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Analysis of inhomogeneous optical systems by the use of
ray tracing. II. Three-dimensional systems with symmetry

Gleb Beliakov and D. Y. C. Chan

We describe a new approach to the index reconstruction of three-dimensional optical systems with
rotational symmetry, which is based on sampling ray paths that lie in the sagittal plane. Since the
observed rays are distorted by the optical system itself, they cannot be used directly for index recon-
struction. We present an iterative procedure to compute the true ray paths and then to find the index
distribution. The utility of the method is verified on the model problem. © 1998 Optical Society of
America

OCIS codes: 080.2710, 080.2720, 100.3190, 170.3660, 290.3030, 330.4300.
1. Introduction

A rotationally symmetric inhomogeneous optical sys-
tem may be obtained by the rotation of a generic
planar system with the refractive index n~x, y!
around its axis of symmetry OX. A typical example
of such a system is the crystalline lens of the eye,
shown in Fig. 1. The determination of the
refractive-index distribution is of great importance
for vision science,1–6 and several methods for index
reconstruction have been reported.1–3,6 The direct
methods, such as that reported by Jagger,2 allow one
o find the refractive index on slices of an isolated
rystalline lens and then to reconstruct the three-
imensional ~3-D! index distribution. Currently
vailable nondestructive methods of index recon-
truction3,6 compute the index n~r! in the equatorial

plane of the lens ~by inversion of the optical path or
deflection angle of the rays that propagate in the
equatorial plane! and then use an elliptical model of
the lens, in which the isoindicial curves are half-
ellipses sharing the major axis.

In this paper we describe an alternative approach
to nondestructive 3-D index reconstruction based on
the observation of rays that propagate in the sagittal
plane of the lens. In previous papers7,8 we described
a method of index reconstruction of an asymmetric
planar optical system that used a ray-tracing analy-
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sis. We apply this technique to reconstruct the in-
dex in the sagittal plane, and then we obtain the 3-D
index distribution by using the rotational symmetry
of the lens.

In the ray-tracing analysis, the paths of a set of
sampling rays are observed at right angles to the
sagittal plane and recorded. The coordinates of
points that form sampling rays are the initial data for
index reconstruction. If the paths of observed rays
were the true ray paths, then one might apply the
method from our previous papers7,8 directly. How-
ever, the registered image of the sampling rays is
distorted by the optical system itself, and the true
positions of the rays must be found in order to apply
the tracing analysis. In this paper we develop an
iterative algorithm to compute the true ray paths and
the refractive index.

To analyze the correctness of our method we have
used the elliptical model of a crystalline lens. First
we numerically generate a set of sampling rays as if
it were observed in a real experiment. Then we use
these rays to reconstruct the refractive index. Fi-
nally we compare the results of our method to the
true refractive index used in the model.

2. Simulation of the Ray-Tracing Analysis

To compute the paths of sampling rays distorted by
the lens, we need to solve two problems. First, given
the model index distribution in the sagittal plane, we
compute the true ray paths by the use of ray trac-
ing.7,9 Then we must perform 3-D ray tracing to find
the distorted image of the sampling rays.

The ray tracing in three dimensions is similar to
the ray tracing in a plane, but it involves a larger
system of equations. Provided that the index has



t

modest variation, the ray equation of geometric op-
tics10 relates a vector position of the ray r and refrac-
ive index function n~r!,

d
ds Sn

dr
dsD 5 ¹n,

in which ds denotes an element of the ray path. For
a refractive-index function n~x, y, z!, we can write the
above vector equation in component form,7,10 i.e.,

nx0

1 1 x92 1 y92 1 x9nz 2 nx 5 0,

ny0

1 1 x92 1 y92 1 y9nz 2 ny 5 0, (1)

where $x~z!, y~z!% denotes the ray path parameterized
by z, the prime denotes a differentiation with respect
to z, and nx, ny, and nz are partial derivatives of n; see
Fig. 2. The refraction of rays on the interface be-
tween two media is described by the Snell law.
Fig. 1. Model of the crystalline lens.
Fig. 2. Formation of a distorted image by the crystalline lens.
On the observation plane the dashed curve denotes the true ray
path, and the solid curve denotes the observed distorted ray path.
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Let the set of true sampling rays be given by

$~xij, yij!: yij 5 Y~xij, hj!, i 5 1, 2, . . . , Nj,

j 5 1, 2, . . . , M%, (2)

where xij is the abscissa of the ith point on the ray
, yij is the ordinate of this point, Nj is the number
f registered points on the ray j, and M is the num-
er of sampling rays. The sampling rays lie in the
lane OXY ~Fig. 2! and are observed at a right angle
rom a point at infinity. The observed coordinates
f points that form sampling rays, ~ x̃ij, ỹij!, differ
rom the true positions ~xij, yij! and can be calculated

as follows. Consider rays coming from the point
~xij, yij!. One of these rays is parallel to the Z axis
when it leaves the lens at the point ~xend, yend, zend!,
and its point of intersection with a plane parallel
to OXY ~call it the observation plane! is the required
image ~ x̃ij, ỹij! 5 ~xend, yend!.

The path of the ray inside the lens is computed by
solving Eqs. ~1! numerically, with n given by the
model and with the initial condition @x~0!, y~0!# 5 ~xij,
yij!. In contrast to the usual ray tracing, however,
the direction of the ray at the point of incidence ~xij,
yij! is unknown. Instead, we have a condition on the
other end,

@x9~zend!, y9~zend!# 5 ~xend9, yend9!,

here @x~zend!, y~zend!, zend# 5 ~xend, yend, zend! is a
oint on the lens boundary in which the ray leaves
he lens. In the index-matched case, i.e., when the
ndex on the lens boundary is constant and coincides
ith the index of the surrounding media, ~xend9, yend9!
~0, 0!, the ray leaving the lens is parallel to Oz, and

no refraction takes place. In the case of index mis-
match, the direction of the ray inside the lens ~xend9,
yend9! is computed by applying the Snell law on the
lens boundary, provided that after refraction the ray
is parallel to Oz.

Hence, instead of an initial value problem ~a so-
called Cauchy problem! for Eqs. ~1!, in which all the
nitial conditions are given on one end of the interval
0, zend#, we have a boundary value problem, in which
ne of the conditions is given at z 5 0, and the other

at an unknown point @x~zend!, y~zend!, zend#. We can
solve the problem numerically by using the shooting
method,11 which consists of specifying both condi-
tions on one end and solving the corresponding initial
value problem, and then checking whether the con-
dition on the other end is satisfied. For every point
~xij, yij! from the set given Eq. ~2!, we vary the x, y
coordinates of the point @x~zend!, y~zend!, zend# ~zend is
expressed through x, y in the equation of the lens
oundary!, and we solve an initial value problem for
qs. ~1! in the interval @zend, 0# with the initial con-
itions

@x~zend!, y~zend!# 5 ~x, y!,

@x9~zend!, y9~zend!# 5 ~xend9, yend9!
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by using the Runge–Kutta method, until the solu-
tion on the other end, @x~0!, y~0!#, is within a given
neighborhood of the point ~xij, yij!. Then the initial
condition ~x, y! used in the latest iteration is the
required image ~ x̃ij, ỹij!.

To compute the images of all points constituting
the sampling rays, we have to repeat the process
described above many times. Let us denote this pro-
cess by operator D, so that for any point in the sag-
ittal plane ~x, y!, its image ~ x̃, ỹ! 5 D@~x, y!#.
Operator D21 is the inverse of D, i.e., D21@~ x̃, ỹ!#
denotes a point in the sagittal plane whose image is
~ x̃, ỹ!. Repetitive application of operator D to all the
points on the sampling rays gives the images of the
rays that would be observed at a right angle to the
sagittal plane that model the experimental data.

Because sampling rays contain many points, this
process of generation of the model of experimental
data is inefficient. To improve the method, we
observe that the application of operator D21 is far
less time-consuming than the application of D to
any given point. This is because to find the image
of a point in the sagittal plane we have to solve a
boundary value problem, whereas to find the preim-
age of a point in the observation plane we solve an
initial value problem, whose numerical solution is
straightforward. Then it is possible to create a
look-up table, the preimage of the rectangular mesh
$~ãi, b̃j!, i 5 1, . . . , I, j 5 1, . . . , J% in the observation
plane, by using ~ai, bj! 5 D21@~ãi, b̃j!# and taking a
sufficiently large number of points I and J in each

irection. After the points ~ai, bj! have been com-
puted, we can find the image ~ x̃ij, ỹij! of a given point
on the true ray path ~xij, yij! by looking up for the knot
~ak, bl! nearest to ~xij, yij! and by putting ~ x̃ij, ỹij! '
~ãk, b̃l!. The precision depends on the number of

nots in the mesh, I and J, and on how accurately the
preimage of the mesh has been computed.

The main advantage of computing the look-up table
is that the large numerical computation, repetitive
solution of Eqs. ~1! with different initial conditions,
has to be carried out only once, whereas the direct
application of the shooting method would have re-
quired doing this for every point in the set given in
Eq. ~2!. Figure 3 shows the true ray paths in the
plane OXY, and their distorted image in the obser-
vation plane, computed as described above. The
same pattern is clearly seen on the actual pictures
of the ray paths, like those in Ref. 2. The generated
distorted image of the ray paths in Fig. 3~b! repre-
sents a model of experimental data that one obtains
in observing ray paths lying in the sagittal plane.
For Fig. 3 the refractive index n is given by
n~x, y! 5 nmax@1 2 d~p2x2 1 y2!#1y2, with d 5 0.2,
nmax 5 ~1 2 d!21y2, and

p 5 H1.8, if x # 0,
1.4, if x . 0.

n what follows this information is used as the initial
ata for index reconstruction.
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3. Refractive-Index Reconstruction

At this point we assume that the refractive index is
unknown, and the experimental data are given in the
form of distorted images of the points on sampling
rays:

X̃ 5 $~ x̃ij, ỹij!, i 5 1, 2, . . . , Nj, j 5 1, 2, . . . , M%.

(3)

et operator N@X# denote the solution of the index-
econstruction problem given by the method in Ref. 7,
here X denotes the set of analyzed rays, and let

perator Dn@X# denote the distortion of the rays X by
the optical system whose index is n.

Fig. 3. ~a! True ray paths. ~b! Observed ray paths distorted by
the optical system. Note the nonmonotonicity of the rays inside
the lens.
Since the paths X are not the true ray paths, we
cannot apply the algorithm from Ref. 7 to find the
refractive index. We may write, however, the fol-
lowing fixed point equation:

n 5 N[Dn
21@X̃#]. (4)

It says that if the true ray paths X were distorted by
the system n~x, y, z!, X̃ 5 Dn[X], then the inverse
operator Dn

21 applied to the distorted rays would
give the true ray paths, which in turn would deter-
mine the refractive index. Then our aim is to create
on the basis of Eq. ~4! an iterative algorithm that

ould converge to the fixed point n—the true refrac-
ive index.

One difficulty is that the transformation
~n! [ N[Dn

21[X̃]] is not a contraction, i.e., the con-
dition if~n1! 2 f~n2!i , in1 2 n2i for any n1, n2 is not
satisfied. In other words, if two refractive-index
functions n1 and n2 are similar, then this inverse
method does not guarantee that the reconstructed
index functions will necessarily be close together.
This is because the method of ray-tracing analysis7,8

uses the first and second derivatives of the ray paths.
Given small variations of the ray paths, the varia-
tions of the second derivative and the consequential
variations of the computed index may be large, and
this fact does not depend on the method of numerical
derivation being used. As with most inverse prob-
lems, the problem of index reconstruction is ill con-
ditioned, i.e., small errors in the initial data may lead
to large errors in the solution. As a consequence, the
direct iterative algorithm in the form

nk11 5 N[Dnk

21[X̃]],

where k denotes the iteration number, does not con-
verge. Moreover, it diverges even if the initial iter-
ation n0 is picked up in a small neighborhood of the
solution.

A way around this difficulty is to use a suitable
method of regularization12 to smooth out the sensi-
tivity of the ray-tracing method to small variations in
the ray paths. In a previous paper7 we used polyno-
mial smoothing splines to approximate the ray paths.
Since smoothing splines are the functions belonging
to the Sobolev space,12

W2
m~V! 5 $ f ~x!: f [ Cm21~V!, f ~m! [ L2~V!%,

which is the space or family of functions that are m 2
times continuously differentiable ~in the general-

zed sense! and whose mth derivative is square inte-
rable on V, then for the splines of the fifth degree we
ave used the second derivative is continuous, and
herefore the variations of n, given finite errors in the
ata, are bounded. Moreover, the growth of the de-
ivatives is suppressed by the smoothing parameter.
herefore we may find a constant a [ [0, 1] such that

the operator N̂[X] 5 aN[X] 1 ~1 2 a!n is a contrac-
tion, and the iterative scheme converges.

The resulting iterative scheme takes the form

nk11 5 aN[Dnk

21[X̃]] 1 ~1 2 a!nk, 0 , a , 1. (5)
1 August 1998 y Vol. 37, No. 22 y APPLIED OPTICS 5109
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The value of a should be sufficiently small to guar-
antee the convergence but still be large enough to
make the algorithm converge at an acceptable rate.
This value, of course, depends on the particular re-
fractive index and particular set of sampling rays.
For the model elliptical refractive index we have
used, and the set of 40 sampling rays with 30–100
points on each and small, uniformly distributed noise
with amplitude in the interval [20.0005, 0.0005] to
simulate experimental errors, the value a 5 0.15 re-
quires only eight iterations for convergence. The
maximum absolute error of the refractive index was
0.0108, and the average error was 0.00256. These
results are shown in Fig. 4.

4. Implementation

Here we discuss how the iterative scheme of Eq. ~5!
as implemented. The detailed description of the

ndex reconstruction by the ray tracing, denoted here
y the operator N[X], is given elsewhere.7,8 It in-

volves a numerical solution of a first-order partial
differential equation by integration along the char-
acteristic lines. The projections of the characteristic
lines on the plane OXY coincide with the wave fronts,
which are the curves orthogonal to the sampling rays.
Consequently, the resulting refractive index is given
by means of its values on the wave fronts. This
representation is not convenient for our purpose, be-
cause on each iteration in Eq. ~5! the rays, and con-
sequently the wave fronts, change. Therefore, we
translate the results of Ref. 7 into the refractive index
given on a rectangular mesh nij 5 n~x0 1 ihx, y0 1
jhy!, i 5 0, . . . , I, j 5 0, . . . , J, which covers the area
of interest. Then we construct a tensor–product
polynomial spline S~x, y! that approximates n be-
tween the knots of the mesh. This is an established
approximation methodology,13 and hereafter we as-
sume that the index reconstruction algorithm7 gives
the refractive index represented by the spline S~x, y!.

The iterative algorithm of Eq. ~5! is implemented in
three steps. First, given an approximation nk~x, y!,
we compute the approximation to the true sampling
rays by using the observed rays, Xk 5 Dnk

21[X̃]. We
o this by solving numerically, for each point X̃, an
nitial value problem for Eqs. ~1! with the initial con-
itions

$x~zend!, y~zend!% 5 $ x̃ij, ỹij%,

$x9~zend!, y9~zend!% 5 $xend9, yend9%,

here zend is computed from the lens boundary equa-
tion and $xend9, yend9% are computed with the Snell
law.

In the next step, we compute the refractive index
by using ray Xk. Its values are translated into the
values in the spline knots. In the last step, we com-
pute the new approximation to the refractive index by
using the reconstructed index, its previous value nk,
and a prescribed weight a. As the initial approxi-
mation n0, it is convenient to take the elliptical index
omputed by means of its profile in the equatorial
lane, as in Ref. 6.
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The most time-consuming step is the first one. It
involves multiple applications of the Runge–Kutta
method11 to Eqs. ~1!, in which the index and its de-
ivatives are given as a tensor–product spline. It
akes us approximately 4 h of computing time on a

Fig. 4. Results of index reconstruction in the sagittal plane, com-
pared with the model index: ~a! reconstructed index, ~b! model
index, given by the formula for Fig. 3. The initial data consisted
of the distorted image of the true rays in Fig. 3~b!. As the initial
approximation to the index, the constant value n~x, y! 5 1 was
taken. The algorithm converged in eight iterations. The maxi-
mum absolute error of reconstruction is 0.0108, and the average
absolute error is 0.00256.



fast IBM R6000 workstation, compared with a few
seconds for steps 2 and 3. Since the first step may be
efficiently parallelized, the use of a multiprocessor
supercomputer can drastically improve the computa-
tion time.

5. Conclusions

We have presented an approach to nondestructive
diagnostics of 3-D optical systems with rotational
symmetry by using a ray-tracing analysis. It is
based on the observation of the rays that lie in a
sagittal plane. Since the image of the ray paths is
distorted by the system, the true ray paths are com-
puted iteratively by using the index distribution ob-
tained with the previous iteration.

The proposed method can solve two problems.
First, given a model of 3-D index distribution, such as
an elliptical model, one may check the consistency of
the model with the experimental data. While an
ellipical model for the index function has been used to
illustrate the algorithm, the method is general and
can be applied to any refractive-index function that
has rotational symmetry. Second, the method al-
lows one to compute the refractive index iteratively,
starting with the initial approximation given by a
suitable model, or, in the worst case, with a constant
index.

It is important to note that the method is very
sensitive to errors in the data, but the use of smooth-
ing splines together with parameter a in the iteration
step proved useful in regularizing or controlling the
ill-conditioned nature of the problem. On one hand,
the number of data points for the observed ray path
and the amount of noise in the data are important
factors in determining the ultimate precision of the
index distribution. On the other hand, the attrac-
tiveness of this approach is that it does not require
any underlying model of index distribution, nor of the
lens boundaries ~the elliptical model of Fig. 4 is used
purely as an example!. The ability of our method to
detect nonregular, or lumpy, inhomogeneous struc-
tures7 and its further regularization represent a topic
for further research.
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