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A simple theory for the partial molar volumes of a binary mixture 
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A simple theory of mixtures (Snider, N. S. and Herrington, T. M. 1967, J .  chem. Phys., 47, 
2248) is applied to calculate the excess volumes and excess partial molar volumes of liquid 
argon-krypton mixtures at T = 134.3K and several pressures. This theory gives a good 
qualitative description of these quantities. In particular, the theory gives the correct sign 
and asymmetry for the excess volumes and partial molar volumes and, at high pressures, 
non-monotonic curves for the excess partial molar volumes. However, the theory predicts 
that these effects occur at higher pressures than are seen experimentally. As pointed out before 
(Hamann, S. D. 1992, High Temp. High Press., 24, 489), such classic theories as regular 
solution theory and ideal associated mixtures fail to give even the correct sign for these 
quantities. 

1. Introduction 
Hamann [I] has collected some of the experimental 

data for excess molar volumes and excess partial 
molar volumes of several binary systems and has com- 
pared these results with simulations [2] and such classic 
theories of mixtures as regular solution theory (RST) [3] 
and ideal associated mixtures (IAM) [4]. He finds that 
the simulations give reasonable results. This is not sur- 
prising as simulations are, apart from statistical prob- 
lems, exact for the intermolecular potential used. 
However, Hamann finds that the RST and IAM give 
poor results. Often the RST and IAM values have an 
incorrect magnitude and even an incorrect sign. Both 
the RST and IAM approaches are now rather dated 
and the poor results that are obtained from these 
approaches are not too surprising. Of course, one 
could use just simulations. Indeed, simulations are 
likely to be the only viable approach for mixtures of 
complex fluids. However, this approach is likely to be 
unnecessary for the qualitative description of mixtures 
of simple fluids. In this paper we consider the simplest 
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modern theory of mixtures, that of Snider and Her- 
rington [5]; we find that it gives reasonably good agree- 
ment with experiment. 

2. Theory 
The theory of fluids, and by extension, the theory of 

fluid mixtures, has made great progress during the last 
three decades. The simplest good theories of fluids and 
fluid mixtures are perturbation theories where the fluid 
is regarded as a fluid of hard spheres (or hard sphere 
mixtures) with the the attractive forces having only a 
perturbing influence. The earliest such theory is that of 
van der Waals (vdW), where one writes 

P = Po - Pa. 

In equation (1) po is the pressure of a hard sphere 
system, p is the density, and 

(1) 

with 
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where u,(r)  is the pair interaction potential for a pair of 
molecules of species i and j ,  respectively. The quantities 
a, and R, are the effective molecular diameter and the 
cutoff of the potential, respectively. 

In the original vdW theory, po was approximated by a 
free volume argument that was valid only for the second 
virial coefficient. As a result, for years the vdW theory 
was thought only to be of pedagogical interest. How- 
ever, three decades ago Longuet-Higgins and Widom [6] 
showed that equation (1) formed the basis for a reason- 
ably satisfactory theory of fluids if a better expression 
for the hard sphere pressure, p o ,  is used. Snider and 
Herrington [5] extended this approach to fluid mixtures 
by using for po a reliable expression for the pressure of a 
hard sphere mixture. This is the approach that we have 
used here. 

We use the BMCSL [7] expression for po.  For most 
purposes, this expression gives an excellent description 
of the thermodynamics of hard sphere mixtures. In our 
opinion, this expression is written most conveniently in 
terms of the contact values of the hard sphere distribu- 
tion functions, g,(a,). Thus, 

where xi is the fraction of the molecules that are of 
species i ,  V is the volume, N is the total number of mol- 
ecules, k is Boltzmann’s constant, T is the temperature, 
and 

where 

We assume that the hard sphere diameters are additive. 
Thus. 

a, = (aii + Oj j ) /2 .  (7) 

In calculating the aij, we use the Lennard-Jones poten- 
tial, 

(8) u.. - 4&..( -12 - 
11 - l/ Y Y-6>1 

where y = r/a,. Also we use R, = 2.5aii since, with this 
value of R,, the curve for liquid-vapour coexistence 
obtained from the above theory is similar to that 
obtained from simulations with the full Lennard-Jones 
potential. Obviously, this is a result of a cancellation of 
errors. Further we have assumed that 

(9) 112 
El2  = E12(EllE22) . 

We use el2 = 0.98 because the most accurate values for 
the excess heats of mixing of mixtures at low pressures 
are obtained with values of tI2 very slightly less than 
unity [8]. 

Our procedure is to select first a temperature, press- 
ure, and concentration. The theory requires the density 
as input. Therefore, we iterate until we find the density 
that corresponds to the chosen pressure. The excess 
volume of mixing and the excess partial molar volume 
are calculated from equations (13)-(15) of Hamann [l]. 

3. Results 
Here we confine the application of this theory to an 

argon-krypton mixture as the theory outlined above is 
most likely to be useful for a mixture of simple liquids. 
We use T = 134.3 K as this is the temperature for which 
most of the experimental data [9] were obtained. We 
chose argon as species 1 and krypton as species 2. The 
conventional values [lo] ~ ~ ~ / k  = 119.8K, ~ ~ ~ / k  = 171 K, 
al l  = 3.405A, and a22 = 3.60A are used. It is con- 
venient to express the values of the aii as 
Nail = 23.78cm3molp1 and Nai2 = 28.10cm3mol-l. 

We have obtained results for the experimental pres- 
sures, p = lOMPa, 20MPa, 30MPa, 50MPa, and 
70MPa, and for the higher pressures 100MPa, 
150MPa, and 200MPa. For p = IOMPa, we find the 
molar volumes of the pure species to be 
V1 = 39.50 cm3 mol-I and V2 = 34.95 cm3 mol-I, re- 
spectively. The value for krypton is fairly close to the 
experimental value, V 2  = 35.8 cm3 mol-I, but the argon 
value is appreciably larger than the experimental value, 
V1 = 35.5 cm3 mol-’. This is because the pure fluid ver- 
sion of the theory we have outlined works best in the low 
temperature and high volume regime. The temperature 
T = 134.3 K is near the critical temperature of argon. 
The theory presented here becomes less satisfactory as 
the critical point is approached. No doubt, the results 
could be improved by adjusting the parameters a,, and 
E,. However, we have preferred to have a purely predic- 
tive tool. 

To save space, we compare our results with experi- 
ment only for p = 10 MPa and 70 MPa, the smallest and 
largest of the experimental pressures. In figure 1 we give 
our results for p = 10 MPa for the excess volumes and 
excess partial molar volumes. The excess partial molar 
volume is the quantity, VJ - V ; ,  that is the amount by 
which the partial molar volume, V J ,  of a component J 
exceeds the molar volume, V ; ,  of pure component J at 
the same temperature and pressure. Note that the theor- 
etical results have the correct sign. They are somewhat 
large in magnitude but are qualitatively correct. Further, 
note that the theoretical results have the correct asym- 
metry. Also both the experimental and theoretical par- 
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Figure 1. The excess volumes of mixing (a) and excess partial molar volumes (b)  of an argon-krypton mixture at T = 134.3 K and 
at p = 10 MPa. The points give the experimental results and the curves give the theoretical results. In (b) ,  the squares are for 
argon and the circles are for krypton. 
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Figure 2. The excess volumes of mixing (a) and excess partial molar volumes (b)  of an argon-krypton mixture at T = 134.3 K and 
at p = 70 MPa. The points and solid curves have the same meaning as in figure 1. The dotted curves are straight lines joining the 
experimental points and are included only to aid the reader in connecting the points and are not meant to imply that the authors 
believe that the experimental curve is not smooth. 

tial molar volumes are monotonic functions of the con- 
centration. 

The theoretical and experimental results for 
p = 70MPa are compared in figure 2. The asymmetry 
in the experimental results has shifted. The theoretical 
results have moved in the same direction but not so far 
as the experimental results. The theoretical curves are 
nearly symmetric in the concentration. The experimental 
results for the partial molar volumes are no longer 
monotonic; there are even regions with positive values. 
The theoretical curves do not show this behaviour. 

We have calculated results for pressures that exceed 
those obtained experimentally. These are shown in 

figures 3 and 4. For p = 100 MPa and 150 MPa, the 
minimum in theoretical excess volume has now shifted 
to krypton concentrations that exceed 0.5 and the par- 
tial molar volume of krypton is now non-montonic. 
Increasing the pressure to 200 MPa, yields partial 
molar volumes that are non-monotonic in both species 
and that have regions with positive values. These are 
similar to the experimental results at the lower pressure 
of p = 70 MPa. 

4. Summary 
We have outlined a simple theory that accounts for 

the features of the experimentally observed results. 
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Figure 3. The excess volumes of mixing (a) and excess partial molar volumes (b )  of an argon-krypton mixture at T = 134.3 K. The 
solid and broken curves give the theoretical results at 100 MPa and 150 MPa, respectively. 
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Figure 4. The theoretical excess partial molar volumes of an 
argon-krypton mixture at T = 134.3 K and p = 200 MPa. 

However, the theory predicts the interesting features 
seen in the experimental partial molar volumes but at 
higher pressure than is the case experimentally. This 
undoubtedly is due to the simple nature of the theory. 

The theory developed here is most appropriate for a 
mixture of simple fluids, such as argon and krypton. 
However, many of the features seen are found in the 
experimental results of other mixtures. Thus, the 
theory outlined here may have a greater application 
than just to mixtures of inert gases. 

The theory is a natural extension of van der Waals 
theory. In fact, it is the theory that van der Waals might 
have formulated if he had had a knowledge of the prop- 
erties of hard sphere mixtures. The theory given here is 
to be distinguished from the so-called van der Waals 1 
(vdW1) theory. The vdW1 theory also has its origin in 

the van der Waals theory. van der Waals gave a recipe 
for writing an equation of state in terms of the single 
component vdW theory. The vdWl theory uses this 
recipe but allows the single component equation of 
state to come from any source, even a fit of experimental 
data. The vdW 1 theory is a type of conformal solution 
theory. The vdW1 recipe is valid only for the second 
virial coefficient. In contrast the theory given here 
treats the hard core part of the problem, po,  at a high 
degree of accuracy and so should be preferable to the 
vdWl theory. 

Nevertheless, it is desirable to move beyond the 
theory outlined here. Perturbation theories, such as 
that of Barker and Henderson or Weeks, Chandler, 
and Andersen may not be too appealing in this instance 
because they give the free energy numerically. Applica- 
tion to this problem would require two numerical differ- 
entiations. This is possible but unattractive. Integral 
equations give the pressure directly and so only one 
differentiation is required. This may be an advantage. 
The application of more sophisticated theories will be 
explored in a later publication. 
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