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of workers (21–26). In all these analyses the entire surface
Many surfaces encountered in colloid science are formed by the was considered to be of the constant charge or constant

adsorption of surfactants or polymers on solid surfaces. Due to potential type. However, practical nonuniform surfaces, such
the formation of surface aggregates, the charge distributions of as those formed by adsorption, may clearly possess regions
such surfaces may be nonuniform. Furthermore, these surfaces are

with different electrostatic properties, due to the presence ofexpected to have regions with different electrostatic properties due
two or more different materials. Therefore, a model whichto the presence of two or more different materials. In this paper,
imposes the restriction that the surface is composed of mate-we propose a model consisting of periodically alternating regions
rials of only one type cannot be expected to display all theof constant potential and constant charge, in order to account for
characteristics of such surfaces. In this paper we considerthe possibility of different regions on the surface possessing differ-

ent electrostatic properties. Specifically, we consider the behavior a surface composed of regions with different electrostatic
of the far field effective electrostatic potential of this model surface properties. In particular, we consider a model surface con-
when it is immersed in an electrolyte, i.e., the potential associated sisting of periodically alternating regions of constant poten-
with the asymptotic exponential tail of the potential distribution tial and constant charge, which is immersed in an electrolyte.
in the electrolyte. In doing so, we find the previously unreported This model is the limiting case of a surface composed of
phenomenon that the effective potential is strongly dependent on regions which are charge regulating in nature but whose
the surface morphology and its associated length scale. Further-

quantitative properties vary spatially. The proposed modelmore, we find that there also exists the possibility that the constant
displays features which are not present in previous models,charge regions will be ‘‘invisible’’ to the potential distribution.
and as we shall discuss, gives an indication of what is to beThese results have direct implications for general nonuniform
expected from real nonuniform surfaces.charge regulating surfaces. q 1996 Academic Press, Inc.

We focus our attention on the far field effective potential
in the electrolyte, i.e., the potential associated with the as-
ymptotic exponential tail of the potential distribution farINTRODUCTION
from the surface. Schuhmann et al. (22) investigated the
dependence of the mean surface potential (which is identicalThe electrostatic potential distribution due to a uniformly
to the effective potential in the low potential limit) on surfacecharged surface has been extensively studied in many geom-
inhomogeneities of the constant charge type. They foundetries, ranging from flat plates to colloidal particles of arbi-
that for large surface potentials, the mean surface potentialtrary shape. However, many cases occur in practice which
is dependent on the surface morphology and its associatedviolate the fundamental assumption of a uniform surface
length scale. The leading order deviation of the mean poten-charge distribution. Such surfaces include those formed by
tial was found to scale with the square of the absolute differ-the adsorption of surfactants or polymers on solid surfaces.
ence in the surface potentials. However, in the limit of lowThese surfaces can display nonuniform charge distributions,
surface potentials, they found that the effective potential isdue to the formation of surface aggregates (1–20). The
independent of the length scale associated with the surfacedirect observation of these aggregates has until very recently
morphology, a result consistent with the analysis presented(19, 20) proven elusive, although their existence has been
in Ref. (21). This latter result is also true for nonuniformestablished by a considerable amount of indirect evidence
surfaces composed entirely of constant potential regions(1–17). Therefore, the need arises for the study of surfaces
(23–25). By conducting a detailed analysis of the presentwith nonuniform surface charge distributions. At this stage
model, which consists of regions with different electrostatic

we note that this problem has been addressed by a number
properties, we find that the effective potential is in fact
strongly dependent on the surface morphology and its associ-

1 To whom correspondence should be addressed. ated length scale. We emphasize that this behavior is found
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517EFFECTIVE POTENTIAL

where T is the period of the repeating regions of constant
potential and constant charge (see Fig. 1) , and ceff is the
effective potential. The effective potential ceff is the primary
quantity of interest in this study. Note that at smaller dis-
tances from the surface, i.e., z õ O(T ) , the potential distri-
bution will depend on both coordinates x and z (see Fig. 1) .
The regions z õ O(T ) and z ú O(T ) will henceforth be
referred to as the inner region and outer region, respectively.

We initially examine the asymptotic limits where the pe-
riod T is far greater and far smaller than the Debye length
k01 , for which simple analytic results can be derived. Spe-
cifically, we consider the limits of vanishingly small and
infinitely large ks , where the normalized period s Å T /2p.

Limit of Vanishing ks
FIG. 1. Schematic depiction of surface showing periodically alternating

For ks ! 1, the natural length scale for both coordinatesregions of constant potential and constant charge with boundary conditions,
coordinate system, and dimensions indicated. c and s refer to the potential x and z close to the surface is the periodicity of the strips.
and charge density respectively, e is the relative permittivity of the electro- Thus, we scale all lengths by s , and [1] becomes
lyte, k01 is the Debye length, Fp and Fc are constants, and the period T å
(a / b) .

ÇU
2c Å (ks)2c, [3]

where ÇU 2 is the Laplacian operator scaled by s . Clearly, inin the low potential limit, as we consider only the Debye–
the limit ks r 0, [3] reduces to Laplace’s equation, ÇU 2c ÅHuckel equation, although it is certainly expected to be pres-
0. Note that in the limit of vanishing ks , Laplace’s equationent for higher potentials as well (25). Furthermore, we find
is valid only at the surface.that regimes of surface properties exist in which the constant

We now examine the boundary conditions at the surface.charge regions will be ‘‘invisible’’ to the potential distribu-
From Gauss’ law, it is clear that the surface charge densitytion, and we discuss the implications of this finding.
ssurf is related to the potential by ssurf Å 0(e /4ps)Ìc /Ìz

V
,In the next section, we give a detailed statement of the

where e is the relative permittivity of the electrolyte solutionmodel and the assumptions implicit in our solution. This
and z

V
Å z /s (27). Therefore, in the limit of vanishing ks ,will be followed by a rigorous analysis of the model, with

it can be easily shown that the appropriate normalizedall details relegated to the Appendixes. Finally, a discussion
boundary condition in the constant charge region (see Fig.of the results and their implications shall be given.
1) is

MODEL
Ìc
Ìz

V

Z
z
V
Å0

Å 0. [4]
The model to be considered is a single plate (at z Å

0) consisting of periodically alternating strips of constant
potential and constant charge; see Fig. 1. The governing From Laplace’s equation and its associated boundary con-
equation for the potential distribution c in the electrolyte (z ditions, it is then clear that the potential distribution on theú 0) due to this surface, in the Debye–Huckel approxima- surface is constant and is simply given by the value of the
tion, is given by constant potential regions, i.e., cÉz

V
Å0 Å Fp . The asymptotic

expression for the effective potential in the limit of vanishing
Ç

2c Å k 2c, [1] ks directly follows:

ceff Å Fp , ks r 0. [5]where k01 is the Debye length. We note that for the present
model, the potential distribution decays uniformly and expo-

Limit of Infinite ksnentially at large distances from the surface. This asymptotic
behavior will be valid provided the distance from the surface In this limiting case, the regions of constant potential
is large in comparison to the length scale of the surface and constant charge behave independently from one another.
distribution. Therefore, we can immediately state that Therefore, their combined contribution to the effective po-

tential can be evaluated by considering the individual regions
separately and taking the weighted average of their resultingc(z) Ç ceff exp(0kz) , z ú O(T ) , [2]
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518 SADER, GUNNING, AND CHAN

potentials in accordance to their geometric ratios. From this
a(x

V
)cÉz

V
Å0 / b(x

V
)
Ìc
Ìz

V

Z
zVÅ0

Å 1, [9]we find

ceff Å
Fpa / Fcb

a / b
, ks r ` , [6]

where a(x
V
) and b(x

V
) are functions only of x

V
. For the present

model, these functions are nonzero only within the constant
potential and constant charge regions respectively (see Ap-where Fc Å 4ps /ek, s is the charge density in the constant
pendix 2 for details) .charge regions, and a , b are the geometric parameters de-

To evaluate the unknown coefficients Ak , we substitutefined in Fig. 1.
[8] into [9] and perform a Fourier analysis on the resultingComparing the asymptotic results [5, 6] , we see that the
equation. This results in a system of linear equations for theeffective potential ceff is in fact a function of ks , and thus
unknown coefficients Ak , which can be solved by standarda function of the length scale associated with the surface
techniques (28). By definition, the effective potential ismorphology. As we mentioned above, this is in direct con-
given by the mean surface potential. From [8], it is thentrast to a surface composed entirely of constant potential or
clear that the effective potential is simply the leading coeffi-constant charge regions, for which the effective potential is
cient A0 . From [7], the normalized function f (ks) may thenindependent of ks (see Appendix 1).
be evaluated:Using the inherent linearity of the problem, it is clear from

[5, 6] that the effective potential ceff may be normalized as

f (ks) Å a / b

b

A0 0 Fp

Fc 0 Fp

. [10]
ceff Å Fp /

b

a / b
(Fc 0 Fp) f (ks) , [7]

where f (ks) is independent of the surface potentials and Details of the method used to find the coefficient A0 and
charges and has the properties f (0) Å 0 and f (`) Å 1. Note hence the function f (ks) are given in Appendix 2. The nor-
that f (ks) will also be a function of the surface morphology malized function f (ks) and the potential distribution c can
through its dependence on the geometric parameters a and be found to a high precision using this method, the details
b . Due to its reduced parameter set, it will be advantageous of which are presented in Appendix 2.
to consider f (ks) instead of the effective potential ceff .

Matched Asymptotic Method
Evaluation for Finite ks

It is possible to obtain a simple yet accurate analytic ex-All that remains is the evaluation of the effective potential
pression for the normalized function f (ks) using a matchedceff for finite ks . This will be achieved by two independent
asymptotic analysis. The accuracy of this approach will bemethods, in order to confirm the validity of the above-men-
tested against the semianalytical method presented above,tioned asymptotic results and to check the accuracy of the final
which is capable of evaluating f (ks) to an arbitrary preci-results. These methods are (a) a semianalytical method which
sion. We shall now give a brief outline of the asymptoticinvolves some numerical computations and is capable of
analysis and the main results. Details of this method areachieving accurate results and (b) an approximate analytical
given in Appendixes 3 and 4.method based on a matched asymptotic approach. A brief out-

The essence of this method is to perform an asymptoticline of these two methods will now be given. Those readers
analysis for small and large ks , and then match the resultinginterested in their details are referred to Appendixes 2–4.
expressions to obtain an approximate analytical solution
which is valid for all ks . For small ks , a perturbation expan-Semianalytical Method
sion in terms of ks is performed on the governing Eq. [1]

The general solution to [1] is and its associated boundary conditions. This results in a
system of governing equations and boundary conditions
which are solved using conformal mapping techniques, toc(xV , z

V
) Å ∑

`

kÅ0

Akexp{0
√
1 / (k /ks)2 z

V
}cos kxV , [8]

obtain a series expansion for f (ks) valid for small ks . For
large ks , we use (a) the general solution to [1] given in [8] ,
and (b) the asymptotic result for infinite ks , from which wewhere x

V
Å x /s , z

V
Å kz (27), and Ak are unknown coefficients

which are to be determined by matching the boundary condi- find f (ks) Å 1 / O((ks)02) . A Padé approximant (29) is
then constructed from the asymptotic expressions for smalltions at the surface. We note that these boundary conditions

can be represented quite generally as a nonuniform regula- and large ks , to give a simple analytic expression which is
valid for all ks . The result has the formtion model
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519EFFECTIVE POTENTIAL

FIG. 3. Normalized function f (ks) defined in [7] obtained using the
semianalytical method for various geometric ratios of constant potential /
constant charge regions (see Fig. 1) . From left to right, a /T Å 0.1 (solid
line); a /T Å 0.25 (long dash line); a /T Å 0.5 (short-long dash line); a /
T Å 0.75 (dash line); a /T Å 0.9 (short dash line) .

FIG. 2. Plot of equipotential lines for the potential distribution c due is independent of x . It is this far field potential distribution
to a surface with pks Å kT /2 Å 1, a Å b , Fp Å 1, Fc Å 3, evaluated using which is under primary investigation in this paper. Note
the semianalytical method with N Å 300, where xV Å x /s and z

V
Å kz . ceff that the qualitative features displayed in Fig. 2 are generalÅ 1.35. From bottom to top, the equipotential lines are c Å 9.05 1 1001 ,

properties of the potential distribution.7.46 1 1001 , 5.61 1 1001 , 3.68 1 1001 , 1.97 1 1001 , 7.81 1 1002 , 1.99
In Fig. 3, we present results for the normalized function1 1002 , 2.64 1 1003 , 1.33 1 1004 . The normalized intervals [0p /2, p /

2] and [p /2, 3p /2] correspond to the constant potential and constant charge f (ks) as defined in [7] , which were obtained numerically
strips, respectively. using the semianalytical method detailed in the preceding

section and in Appendix 2. We note that f (ks) is independent
of the values of the surface potentials and charges but is
strongly dependent on the surface morphology and its associ-fapprox (ks) Å (a / b)g(ks)

b / (a / b)g(ks)
, [11]

ated length scale s . This dependence on the surface morphol-
ogy is to be expected, since in the limit a /T r 0 (correspond-

where ing to a uniform constant charge surface) f (ks) must ap-
proach unity for all finite ks , whereas for a /T r 1
(corresponding to a uniform constant potential surface)g(ks) Å lnS 2

1 0 uc
DF1 / ks

a

b
lnS 2

1 0 uc
DGks [12a]

f (ks) must approach zero for all finite ks , as is evident from
[7]. We also note in Fig. 3 that the function f (ks) behaves
as expected in the limits ks r 0 and ks r ` .

and In Fig. 4, we compare the results obtained using the ap-
proximate analytical expression [11] to those obtained using
the semianalytical method; the difference functionD f Å Eq.uc Å sinS b 0 a

b / a

p

2D . [12b]
[11] 0 Eq. [10] is presented. It is evident from Fig. 4 that
the approximate expression [11] is quite accurate, with errors

RESULTS AND DISCUSSION

We now examine the results of the analyses presented in
the preceding section and their implications. In Fig. 2, we
present a set of generic equipotential lines of c, for a specific
set of surface parameters, in order to display the properties
of the inner and outer regions of the potential distribution.
These results were obtained using the semianalytical method
presented in Appendix 2. From Fig. 2 it is clear that for z
õ O(T ) , corresponding to z

V
£ 2, there is a strong depen-

dence of the potential distribution on the spatial variable
x . However, for z ú O(T ) , corresponding to z

V
§ 2, this FIG. 4. Difference in approximate expression [11] to the result of the

dependence increasingly diminishes with increasing z , until semianalytical method, i.e., D f Å Eq. [11] 0 Eq. [10]. a /T Å 0.1 (solid
line); a /T Å 0.5 (short-long dash line); a /T Å 0.9 (short dash line) .at large distances from the surface the potential distribution
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520 SADER, GUNNING, AND CHAN

less than a few percent for the entire range of ks considered. to a surface with the same morphology but with a different
length scale.Furthermore, [11] also matches the asymptotic limits for

ks r 0 and ks r ` , as required.
Note that the asymptotic result [6] for the effective poten-

CONCLUSIONStial, in the infinite ks limit of this model, is identical to
that of a nonuniform surface composed entirely of constant
potential or constant charge regions (see Appendix 1). This Previous theoretical models of nonuniformly charged sur-
is to be expected, since (a) for all models the effective faces have considered the entire surface to be of the constant
potential is given by the mean surface potential, (b) for potential or the constant charge type. However, many non-
surfaces composed entirely of either constant potential or uniformly charged surfaces encountered in practice are ex-
constant charge regions, the effective potential is indepen- pected to possess regions with different electrostatic proper-
dent of ks (see Appendix 1), and (c) as far as the effective ties, due to the presence of two or more different materials.
potential is concerned, the present model is identical to the To examine the effect of these types of nonuniformities, we
surfaces discussed in (b) for the infinite ks limit, since the proposed a simple model consisting of a mixture of regions
individual regions behave independently of one another. of constant potential and constant charge. In so doing, we

The implications of these results are quite striking. We found that the effective potential is strongly dependent on
see that in the limit of vanishing ks , the constant charge the length scale associated with the surface morphology, a
regions are in fact invisible to the potential distribution. The phenomenon which (a) is not predicted by previous theoreti-
surface therefore behaves as a uniform constant potential cal models for nonuniform surfaces, and (b) should also
surface, with a surface potential equal to that of the constant be found in general nonuniform charge regulating surfaces.
potential regions, namely Fp . Note that this result is indepen- Furthermore, we found that in the limit of vanishingly small
dent of the surface morphology through its independence on ks , the constant charge regions are invisible to the potential
the geometric parameters a and b . As ks is increased, a distribution, irrespective of their fractional area of coverage.
monotonic increase in the importance of the constant charge This indicates the possibility that an adsorbed surfactant can
regions is observed, until the limit of infinite ks is attained, be invisible or have little effect on the electrostatic properties
where the constant potential and constant charge regions of the surface.
contribute proportionally to the effective potential according
to their geometric ratios. This is in direct contrast to surfaces

A1. APPENDIX 1composed entirely of constant potential (or charge) regions,
for which the effective potential is independent of ks and is
simply given by the area average of the individual strip In this appendix, we give the exact analytical expression
potentials, if they were taken in isolation (see Appendix 1). for the potential distribution due to a single plate composed

All features and phenomena found in the present one di- of (a) periodically alternating constant potential strips and
mensional strip model are also expected to be found when (b) periodically alternating constant charge strips, which is
generalized to a two dimensional surface distribution, since immersed in an electrolyte. The geometry of the plate is
the basic physical origin of these phenomena is identical in identical to that presented in Fig. 1, but the boundary condi-
both cases and is directly linked to the interaction between tions differ. In particular, for the constant potential type
the potential and charge determining properties of the sur- plate, the strips of width a and b have fixed potentials of F1
face. Also, we note that the present model is in fact an and F2 , respectively, whereas for the constant charge type
example of a nonuniform charge regulating surface and is plate, the strips of width a and b have fixed charge densities
simply a limiting case of the general problem, as is evident of s1 and s2 , respectively.
from [9]. Since a general nonuniform charge regulating sur- We begin by noting that the general solution to [1] is
face also allows such an interaction between its charge and
potential determining properties, it is expected that the phe-
nomena found for the present model should also be present

c(x
V
, z

V
) Å ∑

`

nÅ0

Cnexp{0
√
1 / (n /ks)2 z

V
}cos nx

V
, [A1-1]in all nonuniform charge regulating surfaces.

These results indicate the very interesting possibility that
a constant potential-like surface modified by the adsorption
of a surfactant will electrostatically behave in an identical where Cn are unknown coefficient to be determined, and x

V
Å

x /s , z
V
Å kz . The periodic boundary condition at the surface ismanner to the original surface, provided the length scale of

the surfactant distribution is far smaller than the Debye then expressed as a Fourier series. At the surface this series
must match that obtained using [A1-1]; this directly giveslength. Furthermore, these results indicate that the far field

electrostatic behavior of a surface with a given surface mor- the coefficients Cn . For the constant potential plate, we then
findphology and associated length scale, can be very different
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521EFFECTIVE POTENTIAL

To evaluate the unknown coefficients Ak , the infinite seriesCn

in [A2-1] is first truncated at some upper limit k Å N and
then substituted into [A2-2]. The resulting expression is
multiplied by cos nx

V
, where n Å 0, . . . , N , and integrated

Å

aF1 / bF2

a / b
, n Å 0

2(F1 0 F2)
np

sinSnp
a

a / bD , otherwise,
[A1-2] over one period of the surface, i.e., x

V
√ [0, 2p] . Use is

then made of the orthogonality properties of trigonometric
functions, from which a system of linear equations in the
unknowns Ak results. The solution of this system is

whereas for the constant charge type plate

A Å M01F , [A2-4]

Cn Å
4p
ek

√
1 / (n /ks)2

where A Å [A0 , A1 , . . . , AN]T is a column vector in the
unknown coefficients, F Å [2p, 0, 0, . . . , 0]T is a column
vector with only one nonzero element, and the elements of
the matrix M are given by

as1 / bs2

a / b
, n Å 0

2(s1 0 s2)
np

sinSnp
a

a / bD , otherwise.
[A1-3]

Mij Å F01
p IS i , j , 0 a

V

2
,

a
V

2D
Note that in both cases the effective potential, as given by
C0 , is independent of ks , a result which is well known for 0 F01

c IS i , j ,
aV
2

,
aV
2
/ bU D , [A2-5]

these types of surfaces (21–25).

A2. APPENDIX 2

where a
V
Å a /s , bU Å b /s and i , j Å 0, . . . , N . The function

In this appendix, we give the details of a semianalytical I( i , j , r , t) is given by
method of solution for the Debye–Huckel equation [1]. We
begin by noting that the general solution of [1] for the present

I( i , j , r , t)model is

c(x
V
, z

V
) Å ∑

`

kÅ0

Akexp{0
√
1 / (k /ks)2 z

V
}cos kx

V
, [A2-1]

where Ak are unknown coefficients to be determined, and xV Å

(sin[ t( i 0 j)] 0 sin[r( i 0 j)])
2( i 0 j)

/ (sin[ t( i / j)] 0 sin[r( i / j)])
2( i / j)

, i x j

t 0 r

2
/ sin(2ti) 0 sin(2ri)

4i
, i Å j x 0

t 0 r , i Å j Å 0.

Å x /s , z
V
Å kz . The boundary conditions at the surface in

the individual regions of the present model (see Fig. 1) are
then represented as a nonuniform regulation model,

[A2-6]a(xV )cÉzVÅ0 / b(xV )
Ìc
Ìz

V

Z
zVÅ0

Å 1, [A2-2]

The effective potential ceff is given by the leading coeffi-
where cient A0 . This result is substituted into [7] , from which the

final expression for the normalized function f (ks) directly
follows,

a(xV ) Å HF01
p , in constant potential regions

0, otherwise,
[A2-3a]

f (ks) Å a / b

b

A0 0 Fp

Fc 0 Fp

. [A2-7]

b(xV ) Å
0F01

c å 0 ek

4ps
, in constant charge regions

0, otherwise.
In the numerical evaluation of f (ks) , it was found that

approximately 300 terms in the expansion were required to
[A2-3b] attain a convergence of 0.1%.
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522 SADER, GUNNING, AND CHAN

whereas for the constant charge regions we have

s
V n å

Ìcn

Ìz
V

Z
zVÅ0

Å H0Fc , n Å 1

0, otherwise.
[A3-3b]

The solution in the region outside the boundary layer,
previously referred to as the outer region (see Fig. 5) , is
given by

c(z
V
) Å ceff exp(0ksz

V
) , [A3-4]

where

ceff Å ∑
`

nÅ0

(ks) nBn . [A3-5]

The coefficients Bn are yet to be determined and are indepen-FIG. 5. One period of surface displaying inner and outer regions. Gov-
erning equations (boxed), boundary conditions (unboxed). Origin of coor- dent of ks . [A3-5] accounts for the variation in the effective
dinate system is midway along A–B . potential with ks . Expanding [A3-4] in a power series in

ks , we find
A3. APPENDIX 3

c(z
V
) Å ∑

`

nÅ0

(ks) nVn(z
V
) , [A3-6]

In this appendix, we give the derivation of the approximate
analytical result [11]. We begin by considering the solution
for small but finite ks , i.e., ks ! 1. As was discussed above, where
the structure in the potential distribution with respect to x ,
is only observed for z õ O(T ) , e.g., see Fig. 2. For ks !

Vn(z
V
) Å ∑

n

mÅ0

(01)mz
V

m

m!
Bn0m . [A3-7]1, it is then clear that there exists a thin boundary layer next

to the surface where there is rapid x-variation in the potential.
Outside this boundary layer the potential is essentially only By solving [A3-2] in the inner region and matching the
a function of z . The graphical representation of this problem result to the solution in the outer region [A3-6], the effective
is given in Fig. 5. potential can be determined using [A3-5].

Within the boundary layer, previously referred to as the We now turn our attention to the solution in the inner
inner region (see Fig. 5) , the appropriate length scale for region. The general problem to be solved is illustrated in
both x and z is s . Therefore, we expand c in a power series Fig. 6. We begin by considering the zeroth order term c0 .
of ks ,

c(x
V
, z

V
) Å ∑

`

nÅ0

(ks) ncn(x
V
, z

V
) , [A3-1]

where x
V
Å x /s and z

V
Å z /s (27). We retain this scaling

for z throughout this appendix and its associated diagrams.
Substituting [A3-1] into [3] and the boundary conditions at
z Å 0, and equating terms of equal order results in the system
of equations for the unknowns cn

ÇU
2cn Å cn02 , n § 0, [A3-2]

where cn Å 0 if n õ 0. The associated boundary conditions
for the constant potential regions are

FIG. 6. Schematic definition of problem for the inner region. Governing
equation (boxed), boundary conditions (unboxed). Origin of coordinate

FU n å cnZ
z
V
Å0

Å HFp , n Å 0

0, otherwise,
[A3-3a] system is midway along A–B . Functions scaled by s are indicated with an

over bar. FU n and s
V n are defined in [A3-3a] and [A3-3b], respectively.

AID JCIS 4350 / 6g14$$$584 08-21-96 03:11:24 coida AP: Colloid



523EFFECTIVE POTENTIAL

Zeroth Order Term c0 Taking the asymptotic limit of [A3-12] as z
V
r ` , and match-

ing this to V1(z
V
) , we then find

It is clear from Fig. 6 that the solution to c0 is
c0(xV , z

V
) Å Fp . [A3-8]

B1 Å (Fp 0 Fc) lnS1 0 uc

2 D . [A3-14]

Equating [A3-8] and V0(z
V
) then gives

Second Order Term c2

B0 Å Fp , [A3-9]
The solution to c2 is evaluated in an analogous manner

to that for c1 , the difference being that we do not modify
which is the required asymptotic result [5] . the boundary conditions at z

V
Å 0, but instead modify the

boundary conditions at z
V
Å ` . We achieve this by defining

a function f2 such thatFirst Order Term c1

Due to complications in the boundary conditions, the solu-
f2 Å c2 0

Fpz
V

2

2
. [A3-15]tion of the first order term poses a greater challenge than

that of the zeroth order term. We note that the problem
for c1 is similar to the problem solved in Appendix 4, the

The governing equation for f2 is then found by substitutingdifferences being that (a) not all the boundary conditions at
[A3-15] into the governing equation for c2 , from which wez

V
Å 0 are zero, and (b) the lengths of the base lines at z

V
Å

find that f2 satisfies Laplace’s equation. We also see that0 are not identical.
the boundary conditions for f2 are identical to the problemTo eliminate the nonzero boundary condition along A–C
presented in Appendix 4.in Fig. 6, we define a function f1 such that

The length of the base A–B is again transformed to match
the length of the problem in Appendix 4, using the same

f1 Å c1 / FczV . [A3-10] linear transformation as specified in the solution of c1 .
Applying all the above transformations reduces the original
problem into that presented in Appendix 4. Using the resultThe governing equation for f1 is then found by substituting
in Appendix 4, we then find the required solution for c2 ,[A3-10] into the governing equation for c1 , from which we

find Laplace’s equation,

c2(x
V
, z

V
) Å Fpz

V

2

2
0 B1ImHsin01

ÇU
2f1 Å 0. [A3-11]

1 F2 sin(x
V
/ iz

V
) 0 1 0 uc

1 0 uc
GJ . [A3-16]The base length for the present problem can be made

identical to that in Appendix 4, by applying a linear transfor-
mation to map the interval [0(a / b) /4, (a / b) /4] to Taking the asymptotic limit of [A3-16] as z

V
r ` and match-

[0p /2, p /2] . Using all the above mentioned transforma- ing this to V2(z
V
) , we find

tions and solving for f1 , it can be easily shown using the
result of Appendix 4 that the solution to the first order term
is given by B2 Å (Fp 0 Fc) ln2S1 0 uc

2 D . [A3-17]

c1(x
V
, z

V
) Å 0FczV 0 (Fp 0 Fc)ImHsin01

Substituting [A3-9], [A3-14], and [A3-17] into [A3-5]
gives the effective potential correct to O((ks)2) . Substitut-
ing the resulting expression into [7] , we find that the normal-

1 F2 sin(x
V
/ iz

V
) 0 1 0 uc

1 0 uc
GJ , [A3-12] ized function f (ks) is

f (ks) Å 0 a / b

b
lnS1 0 uc

2 Dwhere

uc Å sinS b 0 a

b / a

p

2D . [A3-13] 1 F1 / ks lnS1 0 uc

2 DGks / O((ks)3) . [A3-18]
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FIG. 8. Conformal mapping of problem depicted in Fig. 7 using w Å
sin y , where w Å u / iv . Governing equation (boxed), boundary conditions
(unboxed). Origin of coordinate system is midway along A–B .

where y Å x / iz . This transforms the ‘‘potential well’’FIG. 7. Schematic definition of problem posed in Appendix 4. Govern-
ing equation (boxed), boundary conditions (unboxed). Origin of coordinate problem in Fig. 7 to that of a straight line, as depicted in
system is midway along A–B . xc Å sin01uc . Fig. 8. The interval C–B in Fig. 8 is further mapped to the

interval [01, 1] , using the linear transformation

With the solution for small ks evaluated, correct to
O((ks)2) , we turn our attention to the asymptotic solution wP Å

2w 0 1 0 uc

1 0 uc

. [A4-2]
for large ks . As discussed above, the asymptotic form of
f (ks) for large ks is

Applying the inverse mapping ŷ Å sin01ŵ to the resulting
problem gives Fig. 9. We note that in all the above transfor-

f (ks) Å 1 / OS 1
(ks)2D . [A3-19] mations and mappings, the boundary conditions remain un-

changed. Using this property, it is then clear that the solution
to the problem depicted in Fig. 9 is

Using the theory of Padé approximants (29), we now formu-
late an approximate analytical result, valid for all ks , from f Å 0a1Im{yP }. [A4-3]
the asymptotic forms of f (ks) for small and large ks . From
[A3-18] and [A3-19] we find Using [A4-2] and taking into account all the conformal

mappings and transformations used, it may then be easily
shown from [A4-3] that the required solution isfapprox (ks) Å (a / b)g(ks)

b / (a / b)g(ks)
, [A3-20]

where

g(ks)Å lnS 2
10 uc

DF1/ ks
a

b
lnS 2

10 uc
DGks . [A3-21]

A4. APPENDIX 4

In this Appendix, we give the solution to Laplace’s equa-
tion with the domain and boundary conditions depicted in
Fig. 7. This result is used in Appendix 3 in the evaluation
of [11]. The conformal mapping technique (30) lends itself
ideally to the solution of this problem since (a) the problem
is two dimensional and (b) the boundary conditions are
homogeneous. The most appropriate transformation for this

FIG. 9. Conformal mapping of problem depicted in Fig. 8 using ŷ Åproblem is the mapping
sin01 ŵ and the transformation [A4-2], where ŷ Å x̂ / iẑ . Governing
equation (boxed), boundary conditions (unboxed). Origin of coordinate
system is midway along C–B .w Å sin y , [A4-1]
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