acti®). As with
regular conjugacy classes, these D-branes coincide wilognsubmanifolds o, called
the worldvolumesof the branes. However, when is not an automorphism, more gen-
eral structures are encountered (see for instabdd for a mild example). These more
general structures will be referred to as non-symmetrggmang.

6.3.3. Fixingw. Consider now the boundary condition given by Equation &,3.
recast in(x},x?)-coordinates. It becomes

(id —Qq) d19 = i (id +Qg) d2g at x* = 0.

Since thex!-axis is identified with (part of) the string worldsheet bdary, its image
underg must lie on a D-brane. Projecting the boundary conditiom ¢in¢ Dirichlet and
Neumann subspaces of the brane gives

Dirichlet: 2(0h9)p =0 (6.3.4)
Neumann: (id—Qg) (19)N = i1 (Id+Qg) (d29)

1d—Qq
= (dzg)N - _1id +Qg (dlg)N7 (635)

as id+Qq is invertible on the Neumann subspace. Obviously the finstlitmn just fixes
the string endpoint in the Dirichlet directions, whereas slecond details the boundary
condition along the brane worldvolume. In effect, thisdattondition is the equation of
motion for the string endpoint along the brane worldvolume.

Recall the contribution, Equation (6.3.2), of the boundarthe variation of the open
string Wess-Zumino-Witten model action. The aim is now téedaine w such that
this action variation reproduces the equations of motiothefstring endpoint, Equa-
tion (6.3.5). The form of this variation suggests the folilogvansatz:

Ixg'w= 8—l7<12K (g7 toxgnn), for someg-valued 1-formn. (6.3.6)
As the boundary contribution to the action variation is ategnal overdZ, which is
represented by the'-axis in local coordinates, it follows that only the coeffict of dk
in the integrand contributes. Furthermore, at the boundamust take values on the
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brane, hencg 1dxg = Ix (g*ldg) must take values in the Neumann subspack &),
left-translated byy~! back tog. It follows that the equations of motion only determine
the coefficient;, of dx!, and even then, only the value that this coefficient takebén t
(translated) Neumann subspace:

i(N1)ny—9 1 (G29)y =0.

This obviously suggests that(and hencev) should only be defined on the brane, where
this condition fixes it uniquely. It is clear that this is cstent with the open string Wess-
Zumino-Witten action, Equation (6.3.1)rovidedthat the 2-chairy’ (D), over whichw
is integrated, is contained within the brane.
The boundary condition, Equation (6.3.5), in the Neumaneatiion, now gives (drop-

ping the Neumann subscripts)
_ *1id_799 _ *1id_799dg

id +Qq id+Qqg
remembering thaf) is only being defined on the brane. Recalling the definitioQgf
Equation (6.3.3), it follows that

ni= g = n=

id+QoAd(g) _,

= —d-0oAd(g dg. (6.3.7)

PROPOSITIONG.3. Each D-brane associated with a conformal boundary conditio
J(2=Q(J(2) atz=1z,

supports &-form w such that the variation of the open string Wess-ZuminoeWdcttion,
Equation (6.3.1), reproduces this conformal boundary ¢towl w is given by

Jw=1c5 <g dgAid_QoAd(g)g dg ), (6.3.8)
and, moreover, if2 € Autg, thendw = H (where H is restricted to the brane).

PROOF. Consider first the operatak = (id—B) * (id+B) : g — g, whereB = Qo
Ad (g). With respect to the Killing formQ is orthogonal as the boundary condition is
conformal, as is Adg). Their productpB, is thus orthogonal (hence normal) and so has
eigenvalues on the unit circle (with 1 removed). By the fioral calculus 137, A is
therefore a normal operator with purely imaginary eigemes) hence is skew-symmetric.
It follows now that

Ixg'w= 1o [K (9" gAA(g "dg)) — K (9 "dgAA (g '5xg))]
—k
= 1o [K (07" 0xgAA(g7dg)) + K (A(g"dg) Ag"oxg)]
k
= 82X (g "oxgA —A(g*dg)),

in agreement with the ansatz, Equation (6.3.6), and Equéfi3.7). SinceX is an arbi-
trary vector field, this establishes Equation (6.3.8)dor
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To show that d» = H, which establishes that the open string Wess-Zumino-Wite
tion is self-consistent, some auxiliary calculation isuiegd. As id—B is invertible on the
translated Neumann subspacegyef T4 (G), { can be uniquely defined iyd —B) g*{ =
g*d (whered is restricted to the brane). It is easy to verify that

dB =Boad(g 'dg) = Boad((id—B)g*{). (6.3.9)

Furthermore, Equation (6.1.2) may be used to show that (ihlegeks will be dropped in
the remainder of this proof)

(id—B)dZ = (id—B)[B{ A d) 5 (d-B) (A L) +5T,  (63.10)

wheret = B[¢ A ] — [BZ AB] is clearly zero ifQ is an automorphisfrof g.
Consider now
—k id+B —k . . k
W= TeX (79/5@79) = WK(('CI—B)ZA\('CI"‘B)Z) = @K(BZAO-
Its derivative may be computed directly, if inelegantlyingsthe orthogonality oB, and
Equations (6.3.9) and (6.3.10). One finds that

k
dw = 775 [K (BEA G AL]) —K (EA[BEABL]) — K (BEAT)]
k
= To2 (K (BCABLABL]) — Kk (CABLABL]) + Kk (BEA[CAL]) —K(CA[CAL])].
However, a similar expansion gives
—k _ . .
H = 152K ((id=B){A[(id—B){A(id—B){])
k
= 252 [K (BCABLABE]) =3k (C 4 [BEABC]) +3k (BEA[C A L)) — K (CA[CALD)]
Sadly, it follows that
k
H—dw= 5 [K(CA[LAL]) — Kk (BEABLABL)] = 57 5K (BLAT),
which seems to be non-zero in general, but vanishes Wher\ut (g). |

This demonstrates that the conformal boundary conditioayg be derived from the
open string Wess-Zumino-Witten action, Equation (6.3x¥)choosingw appropriately.
Furthermore, whe®2 € Aut (g), this action is self-consistent in thatod= H. In the
general case, wher@ is orthogonal org but not an automorphism, the corresponding
self-consistency has not been shown. Indeed, the proofagfd3ition 6.3 suggests that
self-consistency seems rather doubtful in this case. FRbamte, taking2 = —id gives

k
H—dw =1 5K (A[LAL),

IAs { is only allowed to take values in the translated Neumannmad#sofg, T vanishing need natquire
Q to be an automorphism.
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which looks suspiciously non-zero. In what follow®,will therefore be taken to be an
automorphism ofy. In fact, Q will usually be chosen to be the identity map, as these
correspond to the untwisted symmetry-preserving branég;haare the main focus of
this thesis.

6.3.4. More Ambiguities and Quantisation. The mathematical data for defining the
open string Wess-Zumino-Witten action therefore conssthie following. The string
worldsheet is a two-dimensional, compact, orientable fol&hiz with boundary, and
this worldsheet is mapped by the figgdnto a compact, connected, simply-connected,
simple Lie groupG. The boundary, assumed to be connected for simplicity, ispaa
into ana priori chosen D-bran€, which is determined by the gluing condition, Equa-
tion (3.2.2), characterised by an automorph@ra Aut (g). G supports a 3-forni given
by Equation (6.2.12), and supports a 2-forna, given by Equation (6.3.8), which satis-
fies dw = H (restricted ta®). To construct the action, Equation (6.3.4)s extended from
Stog: Y =%Z+D — G, whereD is a two-dimensional, compact, orientable manifold
with boundary satisfying’ (D) C C. ¢ is then extended tg 7T" — G wheredl" = %',

As in Section 6.2.3, it is now necessary to determine thealiglof all these exten-
sions, and the effect of any ambiguities in the action calised lack of uniqueness in
these extensions. First, this formalism requires ghan be extended frolto X/, hence
thatg' (D) can be consistently defined thC G. This requires that the 1-cycly(0%)
is a boundary ir, hence this extension makes sense providedHh&€;Z) = 0. This
condition is not easy to check for a general brane, as thaildwalumes have not been
elucidated. However, for the symmetry-preserving brarfasterest in this thesis, the
worldvolumes are conjugacy classes (Section 6.3.2), waiehsimply-connected (Ap-
pendix C.3). This extension is therefore valid.

Similarly, the extension fror2’ to '’ requires thaH, (G;Z) = 0 as in Section 6.2.3,
hence this extension is also valid. Instead of considetiege two extensions separately,
it is somewhat more elegant to view them as a single compesiansion fron to '’
Now, 0" =2 +D =X (modQ), soZ is required to be a boundangoduloC. This fits
naturally in the formalism of relative homology (Appendix2}, leading to the conclu-
sion that this single extension makes sense whig(G, C;Z) = 0. From the long exact
sequence in relative homology,

0=H2(G;Z) — H2(G,C;Z) — H1(C;Z) — H1(G;Z) =0,

it follows thatH> (G, C;Z) = H1(C;Z) = 0 (in a simply-connected Lie group). This
shows (again) that the composite extension is valid.

It remains then to consider the ambiguities in the action tdudifferent choices of
extension. Consider two different extensidrisandl™;, with respective manifold®; and
D, in C. The action ambiguity may be expressed as

2m Urllrlz(g’)*H—/DlDz(g’)*w} =2 UZH—/S(A)},
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whereSis the 2-cycleg' (D1) — g (D2) andZ is the 3-chairg('}) — § (I,). Note that
0Z = S This ambiguity may now be interpreted through the natuaalipg of relative
homology with relative cohomology (see Appendix C.2) — takative 3-cyclg(Z,S) €
Hs (G, @;Z) with the relatively closed 3-forntH, w) € H3 (G, C;R).

It follows that the Feynman amplitudes will be unambiguaesthe quantum theory
will be well-defined, if the relatively closed 3-forifH, w) has integral periods. The
guantisation condition for the open string Wess-Zumindt&di model is therefore

(H,w) e H*(G,C; Z). (6.3.11)

This generalises the closed string quantisation conditguiation (6.2.10), in that when
the 2-cycleSis homologically trivial in the branég, it follows that the periods ofH, w)
over the relative cycl€Z, S) reduce to the periods ¢f over genuine cycledd is already
fixed by this case to be integral, aads fixed by the choice of brane and the normalisation
of H. Therefore, the presence of homologically non-trivialy2les can only fix the last
remaining degree of freedom: The specific brane wiidk defined upon.

It follows that Equation (6.3.11) selects a subset of thesital D-branes, for which
the quantised theory is consistent. Note however, theb(fC;Z) = 0, then the open
string quantisation condition reduces to the closed stugntisation condition, so the
braneC is consistent in the quantised theory. In particular, aas of dimension lower
than 2 are consistent.

6.3.5. SU (2): Another Example. It is again useful to consider the most tractable
case, that of the symmetry-preserving brane$0(2). As shown in Section 6.3.2, the
worldvolumes of these branes are just the conjugacy clagdes“stereographic-polar”
parametrisation, Equation (6.2.11), of the fundamentadasentation ofU (2) admits a
useful diagonalisation:

B(r,0,0)=y(0,9)h(r)y(6,¢) "

where

19 isin2ei¢
coss  isinge

1 [((2+ir> 0

v(6.9) = (isin%e‘iq’ cosd ) and h(r) = 4412 ( 0 (2— ir)2> '
As unitary matrices are conjugate if and only if they havestume eigenvalues, it follows
that in this parametrisation, the conjugacy classes ar2-gpheres of constan{with the
degenerate cases= 0 andr = o corresponding to the point conjugacy classes of the two
elements o (SU (2))). This simple portrayal of the conjugacy classes is theaeagy
this parametrisation was chosen in the first place.

Substituting this diagonalisation info1dg and fixingh (that is, setting b= 0) gives

B1d=[Ad(B1) —id]dy-y L
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Using Equation (6.3.8) (witlQ = id), it now follows that in the stereographic-polar
parametrisation takes the form{ = Ad (8~1)dy- y 1)

k

gz (Ad(B)ZAQ)

b= {ohox ([id—Ad(B)) A id+Ad(B)] 1) =

k 1 1 kr(4—r2) ,
— _tr(y Ydyh~ly-ldyh 7~ SiNOAO A do.
gz (v "dyh™"y dyh) = 7 4y 127 0]

From Section 6.2.4,

3% r?
The quantisation condition, Equation (6.3.11), is nowlgasialuated. The homolog-

ically non-trivial 2-cycleSis the entire conjugacy class (at rg, say, in stereographic-

polar coordinates), and the 3-chalnrmay be chosen as the regior< ro. Integration

gives
/ o / 128k/ r¥dr | Ao (4—rd)
0 (4+r2® m (4+ rg)2
%, 1To_4Kro (4— rgz) N 4kro (4 r%z)
2 T @) T (aer))
2k _1T0
= —tan >
It follows that the only symmetry-preserving branes in $te(2) Wess-Zumino-Witten
model which are consistent in the quantised theory are tbasesponding to radig =
2tan(mrt/2k), wherem € Z. There are exactli+ 1 such branes, correspondingnto=
0,1,...,k, and both the zero-dimensional branes are included (ax®@eas the cases
m= 0 andm= k.

This result can be interpreted in a more Lie-theoretic mabgenoting that the fun-
damental representationmf(Z)(C has highest weight1, so the corootry’ is represented
by the diagonal matrix with entries (A1, ay') = £1. Thus, exg2rita,’) is represented
by the diagonal matrix with entries™ ande~2™. Recall thath(rg) is such a matrix,
with entries

B*H sin@dr AdO Adg.

(2+irg)?  2+2itanT
4+r2 - 27F 2itan -
It follows that the allowed symmetry-preserving branesthesconjugacy classes contain-
ing one of the elements

imrt/k

h(ro) = exp(immay /k) = exp(2mimAy/k).

In this formalism, the quantisation condition on the brastases that the conjugacy class
through exg2miA /k) is an allowed brane after quantisation i P. Thatis, if (A, ay) =
me Z.
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It is important to realise that there is still one ambiguéit unaccounted for. This is
the choice of the 3-chaid. In the computation above, this was chosen to be the region
r <rp; however, there is no reason to prefer this choice to theregk ro. The associated
ambiguity in the computation of the period @, w) will then be just the period ofl
over the oriented difference of these regions. This orgkdifference is the entire group
manifold, andH was normalised in Section 6.2.4 so that this period is thel le¥ Z.

This ambiguity therefore only affects the evaluation of taktive period of(H, w) by
an integer, and therefore plays no part in determining whychmetry-preserving branes
satisfy the quantisation condition.

6.3.6. General untwisted symmetry-preserving BranesConsider now an untwisted

symmetry-preserving brane in a general Wess-Zumino-Wittedel. Its worldvolume is

a conjugacy clas8 (h) consisting of elements conjugate to solme the maximal torus.
To analyse the quantisation condition, Equation (6.3 iL)sufficient to consider relative
cycles(Z,S) whereSis a generator offz (C (h);Z), since homologically trivial 2-cycles

in € (h) contribute nothing to the brane quantisation. As the brarsnply-connected,

it follows from the Hurewicz isomorphisnifi4] that these generators are 2-spheres; in
fact, a convenient set of generators is given2§j

S={Ad(y)h: yeSU(2),} i=1,...,rankG, (6.3.12)

whereSU (2),,. is theSU (2)-subgroup ofG corresponding to the simple roat. This set
is not homologically independent in general, but it alwgyarsH; (C (h);Z).

PROPOSITIONG6.4. The homology cycle; & the translation of a conjugacy class of
the subgrouisU (2),, .

PROOF. Leth = exp(2miy), and projecy onto the subspace spanneddV:

K(a',y) v (@) oy

= wherey, = ai’ = aji’.
y yJ_ +yH7 yH K (ai\/, al\/) | 2 |
Then,y, commutes with the root vectors correspondingito
ai, ai,
V. el = |y— | '2y> aiv,eiai} = (<iai,y) - '2y> <iai,aiv>) €iq =0.

It follows thath decomposes analogously ash, and this decomposition has the prop-
erty thath; commutes wittU (2), whereadh € SU (2),, . Therefore,

S={yhytyesu@y}={hyhyy *:1yesu(2),}
:hJ_G (hH’SU(Z)a.) |
Using this result, the computation of the periods(Hf, w) over the relative cycles
(Zi,S) (0Z, = S) may be reduced to th&U (2) case of Section 6.3.5. L& = hfs be

the conjugacy class &U (2),, corresponding t&, and letZ/ be the 3-chain bounding
§ (chosen as in Section 6.3.5% is then defined to bl Z. As in Section 6.2.5, let
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j denote the inclusion d§U (2) into G asSU (2)
imagesj—1(Z/) andj—1(S) respectively.
As H is left-invariant, it easily follows from Proposition 6.4t

[ e e 2
/zi hiiz/ z T a2 U2

w however, is not left-invariant, being only defined on thejaogacy clas€ (h). Instead,

/Sw:[qéaw

wherely: G — G denotes left-translation ty.
However, note that Equation (6.3.8) may be rewritten as

o+ Finally, letZ andSbe the inverse

W= Tes K (3 ANAS),
whereA: @(h) — Endg is given byA (g) = (id— Ad (g)) * (id+Ad (g)). It follows that
. —k . _id+Ad(h;)Ad(g)
h0=157 K (Al A)I), and (£ A)(9) = d_Ad(h)Ad(Q)

Now, if g € § C SU(2),,, the proof of Proposition 6.4 shows that commutes wittg,
hence Adh, ) acts trivially ong*3. Thereforewhen g is restricted to take values iy S
] —k “1y., d+Ad(g) g
9= 162" <g 994 i —Ad(g)? %
which is just the expression defining the 2-foes), ) characterising the boundary con-
dition on the conjugacy clas§ = € (hH;SU (Z)O,i) in the SU (2),, Wess-Zumino-Witten
model.

Finally then,

2
/ /émw /wsu /J Wsu(2)g, = ”ai”z/SWSU(z)

where the last equality follows from a slight modification Rxfoposition 6.2 (with the
normalisation from d = H).

For the conjugacy clag3(h) whereh = exp(2miy), the result of Section 6.3.5 there-
fore gives

/z. / lail? U /“’SU } !.H — (aiky) =k (' ky).

The quantisation condition, Equation (6.3.11), demandstthis must be an integer for
eachi = 1,...,rankG, so it follows that this conjugacy class is the worldvolunfeao
consistent brane in the quantised theory if and onkyiE P.

As in Section 6.3.5, it should be remarked that this compariativolved a special
choice of 3-cycle¥;. Again, the ambiguity in computing the relative period(6f, w)
over different cycles will be a period df, that is, a multiple ok. This will also not
play any part is determining which branes are allowed in tentjsed theory. However,

*

g
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this ambiguity (among others) will be important in Sectio8 in the context of assigning
conserved charges to the consistent quantised branes.



CHAPTER 7

Brane Charge Groups Revisited

As in Chapter 6G will always denote a compact, connected, simply-connesiet
ple Lie group, ang its Lie algebra. A maximal toru$ of G will also be fixed from the
outset, and its Lie algebra will be denoted tyin this chapter, the geometric definition
and computation of a conserved charge for quantised D-brianthe open string Wess-
Zumino-Witten model will be discussed. To simplify the arsa$, the D-branes will be
restricted to untwisted symmetry-preserving branes, Wwhamrrespond to the trivial au-
tomorphism in the gluing condition, Equation (3.2.2). lteigpected that more general
branes, particularly those corresponding to twined cagyglassesde], may also be
studied using similar techniques as those that are deweioghis chapter.

7.1. Geometric Charge Definitions

7.1.1. Another Quantisation Effect. As shown in Sections 6.3.2 and 6.3.6, the un-
twisted symmetry-preserving brane worldvolumes may batitled with certain conju-
gacy classes db. Specifically, if the level of the theory is denoted kythen the allowed
D-branes correspond to the conjugacy classes

€ (hy) =G/Z(h}), whereh) = exp(2miA /k)

andA € P, the weight lattice. In fact, sinc&(h) € C(h) for every Weyl transformation

w e W, and kerexp= 2miQ" (whereQ" is the coroot lattice), it follows thax may be
chosen in the affine fundamental alcove at ldvelhese conjugacy classes are therefore
in bijection with the set of integrable highest weight maubf the corresponding affine
Lie algebrag at levelk.

A conjugacy clas® (h, ) — and by association, the corresponding brane — will be
called regular (singular) i, is a regular (singular) element @f, respectively (Appen-
dix C.1). Regular branes then have worldvolume diffeommrphG/T, are maximal in
dimension among the untwisted symmetry-preserving brarescorrespond to weights
in the interior of the affine fundamental alcove. Singulaart@as have strictly lower di-
mension, and correspond to weights on the boundary of theeadfcove.

This picture is still, however, semiclassical. Whilst renmy the ambiguity in the
Feynman amplitudes identifies a finite set of allowed unwdstymmetry-preserving
branes, this is not the whole story. In particular, this gsial misses the well-known,
but still poorly understood, non-perturbative level shift

K— k+h".
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This “shifted level” is ubiquitous in the conformal field twy description of Wess-
Zumino-Witten models (for example Equations (3.1.15) eéhd.17)). Indeed, this shift
has even been identified in a perturbative treatment of thextels R5 (at least to two
loops). It seems likely that in a careful analysis using tieoty of geometric quantisa-
tion [10§, this shift would be identified as a consequence of the familhough mysteri-
ous)metaplectic shiff53,164]. Alas, such an analysis for branes does not seem to appear
in the literature, and is beyond the scope of this thesisqbel4().

There is, however, an analysisg 112 which aims to extract geometric information
about the branes from their conformal field theory des@iptis boundary states (recall
that the Wess-Zumino-Witten model wgsantisedas a conformal field theory in Chap-
ter 3). The results of this analysis suggest that not onlg tleelevel undergo the expected
shift, but that the weights labelling the branes are als¢esidd to a corresponding shift:

A= A+p.

More precisely, the allowed untwisted symmetry-preseyaranes in fact correspond to
the conjugacy classes

A+p
C(hy), whereh, = exp(2n1k+hv) )

andA denotes an integral weight in the fundamental alcove at le\lequivalentlyA is an
integral weight in thenterior of the shifted fundamental alcove at lekdAppendix B.2).
The conclusion therefore is that the allowed branes in theduantised theory are in fact
all regular, with worldvolumes diffeomorphic t6/T. This weight shift has also been
observed 152 in the context of path-integral quantisation, for a poiattgle moving
along a “quantisable orbit” o$U (2) (for example, a string endpoint moving along an
untwisted symmetry-preserving brane).

On a cautionary note, however, the analysis36] [starts from an expression for
the boundary states which appears to disagree with Equ@i@ril0) (and most other
sources). The argument itf2 is in better agreement, but requires the use of many ap-
proximations. These analyses also arrive at the concluketrthe D-branes in the fully
quantised theory are “smeared out” in directions trangveyghe conjugacy class. This
fits in well with intuition about branes as dynamical quantoipfects in some extension
of string theory, but seems to be at odds with the identificatn the conformal field
theory description of the brane ashan-normalisablestate (functional) in the space of
closed strings. This identification suggests that braneefua¢tions could not be smooth
functions on the group, and rather must be expressed asribulisin, for instance by a
delta function on the conjugacy class. What is actually categh in (6] is the overlap
of the brane with certain closed strings, so it seems pléuthiat the observed “smearing
out” may actually be due to these strifgsn any case, geometric quantisation should
ln [117], the string states are chosen to be (approximate) del@ims. The overlap is then computed

to be, approximately, a delta function on the shifted brdnterestingly, there is a remark id11] which
admits that brane positions cannot be resolved using strihg to finite size effects.
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also be able to resolve this issue directly by computing ttaad wavefunction (in the
Schrodinger representation) corresponding to Equa8dhg).

Nevertheless, the conclusion &, namely the quantum shifts described above and
the consequence that all untwisted symmetry-preserviagds are regular, will be used
repeatedly in what follows. It is perhaps worth reiteratihgt these shifts are expected to
be consequences of the metaplectic shift in the geometanteation formalism.

7.1.2. Geometric Charges I:U(1)-flux. Recall that the Wess-Zumino-Witten ac-
tion for an open string with untwisted symmetry-preservogindary conditions, Equa-
tion (6.3.1), involves the closed 3-forf given by Equation (6.2.12), and a 2-fora
given by Equation (6.3.8) on the brane worldvolufg, ). Since the branes are in bi-
jection with the integral weighta of the fundamental alcove at leve(Section 7.1.1), it
IS not unreasonable to denote this 2-formcy.

Since a D-brane is entirely characterised by the 2-faymit might seem reasonable
to define a brane charge by integrating (some suitable fumaif) this form over the
brane. By analogy with the coupling of the Ramond-Ramonddigi string theory129,
130, this function should just be the simple exponengfdl. This is to be interpreted as
a power series i, (actually a polynomial as the branes have finite dimension).

ForSU (2), this charge may be computed explicitly using the resulSetftion 6.3.5.
Taking into account the quantum shift of Section 7.1.1, libfes that

/ i _/ _ —4k+2) ro(4—rd) __k+2 2m() +p,aY)
e(hy) e(hy) T (4+ rg)z 2m k+2 ’
sincerg = 2tan( 202 )) andm= (A, a"). Normalising so that the charge corresponding to
A =0is 1gives
Sin2n<)\kig,av>
Qw ()\> - T
singEs

which are not even rational numbers in general, let aloregim8. Hence, this defini-
tion does not seem to define a charge analogous to the algaivaige introduced in
Equation (4.1.2).

Note thatw, is not generally a closed form, hence the integratio®in(A) does
not have an obvious cohomological interpretation. Thathis, charge is not obviously
conserved under small brane deformations. This can bdieedby a judicious consider-
ation of the closed 3-forril. By Theorem C.1H is exact onC(h,) = G/T, soH = dB,
andF, = B— w, represents a degree-two cohomology class on the brane.clbisisd
2-form F, is sometimes referred to as thé1)-flux, as it may be interpreted (assuming

2Interestingly, the numbef3,, (A ) have a form very similar to (but not identical to) theantum dimensions
[61] given (forSU (2)) by

. m(A+p,aV)

So _ SN
= T
Soo0 SiNg

It is indicated in L2]] (though not demonstrated) that this similarity persistsdther groups. However,
there appears to be no understanding of why this should be so.
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the integrality condition is met) as the first Chern class &f(4)-bundle. This bundle
was originally introduced to explain the stability of theabes against collapse under ten-
sion [13], this stability generally being referred to tisx stabilisation

Dually, one might suppose that this stability could also bdarstood by postulating
a (related) conserved charge that prevented the brane fsbapsing dynamically. The
obvious modification of the chard@,, (A ) then suggests the candidate

Qc(A) = /@(h )eFA. (7.1.1)

However, before getting carried away with this definitionshould be remarked that
the cohomology class defined By is, as yet,completely arbitrary becauseB is only
determined up to a closed form.

To rectify this situation, it proves useful to (briefly) addpe philosophy of$9, 146
regarding flux stabilisation. There it was argued that thenmo need to invoke such a
U (1)-bundle; rather one should work directly with the global ofittesH and w, . Fur-
thermore, it was argued that there was a cohomologicalwdigin to defining this bundle
over the whole brane, so one must work with the global quast&nd promote thie (1)-
bundle structure to that oflaundle gerbd1227. Whilst the first point is philosophically
useful, the obstruction argument is flawed due to what seerns & misidentification of
(H,wy ) and(0,Fy ) in H3(G, € (hy);R).

The periods of, can be suggestively rewritten as

/SFAZ/S(B—CUA)I/ZH—/SOJA,

whereSis a 2-cycle inC (h, ) andZ is a 3-chain inG with boundarydZ = S, andH =
dB on Z. Global philosophy now inspires the proclaimation that wiiee U (1)-flux is
referred to in the literature, what is really meant is thesetb 2-form with these periods.
Thus, the periods df, are identical to theelative periods of(H, w, ). Comparison with
the brane quantisation of Section 6.3.6 shows that thesedseare integers, hendg
defines a class iH? (€ (hy );Z). As a consequence, it may indeed be interpregacthe
first Chern class of & (1)-bundle on the brane, as required for flux stabilisation. Aeno
direct construction oF, is given in the following proposition.

PROPOSITION 7.1. There exists a compleX, in G which containsC (h, ), and on
which H is exact. If H= dB on this complex, the cohomology class =B — w, is
uniquely determined, even though B is not.

PROOF Let {S}{_, be a basis oH,(C(hy);Z) (by Theorem C.1, this homology
group isZ", wherer =rankG). SinceC (h, ) is simply-connected, this basis can be chosen
to consist of 2-spheres and Bs(G) = 0, these spheres are contractiblesinFor each,

30ne really should distinguish, € H?(C (h,);R) from the class it representski? (C (h,);Z). However,
for convenience of notation, this will not be done explicifThat is, each integral cohomology class will be
labelled by its deRham representative.
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let D; be the image of a homotopy mapping frdi1] x S into G which demonstrates
this contractibility.D; is then a 3-cell irG which is attached t€ (h, ) alongS.

If Cj denotes the complex formed by attaching Bhevith i < j to C(h,) (andCp =
€ (hy)), the Mayer-Vietoris exact sequence for attacHingEquation (C.2.2), becomes

0— H3(Cj_1,Z) — H3(Cj;Z) — H2 ($,Z) = Hp (Cj_1;Z) — H2(Cj; Z) — 0,

wherer : & — Cj_1 is the inclusion of the 2-sphere &sin € (h,) C Cj_;. Forj =1,
the attaching converts the homology gener&omto a homologically trivial cycle, so
H, (C1;Z) = Z'1. The map., is an injection by construction, so it follows from exactsies
thatH3 (C1; Z) = H3 (Co; Z) = 0. Inductively thenH, (Cj;Z) = Z'~1 andH3 (Cj; Z) =0
for all j. Setting¢, = C; givesH3(€,;Z) =H2(¢,;Z) = 0. Attaching 3-cells does not
affect the degree 1 homology, so by the Universal Coefficiémorem 44,

H3(¢);Z) = H3(¢,;Z) = 0.

It follows thatH is exact on¢,, soH = dB for someB € Q?(¢,). Bis still only
defined up to a closed form, but HS (¢, ;Z) = 0, the closed forms od, are all exact.
Restricting toC (hy ), it is clear that the ambiguity iB is still just a set of exact forms.
Thus,F, = B— w, is well-defined as a cohomology class®(h; ). ]

It is perhaps tempting to conclude that thél)-flux F, is now completely specified.
However, as noted in Sections 6.3.5 and 6.3.6, the relagviegs of(H, w, ) are only
well-definedmodulo k+ hY, due to an ambiguity in choosing the 3-chain to integkate
over (note the quantum shift). The same is true for the proed periods of,, for the
same reason. In the direct construction of Propositionthi&,ambiguity is manifested
as a choice of (perhaps homotopically distinct) 3-cellsttach to the bran€ (h,) (re-
call from Appendix C.3 thati (G) = Z). The consequences of this ambiguity will be
examined in Section 7.3.3.

7.1.3. Geometric Charges Il: Quantum Anomalies.The chargeQg (A) of Equa-
tion (7.1.1) can now be trivially evaluated f6U (2). As

QF()\)Z/hA ':A_/hA

this charge is therefore just the period )f over the 2-sphere constituting the (regu-
lar) conjugacy class, hence is the corresponding relagviog of (H, w, ). From Sec-
tion 6.3.5, this is just the integer

Qr(A)=(A+p,a’) (7.1.2)

(note the quantum shift). As the charge corresponding t00 is 1, it is not necessary
to normalise. The charge of the brane labelled\big therefore given by the dimension
of the irreduciblesu (2)-module with highest weight, in exact agreement with the al-
gebraic charg&ag(A) postulated in Section 4.1.2. Furthermore, the ambiguitf,in
leads to the conclusion that the chaf@e(A) is only definednodulo ki 2. That is, the
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charges take values # », again in exact agreement with the fusion constraints resul
Section 4.2.1.

This brane charge was computed 118[146] for SU (2). These computations did not,
however, incorporate the quantum shift — the conjugacyselss (h;) were taken to
be the consistent quantum brank's={ exp(2miA /k)), rather thar€ (h, ). Consequently,
the charge computed there wé@s, a"), 1 less than that computed above. There does
appear to be an error in their calculation in thad ifs not shifted, taking\ = 0 should
correspond to a degenerate point-brane. Therefore, thgeliar A = 0 should be the
integral of 1 over a pointwhich is1, not 0. This should also be true for the other point-
brane, corresponding % = kA.

This discrepancy was removed ifi][ but by using a modified charge rather than
incorporating the shifd — A 4+ p. This modified charge was originally proposed in
[117], based on the cancellation of certain quantum anomalied [29]). It was also
shown there that this modified charge had the desirable gyofmat it could be naturally
interpreted as an element of some K-group. The modified ehafter specialising to the
case of interest in this thesis, amounts to

Qe () = /e(h, | FTd(T(E())). (7.1.3)

whereF; denotes théJ (1)-flux on the unshifted brand;(M) denotes the tangent bun-
dle of the manifoldM, and Td(E) denotes the Todd class of the vector burillésee
Appendix C.2).

When the conjugacy class is a 2-sphere, $hig2) computation of §] reduces to
noting that the contributing part of the integrand in Eqoia{i7.1.3) is

i Tdo (T(S)) + Te (T(S)) = Ff + 561 (T(S))

where Td(E) denotes thé™ Todd polynomial, ¢(E) the first Chern class dE, and
Equation (C.2.4) has been used. 'I-\@Z) may be viewed as a complex line bundle, its
first Chern class is its Euler clas?q, so its integral is just the Euler characteristic3f
which is 2. Thus,
Qe (A)=(A,ay+1=(A+p,a’),

in agreement with the unmodified, quantum-shifted, chaegelt, Equation (7.1.2). If
the conjugacy class is a point, corresponding te 0 or kA, then the modified charge is
1. Itis not clear if these singular branes should be consdier the theory. Certainly,
the results of 6] discussed in Section 7.1.1 seem to indicate that they dhwail Nev-
ertheless, the modified charge of these singular branessgii¢h the dimension of the
corresponding irreducible highest weight moduhedulo k

It follows that for SU (2), the algebraic brane char@&g(A), Equation (4.1.2), the
quantum shifted brane char@® (A), Equation (7.1.1), and the modified brane charge
Qr/ (A), Equation (7.1.3), all coincide. Furthermore, the first tharge definitions pre-
dict the same charge grodfy . », whereas the modified charge needsigoosteriorilevel
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shift, k — k+h", to bring its predicted charge group into line. It is reasbeatherefore,

to suppose that these three approaches to defining a selnisibke charge are somehow
equivalent. In the next section, this coincidence of chdefaitions will be tested explic-
itly for the non-trivial cas&U (3), and then proven rigorously for all compact, connected,
simply-connected, simple Lie groups.

7.2. Charge Computations

7.2.1. SU(3): An Extended Example. Consider now the regular, untwisted symmetry-
preserving branes ifU (3). The brane worldvolumes are six-dimensional regular con-
jugacy classes diffeomorphic & (3) /U (1)2, hence diffeomorphic t63, the complete
flag manifold ofC® [29]. Therefore, the technology of Schubert calcul@dg][may be
applied to them. Complete flag manifolds may be explicitigataposed as the disjoint
union of even-dimensional cell§;, known as the Schubert cells, and indexed by the ele-
ments of the Weyl grouj@, in this caseSs. The closures of the Schubert cells are called
Schubert varietiesXy, and these generate the integral homology of the flag mainirfol
degree 2(w) (compare with Theorem C.1). As an example, the Schuberetyacdrre-
sponding to the simple Weyl reflectiofy, is, under the diffeomorphism with a regular
conjugacy class, just the 2-sph&agiven by Equation (6.3.12).

The computational utility of Schubert calculus becomesagmt upon taking Poincaré
duals and considering the cohomology ring. The cohomoldgy ttag manifold may
be determined directly2p, 72] and is torsion-free and generated by classes of degree 2
(in agreement with Theorem C.1). The Poincaré duals of tteiSert varieties there-
fore generate the integral cohomology. But, the dual of thasscof X, has degree
6 —2¢(w) = 20 (ww) (for F3), wherew, = wiwow; = WowiWso is the longest element
(Appendix A.2) ofSs3. Itis therefore convenient to denote the cohomology classdaré
dual toXy by pw w, SO thatpy, € H*W) (33, 7).

The cohomology claspy may therefore be expressed as a polynomial in the degree
2 cohomology classeg,, and pw,. It is, however, traditional to express them in terms
of the classes; = pw,;, X2 = Pw, — Pw;, @aNdxz = —pw,, Which naturally appear in the
computation of the cohomology ring 6f;. The polynomial is then referred to as the
Schubert polynomial. The Schubert polynomialsdartake the form

pe:l Pw, = X1 pW2:X1+X2

2 2
Pwiw, = X1X2 Pwow; = X1 Pwiwowy = X1X2

(any explicitxz-dependence may be supressed ugingx, + x3 = 0). The classes; are
permuted by the natural action 6§ on H?(73;Z), and the cohomology ring takes the
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form (compare Theorem C.4):
Z[X1,%2,%3]
(X1 + X2 + X3, X1X2 4 X1X3 + X2X3, X1 X2X3)
_ Z.[X1,X2]
(X2 +X1X2 + X3, X4X0 + X153 )

H* (F3,Z) =

(7.2.1)

Note that thep,, given above do actually generate this cohomology ring.

Consider now the computation of the geometric char@esA ) andQg: (A ) given by
Equations (7.1.1) and (7.1.3) respectively. It is first sseey to determine the image of
theU (1)-flux in H? (F3;Z) as a linear combination of the. This is achieved by recalling
the periods of thé& (1)-flux over the 2-sphere§ = X,. For the quantum-shifted flux,

/\1+1:/ FA:/ FA/\p\NLwlz/ F)\/\pwlwzz/ Fa AXiXo,
Xy I3 F3 T3

and similarly,A + 1 = fg3 Fr A x%. PuttingF, = ax3 + bx givesa—b=A;+1 and
b=A>+1. Thatis,
F, = ()\1+)\2+2)X1+ ()\2+1)X2.
It follows thatF; = (A1 +A2) X1+ A2Xe.
The quantum-shifted charge may now be computed:
1 1
A :—/ axi+bx)®=Z [ (a’b—ab?)%x
QF (A) 3 ?3( 1+ bxp) 253( ) XiX
1
5

_ %ab(a_ b) = 5 (A1+1) (Ao +1) (1 + 12 +2). (7.2.2)

This is the dimension of the irreducibe (3)-module with highest weighk, in agree-
ment with the algebraic charge of Equation (4.1.2).

To compute the modified charge (of a regular brane), the Ttaks ©f the tangent
bundle of the flag manifold must be evaluated. Using the ei@kpressions for the first
few Todd polynomials given in Equation (C.2.4), this can leeluted from the Chern
classes of this tangent bundle. Whilst these can probabtietermined directly for flag
manifolds, they follow from Theorem C.5. It is easy to check that the Chern classes ar
given by

C1 (T(ffg)) = 4X1 -+ 2X2,
Co (T(F3)) = 6X2 4 6x1 %0,
and  @(T(F3)) = 6x2x,.

Yt is necessary to compare the expressiorFpm terms of thex; with that of Section 7.2.2. It should be
evident that in the formalism of Appendix C.2, tkeare represented by the weights of thg3)-module
with highest weight\;.



7.2. CHARGE COMPUTATIONS 133

The contributing part of the integrand @/ (A ) is

1 1
Tds () + T2 (3) F} + 5Tch (93) () + 5 Tdo (93) (F)

24 12
Substituting the Chern classes gives

= 01 (F9) 02 (F3) + 5 [ €0 (F9)% + o (F) | Ff + 71 (93) ()7 + ¢ (FY)°.

1
ﬂcl (?3) Co (ffg) = X%XZ,

i [Cl (?3)24—02 (373)] F)( =

12 (A1+)\2) X%X27

=Nl W

1
ZC]_ (?3) (F)()Z == ()\124-4)\1)\24-)\22) X%XZ,

and from Equation (7.2.2) that

N

1 1
é (F)( )3 = é)\l)\z ()\1 -i—)\z) X‘%Xz.
The modified charge is therefore

Qe (M)= |

I3

_ % (A1) (A1) (A +A242), (7.2.3)

1

1
5 (AL +4MA2+23) + SAuda (A1 + A2)

3
l1+§(/\1+/\z)+

in agreement with the quantum-shifted charge and the agebiharge.

7.2.2. The General Caseln this section, the geometric chard@s (A) andQg: (A)
of Section 7.1 will be shown to coincide with the algebrai@ige Qag(A) of Sec-
tion 4.1.2, for all regular, untwisted, symmetry-presegvbranes in compact, connected,
simply-connected, simple Lie groups. The computation Wwhiemonstrates the coinci-
dence of these charge definitions can also, essentiallglbelfin 4], though there the
motivation is of course purely mathematical.

It will be convenient to use the formalism introduced in Apgdix C.2 in which the
real cohomology of the spade/T is naturally represented by polynomials in the fun-
damental weights o6. Specifically, the fundamental weighf#\}\_, will correspond
to the basis oH? (G/T;R) dual (not Poincaré dual) to the bagi§}'_; of Hx(G/T;Z)
introduced in Section 6.3.6. With this choice, the cohorgglolass of theJ (1)-flux F,
is represented in the most pleasing manner. For the peridgs aver theS are just the
integers(A + p, a;”), the Dynkin labels ofA + p, so it follows that in this formalisnf;,
is identified withA + p. Similarly, F; is identified withA.

THEOREM 7.2. Let G be a compact, connected, simply-connected, simple Ligpgrou
with maximal torusl, and letA denote an integral weight in thaterior of the fundamen-
tal alcove ofG at level k. Then, the quantum-shifted charge of the branie witrldvol-
umeC (exp(2mi (A +p) / (k+h"))) and the modified charge of the (regular) brane with
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worldvolumeC (exp(2miA /K)) coincide:
P = [ ETd(T(G/T)).

G/T G/T

PROOF From the definition of the Todd class, Equation (C.2.3)pllofvs that the
modified charge is

for o e ] @

G/T HU€A+(1_e )ae X

_ e [MTaea, e/2 a
6/T Maea, (€7/2—e79/2) ag+

e (7.2.4)

G/T ata, €42 —e"9/2

Qe (A) =

whereA, denotes the set of positive roots@f

Consider the product in this last expression. ¥ge‘ — e *) is an even function,
any a € A, could be replaced by its negative without changing the prbdBut, if
a €y, eithera € w(A;) or —a € w(A,), but not both (for anyw € W. It follows
that the product is invariant under the actionWsf By Theorem C.4W-invariants of
positive degree vanish in cohomology. This product defimearalytic power series (in
the positive roots), so it follows that it is cohomologigadiquivalent to its constant term.
By L'Hopital’s rule, this constant term is 1, hence

Qe (A) = G/TeHP:QF(A). m

Therefore, the modification of the brane charge suggest¢tili] is equivalent to
taking into account the quantum shift of Section 7.1.1, astievhen the (unshifted) brane
is regular § was restricted to be in the interior of the fundamental adcaw/levelk so
that the unshifted brane worldvolume was diffeomorphidsiol). One might expect
that an analogous calculation would extend this result éodése when the unshifted
brane is singular. This extension is expected to be relgtsteaight-forward when the
brane worldvolume is diffeomorphic t6/Z, whereZ is the centraliser of a torus, as
the cohomology of these spaces is well underst@#¥34, 26]. However, as noted in
Proposition C.2, there exist singular (untwisted symmetgserving) branes whereis
not the centraliser of any (non-trivial) torus, and so theases are expected to cause
difficulty. In any case, the quantised branes are supposée t@ll regular when the
guantum shift is accounted for. In what follows, this viewgawill be followed, so the
singular calculation can be safely ignored. The coincidérirges will both be referred
to as thegeometricbrane charge:

Qgeo(}) :/ e — [ Td(T(G/T)). (7.2.5)
G/T G/T
It remains to demonstrate that this geometric charge a@sowvith the algebraic charge.
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LEmMMA 7.3. LetG be a compact, connected, simply-connected, simple Liggnih
maximal torusT, let W be the Weyl group di, and letA, denote the set of positive roots
of G. Then, in the formalism of Appendix C[34ca, O is anti-invariant under the action
of W, and is represented byV| in the top cohomology groupi?®+/ (G/T;R) = R.

PrROOF The anti-invariance follows from the fact that the lengthwoe W is the
number of negative roots iw (A, ). Thus,

w a|=(-1)™ a = detw a.
((XIE]+ ) (XIE]+ aclhy

From Theorem C.5[qca, O is the top Chern class df(G/T) (as a complex vector
bundle), which is the Euler class©{G/T) (as a real vector bundle — see Appendix C.2).

Thus,
/G/T [] o= J TG/ =X(G/T).

the Euler characteristic a&/T. But G/T has no odd cohomology, and its homology
classes are in bijection with the element$\o{Theorem C.1). Henceg, (G/T)=|W|. =

THEOREM 7.4. Let G be a compact, connected, simply-connected, simple Ligpgrou
with maximal torusT and Lie algebrag. If A denotes an integral weight in the fun-
damental alcove ot at level k, then the geometric charge of the brane with wailldv
umeC (exp(2mi (A +p) / (k+h"))) is just the dimension of the irreducibjemodule with
highest weighfA. Therefore, the geometric and algebraic charges coinadeihtwisted
symmetry-preserving D-branes.

PROOF By Theorem 7.2 and Equation (7.2.4), the geometric charge i

ertp
Qgeo(A) = /G/T Maco, (€9/2—e 972) ag+ a.

By Lemma 7.3, the produgl,ca, 0 generates the top (real) cohomology group. If the

prefactore’ P/ MNaea, (e"’/2 —e*“/2> defined an analytic power series (in the funda-
mental weights), then the geometric charge could be cordpaytedetermining the con-
stant term in this series. Alas, this prefactor clearly hpsla at O.

However, this prefactor may be recognised as the charattbe&erma modulef
g with highest weightA (Appendix A.3). Verma modules are infinite-dimensional, so
it follows (again) that this power series is non-analyticowver, the character of the
(finite-dimensional) irreducible module of highest weighis analytic, even polynomial,
and is closely related to the Verma module character, whiggests how to proceed.

The only contributing part of the integrand is the componerihe top cohomology
group, and by Lemma 7.3, this component may be taken to bermmatiant under the
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action ofW. It follows thaP

ertp
Qgeo(A |W| ZN etw G/TW<|_|aeA (€72 — e a/2) ag+a>

|W| G/T ZNdetww<e/\+P> :

ath, e/2 _a—a/2
1 3 wew detw e¥A+p)
\W| Je/T [Maea, (ea/z - efa/z) ac

a,

sincelgea, o/ (e"/z — e—"/2> was noted to b&V-invariant in the proof of Theorem 7.2.
The prefactor off]qca, @ may now be recognised as the character of the irreducible
module of highest weight. Since this prefactor is analytic afigl,ca, @ generates the
top cohomology group, the only contribution to the integ@ies from the constant term

of the prefactor. Thus,

1 1
QueoA) = — [ %, (0) a:dim()\)—/ a =dim(A),
oeol M) = 1w Jo 0 © T] WiJorral]
by Lemma 7.3 again. This is exactly the algebraic definitibtihe charge. ]

7.3. Charge Group Constraints

7.3.1. Ambiguities inA. Having established that the geometric brane charges de-
fined in Section 7.1 may be identified with the algebraic bramegrge discussed in Sec-
tion 4.1.2, it remains to consider any constraints that #sengetric definitions may im-
pose upon this charge. Recall that the algebraic charge yvasrdcally constrained by
the fusion rules, Equation (4.1.3), leading to the inteigdren that these charges are only
defined modulo some integ&r The charge group for untwisted symmetry-preserving
branes was then algebraically determinedgsand forSU (2), x was determined to be
k+ 2 in Section 4.2.1. In Section 7.1.3, an ambiguity in the dédim of the SU(2)
geometric brane charge was also shown to imply that thesgehavere only consis-
tently defined modulé&+ 2. That is, topological consistency also predicts that tregge
group for untwisted symmetry-preserving braneSin(2) is Zy, . This suggests that it
would be very interesting to compare the charge groups gestiby the dynamical fu-
sion constraints with those predicted by the purely topclgonstraints arising through
ambiguities in the geometric charge definition.

Consider therefore the geometric definition of brane charge

Qgeo(A) = /G/Te/”p =dim(A) (modx).

The branes are labelled by an integral weighin the fundamental alcove at levk|
so the shifted weighd + p lies in the interior of the fundamental alcove at leke}
5AIternativer, one may observe th&Y T represents a regular conjugacy, and that conjugacy classes

preserved byV. The anti-invariance is manifested by the orientatiorersing nature of the Weyl reflec-
tions.
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hY. Geometrically, this labelling arises from the identifioatof the brane worldvolume
with the conjugacy clas8 (h, ), whereh = exp(2mi (A +p) / (k+h")). Insisting thatA
belongs to the fundamental alcove at lekv@ikes it uniquely, but it is clear that this is but
a convenient choice.

Indeed, it should first be noted that describing the branédwolume as (h, ) only
determine$, € T up to the action of the Weyl grouyy. For determining thg € G such
thatghy g € T is equivalent to solving, € AD (g*l) T for g. The image of a maximal
torus under an inner automorphism is another maximal téwutdy, is regular, and there-
fore belongs to a single maximal torus (Appendix A.1). ltdals that AD(g) T =T,
soge N(T). AsW=N(T)/T,

Ch)NT=W(h),

proving the claim.

Descending to the Lie algebra, it follows that- p < t; is only determined up to the
usualW-action. Therefore) is determined up to the shiftél-action. It follows that for
the geometric charge to be well-defined, the following caist must be imposéd

dim(w-A) = detw dim(A) (modXx) (7.3.1)

for each integral weighd in the fundamental alcove at levkland eachw € W. The
detw factor arises asv may reverse the orientation of the brane manifold, contirigu
a relative sign to the integration. However, it follows &asiom Equation (A.3.6) that
these constraints on the geometric brane charge are aitattyaiccounted for. That is,
these constraints are satisfied identically (der

To derive some more interesting constraints, recall thaexe= 2mQ" (since G
is assumed simply-connected). It follows tigtonly determinegA +p) / (k+h") up
to QY, henceA up to translation by an element ¢f+h")Q". Together with then-
ambiguity, this shows that the brane only determiAesp to the shifted action of the
affineWeyl group,Wk (at levelk). Hence for the geometric charge to be well-defined,

dim(w-A) = detw dim(A) (modx), (7.3.2)

for eachw e \7Vk and each integral weighit in the fundamental alcove at leviekhence
each integral weight in the interior of a shifted affine aleavlevek+h"). Note however,
that the interesting constraints are generated by the edwsw is restricted to be a pure
translation by(k+h") a;”.

SNote that if the weighf\ labelling the brane is chosen outside the fundamental ckartiien the inter-
pretation of the geometric charge as the dimension of theesponding highest weiglgtmodule is lost.
Instead, the proof of Theorem 7.4 gives the geometric chasghe constant term of the expressjgr(0)
obtained by formally substituting into the Weyl character formula, Equation (A.3.3). It is eenient to
disregard the fact that this is not a dimension, and instedefine dim as a function

dim: P — Z, dim(A) = x, (0),
wherey, is the formal expression given in Weyl's character formula.
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As always, it is instructive to analyse these constraintsmh= SU (2). The gener-
ating constraints take the form

a+1=dim(aA1) =dim(aA1+ (k+2) ay)
—dim((a+2(k+2)A1) =a+1+2(k+2) (modx),

wherea+ 1 € Z does not dividk+ 2. These equations therefore all reduce to the state-
ment 2k+2) =0 (modx), hence they predict a charge grofigy.»). This does not
contradict the computation of Section 7.1.3 (which prexi@, , ») as the result there was
derived using a different set of constraints, and it has eenlxlaimed that the constraints
derived in this section are exhaustive. Indeed, this mismiatdicates that the constraints
given by Equation (7.3.2) are not exhaustive.

7.3.2. Boundary Constraints. Of course, one can ask whether the affine constraints,
Equation (7.3.2), should be augmented. The integral wergkitese constraints is re-
stricted to the interior of the shifted affine alcoves beeaudy these weights correspond
to an allowed D-brane in the fully quantised theory (Sedi6r8.6 and 7.1.1). There
are therefore no (explicit) constraints on the weightsdyam the shifted affine alcove
boundaries. It is extremely tempting to declare constsaint these boundary weights
to the effect that difA ) =0 (modx). For such weights correspond to no brane, and the
absence of a brane must surely give zero brane ch@lgereasoning is facetiou$hese
boundary weights do not correspond to the absence of a bratiey-€orrespond to the
absence of the entire theory! There is no action discussédapter 6 which corresponds
to such a boundary weight, so these weights cannot be hgmssigned a brane charge.
Boundary weights should instead be viewed as present ontpiwyenience in the above
analysis. One may assign them a number @im but this cannot be interpreted as a
charge in any sense.

However, this does not mean that one candetive constraints on the boundary
weights from Equation (7.3.2). The obvious identity (o¥gy

dim(A)dim(u ZN d|m

(whereNAu" represents the tensor-product coefficients), is usefulthisrpurpose. For
example, irSU (2), the identity

dim(a/;) =dim((a—1)A1)dim(A1) —dim((a—2) A1),
which follows from the familiar tensor-product rules, ingd that
dim((a+k+2) A1) —dim(aA;) = [dim((@a+k+ 1) A1) —dim((a—1) A1)] dim (A7)
— [dim((a+k) A1) —dim((a—2)A1)].

If a/\; is a boundary weight anl > 0, it follows that(a—1)/A; and (a—2)/\; are
not boundary weights, so diffa+k+2)A;) = dim(a/\1) (modx). Therefore, the
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constraints, Equation (7.3.2)lgebraically generatéhe corresponding constraint on the
boundary weights, at least f6tJ (2). This result seems to persist for genegal

CoNJECTURE7.1. When the level is sufficiently large, the constraints giveEgua-
tion (7.3.2) for integral weights in the interior of the dieidl affine alcoves, algebraically
generate identical “constraints” for boundary weights.

“Sufficiently large”, in this conjecture, appears to be addulndeed, numerical ex-
perimentation at low rank and level suggests that the mteonstraints generate the
corresponding boundary constraints except when the g®8pin (r) or E;, with rank
r=2"n>2, and the level is 1.

The relevance of these boundary constraints is seen byingddle (unjustified) temp-
tation to set difjA) =0 (modx) when A is a boundary weight. Assuming Conjec-
ture 7.1, it follows now from the existence of an affine Weylaetionw fixing A that

dim(A) = detw dim(w-A) = —dim(A) (mod x).

Hence, 2dinjA) =0 (modx). Note however, that a weight on a shiftedchamber
boundary must have difd ) = 0 identically. This follows from the identities ovéf,
Equation (7.3.1), and the fact that such weights are fixedhéghifted action of a (finite)
Weyl reflection. It is now clear that any boundary weightwhich is the(k+h") QV-
translate of a weight on a shifted chamber boundary, saisfii®(A) =0 (modx).
Exactly which weights are such translates is the conteritefdllowing result.

LEMMA 7.5. If G is not symplectic, then every boundary weight is the-h') QV-
translate of a weight on a shifted chamber boundary i§ symplectic, then a boundary
weightA must satisfy either

(a,A+p)€Z, for some short rootr,

or (a,A +p) € 2Z, for some long rootr,

to be such a translate.

PROOF Let u be on a shifted chamber boundary,(sou + p) = 0 for some rootr.
A is a(k+h")Q"-translate ofu if and only if

(a,A+p)=(a,A—p)e (k+h")(a,Q").

To determine the subgroupr,Q") C Z, note thata is transformed into a simple root
(of the same length) by some elemen¥éf As Q" is W-invariant,(a,Q") = (aj, Q") =
mZ, where

m =gcd{(aj,a;): j=1,...,rankG} .
Perusing the entries of the Cartan matrices leads to thdusion thatm; = 1 unlessG
is symplectic andy; (and hencex) is long, in which casen = 2. Note that in this latter
casea /2 is an element of the weight lattice. |
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Note thatSU (2) = Sp (2) should be considered to be symplectic for the purposes of
these results. This lemma guarantees that if Conjectureolds, ands is not symplectic,
then any boundary weigiit necessarily satisfies digh) =0 (modx). This conclusion
is extremely interesting as it implies the (dynamical) funsconstraints on the algebraic
charge, Equation (4.1.3), of Fredenhagen and Schomerus.

PROPOSITION7.6. Suppose that is not symplectic. Then, the geometric constraints,
Equation (7.3.2), and Conjecture 7.1 together imply theshligic constraints

dim(A)dim(u) = 3 N,, dim(v) (modx),

vePk
WhereN)\u" denotes the fusion coefficients, afddenotes the set of integral weights in

the fundamental alcove at level k.

PROOF. The geometric constraints and the Kac-Walton formulap®sdion 5.2, give

> Ny dimv)= 3 5 det@N ) dim(v)

vePy veP,WweWy

(WhereNA“ Y denote the tensor product coefficients)

=> > NA“W'V dim(W-v) (mod x)
veP WeWy

=S N, dim(v) (modx),
Vv

where the sum is over all integral weights not on a shiftecndany at levek +h". As
G is not symplectic, dinjv) = 0 (modx) whenv is on such a boundary, hence these
boundary weights may be included in the sum without affeciis value. It follows that

Z N)\“ dim(v) =% NA“ dim(v) =dim(A)dim(u) (modx). n
vePy vep
Therefore, the dynamical fusion constraints are consempseof the purely topologi-
cal constraints given by Equation (7.3.2), at least wGésinot symplectic. It follows that
the charge groufy predicted by these affine constraints has the propertyxtdatides
that given by the fusion constraints (Equation (4.2.1X))takt, the fusion ideal contains
all anti-invariant polynomials undeﬁlk (Proposition 5.5), so the fusion constraints, in
turn, imply the affine constraints. That is, whéris not symplectic, the affine constraints
are equivalent to the fusion constraints (assuming Camject.1). Indeed, in this case,
numerical computation at low rank and level indicates thatgarametex derived from
the affine constraints coincides with that derived from the&dn constraints.
WhenG is symplectic, the fusion constraints may be strictly sgemthan the affine
constraints. This is exemplified by = SU (2) where it has already been noted in Sec-
tion 7.3.1 that the affine constraints predict 2(k+ 2) (the fusion constraints predict
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X =k+2). In this case} = (k+ 1) A1 provides an example of a boundary weight satisfy-
ing 2dim(A) =0 (mod 2(k+2)) butdim(A) #0 (mod 2(k+2)). Generally, numerical
computation for the symplectic groufs (2r) at low rankr and low level suggests that
the affine constraints predict the same charge group asglenfoonstraints, except when
r is a power of 2 andé+ h" a multiple ofr. Then, the affine prediction foris twice the
fusion prediction.

It was, however, noted in Section 7.3.1 that the affine camgs are not expected to
be exhaustive, even among the geometric constraints. HEmnerether such constraints,
and these were shown in Section 7.1.3 to prexlietk4- 2 for SU (2), in agreement with
the fusion constraints. It remains to elucidate and andlysse constraints in the general
case.

7.3.3. Ambiguities inF,. Recall from Section 7.1.2 that thé(1)-flux F, entering
the geometric brane charge, Equation (7.1.1), was deterhig constructing a complex
¢, . This construction involved attaching 3-cells to the regabnjugacy class describing
the brane worldvolume along a basis of homology 2-sphetagad noted that choosing
homotopically different 3-cells results in a cohomolodjicdifferent U (1)-flux. These
choices led to the realisation that the period&pfire only well-defined modulk+ h.

In Section 7.2.2, it was shown that in the formalism of Appgr@d.2, F, may be
identified withA 4+ p. The ambiguity in the periods &, now implies that this identi-
fication is only valid modulo translations lk+h")P. This should be compared with
the ambiguities of Section 7.3.1 where it was shown that thighit A labelling the brane
worldvolume is only well-defined modulo translations fiky+hY) QY. SinceQ" C P, it
follows that these weight lattice ambiguities lead to sfgemconstraints than the affine
constraints of Equation (7.3.2). Combining with the idees of Equation (7.3.1), these
weight lattice constraints may be expressed as

dim(W-A) = detw dim(A) (modx), (7.3.3)

wherew'is an element of the group/x = W x P acting byw: A = w- A + (k+h")u
(Wherew € W andu € P).

Of course, it was these weight lattice constraints that weesl in Section 7.1.3 (and
indeed, p,59,117)) to predict the charge grouffy. », for SU (2), in full agreement with
the prediction of the fusion constraints, Equation (4.1t3hould also be noted that these
constraints correspond exactly to theight latticecharge symmetries observed empiri-
cally in Section 4.3.1. There it was noticed that the algelveane charges determined
by the fusion constraints seemed to be invariant under wéagfice translations, except
when the group was symplectic. In particular, wites- Sp (2r) with r not a power of 2
(and various equispaceéql. Indeed, the weight lattice constraints were remarkedae p
dicta charge groufis with ¢ half that predicted by the fusion constraints (in these cases),
so it follows that these constraints are strictly strongantthe fusion constraints. More-
over, the charge group predicted by the weight lattice camgt (for a general grou@)
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admits an aesthetically pleasing universal formula, ngréglwith Equation (4.3.7):

k+h"
~ ged{k+h",y}’
andh is the Coxeter number gf

It appears then that brane charge groapsdetermined by constraints which are
stronger (for the symplectic groups) than the fusion camsts. This therefore explains
the “mysterious” weight lattice charge symmetries thatevested in Section 4.3.1, which
could not be related to the centre of the group. It also hagelypaesthetic advantage in
that it brings the symplectic groups in line with a univerfeamula for the charge groups,
Equation (4.3.7). However, this conclusion was noted dliyga Section 4.3.2 to be in
conflict with the popular wisdom, which holds that brane gearare classified by twisted
K-theory (which is isomorphic to the fusion ring). The cociflarises because the torsion
order of the K-groud“th* (G) is known to agree with the charge group paramater
derived from the fusion constraints (and given by Equatib8.01) and Table 4.1).

One conclusion that might be drawn from these results ifoer that the popular
wisdom is incorrect, and that brane charges are not clagdifidwisted K-theory after
all. Indeed, there are already signs in the literature thatenesoteric abelian groups
may be relevant in classifying the branes of general sthegries L09. However, there
is an alternative possibility. Recall that the charge gréigpfor untwisted symmetry-
preserving branes is but a subgroup of the full brane charmgpgwhich is supposed to
be given by<th'K* (G) = Z$2 " (see Section 4.3.2). The conflict betweandx may
be resolved by the following supposition:

3 wherey =1Icm{1,2,...,h —1},

WhenG is symplectic and is not a power of two, suppose that the in-

clusionZg — kerh g+ (G) maps the generator @f; to twicea generator

of k'K (G).
This supposition is of course, pure speculation. One migihhér speculate that such
a supposition may be a consequence of the fact noted in tleg pfd.emma 7.5 that
symplectic groups are uniquely distinguished in possgssiats which are twice an inte-
gral weight. In any case, one should be able to test this |ifp@o by investigating sets
of branes whictgeneratethe full group*th'K* (G). At this time, however, very little is
known regarding such generating branes.



Conclusions

In this thesis, charge groups were computed for the untd/gstesnmetry-preserving D-
branes of the Wess-Zumino-Witten models over all compaciected, simply-connected,
simple Lie groups. This computation was carried out twidagiguite different methods,
with a priori quite different charge definitions. However, both meth@dkstb the formu-
lation of constraints on the charges, which were then etadl@ determine the form of
the charge group. The results of these evaluations for ffexelt methods turned out to
be in almost complete agreement, with only a discrepancy fagtar of two in a small
number of cases. The thesis finished with a possible resalofithis discrepancy.

The first method employed in the computation of the branegehgroups is due to
Fredenhagen and Schomeré8][ This is based on a proposed dynamical process for
branes called condensation. In the formalism of boundanjocmal field theory, a brane
was identified with a boundary condition. A consistency d¢bod on these boundary
conditions, Equation (3.2.9), leads to constraints ondinéisted symmetry-preserving)
brane charges, given by Equation (4.1.3). Using an expliegentation of the fusion ring,
| evaluated these constraints for the Lie grogps(r +1) andSp(2r), and rigorously
determined the (largest) charge group they imply. For therotompact, connected,
simply-connected, simple Lie groups, | had to resort torsite2 numerical computations
which suggested the form of the corresponding charge grotlips result was that the
charge groups are of the forf, wherex is given by Equation (4.2.11) and Table 4.1.

These rigorous computations U (r + 1) andSp (2r) relied on the well known fact
that their fusion rings may be described by a fusion potéeritiafortunately, | have found
no genuine proofs of this fact in the literature, despite ynalaims to the contrary. |
therefore gave two rigorous proofs of this fact. The firsesbn ideas from commutative
algebra and appears to be quite different from the usuabfptan the literature. It shows
that that the fusion potentials correctly describe theesponding fusion rings when the
scalar ring isZ (which is required for the application to brane charge gsduphe second
proof may be viewed as a completion of the proofs in the lites in that it is based on
the same idea, but it only holds when the scalar ring.is

The second method for determining brane charge groups i@l on analysing the
(geometric) definition of the charges. That is, no mentiommy dynamical processes
is made. Just as ambiguities in the Wess-Zumino-Witteroastleads to quantisation
phenomena (Chapter 6), ambiguities in the brane chargeitd®iglead to constraints
on the charges which must be satisfied if they are to be wéilheld Such ambiguities
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had been analysed in the literature & (2), but the extension of this analysis to more
general Lie groups requires a way to evaluate these bramgesha

After discussing the role of certain quantum shifts, | sedwhat by taking the (appro-
priate) shifts into account, the standard geometric D-dcrarge of Polchinski coincides
with the modified charge of Minasian and Moore. That is, thalification suggested by
Minasian and Moore reduces, in the special case of these-¥vasso-Witten models,
to a simple quantum shift. As far as | am aware, the quantuftssised above are empir-
ically observed facts, so | think that this suggests thatenwaork should be expended in
trying to verify and generalise them (in the formalism of getric quantisation for ex-
ample). The modification of Minasian and Moore was motivétgthe study of a certain
guantum anomaly, so it would be of interest to investigateafe general anomalies can
be circumvented in a full quantisation prescription. Intjgatar, it would be interesting
to see what further quantisation effects show up in more rgénsodels.

| then gave an explicit, and quite general, computation efrtiodified charge of Mi-
nasian and Moore, showing that it reduced to the dynami@abehpostulated by Freden-
hagen and Schomerus. The rather satisfying conclusiorereftire that all three brane
charges considered in this thesis in fact coincide.

| then investigate the ambiguities inherent in Polchirsf@quivalently, Minasian and
Moore’s) brane charge definition. The untwisted symmetsserving branes may be
labelled by weights in the fundamental alcove, and | notéttiechoice of alcove leads
to an ambiguity in the brane charges. This ambiguity imghesconstraint that the brane
charge must be invariant (up to a sign) under the action oatftiee Weyl group on the
alcoves. Using the Kac-Walton formula (Proposition 5.2hjchk relates the affine Weyl
group and the fusion ring, | then demonstrated that thessti@nts areequivalento the
dynamical constraints of Fredenhagen and Schomerus,dadvhat the Wess-Zumino-
Witten model was over a non-symplectic group. It followsttinaghese (non-symplectic)
cases, this ambiguity in the charge definition leads to camts which predict the same
charge group as before!

When the underlying Lie group is symplectic, | found througimerical experimen-
tation that these ambiguities predict a charge group ofdhe Z.; whereé either agrees
with, or is twice as large as, that given by Equation (4.2. Hgwever, there is a further
ambiguity in the brane charge definitions, and it yields sehe stronger constraints
on the charge group. After taking these constraints int@@at; | found that the pre-
dicted charge grouis now hasé agreeing with Equation (4.2.11) in the non-symplectic
cases, and either agreeing with, ohalf, that given by Equation (4.2.11) in the sym-
plectic case. This is the discrepancy referred to abovesd abted that these stronger
constraints precisely correspond to certain symmetriastwivere empirically observed
in the charges of Fredenhagen and Schomerus in Section(ddaih excluding certain
symplectic cases).
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The research reported on in this thesis suggests varioestidins for generalisation.
In particular, thetwisted symmetry-preserving branes (Section 6.3.2) are obvions ca
didates for consideration. 117§], the charges of these twisted branes were studied us-
ing the dynamical constraints, Equation (4.1.1), of Frédgen and Schomerus. This is
complicated by the fact that the NIMrep coefficients (segoBsition 3.3) appearing in
these constraints no longer coincide with the fusion caefiis. A direct consequence
of this is that these constraints no longer suggest the fdrtheobrane charge (as in
Equation (4.1.2)). Nevertheless, it was there guessedhbatharge is given by the di-
mension of a (certain) twisted representation, and thewshiat this guess satisfies the
constraints (perhaps uniquely). It would be very intergsto try toderivethis in the
geometric approach to brane charges. Presumably, suclvataer would involve some
fascinating mathematics and should shed some light on whaally going on.

Another obvious generalisation is to extend these resalté/éss-Zumino-Witten
models over more general groups. In particular, to relaxsthmply-connected assump-
tion. Again, some investigations have been magig 2, 75|, but the conclusions are
not entirely convincing (and do not seem to agree). The stlmappears to be even
more delicate than the twisted case mentioned before, asgkihs to me that a geo-
metric understanding of the branes of the simplest 8&5€3) would help to clarify our
understanding.

There have also been attemp#&,[77, 78] to extend the Fredenhagen and Schomerus
constraints to the non-symmetry-preserving brane$®4 L35 (which do not correspond
to an automorphism in Section 3.2.1). The idea here is toarfind enough branes
to justify the multiplicity of Zy in the appropriate twisted K-theory (see Section 4.3.2).
Unfortunately, no attention seems to have paid so far to thestipn of whether these
branes are actually independent (in a K-theoretic sensepXample, it has not even been
shown that the twisted branes discussed above give charggsandent of the untwisted
branes. Similarly, no attention seems to have been paidetonthtiplicative structure
(generalising that of the fusion ring) for these more genananes, nor has the question
of how to identify branes as (K-theoretic) generators ofdharge group been addressed.

In view of these criticisms, my general feeling is that westivery far from having
anything more than a rudimentary understanding of the géstate of the brane charge
— twisted K-theory correspondence. Of course, that may chamge the full result
of Freed, Hopkins, and Teleman, rigorously linking twistsggliivariant K-theory to the
fusion ring, is finally proven (generalising that stated medrem 4.3) and understood.






APPENDIX A

Finite-Dimensional Simple Lie Algebras

This thesis will make almost constant use of (characteriro) Lie theory, both in
concepts and calculations. In this appendix, some stamdeucepts and results are intro-
duced for the finite-dimensional simple Lie algebras. Tkivss, partly, as an attempt to
achieve some measure of completeness, but mostly to fixo&td convention. Useful
references for this theory includ&4, 30,69, 73,96).

A Lie algebrag with Lie bracket|-, -] is said to besimpleif it is non-abeliart and has
no non-trivial ideals. This section concerns itself witle theory of simpleeomplexLie
algebras. The Lie algebras of interest in this thesis areadlgithe real Lie algebras which
correspond to the compact simple (real) Lie groups consdlier Appendix C. These real
algebras are theompact real form®f the simple complex Lie algebras, and so all the
theory developed below for complex Lie algebras is validii@m, after complexification.
One therefore often talks about root vectors for the reallgebrasu (2) (for instance),
despite the fact that said root vector is an elemest @;C). The relationship between a
simple complex Lie algebra and its compact real form will Edssed further at the end
of Appendix A.1.

A.1l. Basics

A homomorphism ofj into EndV, whereV is some (complex) vector space, is called
arepresentationV is called a representation spacenwwdule The archetypal example is
theadjointrepresentation adg — End g, defined by adx) y = [X,y]. A simple Lie algebra
admits a symmetric bilinear form called tKéling form, given by

K(Xy) = étr [ad(x) ad(y)], (A.1.2)
wherel,q is a normalisation to be fixed later (Equation (A.1.3)). Tioisn is alsoasso-
ciative (or invariant), K ([x,y],z) = K (X, [y, Z]), and this property uniquely characterises it
(up to normalisation) among symmetric bilinear forms.

If {ta} is a (vector space) basis of the simple Lie algeforéhen the entries of the
matrix representing &dk) (in this basis) are thetructure constantsta,tp] = 3¢ fapde.

It is sometimes useful to take this basis to be orthonorm#i waspect to the Killing
form?. Then, fape = K ([ta,tp] ,tc), @and associativity immediately implies that the structure
constants are completely antisymmetricairb, andc (in this orthonormal basis). Note

IThis serves to exclude the one-dimensional abelian algetina
21t will be clear that such bases exist when compact real famagliscussed at the end of this section.
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that it also follows that

g fabcfeod = g fancfaco = tr[ad(ta) ad(ty)] = lagk (ta,ta) = laddad- (A.1.2)
C C

A simple complex Lie algebrg always contains elements# 0 such that afx) is
a diagonalisable (semisimple) endomorphism. A subalgetmaisting of such elements
is called atoral subalgebraand must be abelian. Choose a maximal toral subalgebra
(also known as &Lartan subalgebrat. Any chosent is also maximal abelian, and its
dimension is independent of the choice, and is known asahleof g, denoted by. It
follows that there is a (vector space) basig @bnsisting of simultaneous eigenvectors of
the elements of ad). The eigenvalues are therefore functiong,dmence elements of:

ad(x)ey = (a,X) ey forall x € t.

(The pairing between andt* will be denoted by(-,-).) When the eigenvectors, do
not belong to the maximal toral subalgeboagc t* is non-zero (by maximality), and is
referred to as @ot of g. The set of roots, also called th&ot systemof g is denoted by
A, and thee, with a # 0 are calledoot vectors The root system gives a grading gn
meaning thafe,, eg] is proportional teey ;s (assumingy + 8 € A).

The root system of a simple Lie algebra is an object that has been intensstely-
ied. It is closed under negation. Furthermore, it turns bat bne can choose a basis
{a;:1=1,2,...,r} of t* consisting osimple rootssuch that every root gf has the form

r
a=me,
i=

where the coefficientsy are not only integers, but are either all positive or all riega
(when non-zero). Such a choice of simple roots thereforitiosaus A into a set opositive
roots A, and its negatiod . This also induces &riangular decompositiorof g as a
(vector space) direct sum,

g=g-dtogy,
whereg.. are (nilpotent) subalgebras spanned by the root veetprgith a € A.. The
heightof a roota is defined to be the sum of the correspondimgThere is then a unique
highest rootf, whose corresponding; are known as themarksof g, and will be denoted
by a;. The height off defines theCoxeter numbeh of g by Sja = h — 1. The set of all
linear combinations of the simple roots with integer coedfits defines theoot lattice,
denoted byQ.

Since the root system spatis the action of an arbitraryt € t* on t is determined.
The Killing form is also non-degenerate when restricted, tso it induces a canonical
isomorphismi : t — t* by (1 (X),y) = K (x,y) (for all x,y € t). Lifting the Killing form
to t* by this isomorphism gives an inner prodyet-) on the real subspadg spanned
by the roots. Using this inner product, the length of the sawtg are found to have (at
most) two possible values. The highest r6ois always a “long” root. It is convenient
to normalise this inner product by settif@, 8) = 2. The image of under: ~* defines
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the real subalgebré&, which contains (among other things) the latt@ewhich is dual
to the root lattice.

One may repeat the decompositiorgainder the adjoint representationtdbr other
representations. lit: g — EndV is a representatioy, decomposes into (simultaneous)
eigenspaces af(t). The eigenvalues < t* are called thaveightsof the representation.
The roots ofg together with O t; (of multiplicity r) therefore constitute the weights of
the adjoint representation. If the representation is iredale (and all finite-dimensional
representations are completely reducible), then theraimcuehighest weightmeaning
that all weights can be obtained from this one by (repeajesiipptracting simple roots.
The adjoint representation turns out to be irreducible Wwighest weigh®.

It turns out that the weights of every (finite-dimensionapresentation may be ex-
pressed as linear combinationsrafveights, calledundamental weightand denoted by
Ni, with integer coefficients. These integer coefficients atked theDynkin labelsof the
weightA and are denoted by;. The sum of the fundamental weights is called Ykeyl
vectorp, which also happens to be related to the positive roots tirou

! 1
p=>N=2 a.
2N 3

achy

Since roots are weights (and they form a spanning set), tidafuental weights span
tg, Which is accordingly called thereight space The set of all linear combinations of
the fundamental weights with integer coefficients definesvitight lattice denoted byp.
The lattice dual to the weight lattice is called tt@root latticeQ" C tg, and is spanned
(overZ) by thesimple coroot®,’,i=1,2,...,r. The simple coroots and simple roots are

related by
y 2

-1
o = 51 (0).
| ail
Extending this relation to all roota defines the corresponding coro@s € QY. In
particular, one has the coro6t’' = 1—1(8) whose decomposition into simple coroots

defines thecomarks & by 6¥ = S;a’a;". The comarks in turn define thiial Coxeter
numberh’ by ¥;a’ = (p,0Y) =h" — 1.

The simple roots and simple coroots together define theesntfitheCartan matrix
AbyA; = <ai,ajv>. Thisr x r matrix in fact completely characterises a simple complex
Lie algebra. The diagonal entries are all 2, and the off-ala entries are non-positive
integers which are constrained in various ways. Analydmagé¢ constraints leads to the
celebrated Cartan-Killing classification of the finite-é&insional complex simple Lie al-
gebras. The allowed Cartan matrices may be convenienfiagied by exhibiting the cor-
responding graphs whose adjacency matrices are 2id’hese graphs are call&ynkin
diagramsand the complete list is given in Figure A.1. The restricti@mr given there
are assumed because of the isomorphism{&) = so (3) = sp (2), so (5) = sp (4), and
su(4) = so0(6), and the fact thato (2) = u (1) andso (4) = su(2) & su (2) are not simple.
A simple Lie algebra is said to lmply lacedf its Dynkin diagram is undirected.
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1 2 3 r 1 2 r—1 r

su(r+1) 50(2r +1)
oo o —o *—o— - )
(r=1) (r=3)
r—1
1 2 r—1 r 1 2 r—2
sp (2r) -~ o .. -~ o ... s0(2r)
(r=2) (r=>4)
6 r
1 2 4 5 1 2 3 4
€6 ° oo [ S— fa
3
7
1 2 I 4 5 6 1 2
€7 ° o o o « > g2
3
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1 2 I 4 5 6 7
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3

FIGURE A.1. The Dynkin diagrams of the simple complex Lie algebras,
labelled by their compact real forms. The numbers indidageotdering of
the nodes (hence simple roots) used in this thesis, and twsaalways
point from a long root to a short root.

Note that the rows of the Cartan matrix therefore consisthef Dynkin labels of
the simple roots. It follows that dét= |P/Q|. Similarly, one can consider theym-
metrised Cartan matrix A whose rows are the Dynkin labels of the simple coroots.
Thus, deA’ = |[P/QV|. Since the dual of the coroot lattice is the weight lattites in-
verse of the symmetrised Cartan matrix is the matrix whoseesnarer; = (/\i,/\j).
This is sometimes called tlguadratic form matrix Some other useful data is collected
in Table A.1.

One can now tidy up a few details that will be used in the theBise normalisation
of the Killing form (the following argument appears ihld) given in Equation (A.1.1)
is determined by the normalisation of the root lengths:

2-(6,0)=k(6%,6") = idtr fad(6") ad(6")].
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g 6 h {ai} Exponents
h' {a'}
su(r+1) |[A1+Ar| r+1 {1,...,1} {1,2,...,r}
s0(2r+1) A, 2r {1,2,...,2} (13,21}
(r>2) 2r—1 {1,2,...,2,1}
sp (2r) on, | ¥ {2,....21} 1,3,....2r— 1}
r+1 {1,...,1}
5o (2r) N | 2r—21] {1,2,...,21,1} | {13..,2r—3r—1}
(r=3)
¢ Ne 12 {1,2,3,2,1,2} {1,4,5,7,8,11}
¢7 A 18 | {2,3,4,3,2,1,2} {1,5,7,9,11,13,17}
es A 30 |{2,3,4,56,4,2,3} | {1,7,11,13,17,19,23, 29}
f4 A 12 {2,3,4,2} {1,5,7,11}
9 (2,3,2,1}
6 (2,3}
g2 AV] ’ 1,5
4 {2,1} 9

TABLE A.1l. The highest root, Coxeter and dual Coxeter number, snark
and comarks, and exponents for the simple complex Lie adgaltabelled

by their compact real forms). For the simply laced algehitzes,Coxeter
number coincides with the dual Coxeter number, as do the sva# co-
marks. They are therefore not repeated.

The eigenvalues of d@") are 0 ont and(a,6") = (a,8) oneg. Itis not hard to show
that(a,8) € {0,1} foralla € A, \ {6}. Thus,

tr[ad(6")ad(6")] =2 $ (a,6)*=2

achy

at ) (“79>]:2[2+(2p,6)]:4hv.
aeh \{6}

It follows that the normalisation of the Killing form is gineby
lag= 2h". (A.1.3)

Equation (A.1.1) is a special case ofegpresentation independedefinition of the
Killing form. In this definition, the adjoint representati@ad is replaced by an arbitrary
representatiomt. This new form is again bilinear, symmetric, and assocdgtinence by
uniqueness must be a multiple of the Killing form:

1
K(xy) = =t my). (A.1.4)
T
The normalisation; is called theDynkin indexof the representatior, and may be eval-
uated with the help of thguadratic Casimir Q This is an element of thaniversal
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enveloping algebraf g, (g), defined most simply b = 5 ;tata Wwhere{ta} is an or-
thonormal basis of with respect to the Killing form. The quadratic Casimir conmes
(in ¢4 (g)) with every element of, and so in an irreducible representation it acts as a mul-
tiple of the identity. Indeed, iftis the irreducible representation of highest weight
then
m(Q)=(A,A+2p)id. (A.1.5)

Let dim(A) denote the dimension of the irreducible representatiorigifdst weight
A, and suppose thdt,} is an orthonormal basis gf with respect to the Killing form.
Then one has

dim(6) = 3 K (tate) = - 3 tr[1lta) m(ta)] = - r (@) = 1A 2IAME

a meg s |77
dim(A)
dim(6)"
Puttingrm= ad (soA = 0) recovers Equation (A.1.3).

As an example of how the Dynkin index may arise in calculajaonsider the sum
of the terms(A, i) (u,v), over all the weightgu of the irreducible representatiom of
highest weighi\. Using Equation (A.1.4), this evaluates to

T ) () = 5 () () =t [ () (7 v))]
f f

=1ak (172 )17 W) = 1:(A,v). (A.1.7)

= ln=(A,A+2p)

(A.1.6)

It remains to discuss the compact real foggemp of the complex Lie algebrg. This
is defined to be the real Lie algebra spanned by

{ia),i(eg+e q),€a—€q:i=12...r;ach}.

Noting that the corooter¥ may be used to normalise the root vectorddyy e o] = a",
the structure coefficients @fomp may be checked to be real. It also follows from this

normalisation that 5

K (€q,€p) = W6G+B707
and so—k (-,-) may be checked to be a (positive definite) inner produc§@mp With
respect to this inner product, &g is skew-symmetric for akk € gcomp by associativity,
hence has purely imaginary eigenvalues. The subalgéebrierefore acts as a Cartan
subalgebra fogcomp and its action decomposgsmp into the zero eigenspadez, and
a two-dimensional eigenspace for eaghe A, corresponding to the pair of complex
conjugate eigenvaluea and—ia.

A.2. Automorphisms of g

The automorphism groupput g of a simple complex Lie algebgaplays a vital role in
the theory. An important class of automorphisms is indugetthe group of symmetries of
the Dynkin diagram (equivalently, of the Cartan matrix).rartsformation of the “node”
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g Outg w w; (1,2,...,r)
su(r+1) (r > 2) Zy Sri1 (rr—1,...1)
so(2r+1) (r>2) | {id} Sr x Z, (1,2,....r)

sp(2r) (r > 1) {id} Sr x Z5 (1,2,...,r)
50(8) S3 Sy x 73 (1,2,...,r)
so(2r) (r=5,0dd)| Zp | SrxZy' [(L,2,...,r—2rr—1)

s0(2r) (r>6,even) Zp | SyxZy? (1,2,...,r)

6 Lo — (5,4,3,2,1,6)

e7 {id} — (1,2,3,4,5,6,7)

es {id} — (1,2,3,4,5,6,7,8)
fa {id} | Sgx SaxZ3 (1,2,3,4)

g2 {id} Des (1,2)

TABLE A.2. The group of outer automorphismaitg, the Weyl group
W (that ofe; is too complicated to list), and the action of the conjugatio
automorphismw, € Outg as a permutation of the nodes of the Dynkin
diagram.S,, denotes the symmetric group nelements, an®, = Z, x Zn
the dihedral group (symmetry group of arsided regular polygon). Note
thatOutsu (2) = Outsp (2) is trivial.

labels which leaves the diagram invariant gives a corredipgrpermutation of the simple
roots, and therefore of the simple coroots, root system,raatlvectors. Because the
Cartan matrix is invariant, theggynkin symmetrieact orthogonally on the weight space.
Another (complementary) class of automorphisms consfdtsose of the form

Ad(x)=ed¥: g g

(recall that the exponential of an endomorphism of a finiteeshsional vector space is
always definedJ05]). The subgroup oAut g that is generated by such automorphisms
is called the group oinner automorphismdntg. This is a normal subgroup, and the
corresponding quotient group turns out to be finite. It idexhthe group obuter auto-
morphismsOutg = Autg/ Intg, and turns out to be naturally isomorphic to the group of
Dynkin symmetries introduced above. This group is listecefachg in Table A.2.

The identification of the Dynkin symmetries with the outetcamorphisms leads to a
decomposition oAut g as asemidirect productA groupH is the semidirect product of
its subgroup¥ andN, writtenH = K x N, if H is generated b andN, N is normal, and
KNN = {id}. For then, normality means that any: H may be decomposed bs= kn=
n'k, wherek € K andn,n’ € N, and the trivial intersection means that these decompasiti
are uniqueH therefore has the structukex N as a set, with multiplication defined by

(ke n1) (ko,n2) = (kako, [ky tnaka] np) .
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It follows from this abstract definition th#tut g = Outg x Intg.

Recall that before decomposiggo define roots, one had tthoosea maximal toral
subalgebra. This arbitrariness does not cause any concern because ahtfortant
fact that any two maximal toral subalgebras are related bgdnjugateaction of some
automorphism. In fact, as Dynkin symmetries permute theatst they preserve any
chosen maximal toral subalgebra, so this conjugation mg@eldermed by an inner auto-
morphism. Choosing a particular maximal toral subalgelheaefore breaks much of the
Autg symmetry. What remains is the finite subgroup of automomkiwhich preserve
t. This subgroup, which will be denoted Byt g, obviously consists o®utg and the
subgroup of inner automorphisms which presettvéhe latter group is the famoiseyl
groupW. W is clearly a normal subgroup @éiut, g, so one hasut;g = Outg x W. The
form of W is listed in Table A.2.

The action of the Weyl group may be restrictedttorl his (restricted) group is gen-
erated by the elementsy; = Ad (eq,) Ad (—e_q;) Ad (€y;), Whose (dual) action off is
given by

wi(A)=A—(A,0)ai.
The action ofW thus restricts further to the weight spage Thew; are called theimple
Weyl reflectionsand they reflect about the hyperplane orthogonal to thelsinopt o;.
The properties ofV are legion:

e It preserves the root systefn More generally, it preserves the set of weights of
any finite-dimensional representationgof

e It contains a reflectiomy for eacha € A, which reflects about the hyperplane
orthogonal taa. Indeed, all reflections iV have this form.

e Removing these reflection hyperplanes fréindivides it into |W| congruent
open Weyl chamberahich are permuted by the action\of.

e It acts freely and transitively on the set of choices of semplots.

e Its elements act orthogonally @f.

e It admits a lengtt? (w), defined as the minimal number of simple Weyl reflec-
tions thatw can be decomposed into. Equivalently,

((w)y=|{a el :w(a)eA_}. (A.2.1)

e The determinant ofv € W, as a linear transformation ap, is given by detv =
(_1>4(W)_

e There is a unique (hence involutive) elemantof maximal length A,
thelongest elemerdf W.

, called

The closure (inty) of the open Weyl chambers is just calleth@yl chamberThe Weyl
chamber which contains the fundamental weights is refaoesd thefundamental Weyl
chamber It consists of the elements with non-negative Dynkin lapahd is mapped
to its geometric opposite (all Dynkin labels non-posititag)the longest element &W,
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w,. Elements of the fundamental Weyl chamber are said tddmeinant and the set of
weights in the fundamental Weyl chamber will be denotedhy

One important automorphism gfthat has not yet been mentioned is tDieevalley
automorphisnu, given by multiplication by—1 ont andwc (ey) = —e_q 0on the root
vectors. Obviouslywc € Autig. Given thatw; sends the fundamental chamber to the
chamber geometrically opposite, it is tempting to concltige the Chevalley automor-
phism coincides with the longest elementWdf However this is not true in general, as
is shown by the fact that there are representations whosghtgeare not invariant un-
der negation Thuswc need not be an element ¥. In fact, it decomposes under
Aut¢g = Outg x W into the producto, w. =w w,, wherew, € Outg is called thecon-
jugation automorphism

Upon restricting to the weight spagg, it follows that conjugation acts ag, = —w, .
The image of a weight underw, is called the weightonjugateto A, denoted by .
Similarly, if the set of weights of a representation{is}, then the representation with
weights{A "} is called theconjugate representatiofThe form ofcw, (restricted tat;) is
given in Table A.2.

A.3. Representations and Characters

Recall from Appendix A.1 that any finite-dimensional irrethle representation gf
possesses weights in the integral latfi;@nd that there is a unique highest weightn
terms of the triangular decompositign= g_ @ t& g, this means that the corresponding
(non-degenerate) eigenvectay of tis annihilated byy. |A) is called thehighest weight
vectorof the representation. This highest weight must be domjraartt conversely, any
dominant (integral) weight is the highest weight of someducible representation. The
finite-dimensional irreducible representations are tioeeein bijection with the set of
dominant (integral) weights.

WhenA € t; is not dominant integral, one can still construct an abstregresen-
tation of g with highest weightA by invoking the existence of a corresponding highest
weight vectorlA ), and lettingil(g_) act upon it freely. The abstract vectors thus obtained
span a vector space upon whiglacts (the action of andg., is obtained inductively by
commuting the action througtt(g_) until they act on the highest weight vector). As
i(g_) is an infinite-dimensional algebra, this vector space isinite-dimensionaj-
module of highest weight, called avVerma moduleln fact, one can even show that this
module is irreducible. The corresponding (infinite-dimenal) Verma module may be
constructed fod dominant integral in exactly the same manner. However,\thisna
module is no longer irreducible. It contains a unique maxipnaper submodule which
may be quotiented out from the Verma module to get the finigedsional irreducible
highest weight module discussed above.

3Wheng = su(3), the irreducible representation of highest weidhtrovides a simple example.
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These finite-dimensional irreducible highest weight medulrn out to beunitary,
meaning that one can equip them with an inner product (rereentdpthat these are com-
plex vector spaces) with respect to which the elements oté@mepact real form of
are represented by skew-symmetric matffcaad normalised by setting the norm of the
highest weight vector to 1. Referring back to Appendix AtIpllows that the elements
of tg will be represented by symmetric matrices, as will the corationse, +e_4 and
i(eg —e_q). This gives the following definition of thadjoint in a finite-dimensional
irreducible representation

T

n(oriv)T =m(a;’) and Ti(ey) =m(e_q). (A.3.1)

Note that on the real span of the root vectors gndhis adjoint coincides with the action
of —a, the opposite of the Chevalley automorphism (Appendix A&%)adjointing is an
antiautomorphism, it follows that this coincidence pédssis— ¢ is extended antilinearly
to all of g. This defines th€hevalley antiautomorphism:, and demonstrates the relation

n(x)'=mn(ac(x) forallxeg.

It turns out that when one tries to impose these adjoints en/drma modules cor-
responding to a dominant integral highest weight, evergnelg of the unique maximal
proper submodule ends up having zero norm. The situatioreis worse when the high-
est weight is not dominant integral, as then the (irredegibMerma module necessarily
contains elements of negative norm. It follows that theargihighest weight modules of
g are precisely the finite-dimensional irreducible ones.

A finite-dimensional representatianof g is uniquely determined, up to isomorphism,
by its set of weighté" (including multiplicities). These weights (with multigities) are
conveniently encoded in theharacterof 11, an element of the group ririg [eP] which is
given by

Xn= Z e,
penT
where the exponential is formal. The set of weights (withtiplitity) of the irreducible
representation of highest weightwill be denoted by\*, and the corresponding character
by x, . Since weights are functionals g which is canonically isomorphic g, one can
naturally define an action gf; on t by X (v) = zueAne(“”’). Note that the dimension
of the representation is given by dim= x,(0).

One particularly useful fact about characters is that thegly describe the tensor
product operation of representations. Given two represiemnis 7 : g — EndV; and
5 g — EndV,, one defines the tensor produst® % : g — End (V1 ® V) by

(M) (X) (Vi®V2) = [T (X) V1] @ Vo + V1 ® [TB (X) V2] .

AAfter exponentiating, the elements of the correspondingpact group would be represented by unitary
matrices. This is the case of interest in this thesis. Othen{compact) simple Lie groups correspond to
other real forms ofj, and therefore other definitions of unitarity.
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Along with the direct sum operation, the tensor product @sfia ring structure on the
set of (finite-dimensional) representationsgopfcalled therepresentation ringpf g. The
set of weights of the tensor product is then the sum over & gd weights, one from
mm and the other fronme. It follows from familiar properties of the exponential tithe
corresponding characters behave multiplicative{y;om = XmXm. The mapri— X
therefore gives an injective homomorphism from the reprg®n ring into the group
rng Z [eP] The image of this ring, sometimes called tt@racter ring is then isomor-
phic to the representation ring. It turns out to be a free pofyial ringZ [ x1, X2, - - -, Xr|
on the characterg; = xa, of the irreducible representations of highest weigyht

Since the set of weights of a finite-dimensional represemtas invariant under the
Weyl groupW, it follows that the characters avé-invariant functions ory:

1
Xn(W(v)) = glHw(v)) _ Wi w.v) _ V) = yr(v).

It is very important that there is a converse to this ratheralrcomputation. Everyv-
invariant element o7, [ep] may be expressed as a linear combination of charactersghenc
as a polynomial in the charactexs. That is, theW-invariants inZ [eP] are precisely
the elements of the character ring. Furthermore, the elemai-invariant underW
(meaning they are invariant und&r= W up to the sign det) are precisely these invariant
elements multiplied by thprimitive anti-invariant element

u (e“/z—e"’/z) —e (1-e ).
aEh,

aely

One can easily give an explicit formula for the character &eama module. The
generators ofj_ are the negative root vectoes 5, and these act freely on the highest
weight vector|A) to give a basis of the module. One only needs to keep a track of
the number of times each negative root vector acts to spduifye basis vectors, and
these numbers are completely unrestricted. The charddtee ¥erma module of highest
weightA is therefore just

Verma —a —2a e/\+p

xyerma— e a|e'|A+ (1+e%+e®+..) = P Toca (1)’
which is to be understood as a formal power series irethéOne notes that the denomi-
nator coincides with the primitive anti-invariant element

WhenA is dominantintegral, one would like a similar explicit egpsion for the char-

acter of the irreducible representation of highest weighRRecalling that such characters
are invariant undew, an inspired guess might be to antisymmetrise the numevatbe
corresponding Verma module character. This guess is Bnéiceurate and leads to the
Weyl character formula

(A.3.2)

L Suwdew @il 3y, detw e P
- _

— = ) A.3.3
[Maea, (ea/z - eia/z) > wew detw ev(p) ( )
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The second equality follows by applying the first form of theracter formula to the
trivial representation of highest weight 0. By evaluatihgstcharacter formula @p and
taking the limitag — 0, one deduced/eyl’s dimension formulir the dimension din )
of the irreducible representation of highest weight

dm() = ] %. (A.3.4)

Repeating this exercise for the formal derivative@f(itp) at O (as a function o) yields
the so-called “strange formula”
hVdimg
12
The expression, Equation (A.3.3), does not itself requnieg the weighiA be domi-
nant integral. Of course, for other weights the correspaogtiighest weight representa-
tions are infinite-dimensional, and Weyl's character folardoes not apply. Nevertheless,
it is sometimes useful to extend the notion of a charactell totagral weightsA € P by
using this formula. When this is done, one finds that no nevaratiers” are discovered
because of the identity

ol = (A.3.5)

Xw(r+p)—p = detw x;.
If A +p is on the boundary of a Weyl chamber, then it is fixed by somecagfinw € W,
so the corresponding character vanishes. Otherwise, ihares takingA + p into the
(open) fundamental Weyl chamber, so the correspondingcteris (up to a sign) equal
to the character of an irreducible representation. Whaction suggested by this identity,
however, is often found whenever the character formulal{erdimension formula) is
being used. It is known as tishifted actiorof W, denoted thus:

W-A =wW(A+p)—p.

One often therefore talks abaghiftedreflections shiftedWeyl chambers, and so on. For
example, the above “character” identity may be interpreednti-invariance ok — x,
under the shifted Weyl action:

Xwar =detw x;,. (A.3.6)



APPENDIX B

Untwisted Affine Lie Algebras

The affineLie algebras form a special class of thac-Moodyalgebras (discovered
independently by Kac and Moody), which includes the finiteehsional simple Lie al-
gebras discussed in Appendix A. In this thesis, onlyuthevistedaffine Lie algebras will
be needed. Despite being infinite-dimensional, their thhéosurprisingly analogous to
the finite-dimensional case. Indeed, each untwisted affiaealgebra corresponds to a
unique finite-dimensional simple Lie algebra from which #yrbe constructed. The no-
tation introduced in Appendix A will therefore be used witthaomment in this appendix.
The classic reference for affine Lie algebrasd9][ and other treatments may be found
in [15,16,61,67,69,120.

B.1. Basics

Given a finite-dimensional simple Lie algebgaa concrete realisation of the corre-
sponding untwisted affine Lie algebgamay be constructed as follows. One motivation
for this construction comes from quantum field theory. Figeneralise the generators
of g to formal Laurent polynomials with coefficients in This gives thdoop algebra
g®C [t,t71], whose Lie bracket is defined by

xethyet™ =[xy ot™ "

Whent is interpreted as the coordinate on a circle, this beconeséh of maps from
the circle tog (g-valuedfieldson the circle), hence the name. Note that the power of
induces dZ-grading on the loop algebra. As noted in Section 2.1.1, wlheamntising a
classical system with such a symmetry, one may extend thengyim algebra by a central
extension. There is a unique (up to isomorphism) non-tregatral extension, given by

X@t" y@t" = Xy @t™ "+ ndhimok (X,Y) K,

whereK is the adjoined central element, akd-, -) is the Killing form of g.

This centrally extended Lie algebra suffices for many apgibims. It has an abelian
subalgebra of ad-diagonalisable elememis® ® span{K } with respect to which one may
decompose into root spaces. However, it suffers from theleno that the corresponding
roots do not depend on the powet pnd are therefore infinitely degenerate. This may be
circumvented by introducing a further elemégtwhich commutes with the abelian sub-
algebra, but whose eigenvalues in the adjoint representtdke into account the power
of t (also called thgrade. This is most conveniently achieved by defininglag) to be

159
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the derivatioh —td/dt of C [t,t_l]. One therefore (finally) gets thentwisted affine Lie
algebra

g=g®C[t,tY] @span{K,Lo},
whose Lie bracket is given by

x@t" y@t" =[x,y @t™ " +Nndhimok (X,Y)K and [Lo,x®t"] = —nx®t". (B.1.1)

The original Lie algebra is embedded ifg as thehorizontal subalgebra © t°.

With this embedding, th€artan subalgebras defined to be that of the horizontal
subalgebra, augmented by the central element and the tieniva = t @ span{K,Lo}.
The adjoint action of this abelian subalgebra may now be tsettcomposg. Since
K is central, adK) = 0, so theroots may be expressed as the trigle= (A,0,n) of
eigenvalues of ad), ad(K), and—ad(Lo). In fact, theroot systenhas the form

A={(a,0,n): a €A nez}uU{(0,0,n): neZ\{0}}.

Those of the formd = (a,0,n) correspond to the (non-degenerate)t vector g ®t",
and those of the forra = (0,0, n) correspond tea®t" (and so are-fold degenerate). The
former are said to beeal roots, and the lattamaginary. The primitive imaginary root
(0,0,1) is denoted bﬁ. Note that affine Lie algebras have no highest root.

As affine Lie algebras are infinite-dimensional, the Killimgm cannot be defined as
a trace (Equation (A.1.1)). However, one can extend thangjlform on the horizontal
subalgebra to a bilinear symmetric fowi{-, -) ong. Demanding associativity gives

K(xot"yot™) =Kk (X,Y) dumo, K (x@t",K) =0, K(x®t"Lo) =0,
K (K,K)=0, K(K,Lo)=-1, and K(Lo,Lo)=0.

Thisextended Killing forrmay be checked to be non-degenerate, and it restricts to-a non
degenerate form on the Cartan subalgebra too. It thereftse¢d an (non-degenerate)
symmetric bilinear form on theveight spac@jﬁi. Writing elements of this space as a triple
A= (A,ky,n,) of eigenvalues of, K, and —Lg (in some representation), this bilinear
form is given by

(A7) = o) + kg + kumy.
Note that the imaginary affine roots have zero length witpeesto this form.

The rootsd; = (ai,0,0) (i = 1,2,...,r) do not generate the root syste_‘AXnAny basis
of the root system must include a root at non-zero grade. dbisenient to include the
lowestroot of grade 1,0p = (—6,0,1), in the basis okimple rootsas this definition
preserves the property that no difference of simple roosrisot. Note that| GOHZ =2.
The marksof g are now defined by the decompositiSn: yi_oa0i. Obviously,ag =1
and fori # 0, thea; coincide with the marks gf. The simple roots partitioﬁ into positive

The sign in this definition is only necessary so thamay be identified with the zero-mode of the Virasoro
algebra (Section 3.1.2). Note that one could redeffipdy adding an arbitrary multiple df, without
affecting its desired properties, but then it would not cade with its Virasoro counterpart.
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FIGURE B.1. The Dynkin diagrams of the untwisted affine Lie algepras
labelled through the compact real forms of their horizost#balgebras.
The numbers indicate the ordering of the nodes (hence sirapts) used

in this thesis, and the arrows always point from a long ro@t short root.
The white node is the (new) affine node, labelled O.

andnegative roots

A, ={(a,0,0): a €A, }U{(a,0,n): n>0}U{(0,0,n): n>0}.

Affine Lie algebras therefore admit@angular decompositiorg = g_ ®t® g, extend-
ing that ofg.

The real roots define correspondicmyootsas in the case of finite-dimensional simple
Lie algebras. The same is not true for the imaginary rootbeg lhave zero length. The
Cartan matrixis given again b)A\ij = <ai,ay>, and completely characterisgsas an
(r+1) x (r + 1) matrix. TheDynkin diagramof g is defined as before, and the complete
list (for untwisted affine Lie algebras) is given in FigurelB.

The fundamental weightare defined to be the elements dual to the simple coroots.

Because th&-eigenvalue of the roots must always vanish,thg-eigenvalue (grade) of
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the fundamental weights cannot be determfndtimay be (arbitrarily) chosen to be 0.
The fundamental weights are thus

No=(0,1,00 and A= (A,a’,0) fori=1,2,...,r.

The sum of these fundamental weights is #ftne Weyl vectop = (p,h",0). Sincedg
is a long root, the zeroth comarkag = ap = 1. Hence</A\i,K> =a’, and thecomarks
of g are the coefficients in the decompositién= ¥;a/a;".

The Dynkin labelsare defined as befora, = zi)\i/A\i. The zeroth Dynkin label of
A= (A,k,0) may therefore be conveniently expressed as

do=k—(A,0). (B.1.2)

TheK-eigenvalue of a weight is called thevel Note that the fundamental weights do not
form a basis of the weight spaﬁg. One has to add the elemehto complete the basis.
However, as the grade of the fundamental weights is indéberte it is often harmless to
ignore this additional element.

B.2. Automorphisms ofg
Every simple roofi; of g gives rise to a reflectiod; on the weight spacg, by
Wi (X) —A- <X,ay>ai.

Thesesimple Weyl reflectionkeave fixed the hyperplane orthogonaldg and together
generate thaffine Weyl group/A\/ of g. Analogously to Appendix A.2, there is a similar
Weyl reflectionw; for eachreal rootd. In constrast, every element of preserves each
imaginaryroot ng, and has no effect on the levé{eigenvalue).

Writing A= (A,k,n) anda = (a,0,m), the action ofv; becomes

In particular,
Wo (A,k,n) = (wg (A)+kOB,k,n—Ag) and W (A,k,n)=(w;(A),kn) wheni=# 0.

One notices that the induced action on the weight space ohdhnieontal algebra is
affing being a translation by an element of the coroot lat@cefollowed by a (finite)
Weyl reflection. This translation may be isolated by formthg combinatiort,,v =
W(a,0,0W(a,0,m Which acts by

tmav (A,k,n) = ()\ +kit (ma”),k,n—(A,ma") — %kK (mav,mav)) .

The translationgtq/: ¥ € Q'} in fact form a normal subgroup oW, isomorphic to
QY. The subgroup otV generated by th@j; fori = 1,2,...,r is clearly isomorphic to

2This reflects the fact thaty may be redefined ds + aK for anya without changing the Lie bracket.
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W, and has trivial intersection with the subgroup of transteg. The decomposition
Wia,0m) = W(a7070)fmav then shows that the affine Weyl group has the semidirect ptodu
structure

W=WxQV.
Note thatW is an infinite group.

As in Appendix A.2, the affine Weyl group acts orthogonallytbe (affine) weight
space?;ﬁi. Removing the hyperplanes orthogonal to the real rootsitimmﬁ?i into an
infinite number of congruerpen affine Weyl chambeandich are permuted by the action
of W. The closures are thedfine Weyl chamberand thundamental affine Weyl chamber
is distinguished by consisting of tl®minantelements (those with non-negative Dynkin
labels).

It is frequently the case that when working with untwistefinaf Lie algebras, the
relevant representations all share the same leveinder these circumstances, a weight
A ETE‘R is completely determined (up to harmless factoré))by its projection onto the
weight spacet, of the horizontal subalgebra. The leweprojection of theW-action is
given by the semidirect product structure:

W(A) =w(A) + kg,

for some (uniquejv € W andg¥ € QV. The level projection of the affine Weyl group is
sometimes denoted @k when thek-dependence is to be emphasised. The projection of
the fundamental affine Weyl chamber is given by the inegealit

Ao=k—(A,8)>0 and Ai>0 fori # 0.

That is,A must be dominarand (A, 8) < k.

The projection of the fundamental affine Weyl chamber isdftee a compact subset
of tg, and is accordingly referred to as thendamental affingor Wey) alcove The
set of integral weights (of) contained in the levet fundamental affine alcove will be
denoted by3k. The fundamental affine alcove is a simplex with vertices@kay /&’ for
i=12,...,r.

More generally, the reflection hyperplane orthogonal taéaroot(a, 0, m) projects
(at levelk) onto the hyperplanéA,a) = —mk The set of these projected reflection hy-
perplanes therefore form a grid, of a size specifie#,wyhich divides the Weyl chambers
of t; into congruentffine alcovegwhich are permuted by th@/k-action). An element
A €t is thus a vertex of an affine alcove if and only A, a) € KZ for all a in a subset of
A, which spansthe weight spacé;. Equivalently, before projecting, the corresponding
elements offé{ must be orthogonal to a subsetfni which, when augmented bS/ spans
the root space (the level 0 subspace of the weight space).

One also must mention trehiftedaction of W. This is defined analogously to the
W case:W- A = W(X +ﬁ> — p. The levelk projection of this action o, may then be
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determined from
W- (A,k,n) =W (A +p,k+h",n)—(p,h",0)

= (W(A+p),k+h",n) —(p,h",0)
(0 a0 - (A +pd) -5 (k1) K 07.) ).
giving
W-A =w-A+(k+h")q", (B.2.1)
for somew ¢ W andq” € QY. Note the level shifk — k-+h".

As in Appendix A.2, the symmetries of the Dynkin diagramgoinduce automor-
phisms of the root system. The marks and comarks are intasizter thesedynkin
symmetrieshence they leave the primitive imaginary raband the central elemeit
invariant. Such automorphisms uniquely extend to alfoénd preserve (leaving Lo
invariant). They also act orthogonally on the weight spa&ethey permute the funda-
mental weights\;, they also preserve the fundamental affine Weyl chamber lfande
the fundamental affine alcove). The (non-trivial) Dynkinrsyetries are therefore outer
automorphisms (and are never elementd/ofn contrast to the claims 06[L,126q). The
group of Dynkin symmetries af will be denoted byOutg, and the form of these groups
is listed in Table B.1. Note that there is a (generally nommad) subgroup isomorphic to

Out g, consisting of those Dynkin symmetries which preserve #re node.

Consider the (projected levk) action of an automorphisi@ € Outg on the vertices
of the fundamental affine alcove (which is preserved by thior). Before projection,
these vertices correspond to the elemdxﬁtSaiV e?;f{{, i=0,1,...,r, and the vertex la-
belled byi is clearly orthogonal to the simple rodfs, j # i (which with 5 span the root
space). Define a transformation of the lekaslubspace oAn‘jf{{ by

Q(X) =a(3)+k(Ro—Aag) =@ (A +k(Rg 10 —Ro)).
This preserveklA\o, so after projection will preserve the origin.

The aim is now to show th& maps the other verticekss’A\i/aiv (i # 0) to vertices of
some otheanffine alcove. Consider therefore the simple rawidor j #i. By orthogo-

nality,
A\ o~ A~ ~
(Q (al_vl> 7‘*’(“1’)) = (a,_vl +No-1(0) —/\o,aj> = 0-1(0),j — %j-

When & fixes the affine node 0, this vanishes for pl¢ i. In general, one defines the
rootsf; = @ (0j) — (5@71(0)7]- — 501-) 9, and notes that

<Q (%) ,B,-) =0 forallj#i.
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</\1: 2/\1 = /\5>
e7 Z> Z2 {id} Z>
(Ne)
eg {id} {id} {id} {id}
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TABLE B.1. The group®utg, Q*/QY, P/Q*, andP/Q" for each un-
twisted affine Lie algebrg and its horizontal subalgebga Presentations
of the quotient groups in terms of fundamental weights ase given (that
of P/QY is only given if it differs from both other quotient group$), de-
notes the symmetric group anelements, an®, = Z, x Z, the dihedral
group (symmetry group of amsided regular polygon).

The roots ﬁ . ] #i¢ are therefore orthogonal to the images of the fundamerfiakaf
j

alcove vertices undé®. Furthermore, when augmented w/&\hthis set of roots spans the
same subspace as the §@(Qj) : j #i}U {6} which is the whole root space. Ths

maps the fundamental affine alcove vertices to other affir@valvertices.
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Now project onto the weight space of the horizontal subakyeBs noted above
now preserves the origin. In fad®, acts onty, by

Zl)“ A (1 8a0), )/\a,(o).

If @(0) =0, then this reduces @ (A) = 3{_1A515/Ai = @(A), andw acts (linearly)
as a Dynkin symmetry of. Whend (0) # O,

Q()\) = )\0/\@(0) + )\a)fl(i) Z )\A ; )\ 9) @(0)>
i;élaf)(o) i£@(0)
by Equation (B.1.2), so it can be seen that in this c@salso actdinearly on .
It follows from these two facts th& maps the fundamental Wegthamberto another
Weyl chamber, linearly, and therefore is an element of thglWeoup of g, possibly
composed with a Dynkin symmetry gf That is,Q € Aut;g. The levelk projected action

of @ € Outg ontj, is thus given by
w(A)=Q(A)+kAg0) for someQ € Autyg, (B.2.2)

where it is understood thay = 0. SinceAut g = Outg x W, one can decompo<e
uniquely asow or W w, wherew € Outg andw,w € W. The Weyl group element might
depend on the ordering, but its determinant does not. Thé&méant may be computed
[57], and turns out to be

detw = (—1)2(Ma0P) (B.2.3)

One therefore has the unique decompositioa: th, ww, wherety, is translation by

kA (i = @(0)). Using the normality ofV in Aut g, one can check that the subgrovipf
Outg corresponding toev = id is normal. That is,

Outg = Outgx V.

The structure of the subgroypis not difficult to guess. The node (0) determines the
translation uniquely, and this determines the Weyl chamidech the fundamental one
is mapped to, hence the Weyl element. The fundamental V\g-)'ig;glg) therefore may be
used to label the elements\éfthe weight O then labels the identity'dJ. Note thatag )

is always a long root, so the corresponding fundamentalwgilgelong to the dual root
lattice Q*. Now, Outﬁﬂ\/AV = {id}, so translations by (non-trivial) elements@f cannot
correspond to Dynkin symmetries @f This suggests the structure

V=QH/QY.

That this is indeed correct may be seen by defining a map ¥omOutg which
associates to eadd = tp,w € V, the clasgAi] € Q*/Q". The class associated with the
productd’ @ is then[w(Ay) + Aj]. One can check (inductively) that As € Q*, w(Ay) =

Aiv (modQY), and so this map is a group homomorphism. It is clearly ihjectand
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surjectivity is most easily checked by comparing the ord¥ts= |Outg|/|Outg| and
|Q*/QV|. These orders can be determined from Table A.2 and Table B.1.

Finally, consider the grouputg x W. Both components are themselves semidirect
products, so an arbitrary element of this group may be utygqlecomposed as

(ta, W) (W) = tepw (W),

wherety, is translation by\; € Q* (mod Q"), w € Outg, w,w € W, tyv is translation by
q” € Q¥, andty is translation by somg® € Q*. It is easily checked that this gives

Outg x W = Aut g x Q*.

In other words, the Dynkin symmetries which are induced leysyymmetries of the hor-
izontal subalgebra augmewt to Aut g, whereas the purely affine symmetries augment
the coroot lattice translations to translations by elemehthe dual root lattice.

B.3. Representations, Characters, and Modularity

As in Appendix A.3, the triangular decompositign=g_ ¢t ® g defineshighest
weightrepresentations to be those of the fatity_ ) ’)\ > where‘)\> iS an eigenvector

of  (of eigenvaluel € t¥) which is annihilated by the action @t . If £1(g_) acts freely
on ‘X> then one has théerma modulef highest weighA. As before, a Verma module
has a unique proper maximal submodule (which may®g, and quotienting out this
submodule gives the (unique) irreducible highest weighduh® of highest weighi.

Recall that a sesquilinear form could be defined on a reptaisem of g so that the
adjoint operation was given by the action of the Chevalleyjaatomorphismawe (Ap-
pendix A.3). This antiautomorphism swapped the nilpoterttatggebrag— and g, of
the triangular decomposition @f. The Chevalley antiautomorphism of the horizontal
subalgebra may be extended to an antiautomorphismon g by

e (xot") =wc(x)@t™",  ac(K)=K, and  &c(Lo) =Lo.

This now swap$_ andg,, and defines the adjoint of an elementgofin an arbitrary
highest weight representation) to be its image underAs before, the sesquilinear form
defined by this adjoint (and normalised by setting the norrhefhighest weight vector
to 1) is not usually positive-definite.

The weights of a highest weight representatiofy tfave the form\ — S1_omiai for
some non-negative integars, where) is the highest weight. The corresponding weight
spaces are all finite-dimensional. The most important adéh$sghest weight represen-
tations are those which satisfy an additional finitenessicaimt, that the weight system
contains no infinite subset of the forfpi, 4 — @i, I — 20, ...}. Such representations are
said to bantegrable

This is quite a restrictive requirement. In fact, the in&ddle highest weight represen-
tations are precisely the irreducible highest weight repngations with dominant integral
highest weight. Thus, if the highest weighﬁis: (A,k,0), thenA is in the fundamental



168 B. UNTWISTED AFFINE LIE ALGEBRAS

Weyl chamber ofj, andAg = k— (A, 0) is a non-negative integer. It follows that the level
k must be a non-negative integer, ahdanust belong to the fundamental affine alcove (at
level k), ﬁk. At each levek, there are therefore only a finite number of integrable rsghe
weight representations.

The importance of these representations lies in the fattlles are only irreducible
highest weight representations which amatary, meaning the sesquilinear form con-
structed above is positive-definite. In other words, theys#igsear form on a Verma
module is positive-semidefinite if and only if the highesigie is dominant integral, and
the maximal proper submodule then coincides with the elésnehzero norm. If this
highest weight state of the Verma modul Xs>, then this maximal proper submodule is
in fact generated by the action ffg_) on the states

it

—Qj

3 . Ao+1
)\> i=12,...,r), and ¢ A 3

—do

3)=driaa ),

Denoting the set of weights (with multiplicity) of the intedple highest weight rep-
resentation of highest weigﬁt = (A,k,0) by A}, one can define the character of this
representation to be

chy = Z et
fen
This is a formal power series in the (formal exponentialsjhaf fundamental weights.
This character is invariant under the affine Weyl gr(ﬁlpand may alternatively be ex-
pressed (analogously to Equation (A.3.3)) in the forms
h > e detw eW<A +§> > e detw ew<)‘ +§>
i " 96|_|863+ (1_e,a)multa - ZWG\/A\/detW i)
where mul@ is the multiplicity of the rootar (1 for real rootsr for imaginary roots).
These formulae are known as té&eyl-Kac character formula

Again, characters may be evaluated at elements of the weighie?f@. When the
character is restricted to multiples Af, then it is said to bepecialised This will be
denoted by

chy* (q) = ch; (—Zmr/A\o> =3 miiLo) — tr; g0,
pen

whereq = €T, and the trace is over the integrable highest weight reptater?’ of g of

highest weighﬁ.

The semidirect product structu = W x QV may be used to decompose e
sums in the character formula into (finite) sums o¥eand (infinite) sums oveR". The
infinite sums over translations I8y turn out to givegeneralised theta functionsp to a
multiplicative factor. These in turn have nice transforimaproperties under th@odular

3The superscriptBic” (for Virasoro) signifies that this specialisation only acnts for the eigenvalues of
the Virasoro modég and therefore corresponds to the character ofghizodule as a representation of the
Virasoro algebra.
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groupSL (2;Z). Taking out the multiplicative factors defines thermalisedcharacters,

IA+pl” el _ (A,A+2p)  kdimg

2(k+hv) 2nv 2(k+hv)  24(k+hv)’
wherem, is themodular anomalyand the last equality uses the strange formula, Equa-
tion (A.3.5). The specialisation of these normalised cttara is then just

X3 (a) =tr; g™,

Of all these affine characters, it is only these specialisednalised characters which
will be (explicitly) used in this thesfs

The normalised characters (specialised or otherwise)eointiegrable highest weight
representations are then ratios of finite sums (&Vgof generalised theta functions, and
therefore might be expected to have nice modular properfléss is indeed the case.
The modular grousL (2;Z) is generated by elemenisandt which act on the levek
normalised characters by

% (80 -1/nh+E7/21) = 5 SiuRa(E.T.h),
pePy

and  X; (&, T+Lh) = 3 TXa(é,1.h),
HePy

X; =€ ™%h:, where my =

respectively. The coefficients in each case therefore totesmatrices, unimaginatively
called the modulaB-matrix andT-matrix (respectively). Th& -matrix turns out to be
diagonal, with eigenvalues™ | and theS-matrix is given by thé&ac-Petersorformula,

s _ {10+ ]
P/ (k)
The groups?/Q" are given in Table B.1.

Both theSandT-matrices turn out to be symmetric (under transposiwthoutcon-
jugation) and unitary. $ sendsx (&,1,h) to x5 (—&,1,h). On the weight space of
g, —1 coincides with the Chevalley automorphisog = w;w; (Appendix A.2), soW-
invariance of the characters givgs (—&,7,h) = X+ (£,7,h). Thatis,S” acts on the
integrable highest weight characters by conjugation.

W(A+p).&y) _ _opHTP
WeZ/\/detw el whereé, 2mk+ g

4n Chapter 3, the modular anomaly will be recognisedhas= h, — c/24, whereh, is thelLo-eigenvalue
of the highest weight vect#v\> (Equation (3.1.21)) andis the central charge (Equation (3.1.15)). There,

the Virasoro modé g is identified with a multiple of the quadratic Casimir of thertzontal subalgebra,
removing the ambiguity in its definition, and thus any way ettisg its highest weight eigenvalue to 0. To
compare with this appendix, the-eigenvalue of every weight iA* must be reduced by, . This cancels
that factor in the modular anomaly, and so the specialiseshalised characters which will actually be used
in this thesis have the form

o Uir

X2 () = tr; gho—¢/24, (B.3.1)
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Considering the Kac-Peterson formula for= 0, and the two forms of the Weyl
character formula, Equation (A.3.3), one may write

i1A+]
- Z detw e(W(P)7fu)

\/|P/Q\/| (k+ hv) weW

2184
= - I] Sinw

VIP/QU kW) gea, — keth

Since 0< (a,p) < (a,u+p) < (6,u+p) <k+h' (asa e Ay andu € Py), it follows
thatSy, > 0. One may therefore consider the ratio

SOu:

S W(A+p), &)

s _ Suew detw o —Xa <—2m—“+€). (8.3.2)
SOH ZWGWdet\N e(W(P)vfu) k+h

This rather surprising relationship between the mod8iaratrix of g and the characters

of g is fundamental in the theory of fusion (Chapter 5).



APPENDIX C

Compact Lie Groups

In this appendix, some results from the theory of compactdraups will be pre-
sented. The groups of interest in this thesis are the (shopiyected) groups corre-
sponding to the compact real forms of the simple complex lgel@as discussed in
Appendix A. Accordingly, they are said to be simple. This slo®t quite follow the
usual definition in group theory, where a group is simple ifidgs no non-trivial nor-
mal subgroups. A Lie group is said to benpleif it possesses no non-triviabnnected,
closed normal subgroups. Some standard references for the tbéooynpact Lie groups
are [1,39,52,73].

In this thesis, use will be made of the topology of the undegynanifold of the com-
pact Lie group. In particular, certain basic facts regagdire homology and cohomology
of these Lie groups will be required, as will a rather moreeagive understanding of their
conjugacy classes. This is a classical subject which hejpete much of the early devel-
opments in algebraic topology, and has involved some of ib& nespected mathematical
luminaries of the twentieth century. However, it seems thate are few dedicated texts
treating this subject in any detail (one could mentiaag however), perhaps because
it has been subsumed under such mantles as Schubert tHeotizebry of spectral se-
quences, and algebraic geometry. Neverthel@is1B9 provide useful (if rather old)
introductions to this field. A rather nice recent refererscg 86.

C.1. Basics

Theadjointaction of a real Lie grouf on itself is given by conjugation: Alh)g =
hgh. Suppose now thaj: R — G is a (smooth) group homomorphism. Differentiat-
ing g at the identity then gives an elemanbf the tangent spacgq (G). Since AD(h)
is an (inner) automorphism, A)g is a smooth group homomorphism, and its de-
rivative at id is denoted by Ath)y. This defines theadjoint action of G on Tiq (G),
Ad: G — AutTig (G). Finally, differentiating Ad at the identity yields a map:afly (G) —
EndTiq (G), which defines thadjoint action of Tig (G) on itself. Putting[x,y] = ad(X)y
gives a Lie bracket ofig (G), which defines the Lie algebra 6f henceforth to be denoted
by g.

This then relates the Lie algebra to the Lie group. Givex ang = Tig (G), there is
a unique group homomorphisgy: R — G whose derivative at id i&. Theexponential
map exp:g — G may now be defined by exg) = ¢« (1). It coincides with the matrix
exponential whelt is the general linear groupL (n) (or one of its Lie subgroups). This
Is a smooth map, locally invertible at id and surjective wkies connected and compact,

171
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with the naturality property, f (exp(x)) = exp( f. (x)), wheref,: g — b is the derivative
at the identity of the group homomorphisim G — H. Applying this naturality to the
various adjoint actions gives

AD (h)exp(x) =exp(Ad(h)x)  and  Ad(exp(x))y= ey,

= exp(x)exp(y)exp(—x) = exp{Ad (exp(x))y} = exp(ead(x)y> . (C.1.2)

wheree* denotes the usual matrix exponentialerd g. This shows how conjugation on
G descends tg. A related result is thBaker-Campbell-Hausdoritlentity,

exp(x) exp(y) = exp(x—i—y—i— % (X, y] + %2 X, [%, Y]] + %2 XV],y]+.. ) ., (C.1.2

where “..” refers to higher order (nested) Lie bracketsa@indy. This identity expresses
the group multiplication in terms of the Lie bracket.

From here on, suppose thatis compact and connected (so the exponential map is
surjective). The counterpart of a maximal toral subalgéBatan subalgebra) @fis a
maximal torusn G. That is, a maximal toru$ has Lie algebrawhich is a maximal toral
subalgebra ofy. Every maximal torus turns out to be conjugate to any giveximal
torus, and every element Gfis contained in some maximal torus. A consequence of this
is that the centr& (G) must coincide with the intersection of all the maximal téitixed
maximal torusT is its own centraliser (by maximality), and its normali8(T) has finite
index overT. The quotient group of elements preservihdgunder AD), modulo those
which act trivially, is called th&Veyl groupV =N (T) /T.

Using Equation (C.1), one can check that the elemgnit exp(ey ) exp(—e_q) exp(ey)
satisfies

AD (ng)exp(x) = exp(x— (a,x)a"), (C.1.3)
for all x € t. The AD-action of the (coset represented hy)e W therefore corresponds
to the Weyl reflectiorw, ont.

For each simple Lie algebgathere is a unique compact, connectad)ply-connected
Lie groupG whose Lie algebra ig. Indeed, a semisimple compact connected Lie group
G is determined by its Lie algebra and ft.mdamental groupr (G). The compact, con-
nected, simply-connected simple Lie groups are:

e SU(r+ 1), thespecial unitary groups
e Sp(2r), thesymplectic groups
e Spin(n), thespin groupsand
e Eg, E7, Eg, F4, andG,, theexceptional (Lie) groups
The other compact connected Lie groups with a given simpdealgebra are obtained

by factoring out a subgroup of the centre, and this subgreagoies the fundamen-
tal group of the quotient. For example, tepecial orthogonal groupbave the form

These groups explain the names given to the simple Lie adgedord their untwisted affine extensions in
Appendices A and B
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SO (r) = Spin(r) /Z,. In a sense, the simply-connected group is the “largestthfarct
connected) group with this Lie algebra. It is further digtirshed by the fact thagv-
ery finite-dimensional representationof g (Appendix A.3) can be exponentiated to a
corresponding representation@f By naturality, exgx) is then represented &™),

The exponential map is locally invertible, hence its kelised discrete subset gf
Restricting tot, exp becomes a group homomorphism by Equation (C.1.2}ifigegas
an abelian group). The kernel of exp+— T is therefore a discrete subgrouptptalled
theintegral lattice Unless otherwise indicate@,will now refer to a compact, connected,
simply-connected, simple Lie group. In any (finite-dimemsil) representatiom, an
elementx of the integral lattice must satis§/™ = id. But the eigenvalues of(x) are
the weights(A,x), so it follows that(A,x) € 27iZ for all? weightsA. Thusx € 2mQY,
the coroot lattice. In fact, since every compact Lie group &é&aithful representation, the
integral lattice coincides with (a multiple of) the coroattice. That is,

kerexp= 2miQ".

Note that from Appendix A.1, Q" is contained in the compact real form. Note also that
the W-action on the group, Equation (C.1.3), is now seen to cpoed to an-action
on the algebra, wher@/; is the affine (or extended) Weyl group (at level 1) introduced
in Appendix B.2. An elemert € t (or its image under exp) is said to begular if it is
contained in the interior of an affine alcove (at level 1), amgyularotherwise.

Consider now the centre of the (simply-connected) Lie giouprom Equation (C.1)
it follows that exp(x) € Z(G) if and only if exp(y) = exp(ead(x)y> forally € g. Thus,

y= ey (mod 2mQ) for all y € g. The eigenvalues @& (on the complexification
g©) are just 1 an@{?*, for each rootr. Takingy to be the corresponding eigenvectors (of
varying length), it follows thak € 2rmiQ*, the dual root lattice. Converselyfe 2mQ*,
thene?d = id. Therefore,

exp(X) € Z(G) = X € 2mQ*.

The mapQ* — Z(G) given byx — exp(2mix) is then a group homomorphism (by
Equation (C.1.2)) with kerned". ThereforeZ (G) = Q*/Q". Referring back to Appen-
dix B.2, it follows that the centre o& may be identified with the subgroupappearing
in the decomposition dutg:

Outg=Outgx V=Outgx Z(G).

Multiplication by an element o (G) therefore corresponds to the action of an affine
outer automorphism on the weight space.
Similarly, one can consider the centraliggfexp(x)) of an arbitrary point exfx) €
G. Since the maximal tori coveg, there is no loss in generality in assuming tkat
t. By Equation (C.1), exfy) € Z(exp(x)) if and only if exp(y) = exp(ead(x)y). This

°The simply-connected hypothesis is necessary to ensurevbey representation gfexponentiates to a
representation o
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centraliser is a closed subgroup ®f hence is a Lie group in its own right. Replacing
y with ty and differentiating at = 0, one finds that the Lie algebra of this centraliser
3 (exp(x)) consists of thosg € g satisfyingy = e2®y. It is easy to see that

3(exp(x)) =tospan{i(eg +€e_q¢),6q —€_q: (A,X) € 2THZ}.

One simple consequence of this is that if épis singular,; (exp(x)) is strictly larger
thant, and there is a maximal torus containing both egpand the exponential of any
element iry (exp(x)) ©t. It follows that singular elements correspond to thoseltk&ing
to more than one maximal torus, and regular elements betoeggctly one.

It is a theorem of Steinberdlf9 that the centraliser of any element of a compact,
connected, simply-connected, simple Lie group is conmke@erd reductive)Z (exp(x))
is therefore connected and compact, hence determined bieitdgebra; (exp(x)) and
its fundamental group. The latter can be determined as tbenu of the integral lattice
of Z (exp(x)) by the coroot lattice oF (exp(x)). SinceZ (exp(x)) andG share the same
maximal torus and (suitably restricted) exponential mefollows that

Q\/
1 (Z(exp(x))) = Q-

Z(exp(x))
If the centraliser is semisimple, then it is completely detieed by its Lie algebra and
how its Lie algebra sits insidg. For general reductive centralisers, some ambiguity
remains. In any case, the abstract form of the centralidéegp(x)) will be invariant
under the action of an automorphismgbn x. The exponential map extends this by
invariance under translations i&y’, and the obvious invariance under multiplication by
an element of the centre & extends this further to translations ky. Summarising
then, the abstract form of the centralisér@xp(x)) is in fact invariant under the action
of the affine automorphism grouputg x W (Appendix B.2) orx.

The centraliserg (exp(x)) (with x in the fundamental affine alcoves) of the rank 2
Lie groups are shown in Figure C.1, up to some finite (redagtambiguities. When
x is regular, the centraliser is just the maximal torus. Nbtd for Sp (4), this corrects
a similar (incorrect) figure in19. Note also that there is a centraliser 165 whose
fundamental group is torsion.

C.2. A Little Topology

Before introducing the topological properties of Lie grewphich will be required
in Chapters 6 and 7, a few results from algebraic topology/belmentioned. It is also
convenient to introduce a few of the characteristic clagdesh will be encountered. This
section therefore serves as a guide to the topology thasisveed in this thesis. More
information may be found in29, 94, 144).

The standard notions of homotopy, homology, and cohomoldthye used through-
out without comment. As is often the case in physics, the Hogyois singular ho-
mology(with coefficients inZ), H. (X;Z), and the cohomology ideRham cohomology
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Su(3)

U(1)xSU(2)

SU(3)
Sp(4)
U(1)xSU(2)
U(1)?
U(L)xSU@) | U(1)? SU(2)xSU(2) U(1)xSU(2) U(1)xSU(2)
U(1)xSU(2)
Sp(4) G2

FIGURE C.1. The structures of the centraliset$exp(x)) for the Lie
groupsSU (3), Sp(4), andG,. The pointx € t may be restricted to the
fundamental alcove without any loss in generality. Note shignmetry
under the affine automorphisms (action of the centre). Niste that the
direct product in the reductive centralisers is to be imetgd topologi-
cally, as there is still some unresolved ambiguity conceyrithe group
structure. For examplé) (2) is homeomorphic tdJ (1) x SU (2), but they
are not isomorphic as groups (despite having isomorphi@lgebras) as
a computation of their centres shows.

H*(X;R). The boundary and coboundary operators will be denoted agd d respec-
tively. Elements of the integral conomology ring will geally be identified with their
image in deRham cohomology;” (X;Z) — H* (X;R) (when they are non-torsion). The
pairing ofM € Hp (X;Z) andw € HP (X;R) will be denoted byj, w.

The correspondingelative homology and cohomology will be useful in Section 6.3.
The relative homology oX with respect tor C X may be defined through the modified
boundary operator

OM=[aM]  (in X/Y).
It is denoted byH, (X,Y;Z). If the complex of forms orX is denoted byQ* (X), the
relative (deRham) cohomolody* (X,Y;R) is the cohomology of the compleP (X) &
QP~1(Y), p > 0, with respect to the coboundary operator

d(w,n) = (dw,w—dn).

The pairing is given by
/ (oo,n):/ w— n. (C.2.1)
M] M oM
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One long exact sequence which will be used isMegyer-Vietoris sequence for at-
taching n-cells An n-cell E, is just a closedh-dimensional disc, and it may be attached
to a space via f: dE, — X by forming

XUEp
X~ f(x)’
wherell denotes disjoint union, and identification. The homology oK and X Us Ej,
can be related by a Mayer-Vietoris long exact sequence wiiidsH,, (X Us En;Z) =
Hp(X;Z) whenp # n—1,n, and the exact sequence

XUf En:

0= Hn (X Z) — Hn (XUt E;Z) — Z -5 Hy_1 (X, Z) — Hn_1 (X Us En Z) — O,
(C.2.2)

Attaching am-cell therefore yields an injection of the degreleomology and a surjection
of the degreen— 1 homology.

Consider now the characteristic classes of a (finite-ranikjpiex vector bundler: E —
M over a smooth manifolt¥l. These are classeslkii (M; A) (with some coefficient group
A) which help to characterise the bundle. The most fundarhehtaese are th€hern
classes These may be defined in several ways (&8 for seven!), of which one is
through a connection oB. Any connectiorn’] defines a curvaturgy which is a closed
2-form onM taking values irEnd E. Thetotal Chern clasz (E) may now be defined as

. 1
c(E)= det<|d —EF,\) ,

or rather, its image im* (M;R). The total Chern class (in the cohomology ring) turns
out to be independent of the connection used. The homogereoaponent of ¢E) of
degree 2 is called thej" Chern class oE, and is denoted by;¢E). These classes are
actually integral cohomology classes.

WhenE is a complex vector bundle of ramk the top Chern class,¢E) € H"(M; Z)
coincides with theeuler classe(E) of the realification o (obtained by treating as a
real vector bundle of rank). The Euler class is so named because the Euler class of the
tangent bundle o is given by theEuler characteristic

/Me(T(M)) =X (M) = 3 (~1)PdimHP (M;R).
p
This demonstrates directly the integrality of the top Cheass.

Given a rankn complex vector bundler: E — M over a smooth manifold, there
exists a manifoldS (E) and a smooth map: & (E) — M such that *E is a direct sum
of n line bundles ove® (E), andi*: H*(M;R) — H* (S (E);R) is injective. Thus, as
far as the cohomology ring is concerndsl behaves like a sum of line bundles. This
important fact is known as theplitting principle One consequence of this principle is
thatifLq,Lo,...,Ly denote the line bundles th&atsplits into, then

c( Il_! 1+c1(Li)).

=

'::3
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The j! Chern class of is therefore thej!™ elementary symmetric polynomial in the
ci1 (Lj). It follows that every symmetric polynomial (and power ssjiin the ¢(L;) may
be expressed in terms of the Chern classds, @f (E).

This makes it easy to define more general characteristisesasThe two (closely
related) symmetric power series

n Cl(Li)/Z and n Cl(Li)

i':! sinh(cy (Li) /2) I11-eab)
define power series in the (E) called theA-roof genudA (E) and theTodd classTd (E),
respectively. Note that T@E) = e*2(E)/2A (E). TheTodd polynomialdd; (E) are then
defined to be homogeneous components of degethe Todd class. The first few

are P9

(C.2.3)

Tdo(E) =1 Tdi (E) = %Cl(a
) 2 ] (C.2.4)
T (E) = [cu(E+2(E)]  Toy(E) = SsCL(E)C2(E).

C.3. The Topology of Lie Groups

Consider now the conjugacy classes (AD orbits) of a Lie grGuprhe conjugacy
class containing will be denoted bye (g). Since the element Alh)g = hgh™! € €(g)
is invariant under the transformatibn— hzfor anyz € Z (g), it follows that the map

———C€(9), hz(g)—— AD (h)g,

is well-defined. In fact, it is a homeomorphism betwe®fy) and G/Z(g). The Lie
algebra (g) of the centraliser of is clearly the subspace gfpreserved by Adg). Its
orthogonal complement (with respect to the Killing form)}le set of elements of the
formy — Ad(g)y, wherey € g. Right-translating this set tdy (G), it becomes the set
{yg—ay: y € g} which may be recognised as the tangent spaagtatthe conjugacy
classC(g). In this way, one gets the orthogonal splitting

Tg(G) =Tg(2(9)) ©Tg(C(g))-

It is a general fact158 that any closed subgroup of a Lie groupG defines dibre
bundlerr: G — G/Z with fibre Z. There is a long exact sequence in homotopy for fibre
bundles 9] which includes the sequence (assum@ig connected)

o — T (G) — m(G/Z) — m(Z) — 0.

WhenG is simply-connected’ (g) is connected for aly € G by a theorem of Steinberg
[149. The above sequence then demonstrates that the conjutzsses of a simply-
connected Lie group are themselves simply-conneate(® (g)) = 0.
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Similarly, the second homotopy group (G) always vanishes whe@ is a Lie group
[39], so one gets the exact sequence

0—m(G/Z) —m(Z) — m(G) — ---.

It follows that if G is simply-connectedrn (G/Z) = m (Z). In particular, whenG is
simply-connected, each conjugacy clégg) is too, so this result and the Hurewicz iso-
morphism 44 imply thatH, (C(g);Z) = (C(9)) = ™w(Z(g)). Figure C.1 indicates
that there is a centraliser & which has the forn{SU (2) x SU (2)) /Z2, hence its fun-
damental group i%.. It follows that the corresponding conjugacy class hasdarm its
homology, thus also in its conomology (by the universal toeht theorem 94]). That
is, there is @ € G, with

Ho(C(9);Z)=Z, and H3(C(9);Z)=Z"®Z,

(for somem > 0).

Finally, the third homotopy groups (G) is Z whenG is a (connected) simple Lie
group B8]. A compact, connected, simply-connected, simple Lie grGuherefore has
H3(G;Z) = H3(G;Z) = 8 (G) = Z.

For fibre bundles, the counterpart in (co)homology of the bimpy long exact se-
quence is the spectral sequence of Leray (88e98]) which turns out to be extremely
powerful. For exampleSU (r +1) /SU(r) = S+ (the & 4 1-dimensional sphere) de-
fines a fibre bundle whose spectral sequence yields an easstiveproof that the coho-
mology ring ofSU (r + 1) is an exterior algebra:

H* (SU (r+l)’Z) :/\Z [837357"'7SQI'+1]7

where the generatoss have degreé. A similar result is true for the symplectic groups
Sp (2r), but the other (compact, connected, simply-connected)lsitrie groups have tor-
sion in their conomology ring2fl]. However, the real cohomology rings of these groups
are always exterior algebras — this is Hopf's theorem — amdnilimber of generators
(excluding the unit) coincides with the rank of the group.e3& generators necessarily
have odd degreen + 1, and the integemy, i = 1,2,...,r coincide with theexponents

of g (listed in Table A.1).

To apply a spectral sequence, one needs an appropriateegfuGiZ as well as
(co)homological information about this quotient and theugrZ. One of the first general
results giving detailed information about the cohomoloyaoclass of) these quotients
was obtained by BottZ6]. His proof, surprisingly, was obtained through an apgiaa
of Morse theory 113 114].

THEOREM C.1. LetG be a compact, connected, simply-connected, simple Ligogrou
and letZ be the centraliser of aon-trivial torus in G. Then, the (co)homology &f/Z
has no elements of odd degree and no torsion. WhenT is a maximal torus o6, then
there is a bijection between the set of generators of the mahagy ring and the Weyl
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groupW, such that the degree of the generators is twice the lengtheoforresponding
Weyl transformation.

There is a simple proof whed = T [136. Choosex regular and define a Morse
functionM: G/T — R by

M(gT) = —k (Ad(g) X, X) .

By considering a generating set of vector fieldS®/T, one shows that the critical points
of this function are precisely the, T € N(T) /T = W, the Weyl group. The hessian
matrix of M is non-degenerate at these critical points, and a careflysis (using the
basis of the compact real form given in Appendix A.1) shovwat the eigenvalues are
precisely given by

(a, ) (wt(a),x), aeh,
wherew is the Weyl transformation corresponding to the criticahpao, T. The index of
the critical point (the number of negative eigenvalueshentgiven by

2[{aen:wa)en }|=2¢(wt)=20(w).

Morse theory now states th@f' T is homotopic to a complex built out of cells labelled
by thew € W, and whose dimension ig2w). The homology ofc/T now follows from
the Mayer-Vietoris sequence for attaching, Equation @,2and it is easily seen that the
even-dimensional nature of the cells implies that each W contributes a free factor
Z to the homology in degree/2w). Indeed, the closure of these cells forms a basis of
homology cycles. The cohomology now follows from Poincduglity (or the universal
coefficient theorem).

The 2-cells in this construction correspond to the simpleylVWeflectionsw;, i =
1,2,...,r. For eachi, the eigenvectors corresponding to the negative eigeesae
i(eq +€e_q ) andey, —e_g Which suggests that the homology 2-cycle$f should be
realised in th&U (2) subgroup of corresponding to the simple roat. In fact, Bott and
Samelson28] show that these homology 2-cycles may be taken to be a tmekional
conjugacy class of thesgl (2) subgroups (translated into the regular conjugacy class
homeomorphic t&/T).

The centraliser of any giveg € G obviously coincides with the centraliser of the
cyclic subgroup it generates. Indeed, since multiplicatgocontinuousZ (g) coincides
with the centraliser of thelosureof the cyclic subgroup it generates. Sirgbelongs to
some maximal toru$, it follows that the closure of the cyclic subgroup it gertesawill
be a (non-trivial) torusinlesssome power ofy is the identity (in which case the cyclic
subgroup will be finite). At the Lie algebra level, the cehser of exp(x) is then the
centraliser of a torus unless some integer multiple &f in the integral (coroot) lattice
QY. It seems logical to call suchrationaland all othersrrational, so irrational elements
have centralisers which are centralisers of tori.
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But, it was shown in Appendix A.1 th&@t(exp(x)) is completely determined by the set
of rootsa which satisfy(a,x) € 2miZ. It follows that unlesx is a vertex of some affine
alcove, there will be an irrational element arbitrarily sgotox which shares this same
set of roots, hence shares the same centraliser. Theréfese(x)) is the centraliser
of a torus unlesx is a vertex of an affine alcove. Indeed, it is easy to see thanwh
X is a vertex, it is necessarily rational, and the correspandentraliser cannot be the
centraliser of any torus is. This proves the following:

PROPOSITIONC.2. If G is a compact, connected, simply-connected, simple Ligpgrou
of rank r, then with exactly + 1 exceptions (corresponding to the vertices of the funda-
mental affine alcove), every centraliséfg) is the centraliser of some torus

COROLLARY C.3 (to Theorem C.1)If G is a compact, connected, simply-connected,
simple Lie group of rank r, then with at most r exceptions,dbbomology rings of the
conjugacy classes & have no odd degree elements and no torsion.

The vertex 0 (as with any vertex @) corresponds to a zero-dimensional conjugacy
class which certainly has no odd cohomology or torsion. Tthese are at most ex-
ceptions. It was remarked earlier that there is a (unique) conjugéessdnG, whose
homology and cohomology have torsion. This shows that therg@enuine counterexam-
ples to the common claim that conjugacy classes have nsietocohomology.

Whilst Bott's theorem gives a detailed understanding of ititegral cohomology
groups ofG/T, it does not directly aid the understanding of the ring strres (although
Morse theory can be used to determine this). The structutteeofohomology ring was
investigated, quite generally, by Borel who employed detbaproperties of the spectral
sequences of various fibre bundles that can be associatedwiven Lie groupG. It
is convenient at this stage to introduce an extremely elefgamalism with which one
can discuss cohomology in terms of Lie-theoretic data. Tdnwalism is nicest for the
quotientG/T and may be expressed through the following diagram of (ajtisomor-
phisms:

Ho (G/T;Z) —— Hy(T;Z)

| l

m(G/T) —— m(T) —— ker{exp:t—T} —— Q.
Here, T denotes the transgression (in the spectral sequence)h ughiollowed by the
isomorphism resulting from the facts that the first homolggyup is the abelianisation
of the fundamental group, and the fundamental group of a toeis already abelian.

3It was remarked at the end of Appendix C.1 that Figure C.lemtsra similar figure fobp (4) in [119.
The centralisers of the forif) (1) x SU (2)) /Z, given there do not, despite appearances, contradict Propo-
sition C.2 and thus Bott’s theorem, Theorem C.1. Inderd(U (1) x SU(2)) /Z) = Z, and in fact,
U(1) xSU(2)
Ly
Note that this centraliser ireductive not semisimple.

>~ U(2)22U(1) xSU(2).
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The other isomorphisms in the square are the Hurewicz ispinigm followed by the
isomorphism from the long exact sequence in homotopy.
Upon taking duals, one has the natural isomorphism

H?(G/T;Z) = Hom (H2(G/T;Z)) = (Q")" = P.

In other words, the second integral cohomologyGgfT (which is torsion free) can be
naturally associated with the weight lattice. The genesatd this cohomology then
correspond to the fundamental weigits(i = 1,2,...,r), and general elements of the
cohomology ring (which is even and torsion free) corresptandormal) polynomials in
the fundamental weights. In this formalism, Borel’'s famoesult on the cohomology of
G/Tis[19:

THEOREM C.4. Let G be a compact, connected, simply-connected, simple Ligpgrou
of rank r, andW be its Weyl group. Then thiationalcohomology ring o6 /T is generated
by the fundamental weights (and the unit) modulosh@variant polynomials of positive

degree. Specifically,
H* (G/T;Q) _ Q[/\la/i\]& cee ,/\r]
+ )
whered, is the ideal generated by thW¥-invariants of positive degree.
When the cohomology Gfhas no torsion, that i& = SU (r + 1) or Sp(2r), then the
result also holds over the integers.

(C.3.1)

If Z is a subgroup o6 with the same maximal torus, then Borel has generalised this
result toG/Z [19,22]. The result is that the rational cohomology is isomorpbig4/J., ,
whereJ? is the ring of invariants of the Weyl group @f(in Q [A1,/A\2,...,/\r]). Note that
T has no roots, hence its Weyl group is trivial dlo= Q[A1, Az, ..., Af].

Using Theorem C.4, the rational cohomology of a compacteoted, simply-connected,
simple Lie group can be computed in various wa3@ 136, though it will not be needed
in this thesis. The integral cohomology ring is much harderdmpute. In particular, the
form of this ring for the exceptional groups resisted attirkquite some time. Results
for these groups and the corresponding quotients with themad tori (exceptEg) can
be found in R0, 21,27,123 150, 157].

There is one further result that will be required in this the3his is a determination
of the characteristic classes for the tangent bundl& 6F. This tangent bundle is a
real vector bundle of rank di/T = 2|A. |, and may be considered a complex vector
bundle of ranKA |. Given this rank and the formalism of Equation (C.3.1), anked to
conjecture that the characteristic classes have somethiatig with the positive roots of
G. The relationship is made precise by a theorem of Borel anzeHruch £3):

THEOREM C.5. With the above formalism, the first Chern classes of the lume b
dles associated to(IG/T) under the splitting principle (Appendix C.2), are precisttie
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positive roots ofz. The total Chern class of(lG/T) is therefore given by

c(T(G/T)) = u (1+a).
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