
JOURNAL OF COLLOID AND INTERFACE SCIENCE 191, 357–371 (1997)
ARTICLE NO. CS974921

Electrophoretic Motion of Two Spherical Particles
with Thick Double Layers

Alexander A. Shugai,* Steven L. Carnie,* ,1 Derek Y. C. Chan,* and John L. Anderson†

*Department of Mathematics, University of Melbourne, Parkville 3052, Australia; and †Department of Chemical Engineering,
Carnegie-Mellon University, Pittsburgh, Pennsylvania

Received December 13, 1996; accepted April 8, 1997

Two sphere interactions were first explicitly dealt with by
The electrophoretic mobilities of two interacting spheres are reflections for identical spheres (3) and for dissimilar

calculated numerically for arbitrary values of the double-layer spheres (4) . These calculations were checked against exact
thickness. A general formula for the electrophoretic translational solutions in bispherical coordinates (5, 6) and boundary col-
and angular velocities of N interacting particles is derived for low-

location techniques, which can be extended to multiparticlezeta-potential conditions. The present calculation complements
interactions (7) . These calculations are reviewed in (8) .the well-studied case of thin double layers. The results are com-

Similar techniques can be used for the case of polarizedpared with recent reflection calculations and are used to compute
thin double layers where ka @ 1 butthe O (f ) contribution to the electrophoretic mobility of a suspen-

sion. Particle interactions can be significant for values of the scaled
particle radius ka £ 10. At ka Å 1 the O (f ) contribution can exp(eÉzizÉ/2kT )

ka
à O(1) ,

increase by a factor of 2–3 over its thin-double-layer value. The
precise values depend on the strength of the double-layer repul-
sions as determined by the particle size. Fluctuations in the electro- where z is the zeta potential of the particle, e is the protonic
phoretic velocity are also calculated but would appear to be limited charge, zi is the valence of ionic species i in the electrolyte, k
to about 10% of the mean velocity. The reflection results to order is the Boltzmann constant, and T is the temperature. Results
R06 , where R is the particle separation, are in good agreement have appeared for clusters of a few spherical particles (9) and
with the numerical results for the suspension mobility and fluctua- for both ordered and random clusters of up to 64 particles (10).
tions but higher order reflections produce worse results. Although

The chief conclusions of such studies are that particlethe effects of pair interactions are noticeable, the major result is
concentration has a relatively weak effect on electrophoreticthat pair interactions even for quite thick double layers are not
mobilities and that identical particles with thin double layerslarge. q 1997 Academic Press

feel no interaction (8) . The reason is that, for thin doubleKey Words: particle interactions; two sphere electrophoresis;
layers, the charge on the particle is canceled by the chargeelectrophoretic mobility; thick double layers.
in the double layer so there is no body force acting on the
fluid, unlike the sedimentation problem. The particle moves
due to a surface stress caused by the slip velocity boundary

1. INTRODUCTION condition. The net effect is that particles with separation R
feel interactions decaying as R03 instead of the long-range

Classical electrokinetic theory has been concerned largely R01 interactions present in sedimentation.
with the behavior of dilute suspensions or single particles All of this intuition relies on the thin-double-layer approx-
such as those observed in microelectrophoresis cells (1) . In imation, which is appropriate for colloidal suspensions under
this case, the standard electrokinetic equations need only be most conditions but is of less relevance to protein electropho-
solved outside a single particle. resis, for example. In this paper, we assess the effect of thick

The effect of particle interactions has been well studied double layers ( that is, double-layer thicknesses of the same
in the case of thin double layers, by which we mean ka @ order as the particle size) on particle interactions by numeri-
1, where a is the particle radius and k is the inverse Debye cal calculations. To keep the calculations feasible, we restrict
length of the electrolyte. We assume that our system is in the analysis to low zeta potentials, which is appropriate for
equilibrium with a reservoir of electrolyte which determines small particles or proteins. Our calculations are thus the two-
k. The actual determination of the appropriate value of k to sphere version of Henry’s result for a single sphere (1) ,
use for a given finite-volume system is not always easy (2).

U Å e0erz

h
f (ka)E0 , [1]

1 To whom correspondence should be addressed.
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358 SHUGAI ET AL.

where U is the sphere velocity, E0 is the applied electric 0li (ui 0 v) 0 zieÇc 0 kTÇ ln (ni ) Å 0 ,
field, e0 is the permittivity of the vacuum, er is the dielectric

where li is the drag coefficient of ionic species i .constant of the solvent, h is the viscosity, and Henry’s func-
tion f ( x) is given by With conditions that the electric field tends to the applied

field at infinity and the fluid and ionic velocities vanish at
infinity, the specification is completed by boundary condi-

f ( x) Å 2
3
/ 1

6
x 2ex(E3(x) 0 E5(x)) [2] tions at the surfaces,

and En(x) is the exponential integral

En(x) Å *
`

1

t0ne0xtdt . [3]

c Å z

or

nP rÇc Å 0 s

e0er

nP r(ui 0 v) Å 0

v Å v*,

In the next section we explain the technique we use to
calculate the particle mobilities. In Section 3 we present
results for the mobilities and compare them with recent re-
flection calculations on the same system. From the mobilities where s is the surface charge density of the particle and v*
we obtain the O(f) contribution to the electrophoretic mo- is the velocity of the particle surface, which is U / V 1 r
bility of a suspension in Section 4. Finally we calculate the for a particle translating with velocity U and rotating with
magnitude of fluctuations in the electrophoretic velocities in angular velocity V. n̂ is the unit normal directed into the
Section 5 and finish with discussion. fluid phase.

In the above equations, we have specified constant poten-
tial or constant charge boundary conditions but other, inter-2. METHOD OF CALCULATION
mediate, boundary conditions could be chosen. For the elec-
trophoresis of a uniform sphere, the electrical surface bound-The governing equations describing electrophoresis are
ary condition does not affect the electrophoretic velocityby now standard (1) . We do not consider embellishments
(11) but for the two-particle interactions treated here theto the simplest model such as Stern layer effects or surface
electrical surface boundary condition does matter, throughconduction.
the equilibrium charge density. We have also set the particleWe have the following:
dielectric constant ep to zero; i.e., we have neglected fields

1. Poisson’s equation describing the electrostatic poten- internal to the particle, which appears to be reasonable for
tial c and charge density r in the solution, the common case where ep ! er (12).

For the case of thin double layers, the above equations
simplify in that the charge density is zero outside a thin

Ç
2c(r) Å 0 1

e0er

r(r) ,
region surrounding each particle. Instead of solving Pois-
son’s equation and the Stokes equations with body force rE ,
one need only solve Laplace’s equation and the force-freewhere r(r) Å ( zkenk(r) and nk(r) is the number density
Stokes equations, albeit with slip velocity boundary condi-of ionic species k;
tions. The fact that we must retain the charge density from2. the quasistatic inhomogeneous Stokes equations de-
the diffuse double layer and the body force term precludesscribing the fluid flow,
techniques such as boundary collocation used in the work
cited above (7, 9, 10). We approach the problem in anotherhÇ2v 0 Çp Å 0rE
way—namely the method introduced by Teubner (13),

Çrv Å 0, adapted to the two-sphere case.
The main tool of Teubner’s approach for hydrodynamic

where p is the pressure, v is the fluid velocity field, and E force and torque calculations is a generalized reciprocal theo-
Å 0Çc; rem. For one particle in an unbounded viscous liquid it is

3. conservation laws for the ion densities, formulated as a relation,

Çr(niui ) Å 0, h* *
S

v *rsrdS / h* *
G

v *rXd 3r

where ui is the velocity of ionic species i ; and Å h *
S

vrs *rdS / h *
G

vrX *d 3r ,
4. force balance equations on the ionic species,
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359ELECTROPHORETIC MOTION OF TWO SPHERES

connecting the solutions of two systems of Stokes equations Here a Å 1, 2, . . . , N is a particle index, j Å 1, 2, 3
denotes the direction of each translation or rotation, andfor primed and unprimed variables,
xa

m is the mth component of ra . These flows have been
defined so as to express the hydrodynamic force and torquehÇ2v Å Çp / X , Çrv Å 0,
on particle a in a form suitable for the reciprocal theorem,

h*Ç 2v * Å Çp * / X *, Çrv * Å 0. Eq. [4] . Now we apply the reciprocal theorem, the primed
quantities referring to VU j

a and VUU j
a , and the unprimed ones

G is the exterior to a closed surface S . This reciprocal theo- to v at fixed a, j , to obtain
rem is valid assuming the quantities v *rs, vrs *, v*rX ,
vrX * vanish fast enough far from the particle.

FH
aj Å *

Sa

VU j
arsrdS Å ∑

N

lÅ1
*

Sl

VU j
arsrdSFor the same assumptions, the generalization to N particles

is straightforward and gives

Å h ∑
N

lÅ1
*

Sl

vrs
V

j
ardS / *

G

rVU j
arEd 3r [7]

h* ∑
N

iÅ1
*

Si

v *rsrdS / h* *
G

v *rXd 3r

TH
aj Å *

Sa

VUU j
arsrdS Å ∑

N

lÅ1
*

Sl

VUU j
arsrdS

Å h ∑
N

iÅ1
*

Si

vrs *rdS / h *
G

vrX *d 3r , [4]

Å h ∑
N

lÅ1
*

Sl

vrs
U
U

j
ardS / *

G

rVUU j
arEd 3r . [8]

where now G is the exterior to all particles, G Å
R 3"<N

iÅ1Vi . Here s
V

j
a and s

U
U

j
a are the stress tensors for VU j

a and VUU j
a . The

The force F and torque T on a particle a with surface Sa sums of the surface integrals on the right-hand side of Eqs.
consist of an electric term and a hydrodynamic term (in [7] and [8] do not depend on the field E since v is prescribed
what follows, all torques are with respect to the center of on the surface and s

V

j
a and s

U
U

j
a are purely hydrodynamic. Thus

the particle) . The electric part is they represent the force FH0 and torque TH0 that each particle
would experience if it moved at its electrophoretic velocity
U and angular velocity V and were neutral. These forces

FE
aÅ*

Sa

sE
rdS , TE

aÅ*
Sa

(r0 ra)1 (sE
rdS) , [5] are given in terms of the particle velocities through the grand

resistance matrix R [15]. Therefore we can rewrite the excess
hydrodynamic force and torque on the charged particle duewhere sE is the electrostatic stress tensor and ra is the posi-
to a body force in the Stokes equations astion of the center of particle a. Similarly, sH is the hydrody-

namic stress tensor and the hydrodynamic contribution is
FH

aj 0 FH0
aj Å *

G

rVU j
arEd 3r

FH
a Å*

Sa

sH
rdS , TH

a Å*
Sa

(r0 ra)1 (sH
rdS) . [6]

TH
aj 0 TH0

aj Å *
G

rVUU j
arEd 3r ,

Following Teubner we consider 6N hydrodynamic prob- where
lems corresponding to unit translations and rotations of each
particle in each direction in a liquid with unit viscosity. That
is, we define flow fields resulting from particle a being
translated with unit velocity in the j th direction (VU j

a) or
being rotated about its center with unit angular velocity about

FH01

FH02

:

FH0
N

TH01

TH02

:

TH0N

Å 0hR

U1

U2

:

UN

V1

V2

:

VN

.the j th axis (VUU j
a) , all other particles being fixed. They satisfy

the equations

Ç
2VU j

a Å ÇpV j
a , ÇrVU j

a Å 0,

VU j
akÉSl

Å djkdal , l Å 1, . . . , N , VU j
a r 0 r r ` ,

This can expressed in tensorial notation by defining the
hydrodynamic tensors,Ç

2VUU j
a Å Çp

U
U

j
a , ÇrVUU j

a Å 0,

VUU j
akÉSl

Å ejmk(xm 0 xa
m)dal , l Å 1, . . . , N , (TU a)k j Å VU j

ak

(TUU a)k j Å VUU j
ak ,VUU j

a r 0 r r ` .
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360 SHUGAI ET AL.

which are the velocity field generators for the ath particle
moving with translational velocity U and rotational velocity
V when all other particles are at rest:

Ç
2C Å 0

nP rÇCÉS Å 0

C r 0E0rr as r r `

E (1,0) Å 0ÇC.

[13]

v(r) Å TU a(r)rU / TUU a(r)rV .

Then the expressions for the excess hydrodynamic force and Other electrostatic boundary conditions can be applied—
torque become they only affect the conditions for the linearized Poisson–

Boltzmann equation.
The key point is, to this order in z , the ion flux equationsFH

a 0 FH0
a Å *

G

rTU T
arEd 3r [9]

and force balance equations do not enter so that the mobilit-
ies are independent of ionic drag coefficients. This is equiva-

TH
a 0 TH0

a Å *
G

rTUU T
arEd 3r , [10] lent to neglecting the so-called relaxation effect, just as in

Henry’s original work. In addition, the body force appearing
in the Stokes equation is now a known function of position,where AT denotes the transpose of A . This is the analogue
depending on purely electrostatic quantities.of Eq. [23] of Teubner (13).

The problem has been reduced to the following subpro-So far this is still formal because E and r depend on the
blems:motion. We now make approximations that partially uncou-

ple the flow field from the electric field and reduce the excess • calculate r (0,1) via the linearized Poisson–Boltzmann
hydrodynamic force and torque to known quantities. equation;

First, we consider only weak applied electric fields. This • calculate E (1,0) via the Laplace equation;
is a standard feature of electrokinetic theory and is a very • calculate the hydrodynamic tensors TV a and TUU a;
good approximation for the fields encountered in typical • calculate the hydrodynamic forces and torques FH0

a

experiments. Next, we consider only a low zeta potential of and TH0
a .

the particles ( the zeta potential z is taken to be the electro-
For the case of two spheres, all these problems have beenstatic potential at the surface where the hydrodynamic
solved.boundary conditions are applied) . This is done partly for

Since the Stokes equations appear with known body forceexpedience but also because the thick double layers of inter-
r (0,1)E (1,0) , the total force and torque acting on the ath parti-est here often correspond to small particles, typically with
cle arequite small zeta potentials. The procedure is then to expand

all quantities in a double perturbation series in E0 and z ,
keeping only linear terms. Fa Å FH

a / FE
a Å FH0

a / *
G

r (0,1)TU T
arE (1,0)d 3r

The result (see (14) for details) is that the governing
equations become

/ *
Sa

s (0,1)E (1,0)dS Å FH0
a / F xs

a [14]

hÇ2v (1,1) 0 Çp (1,1) Å 0r (0,1)E (1,0)

Çrv (1,1) Å 0,
J [11]

Ta Å TH
a / TE

a Å TH0
a / *

G

r (0,1)TUU T
arE (1,0)d 3r

/ *
Sa

s (0,1) (r 0 ra) 1 E (1,0)dS Å TH0
a / T xs

a , [15]where the superscripts denote the order in (E0 , z) of the
quantity. The charge density r (0,1) is the equilibrium charge
density calculated from the linearized Poisson–Boltzmann where s (0,1) is the surface charge density of the particles
equation calculated from the linearized Poisson–Boltzmann equation.

This equation is the analogue of Eq. [92] of Teubner, the
major difference being that it is no longer possible to convert
the electric force and torque on particle a to a volume inte-

Ç
2c Å k 2c

nP rÇcÉS Å 0
s

e0er

or cÉS Å z

r (0,1) Å 0e0erk
2c

[12] gral. The integrals in the expressions for the excess forces
and torques F xs

a , T xs
a do not depend on the actual motion of

the particles. If the particles are held fixed in a certain con-
figuration, the hydrodynamic forces and torques vanish but
the excess forces and torques survive—one can interpretand the field E (1,0) is the field around neutral particles in the

external field E0 these as just the (negative of) the forces and torques required
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361ELECTROPHORETIC MOTION OF TWO SPHERES

to keep the particles at rest in a given configuration for a the particle translational and rotational velocities show a
similar decoupling; e.g., a field parallel to the line of centersgiven applied electric field.

In the case of the electrophoresis of a group of N particles produces translational motion in the direction of the field.
The whole electrophoretic mobility tensor can then bethe total force and torque on each particle are equal to zero,

since we neglect particle inertia, written in terms of three scalars, two translational mobilities
and one rotational mobility.

Fa Å FH0
a / F xs

a Å 0
Ua Å [ma

\ dd / ma
⊥ (I 0 dd)]rE` [17]Ta Å TH0

a / T xs
a Å 0 .

Va Å ma
VE` 1 d [18]

The rest of the calculation follows that in (13). The expres-
sions for FH0

a , TH0
a are known from classical hydrodynamics These scalars are the equivalent of the quantities M (n ) , M (p ) ,

as linear functions of particle translational and rotational and N in the thin-double-layer case (9) , just with a different
velocities with coefficients which form the grand resistance choice of normalization. In general, they depend on separa-
matrix R (15, 16). tion R and the Debye length k01 , as well as on the particle

radii and zeta potentials.
We have performed calculations for size ratios a1 /a2 Å

0.5, 1, and 2 and potential ratios z1 /z2 in the range from 02
to /2. Qualitatively, the results are the same as for the thin-
double-layer case (5, 6) in that the small sphere is affected

FH01

FH02

:

FH0N

TH01

TH02

:

TH0N

Å 0hR

U1

U2

:

UN

V1

V2

:

VN

Å 0

F xs
1

F xs
2

:

F xs
N

T xs
1

T xs
2

:

T xs
N

[16] more than the larger particle and, for small separation, may
even change its direction of motion. Because our chief inter-
est here is in the suspension mobility, we do not pursue
systematic investigation of the case of unequal spheres here
but simply observe that the equations described above cater
for that case. Similarly, we do not pursue the investigation

The electrophoretic velocities of the particles can be obtained
of the rotational mobility (although we always calculate it

as a solution of this linear system. Formally, the inverse of
in what follows) but concentrate on the translational mobili-

the grand resistance matrix forms the grand (electrophoretic)
ties of equal-sized spheres.

mobility matrix. In principle, these equations provide a
Because of the linearity with respect to the zeta potential,

framework for the calculation of electrophoretic effects
the solution for any choice of zeta potentials on the two

among N particles. Because the underlying problems, both
particles can be written as a linear combination of the special

hydrodynamic and electrostatic, are only known for the case
cases:

of two spheres, we focus on this case.
• particles with identical zeta potential,

3. ELECTROPHORETIC MOBILITIES OF TWO SPHERES • particles with equal and opposite zeta potential.

From now on we consider only these special cases.We consider two spheres of radii a1 , a2 , zeta potentials
This leads to the choice of normalization for the transla-z1 , z2 , and center-to-center separation R .

tional mobilities,For the thin-double-layer case, there is no coupling be-
tween motion parallel and perpendicular to the line joining
the centers of the two spheres. The following argument es- Ua Å

e0erzaf (ka)
h

[m\dd / m⊥(I 0 dd)]rE` , [19]
tablishes the same decoupling for the present case of low
zeta potential and applied field.

From axial symmetry, it is clear that an electric field in where d is the unit vector in center–center direction, za is
the zeta potential of sphere a, and f (ka) is the Henry func-the direction of the line of centers can produce no torque

and a force only in the same direction. If the field is perpen- tion (see Eqs. [1] and [2]) . This equation defines the dimen-
sionless mobilities m\ and m⊥ for the special cases mentioneddicular to the line of centers the excess force from Eq. [14]

is in the same direction as the field, using the symmetry of above, which are functions solely of ka and R /a . The pair
mobilities will approach the isolated particle mobility m0 atthe integrands. Alternatively, reverse the direction of the

applied field and use the linearity in E (1,0) . In this case, a large separations—with this choice of normalization, m0 is
just equal to unity.torque on each particle is generated about an axis perpendic-

ular to both the field and the line of centers. Now using the The electric potential around neutral particles in an exter-
nal field (the solution to Eq. [13]) is known as an expansionsymmetry of the grand resistance matrix for axisymmetric

geometries such as the two-sphere case (16), it follows that in hyperbolic functions and Legendre polynomials in bi-
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362 SHUGAI ET AL.

spherical coordinates (3, 5, 6) . The coefficients in the expan- where z0 (s ) Å s / (ee0 (1 / ka ) /a ) is the potential of an
isolated spherical particle with given surface charge den-sion are obtained as a solution of a banded (six-diagonal)

linear system, which can be solved by a banded solver. Once sity s.
Linear regulation as a boundary condition which modelsthe potential is known, analytic differentiation and conver-

sion from bispherical to Cartesian coordinates produce the surface ionization is defined as s Å S 0 Kc (22, 23), where
the sign of the constant S is the same as the sign of the surfaceelectric field vector E (1,0) . The number of terms in the expan-

sion is chosen to achieve sufficient accuracy in the integra- charge when the particle is in isolation and the constant K
is always positive. For the two canonical cases, the mobilitiestion of the excess force.

The hydrodynamic flow for both perpendicular (17) and m\ , m⊥ are defined for this model as
parallel (18, 19) cases is known as an expansion in bispheri-
cal coordinates as well. The matrix for the perpendicular

U Å e0erz0(S , K) f (ka)
h

[m\dd / m⊥(I 0 dd)]rE` ,case now contains 24 diagonals, and Gauss elimination is
used to solve the linear system. The coefficients for the
Stokes’ stream function for the axisymmetric flow of the where z0 (S , K ) Å S / (K / e0er (1 / ka ) /a ) is the zeta
parallel case are given by explicit formulas. The flow fields potential of an isolated spherical particle with given con-
are found by analytical differentiation and conversion from stants S , K . The constant charge case results from the
bispherical coordinates to Cartesian. The hydrodynamic ten- choice K Å 0. The choice K Å e0erk is a special case
sors appearing in the excess force are then just the flow field ‘‘midway’’ between constant charge and constant poten-
recovered by choosing particular values for the motion of tial conditions (22) .
the spheres; e.g., one sphere moves with unit velocity in the Both surface and volume integrals are calculated numeri-
x direction, the other being held stationary. The elements of cally in bispherical coordinates using product integration
the grand resistance matrix can be written as combinations with composite closed Newton–Cotes 10-panel formulas.
of the flow coefficients for perpendicular and parallel cases The intervals are subdivided until suitable accuracy is
and so are easier to obtain than the flow field. achieved. In all there are 12 integrands, giving the compo-

The final piece of information required is the equilibrium nents in Cartesian coordinates of the forces and torques act-
charge density as given by the linearized Poisson–Boltz- ing on each sphere. The surface integral is invariably of
mann equation, Eq. [12]. opposite sign to the volume integral so care must be taken

For separations where there is no significant overlap of to ensure sufficient accuracy in the final result.
the double layers, the superposition approximation would be The mobilities ( translational and rotational velocities for
valid. The volume charge density is then just the sum of the each sphere) are then calculated from the linear system, Eq.
densities for isolated particles. The surface charge density [16]. A typical calculation takes from 70 s of CPU time (ka
is taken as the charge density of an isolated sphere. Taking Å 2) to 300 s (ka Å 10) on an IBM RISC6000 workstation
results for the double-layer force as a guide, this should be for R /a around 3. As R /a approaches 2, the computational
accurate for separations k(R 0 2a) ú 2 (12), i.e., R /a ú time increases appreciably.
2 / 2/ka . In Figs. 1–4, we show the dimensionless electrophoretic

For smaller separations, an accurate solution of the linear- mobilities of each sphere for the case of identical spheres
ized Poisson–Boltzmann equation must be used to calculate (z1 Å z2) as a function of dimensionless center-to-center
the double-layer charge density and surface charge density separation R /a for different values of ka . In this case, the
due to overlapping double layers. The linearized Poisson– mobilities of each sphere are the same so no relative motion
Boltzmann equation is not separable in bispherical coordi- is induced by particle interaction.
nates so we represent the solution as a multicenter expansion Several features are evident at this stage:
about each sphere. The coefficients can be found by a bound-
ary Galerkin method (20) or boundary collocation (21). 1. Unlike the case for thin double layers ka r ` (8) , the

results for finite ka show that the mobility of a pair ofThe double-layer charge density and surface charge densities
can then be calculated for various models of the surface, identical particles is affected by double-layer interactions.

The interaction is fairly weak at large values of ka (see Figs.such as constant potential, constant charge, or an intermedi-
ate model termed ‘‘linear regulation’’ by us (22). 3 and 4 for ka Å 10, 30 and note the scale change) but

becomes more significant at low values of ka .For constant charge boundary conditions and the two ca-
nonical cases of equal and opposite charged spheres the 2. The deviation of the mobilities for different models of

the surface (constant potential, constant charge or linearperpendicular and parallel mobilities are defined now as
regulation), as well as the superposition approximation, be-
gins with the overlapping of the double layers when the
surface-to-surface separation between spheres is about 5U Å ee0z0(s) f (ka)

h
[m\dd / m⊥(I 0 dd)]rE` ,

Debye lengths. At these separations and closer, the behavior
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363ELECTROPHORETIC MOTION OF TWO SPHERES

FIG. 1. The dimensionless electrophoretic mobilities of each sphere for FIG. 3. As for Fig. 1, but for ka Å 10.
the case of identical spheres (a1 Å a2 , z1 Å z2) . The top set of curves
refers to m\ ; the bottom set refers to m⊥ . The horizontal line is the result

the constant potential results at small separations and lowfor an isolated sphere. The different curves are for the case of constant
potential boundary conditions (solid line) , linear regulation (dot-dashed ka are due to the growth in the surface potentials as the
line) with K Å e0erk, constant charge (dashed line) , and the superposition particles approach each other at constant charge. The poten-
approximation (dotted line) . The value of ka is 1. tials then become so large that the assumption of low zeta

potential becomes questionable.
Corresponding results for oppositely charged but equal-of the mobility curves depends on the type of boundary

sized opposite spheres are shown in Figs. 5–7. The effectcondition. The mobilities for the superposition approxima-
is much stronger for unlike particles—for ka Å 10 the mo-tion are shown for illustrative purposes only because the
bilities can change by 20% at R /a Å 2.5 compared to 1 ornonelectroneutrality of this approximation makes them not
2% for identical particles. In the constant charge case, thephysical at small separations. For larger separations it is
surface potentials actually fall as the spheres approach soevident that use of the superposition approximation is justi-
the assumption of low zeta potential becomes more realistic.fiable.
The deviation of the curves for different models of the sur-3. In every case, the mobilities corresponding to the linear
face in the case of oppositely charged particles is signifi-regulation model lie between those for constant potential
cantly smaller than that for identical spheres. The explana-and those for constant charge boundary conditions, which
tion is that due to the antisymmetry about the midplane, allis comforting.
surface models, as well as the superposition approximation,

The marked deviations of the constant charge result from have the same charge density at the midplane, viz. r (0,1)

FIG. 4. As for Fig. 1, but for ka Å 30.FIG. 2. As for Fig. 1, but for ka Å 3.
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field set up by each particle speeds up the other particle so
that m\ § m0 . When aligned perpendicular to the flow, the
flow fields retard the other sphere so m⊥ £ m0 .

Oppositely charged particles move in opposite directions
so the flow fields act in the opposite sense—the above in-
equalities are then reversed. Similar results for this case are
seen with thin double layers (3) .

Some explanation of the relative behavior of the various
mobility curves can be given for the parallel case. For the
perpendicular case, the situation is complicated by coupling
between translation and rotation so that mobilities are deter-
mined as a solution of a linear system involving the calcu-
lated forces and torques.

For the parallel case, larger forces mean larger mobilities
since there is no translation–rotation coupling. The various
mobility curves differ only because of the charge densities

FIG. 5. As for Fig. 1, but for oppositely charged particles (z1 Å 0z2) .
r (0,1) and s (0,1) , which act as weighting factors inside the

No linear regulation results are shown.
volume and surface integrals, respectively. From inspection
of the calculated values of the charge densities and from

Å 0. This suggests that the differences in charge density the known behavior of the linearized Poisson–Boltzmann
distributions for different surface models are smaller for op- equation charge density, we obtain the following inequalities
positely charged spheres than for identical spheres. This is for identical spheres:
reflected in the mobility curves since the charge density is
in effect a weighting factor in the integrals that determine

ÉrccÉ ú ÉrsupÉ ú ÉrcpÉ, ÉsccÉ Å ÉssupÉ ú ÉscpÉ.
the particle forces and torques.

The general pattern of the deviations from the single parti- Here the subscripts cc, cp, and sup refer to constant charge,
cle mobility can be explained in terms of the action of the constant potential boundary conditions, and the superposi-
leading order 1/r 3 flow and electric fields, set up by each tion approximation, respectively. From this we get the fol-
sphere, acting on the other sphere. Due to the dipolar nature lowing inequalities for the corresponding volume and sur-
of these fields, the deviation for pairs aligned parallel to the face integrals:
field are twice as large and opposite in sign to those for
perpendicular alignment. The net effect depends on the bal-

ÉVccÉ ú ÉVsupÉ ú ÉVcpÉ, ÉSccÉ Å ÉSsupÉ ú ÉScpÉ.ance between electric and flow fields, but electric field effects
appear to be less important, except possibly at low separa-

The volume integrals always have the opposite sign to thetions.
surface integrals. Unfortunately the inequalities cannot beFor identical particles aligned parallel to the field, the flow

FIG. 6. As for Fig. 5, but for ka Å 3. FIG. 7. As for Fig. 5, but for ka Å 10.
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subtracted, so the only consequence is ÉSccÉ 0 ÉVccÉ õ
ÉSsupÉ 0 ÉVsupÉ, which means Fcc õ Fsup c m\cc õ m\sup for
identical spheres in accordance with the numerical results.

For small ka , the volume integral becomes dominated by
the surface integral. Under these conditions, the inequalities
above yield ÉSccÉ ú ÉScpÉ c Fcc ú Fcp c m\cc ú m\cp as
seen at ka Å 1 in Fig. 1. This reversal of the usual ordering
with respect to surface boundary conditions first occurs at
ka Å 2 and becomes more pronounced as ka decreases.

In our initial investigations, we tried evaluating the excess
force integrals using far-field expressions to O(1/R 5) for
the hydrodynamic tensors, electric field, and resistance ma-
trix (24), together with the superposition approximation.
Although the results are quite comparable to those shown
for nonoverlapping double layers for oppositely charged
spheres, they are unacceptably inaccurate for identical

FIG. 9. As for Fig. 8, but for oppositely charged particles (z1 Å 0z2) .
spheres. We interpret this as a fixed absolute error becoming
more noticeable in calculating the small deviations found
for identical particles. results shown are for ka Å 10 but results for ka Å 3–30 all

Recently, reflection calculations have been performed for show similar behavior.
the same conditions as studied here (25). These produce For identical spheres, the reflection results are given for
asymptotic expressions for the particle mobilities as expan- the cases where all terms of order R03 , R06 , and R09 are
sions in a /R . The nature of the electrostatic boundary condi- included. There are significant differences among these
tion at the surface never enters the reflection calculations, expansions for R /a õ 3. For R /a ú 4, the three expansions
so they are limited to cases where k(R 0 2a) ú 5. For this agree with each other and with the numerical value. For
reason, we do not compare the two sets of results at ka Å 1 oppositely charged spheres, the reflection results appear to
because the interaction there is dominated by the overlapping be better behaved and give acceptable results for R /a ú 3.
double layers. Subject to this restriction, it is desirable to These regions are only achievable for nonoverlapping double
gauge the region of validity of the reflection calculations layers if ka ú 3–5. From these figures one would choose
because, as analytical formulas, they are much easier to use the reflection results to order R06 as the analytical expression
than the numerical approach outlined here. closest to the numerical results.

We compare the two approaches in Fig. 8 for identical The issue of how well the reflection results agree with the
spheres and in Fig. 9 for oppositely charged spheres. The numerical values also arises in the next section, where we

use the pair mobilities to calculate the suspension mobility
to first order in the volume fraction f.

4. O (f ) —CORRECTION TO THE MOBILITY
OF A DILUTE SUSPENSION

Probably the chief purpose of calculating the pair mobilit-
ies in the previous section is to assess the volume-fraction
dependence of the measured mobility of a random suspen-
sion. The derivation of expressions for the suspension elec-
trophoretic mobility is not trivial, involving renormalization
techniques similar to those originally used for the sedimenta-
tion problem (26, 27). To the first order in the volume
fraction of particles f and to O(z) , the suspension mobility
msusp has recently been derived for the case of a mildly poly-
disperse suspension (25). The main assumptions in the deri-
vation are that the Peclet number for relative motion of the

FIG. 8. Electrophoretic mobilities for identical spheres at ka Å 10 particles is small and that the direct contribution of Brownian
calculated numerically (constant potential boundary conditions) compared

motion is negligible (the role of Brownian motion is toto the results of reflection calculations (25). Solid curves are the numerical
maintain the isotropic nature of the pair correlations in theresults. Reflection calculations shown are accurate to O(1/R 3) (dotted

line) , O(1/R 6) (short dashed line) , and O(1/R 9) (dashed line) . suspension). For the case of a precisely monodisperse sus-

AID JCIS 4921 / 6g2a$$$405 07-11-97 13:14:12 coida



366 SHUGAI ET AL.

pension both these assumptions are satisfied and the suspen-
sion mobility, in terms of the isolated particle mobility m0 ,
is given by

msusp

m0

Å 1 / fH0 3
2
/ K(ka)

f (ka)

/ *
`

2

g(u)u 2[m\ / 2m⊥ 0 3]duJ / O(f 2) , [20]

where u Å R /a , g(u) is the pair correlation function for the
particles and

K(ka) Å 0 2
ka
0 2

(ka)2 0
ka

15
FIG. 10. The O(f) coefficient of suspension mobility as a function of

ka for g(R) Å gHS(R) (Eq. [22]) . Numerical results for constant potential
0 (ka)2

30
eka(3E5(ka) 0 5E3(ka)) . (solid line) , the thin-double-layer limit (03/2) , and the contribution from

the second term in Eq. [23] are shown. Also shown are reflection results
to O(R06) and O(R09) .

It should be mentioned that the term 03/2 derived in (27)
does not agree with experiments on ghost red blood cells

since K (ka ) vanishes in this limit and the pair mobilities
(28) which show a term of 01. The term involving K(ka)

equal the isolated sphere values so the integrand vanishes.
arises from the renormalization of the expression for the

The major interest, then, is the magnitude of the other terms
suspension mobility using the constraint of zero volume-

in the O (f ) coefficient compared to the ever-present
averaged velocity. It vanishes as the double layer becomes 03/2.
thin (ka r `) .

The integral over [2, ` ) was split into a tail defined on
To lowest order in volume fraction, the pair correlation

the interval [6, ` ) , which was calculated analytically us-
function is given by

ing the reflection expressions, and an integral over the
interval [2, 6 ] , which was done numerically using adap-

g(u) Å exp[0F(R /a) /kT] , [21] tive open formulas and checked with a Gaussian 10-knot
formula. The relative error is below 0.3%. Open formulas

where F(u) is the interaction potential between particles. are necessary because it is not possible to evaluate the
The simplest such choice, which amounts to neglecting the pair mobilities at contact (u Å 2) . The computational
double-layer forces between the particles, is a hard-sphere effort required is determined by the evaluation of the mo-
potential for which bilities at close separations: the closest separation in the

adaptive method is É2.1 and in the Gaussian formula,
É2.05. We are limited to such separations because wegHS(u) Å H0 for u õ 2

1 for u § 2.
[22]

have used the expansion in bispherical coordinates for the
hydrodynamic subproblem. To reach smaller separations
we would need to use, for example, boundary collocationThis is the choice used for thin double layers because of the
techniques to solve the hydrodynamics.separation of length scales between the double-layer interac-

In Fig. 10 we show the contributions to the suspensiontions and the hydrodynamic interactions (7) .
mobility as a function of ka using a hard-sphere correlationUsing this choice for gHS(u) , the suspension mobility can
function. The contribution from the second term in Eq. [23]then be calculated as
becomes significant for ka £ 10, whereas the integral over
pair mobilities gives a fairly small contribution for the con-
stant potential conditions shown here. The reflection results

msusp

m0

Å 1 / fS0 3
2
/ K(ka)

f (ka) to order R06 are rather close to the numerical result, which
is consistent with the general accuracy for the pair mobilities
themselves for ka § 10 (see Figs. 8 and 9). For smaller/ *

`

2

u 2[m\ / 2m⊥ 0 3]duD / O(f 2) . [23]
values of ka , where the important contributions from the
pair mobilities correspond to substantial double-layer over-
lap, the close agreement must be regarded as fortuitous.For thin double layers (ka r ` ) , only the first term survives
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The sensitivity of the result to surface boundary condition
is seen in Fig. 11, which shows the O(f) coefficient of
suspension mobility as a function of ka for constant charge,
constant potential, and linear regulation (K Å e0erk) bound-
ary conditions.

The calculations resulting in Figs. 10 and 11 are rather
time consuming, since they require values of the pair mobilit-
ies at close separations. For the values of ka where the
results depend on the surface boundary condition, the regions
of double-layer overlap contribute significantly to the pair
mobilities. This suggests we should include the effect of
double-layer overlap on the pair distribution functions.

In calculating the excess force in Eq. [14], we have in-
cluded an excess force of order O(zE0) but neglected the
double-layer force of order O(z 2e0kh) . Once the double
layers overlap significantly this is of order O(z 2) . Now the FIG. 12. As for Fig. 10 but with g(R) given by Eq. [25] for a/lB Å 10.
applied electric field is generally much weaker than the field
in the double layer, i.e., E0 ! zk, which suggests that the
double-layer forces, for significant overlap, are more im-
portant than the forces we have included to generate the pair Fdl

aez 2 Å
a

R
log(1 / e0kh) .

mobilities.
It is not hard to see that it is permissible to neglect the

In dimensionless form, the pair-correlation function isdouble-layer forces in Eq. [14] (they produce no torque)
because they act along the line of centers between pairs of
particles and so give no contribution to the net electropho- g dl (u) Å exp[0Udl (u)] , [24]
retic drift in the direction of E0 . However, the argument
above shows that we must include double-layer forces Udl (u) Å w

V

2 a

lB

1
u

log(1 / e0ka (u02) ) , [25]
through the choice of pair distribution function.

We have chosen an approximate analytic form for the
double-layer force for low surface potentials that has been where w

V
Å ez /kT and lB Å e 2 /4pe0erkT is the Bjerrum

length, about 7 Å for water at room temperature.tested against numerical results at constant potential (29,
30): It follows from Eq. [25] that the particle size no longer

enters solely through ka but also through the ratio a /lB,g dl (R) Å exp[0Fdl (R) /kT]
which determines how fast the pair-correlation function
changes from 0 to 1. It measures the ‘‘strength’’ of the
double-layer forces for fixed z . We choose two values cov-
ering most cases: a /lB Å 10 (typical for proteins) and
a /lB Å 1000 (colloidal particles) . By assumption the sus-
pension is a stable one so we may neglect attractive forces—
we have checked this using typical water/hydrocarbon/wa-
ter Hamaker constants and find that the lowest value of a /
lB Å 10 produces suspensions that are only just stable so
lower values are not realistic. Nevertheless these two values
should cover most possible behaviors.

In Figs. 12 and 13 we show the various contributions to
the suspension mobility as in Fig. 10 but with double-layer
forces included in the pair-distribution function. The case of
weak repulsions (a /lB Å 10) is in Fig. 12 and strong repul-
sions (a /lB Å 1000) in Fig. 13. Once double-layer repul-
sions are included, the particles rarely sample the small-
separation region where the pair mobilities differ most mark-

FIG. 11. The O(f) coefficient of suspension mobility as a function of
edly from the single-particle value. The O(f) coefficient iska for g(R) Å gHS(R) . The different curves are for the case of constant
reduced by the double-layer repulsion, the reduction becom-potential boundary conditions (solid line) , linear regulation (dot-dashed

line) with K Å e0erk, and constant charge (dashed line) . ing more marked as the ‘‘strength’’ of the double-layer re-
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The fluctuations are given by

»ÉU 0 U (0)
É

2
… Å (U (0) ) 2f *

`

2

g(u)u 2

1 [m\(m\ 0 2) / 2m⊥(m⊥ 0 2) / 3]du [26]

»ÉU\ 0 U (0)
É

2
… Å (U (0) ) 2f *

`

2

g(u)u 2

1 F3
5
m2

\ /
4
5
m\m⊥ 0 2m\ /

8
5
m2

⊥ 0 4m⊥ / 3Gdu , [27]

where U (0) is the isolated particle velocity.
It was found in (25) that the fluctuations could become

substantial for ka £ 10 but this was based on reflectionFIG. 13. As for Fig. 12 but for a /lB Å 1000.
results for the pair mobilities and use of the hard-sphere
g(R) . Since the pair mobilities from the method of reflection

pulsion (the size of the particles) increases. In Fig. 12 the results are inaccurate at close separations for these values
integral over the pair mobilities is still significant. In Fig. of ka it is necessary to assess the significance of velocity
13, by contrast, the contribution of the pair mobilities is so fluctuations from a numerical calculation.
small that for ka § 2 the O(f) coefficient is well approxi- In Fig. 14 we show the mean square velocity fluctuations
mated by just the first two terms, which are analytic! As as a function of ka using the hard-sphere g(R) . Results for
before, the reflection results to order R06 are close to the constant charge and constant potential are shown, along with
numerical result. From these results, there seems to be no reflection results of various orders. They show that there
reason to use the reflection results to order R09—there is is no improvement in the reflection results with increasing
never a case when they are more accurate than the simpler order—in fact, the O(R09) results are significantly worse
results to order R06 . Since the particles rarely sample the than either the O(R03) or the O(R06) results. Analytical
overlap region, one would expect the results to be insensitive expressions for the O(R06) case are given in (25).
to the surface boundary condition. Examination of the results Following the same argument as in the previous section,
for constant charge and constant potential boundary condi- we should really include double-layer forces in the pair cor-
tions show this to be born out. relation function g(R) in Eq. [27]. Again, we consider two

Since the double-layer forces should always be included cases: weak double-layer forces (a /lB Å 10) and strong
in the weighting of the pair mobility contribution, the
sensitivity to surface boundary condition seen in Fig. 11
is in fact unrealistic. In practice, it appears to be adequate
to use reflection results to order R06 , weighted by the
appropriate pair distribution function, or even the analytic
expression given by the first two terms of the O (f ) ex-
pression in Eq. [20] .

5. FIELD-INDUCED VELOCITY FLUCTUATIONS

In (25) expressions for the mean square fluctuations in
electrophoretic velocity of a monodisperse suspension are
derived to O(f) . Expressions are also given for the mean
square deviations in the direction of the field—the ratio of
these expressions gives the anisotropy of the fluctuations.
These velocity fluctuations arise from the random positions
of pairs in the suspension rather than from Brownian effects,
which give an extra isotropic contribution. The other defin-

FIG. 14. Mean square velocity fluctuations as a function of ka for
ing characteristic of these fluctuations is that they depend g(R) Å gHS(R) . The different curves are for the case of constant potential
on the applied field (as E 2

0) , hence the term field-induced boundary conditions (solid line) , constant charge (dashed line) , and reflec-
tion results of various orders.fluctuations.
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FIG. 15. As for Fig. 14 but with g(R) given by Eq. [25] for a/lB Å 10. FIG. 16. As for Fig. 15 but for a /lB Å 1000.

from studies on thin double-layer systems could be takenforces (a /lB Å 1000). In Fig. 15 we show the fluctuations
over into systems with ka Å O(1) . In order to make prog-for the case a /lB Å 10—the chief feature being the change
ress, it is necessary to consider low zeta potentials, bothof scale. Just as for the O(f) coefficient, the presence of
for analytical work (14, 25) and in the present work. Thedouble-layer forces weakens the effect of the pair mobilities
analytical results in (25) showed that to leading order theat small separations and so reduces the magnitude of the
interaction has the same distance dependence (R03) but thatfluctuations. For strong double-layer repulsion a /lB Å 1000
the coefficient depends on ka and can become large. Ourthe effect is even more dramatic (Fig. 16)—the magnitude
numerical results quantitatively confirm the reflection resultsof the fluctuations is very small and the results are indepen-
for R /a§ 4 if there is no double-layer overlap and show thedent of the boundary condition and the number of terms
effect of particle interactions on pair mobilities for smallerretained in the reflection expansions.
separations, where reflections are in principle unreliable, andVery similar curves could be plotted for the fluctuations
for the case of double-layer overlap, where reflections cannotparallel to the field. Instead we give the ratio
handle by construction. The general conclusion is that the
particle velocities are only marginally affected for ka § 10.»ÉU\ 0 U (0)

É
2
…

»ÉU 0 U (0)
É

2
…

, As far as suspension properties are concerned, the choice
of a pair-correlation function has some effect on the mean
mobility and a large influence on the fluctuations about thewhich would be 1/3 for isotropic fluctuations and increases
mean. This choice never enters in the thin-double-layer casetoward 1 for fluctuations preferentially in the direction of
since electrostatic repulsions occur over such a small scalethe field. The results are virtually constant for ka in the
compared to the hydrodynamic interactions.range 1–5 so we give the figures at ka Å 1 in Table 1. The

If double-layer repulsions are neglected, the O(f) coeffi-only exception to this is the constant charge case which falls
cient of suspension mobility is predicted to change signifi-to a ratio of 0.57 (hard sphere) and 0.43 (weak repulsion)
cantly from its thin-double-layer value as ka approaches 1.as ka reaches 5.

From these figures we see that as electrostatic repulsion
is included or ka increases, the anisotropy in the constant TABLE 1
charge case weakens. The predictions from reflection results The Ratio »(U\ 0 U(0))2

…/»(U 0 U(0))2
… for Numerical

and Reflection Results at ka Å 1to order R06 agree quite well with the numerical values, but
there is no sign, at least for ka £ 5, of the large anisotropies

g(R)predicted from the O(R09) reflections in (25). In summary,
the fluctuations appear in most circumstances to be only Hard Weak repulsion Strong repulsion
moderately anisotropic. sphere a/lB Å 10 a/lB Å 1000

Constant potential 0.40 0.40 0.406. DISCUSSION
Constant charge 0.69 0.50 0.40
Reflections O(R03) 0.40 0.40 0.40The object of this investigation was to assess how far the
Reflections O(R06) 0.42 0.41 0.40

insight into particle interactions in electrokinetics obtained
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Similarly, fluctuations can be relatively large. As double- get relative rms fluctuations in velocity ranging from 3 to
16% as ka varies from 1 to 10. More typical values of thelayer effects are included, however, the predicted magnitude

of the fluctuations decrease as the size of the particle in- quadrupole moment would give smaller values than this.
In summary, the contribution of particle interactions tocreases (for a given ka) . At ka Å 1–2 the O(f) coefficient

can still be 2–3 times its thin-double-layer value (depending velocity fluctuations appears to be comparable to that due
to contributions from nonuniform potentials or a distributionon the particle size) so the effect is still significant.

To estimate the absolute size of these effects, we need to of zeta potentials, but larger than that due to a distribution
of particle size.guess to what values of volume fraction they apply. In gen-

eral this is hard to estimate in the absence of data or terms It has been assumed in this whole work that the suspension
is actually a homogeneous liquid phase. It is possible inof O(f 2) but suppose the results are valid up to f Å 0.1.

Then the suspension mobility at that volume fraction would low-salt colloidal systems to produce gel-like and crystalline
phases at very low volume fractions (around 1%). Thisbe expected to decrease from 85% of the dilute value to

70% of the dilute value at ka Å 2 for strong repulsions or illustrates the difference between the ‘‘hydrodynamic’’ vol-
ume fraction, which is what the term ‘‘volume fraction’’slightly less for weaker repulsions. The velocity fluctuations

at ka Å 1 would amount to 7% of the mean velocity for means in this paper, and the ‘‘thermodynamic’’ volume frac-
tion, i.e., the volume fraction at which liquid-like or solid-strong repulsions up to 16% of the mean velocity for weak

repulsions. For a more typical volume fraction of f Å 0.01, like ordering sets in. For such a system, if still fluid but with
g(R) exhibiting liquid-like structure, presumably one shouldthese numbers become 2 and 5%, respectively. All of the

interaction effects are negligible for ka much above 10. use the best estimate available for g(R) in the expressions
for the suspension mobility and mean velocity fluctuationsFluctuations in mobility of this size should be compared

with other possible sources of variation in mobility. We rather than the low (thermodynamic) density expression in
Eq. [21]. For systems in a gel-like or crystalline state, themention two here—the effect of a distribution in particle

size on the single particle mobility and the effect of nonuni- experiments envisaged in this analysis are not feasible, at
least not with a static field.form potential of a spherical particle. Another potential

source, which we do not discuss here, is the fluctuations due Previous treatments of particle concentration effects for
thick double layers have relied on cell model treatments, forto the varying orientations of a nonspherical particle in the

electric field. low zeta potentials (33) or for higher zeta potentials but
nonoverlapping double layers (34). The studies have shownAssuming no variation in the zeta potential, a distribution

of particle size will produce a distribution of particle velocity quite significant effects especially at low porosities (high
volume fractions) and low values of ka . Several points needthrough the function f (ka) in Eq. [2] . A simple calculation

shows that the relative rms fluctuations in velocity are related to be kept in mind when comparing our results with such
cell model calculations.to the standard error in particle size through the function

The first is that the two techniques are aimed at comple-
mentary ranges of f. Our calculation is limited to low vol-ka f *(ka)

f (ka)
, ume fractions since it considers only pair interactions. The

cell model would be expected to be most valid at high vol-
ume fractions although it can be solved for any value of f.

which has a maximum value of 0.11 at ka around 7. This Comparing with Fig. 3 of (33) for f Å 0.1 and ka § 1, we
means that at least a 9% variation in particle size is required see reductions in electrophoretic mobility similar in magni-
to produce a 1% variation in mobility at ka Å 7 and much tude to our results. However, this is somewhat misleading
more for most other values. Of course, since the mobility is for reasons discussed below.
linear in the zeta potential, a 1% variation in z produces a The second point is that the largest effects in (33) occur
1% variation in mobility. for kaõ 1. We have not considered such values in our work

In (31), an expression is given for the mobility of a spheri- because such systems are rarely encountered. If the particles
cal particle with low but nonuniform zeta potential. The are small, the dispersions are barely stable and if the electro-
mobility in general depends on the orientation of the parti- lyte concentration is very low, one may see the gel or crystal
cle’s quadrupole tensor Q relative to the applied electric phases mentioned above.
field. When averaged over orientations, the mean mobility Finally, the cell models do not appear to include the con-
depends only on the surface-averaged zeta potential zU . The straints that are necessary to renormalize the suspension mo-
fluctuations in mobility due to orientational averaging of the bility. There is no backflow and so no leading term of
one-particle mobility depend on the ratio of the quadrupole 3/2f for thin double layers (see (34) Eq. [42]) . In addition,

the particle distribution is taken to be uniform and so itmoment
√
Q :Q to zU a 2 . Assuming a value for this ratio of 1,

which appears to be about the largest reasonable value, and misses the effect of double-layer repulsion through the pair
distribution function. These two effects act in opposite direc-averaging the quadrupole term over orientations (32), we
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