
Electrical Double-Layer Interaction between Charged Particles
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The proximity effect of one or two flat surfaces on the double-
ayer interaction between two identically charged colloidal parti-
les immersed in an electrolyte is examined. Simple analytical
ormulas are presented for the interaction of (i) two particles in the
icinity of a charged flat surface and (ii) two particles confined
etween two parallel plates. It is found that the surface(s) can
trongly influence the pairwise interaction of the particles, leading
o increase, decrease, or even elimination of the electrostatic in-
eraction, in comparison to the corresponding result in an un-
ounded electrolyte. © 1999 Academic Press

Key Words: confined geometries; electrostatic interactions;
oisson–Boltzmann.

1. INTRODUCTION

The electrical double-layer interaction between two cha
pheres immersed in an unbounded electrolyte has been s
xtensively over the past 50 years, during which time the va
nd accuracy of the well-known Poisson–Boltzmann theory
een rigorously examined and established (1). Despite the e
ive amount of work reported on this problem, surprisingly v
ittle is known theoretically about the effects of geometrical c
nement on the pairwise double-layer interaction between
articles. Experimental results suggest, however, that geom
onfinement can have a dramatic effect on this pairwise int
ion (2–6). In particular, an attractive interaction between iden
articles at low electrolyte concentrations has been reported

he particles are in the vicinity of a charged surface or con
etween two charged plates (2–6). This observation has d
any attempts at theoretical explanation (7–11) and still rem
n open problem (12). Furthermore, it has been proven th
oisson–Boltzmann theory always gives a repulsive intera

rrespective of whether the particles are confined or uncon
12, 13). It remains to be seen whether the source of this di
my lies in the interpretation of experimental results or in feat
ot captured in the existing and established theories. Such

ions, however, lie outside the scope of the present paper. In
e shall implement the established Poisson–Boltzmann th
nd examine the effects of geometrical confinement on the

1 To whom correspondence should be addressed. E-mail: j.sade
nimelb.edu.au.
423
d
ied

ty
as
en-
y
-
o
cal
c-

al
en
d
ed
ns
he
n,

ed
ot-
s
es-
ad
ry
c-

hall restrict our discussion to the low-potential limit and thus
he linearized Poisson–Boltzmann theory, although the fea
nd properties of the interaction found in this limit are certa
xpected to be found for higher potentials as well.
Previous work on this problem was also performed wi

he framework of the linearized Poisson–Boltzmann th
14, 15). Changet al. (14) examined the effects of confini
wo colloidal particles between two parallel glass plates
ound that the glass plates increased the magnitude o
epulsive interaction. Medina-Noyolaet al. (15) extended th
ork of Changet al. (14) to consider some modified confi
rations, including particles at a dielectric–electrolyte inter
nd particles confined between two dielectric plates, wher
osition of the particles is not necessarily at the median-p
etween the plates. However, in both these analyses the
les were treated as point charges and the confining su
ere assumed to have the properties of a dielectric disc
uity. The true electrical properties of the particles and

aces were not taken into account, which restricted the a
ability of their results. In contrast, we examine the pairw
nteraction between two spherical particles of finite size
pecified electrical properties that are (i) in the vicinity o
ingle charged flat plate or (ii) confined between two cha
arallel plates. The particles and the plate(s) are taken to
ither the constant charge or the constant potential type
onsequently finite size effects of the particles are include
he analysis. We note that any other surface charge prope
uch as charge regulation due to the dissociation of su
roups (16), must lie within the limiting cases of cons
otential and constant charge (16). We find that the pair

nteraction can be influenced significantly by the presenc
he confining surface(s), and is strongly dependent on
lectrical properties of the particles and the surface(s).

2. THEORETICAL FORMULATION

a. Particles Near a Single Plate

We begin by considering two identical spherical parti
mmersed in an electrolyte, in the presence of a single flat p
t is assumed that the spherical particles have a center-to-c
eparationR, are at the same sphere-center to plate dist
s.
0021-9797/99 $30.00
Copyright © 1999 by Academic Press
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424 SADER AND CHAN
articular, the spherical particles have either uniform con
urface charge densities (CC) or uniform constant su
otentials (CP). The flat plate also has the property of e
C or CP, but this need not be identical to the properties o
pheres. For the case of a CC plate or a CC sphere, we a
hat the dielectric constant or relative permittivity of the p
r sphere is zero. This is a reasonable approximation fo
ase of aqueous electrolytes (16). To calculate the intera
ree energy, the electrical potentialc in the electrolyte i
equired. Within the framework of the linearized Poiss
oltzmann theory,c satisfies

¹ 2c 2 k 2c 5 0, [1]

herek is the Debye screening parameter of the electrol
It is expected that the pairwise sphere–sphere interactio

e strongly affected by the presence of the flat plate on
H , O(1) andka , O(1). Therefore, it is appropriate in th
rst instance to consider the limiting case ofka 3 0, corre-
ponding to two point charges, which will then be used
onstruct the solution for finiteka. For ka 3 0, the exac
nalytical solution to the electrical potentialc may be easil
btained using the method of images (17). We note tha
ign of the image charges will depend on the electrical p
rties of the plate. For a CP plate the image charges w
pposite in sign to that of the source charges, whereas for
late the images charges will have the same sign. The int

ion free energyDF(R) required to bring the charges from
nfinite separationR 3 ` to a finite separationR, at fixed
phere–plate separation (H/ 2), may then be calculated
aking the sum of the individual source–source and sou
mage contributions. Following this procedure, we obtain
imiting solution aska 3 0,

DF~R! 5
Q2

4pe Se2kR

R
6

e2kÎR21H 2

ÎR2 1 H 2D , [2]

here the upper and lower sign in6 corresponds to a CC a
CP plate, respectively,Q is the charge of the spheres, ane

s the permittivity of the electrolyte.
Equation [2] may now be modified to take into account

nite size effects of the spheres and incorporate their corres
ng electrical properties. At this stage we note that [2]

onopole–monopole result. Therefore, to account for the
ize effects of the spheres, we only consider the surface ave
onditions on each sphere. In particular, for a CP sphere we e
hat the average surface potential is set to the true surface
ial, whereas for a CC sphere, we set the average surface c
ensity to the actual surface charge density. To be consisten

he well-known unconfined superposition result (18), this ca
ation is performed by taking each sphere in isolation from
ther sphere. Following the above methodology, we then o

he final result for the interaction free energy
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g1~R! 5
e2kR

R
6

e2kÎR21H 2

ÎR2 1 H 2 , [4a]

Feff 5
F s

iso 2 F p
isoGe2kH/ 2

1 6
a

H
Ge2k~H2a!

, [4b]

G 5 5
sinh ka

ka
: CP spheres

sinh ka 2 ka coshka

ka~1 1 ka!
: CC spheres

, @4c#

hereFs
iso andFp

iso are the surface potentials of the spheres
late in isolation, respectively, and the upper sign in6 corre-
ponds to a CC plate whereas the lower sign correspond
P plate.

b. Particles Confined between Two Plates

We now extend the above analysis to the interactio
wo identical spherical particles that are confined at
edian-plane between two identical and parallel flat pl
hich are separated a distanceH, so that the centers of th
pheres are at a distance (H/ 2) from each plate. All assum
ions regarding the properties of the spheres and plate
dentical to those discussed above. The analysis then
eeds in an analogous manner to that given above. In
icular, the solution for the point charge caseka3 0 is first
ought. This is also obtained using the method of ima
owever, in contrast to the single plate case, we requir

nfinite number of images to account for the bound
onditions on the plates. The exact result for the interac
ree energy in this limiting caseka3 0 directly follows by
onsidering the source–source and all source–image c
utions. This result may then be corrected approximate
ccount for finite size effects, as discussed above, leadi

he final expression for the interaction free energy

DF~R! 5 4pea2F eff
2 e2kag2~R!, [5]

here

g2~R! 5
e2kR

R
1 2 O

n51

`

~61! n
e2kÎR21H 2n 2

ÎR2 1 H 2n2 , [6a]

Feff 5
F s

iso 2 2F p
isoGe2kH/ 2~1 7 e2kH! 21

1 2 2
a

H
Gekaln~1 7 e2kH!

, [6b]
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nd CP plates, respectively, whereas all other symbols a
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asransform [6a] into the equivalent and exact infinite series
vid-
g2~R! 5 5
2

H
~K0~kR! 1 2 O

n51

`

K0~kRÎ1 1 ~2pn/@kH#! 2!! : CC plates,

4

H O
n50

`

K0~kRÎ1 1 ~p/@kH#! 2~1 1 4n@1 1 n#!! : CP plates

[7]

hereK 0( x) is the modified Bessel function of the third kindtions, we will discuss the behavior of both properties indi
trical
lized
t
an
ctive
,
an
tion

urs

par-
(CC)

plate of
19). This transformation is performed by taking the inve
aplace transform of [6a] and using the properties of elli

heta functions (19).

3. RESULTS AND DISCUSSION

The formulas presented above are to be compared a
he corresponding superposition result for two unconfi
dentical spherical particles (18)

DF~R! 5 4pea2~F s
iso! 2e2ka

e2kR

R
. [8]

ote that [3] and [5] both reduce to the unconfined supe
ition result [8] in the limit askH 3 `, as required, and als
ossess the correct limiting forms forka ! 1 andka @ 1,
amely, the point charge and unconfined superposition

ions, respectively.
We now examine the implications of the new results.

vident from [3] and [5] that the interaction is modified in t
ays, (i) through theeffective potentialFeff and (ii) through the
eparation dependencies g1(R), g2(R). In the following sec

FIG. 1. Plot of ratiog1(R)/g iso(R), whereg iso(R) 5 e2kR/R is the separ
a) CC and (b) CP type, for various normalized sphere–plate separatiokH
e
c

nst
d

-

lu-

s

ally, and examine their combined effects.

a. Effective Potential

From [4b] and [6b] it is clear that the effective potentialFeff

f the spheres is dependent not only on the sphere elec
roperties but also on the plate properties and the norma
phere–plate separation (kH/ 2). Note thatFeff is independen
f the sphere–sphere separationR. These dependencies c
esult in either an increase or a decrease in the effe
otential Feff from its unconfined valueFs

iso. Furthermore
rom [4b] and [6b] it is clear that the effective potential c
anish under certain conditions resulting in zero interac
etween the spheres, irrespective of the separationR; i.e.,
F(R) 5 0. For the single-plate case, Eq. [4b], this occ
hen the normalized sphere–plate separation (kH/ 2) is

kH

2
5 ln~GF p

iso/F s
iso!, [9]

rrespective of the boundary conditions on the plate. For
icles confined between two plates of the constant charge

n dependence for two unconfined spheres. Results shown for a single
normalized sphere–sphere separationsR/H.
atio
nsand
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ype, the critical normalized plate spacingkH for which the
phere–sphere interaction free energyDF is zero is

kH 5 2 sinh21~GF p
iso/F s

iso!, [10a]

FIG. 2. Plot of ratiog2(R)/g iso(R), whereg iso(R) 5 e2kR/R is the separ
a) CC and (b) CP type, for various normalized sphere–plate separatiokH

FIG. 3. Plot of ratioDF/DF iso, whereDF is the interaction free energy
pheres in an unbounded fluid (Eq. [8]). Results given forka 5 0.1, isolated

1.5 (short dashed line),H# 5 2 (dashed line),H# 5 3 (short-long dashed
late, (c) CC spheres and CP plate, (d) CP spheres and CP plate.
hereas for the case when the plates are held at con
otential (CP),

kH 5 2 cosh21~GF p
iso/F s

iso!. [10b]

n dependence for two unconfined spheres. Results shown for double
normalized sphere–sphere separationsR/H.

two spheres near asingle plateandDF iso is the interaction free energy for tw
te potentialFp

iso 5 0, and normalized sphere–plate separationsH# 5 H/ 2a: H#

), andH# 5 5 (solid line). (a) CC spheres and CC plate, (b) CP spheres an
atio
nsand
for
pla

line
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427DOUBLE-LAYER INTERACTION IN CONFINED GEOMETRIES
n all cases, we observe thatFeff and hence the interaction c
anish only if the following conditions are satisfied: (i) for
pheres, for whichG . 0, the isolated surface potentials of
pheresFs

iso and the plate(s)Fp
iso must have the same sig

hereas for (ii) CC spheres, for whichG , 0, these isolate
urface potentials must be opposite in sign. We shall dis
he implications of these findings further below.

b. Separation Dependencies

The separation dependencies of the interaction free
rgy DF, namely,g1(R) for the single-plate case andg2(R)

or the double-plate case, are both functions of the sph
late separation (H/ 2). We note that in both cases t
eparation dependencies are strictly positive monotoni
ecreasing functions ofR, indicating a repulsion, in lin
ith Ref. (12). In Fig. 1 we present a comparison of
eparation dependence for the single-plate case to th
onfined case, where it is evident that the effect of the
late is to increase the separation dependence betwee
pheres, whereas the CP plate will decrease the sepa
ependence. The amount in which the separation de
ence is decreased or increased is strongly dependent
ormalized sphere–plate separation (kH/ 2) as well as th
ormalized sphere–sphere separation (R/H). Consequently
e observe that forkH , O(1), theseparation dependen

FIG. 4. As for F
ss

n-

e–

lly

n-
C
the
ion
n-
the

s modified significantly provided (R/H) . O(1), whereas
or kH . O(1) the separation dependence is modifie
R/H) . O(kH). For the CC plate case, the separa
ependence relative to the unconfined case [8] can be
led by the presence of the plate, whereas for the CP

he separation dependence can be dramatically reduce
hese properties can be easily understood by considerin
resence and signs of the image charges in both case
For the case of two spheres confined between two plate
ould expect that the effects discussed above for the si
late case would be enhanced. In Fig. 2 we present resu

he two-plate case. In contrast to the single CC plate cas
hich the separation dependence relative to the uncon
ase was at most doubled, the enhancement in the two
ase is unbounded. From Figs. 1b and 2b, we see that f
P plates, the decrease in the separation dependence

wo-plate case is much more pronounced than in the si
late case. Also, from [7] it is evident that the “effective De

ength” in the double CP plate case is modified from
nconfined result. To quantify this, we observe that for la
eparationsR @ H, g2(R) ; (4/H)K0(kR=1 1 (p/[kH]) 2)
or CP plates, whereasg2(R) ; (2/H) K 0(kR) for CC plates
oting the asymptotic form ofK 0( x) ; =p/(2x)e2x, for

argex, it is then clear that for the CP plate case, the effec
ebye lengthkeff

21 is

3 but forka 5 1.
ig.
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keff 5 k Î1 1 ~p/@kH#! 2, [11]

hich is dependent on the normalized sphere–plate sepa
kH/ 2).2 In contrast, the interaction is modified only by
eak algebraicR1/ 2 type behavior for confinement between
lates.

c. Interaction Free Energies

We now examine the combined effects of the separa
ependenciesg1(R), g2(R) and the effective potentialFeff on

he interaction free energyDF(R), henceforth simply referre
o as theinteraction.Our discussion shall be restricted to ca
or which the interaction is significantly affected by confi
ent, namely,ka , O(1). We note that for larger values
a, the interaction can be greatly affected by confinem
lthough this will occur at sphere–sphere separations whe

nteraction is negligibly small.

i. Single plate: Zero isolated potentialFp
iso 5 0. First, we

nvestigate the interaction of two charged spheres in the v

2 Recent numerical calculations of the interaction of two identical cha
ylinders confined between two constant potential plates also show a red
n the effective Debye screening length upon confinement. See Ref. (2

FIG. 5. Plot of ratioDF/DF iso, whereDF is the interaction free energy
or two spheres in an unbounded fluid (Eq. [8]). Results given forka 5 0.1
/ 2a: H# 5 1.5 (short dashed line),H# 5 2 (dashed line),H# 5 3 (short-long
nd CC plates, (c) CC spheres and CP plates, (d) CP spheres and CP
ion

n

s

t,
the

n-

ty of a single plate carrying zero isolated potential, i.e.,F p
iso 5

. Note that the plate can be held at a constant surface c
ensity (CC) or constant surface potential (CP). In Fig. 3
resent results forka 5 0.1 and for various sphere–pla
eparations and electrical boundary conditions on the sp
nd plate. From Figs. 3a and 3b it is evident that the intera
f two CC spheres in the vicinity of a single CC plate diff
onsiderably from that of two CP spheres in the vicinity of
ame plate. In particular, we note that as the CC sphere
rought closer to the plate, the interaction is enhanced. Fo
pheres, however, ifk(R 2 2a) * 1.5 then there is
eduction in the interaction as the normalized sphere–
eparationH/ 2a is reduced from 5; otherwise the interact
ncreases, reaches a maximum, and then decreases
pheres are brought closer to the plate. This unusual beh
an be understood by noting thatG 5 23 3 1023 for the CC
pheres, whereasG 5 1.002 for the CP spheres. From [4b]
hen follows that the effective potentialFeff is virtually unaf-
ected by the plate if the spheres are of the CC type, whe
or CP spheres,Feff decreases considerably with decrea
phere–plate separation. Consequently, the increase in t
eraction observed in Fig. 3a for the CC spheres is due pr

d
ion

two spheres confined betweentwo platesandDF iso is the interaction free energ
lated plate potentialFp

iso 5 0, and normalized sphere–plate separationsH# 5
hed line), andH# 5 5 (solid line). (a) CC spheres and CC plates, (b) CP sph
tes.
for
, iso
das
pla
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ly to the enhancing effects of the separation dependenceg1(R)
see Fig. 1a), and the complex behavior observed in Fig. 3
he CP spheres is due to the competing effects ofFeff and

1(R). In this latter case,Feff is clearly the dominant mech
ism that influences the interaction, ifk(R 2 2a) * 1.5.
Next we examine cases where the spheres are in the vi

f a single CP plate, withFp
iso 5 0. As discussed above, t

eparation dependenceg1(R) in this case will tend to reduc
he interaction, as the sphere–plate separation is decrease
ig. 1b). This behavior is borne out in Figs. 3c and 3d,
a 5 0.1, where a significant reduction in the interaction
bserved as the sphere–plate separation is reduced. Aga
ote that for CC spheres,Feff > Fs

iso at all sphere–plat
eparations considered; whereas for the CP spheres,Feff in-
reases as the sphere–plate separation decreases. This e
he difference between the CC sphere interactions given in
c and the CP sphere interactions in Fig. 3d. However, u

he CC plate results in Figs. 3a and 3b, the separation d
enceg1(R) dominates the interaction here.
In Fig. 4 we present analogous results for cases whereka 5

, which corresponds to stronger screening of the particle
late by the surrounding electrolyte. This enhanced scree
lso weakens the dependence ofFeff on the sphere–plate se
ration. From Figs. 4a and 4b it is evident that the interac

or two CC spheres and two CP spheres in the vicinity
ingle uncharged CC plate are qualitatively similar; a reduc

FIG. 6. As for F
or

ity

(see
r

we

lains
ig.
e
n-

nd
ng

n
a
n

n the sphere–plate separation results in an increase i
nteraction between the spheres. Again we note thatFeff > Fs

iso

or CC spheres; whereas for CP spheres the effective pot
eff is significantly affected by the plate. These proper
xplain the reduction in the interaction for the CP spheres
ig. 4b), in comparison with the interaction of the CC sph
see Fig. 4a). In Figs. 4c and 4d we give the correspon
esults for a single CP plate. Here we note that the separ
ependenceg1(R) will tend to reduce the interaction in com
arison to its value when the particles are unconfined, and

s borne out in the results. Again the difference between
nteraction of the CC and CP spheres is due to the diffe
ehavior ofFeff in both cases, as discussed above.

ii. Two plates: Zero isolated potentialFp
iso 5 0. We now

resent results for the case where the spheres are confin
ween two plates, both of which have zero isolated potential

p
iso 5 0, and examine the effects of different boundary condit

n the spheres and plates. Here we expect similar, yet enh
ehavior to that found for the single-plate case discussed abo
ig. 5 we present results forka 5 0.1. For the case of confineme
y CC plates we find that the interaction between two CC sp

s enhanced greatly by the presence of the plates (see Fig.
eduction in the sphere–plate separation increases the inter
etween the spheres. For two CP spheres confined betwe
lates (see Fig. 5b), however, we observe that the intera

5 but forka 5 1.
ig.
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ncreases, reaches a maximum, and then decreases as the
late separation is reduced. In particular, note that forH/2a 5 1.5
nd 5, the interactions are almost identical for all sphere–s
eparations. This rich and complex behavior observed with th
pheres is again due to the competing effects ofFeff andg2(R).
lso note that the interactionDF(R) is markedly lower for CP

FIG. 7. Plot of ratioDF/DF iso, whereDF is the interaction free energy
wo spheres in an unbounded fluid (Eq. [8]). Results given forka 5 0.3 an
# 5 2 (dashed line),H# 5 3 (short-long dashed line), andH# 5 5 (solid line).
ndFp

iso/Fs
iso 5 21, (d) CP spheres andFp

iso/Fs
iso 5 22, (e) CP spheres an
here–

re
P

pheres in comparison to the results for CC spheres, ye
onsiderably higher than the unconfined interaction free en
In Figs. 5c and 5d we present results correspondin

onfinement between two CP plates, forka 5 0.1. Note the
ramatic reduction in the interaction between the spher
omparison to the unconfined interaction, for both CC and

two spheres near asingle CC plateandDF iso is the interaction free energy f
ormalized sphere–plate separationsH# 5 H/ 2a: H# 5 1.5 (short dashed line
CC spheres andFp

iso/Fs
iso 5 0, (b) CP spheres andFp

iso/Fs
iso 5 0, (c) CP sphere

/Fs
iso 5 1, (f) CP spheres andFp

iso/Fs
iso 5 2.
for
d n
(a)
dFp

iso
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ussed above, is clearly evident in these results. We also
ut that the reduction in the interaction for the CC spher
rimarily due tog2(R), whereasFeff has a significant effe
nly for the CP spheres; the interaction between the CP sp

s greater than that of the CC spheres, especially for s
phere–plate separations.
In Fig. 6 results are given for confinement by two plates

a 5 1. Again similar results are found to the single-plate c
see Fig. 4), although the influence of the two plates is gre
lso note that the effects ofFeff andg2(R) are diminished in
omparison to theka 5 0.1 double-plate case, due to
tronger screening of the electrolyte.

iii. Nonzero isolated potentialsFp
iso. We now examine th

ffect of nonzero isolated surface potentialFp
iso on the confin

ng plate. Results for single-plate confinement only will
resented, since results for the double-plate case exhibit s
ualitative trends. Furthermore, we shall restrict our discus

o plates of the CC type, since this will serve to adequa
llustrate the important features of the interaction for non
solated plate potentials. In Fig. 7 we present results forka 5
.3, where the plates are of the CC type. Importantly, we

hat for the CC spheres,Feff is only weakly affected by th
resence of the plate for reasonable choices ofFp

iso/Fs
iso; i.e.,

eff > Fs
iso unless uFp

isou @ uFs
isou, since G 5 20.023 here

onsequently, the only results presented for the interacti
wo CC spheres are for a plate held atFp

iso 5 0 (see Fig. 7a
hese results exhibit similar behavior to those discussed a

n Figs. 3a and 4a. In Fig. 7b we present corresponding re
or the interaction of two CP spheres in the vicinity of a
late withFp

iso 5 0. Here the effective potentialFeff is strongly
ependent on the sphere–plate separation which, when
ined with the enhancing effects ofg1(R), results in the com
lex behavior observed. We now examine the influenc
arying the isolated plate potentialFp

iso. Noting thatG . 1, it
s clear from [4b] that as the isolated potential ratioFp

iso/Fs
iso is

ade increasingly negative, thenFeff/Fs
iso, and hence the in

eraction between the spheres, will increase. This effe
emonstrated in Figs. 7c and 7d forFp

iso/Fs
iso 5 21 and22.

owever, if Fp
iso/Fs

iso is made increasingly positive,Feff/Fs
iso

ill decrease. In particular, for a critical value ofFp
iso/Fs

iso, at a

TABLE 1
Values of Fp

iso/Fs
iso for which Feff 5 0 at Different

Sphere–Plate Separations H/2a

H

2a

F p
iso

F s
iso

CP spheres CC spheres

1.5 1.55 267.4
2 1.80 278.3
3 2.42 2106
5 4.42 2193

Note.CC and CP spheres are in the vicinity of a single plate.
int
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r
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lar
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ly
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e

of

ve
lts

m-

of

is

xed sphere–plate separation,Feff will vanish, resulting in zer
nteraction between the spheres. Consequently, asFp

iso/Fs
iso is

ncreased from zero for a given sphere–plate separation
nteraction between the spheres will decrease, vanish, and
ncrease. This behavior is borne out in Figs. 7e and 7

p
iso/Fs

iso 5 1 and 2. ForFp
iso/Fs

iso 5 1 (see Fig. 7e), we obser
hat the interaction between the spheres decreases wit
reasing sphere–plate separation, results that are reminisc
onfinement by a CP plate (see Figs. 3d and 4d). How
nlike the CP plate case, this reduction in the interaction is

o Feff. In Fig. 7f we see that forFp
iso/Fs

iso 5 2, the interaction
etween the spheres decreases and then increases
phere–plate separation is reduced. This interesting beha
ue to the interaction vanishing at a separationH/ 2a 5 2.36
evaluated from Eq. [9]). We note that for larger values

p
iso/Fs

iso, we will again find that the interaction between
pheres increases monotonically as the sphere–plate sep
s reduced.

iv. Condition for zero interaction. Finally, we quantify the
alues ofFp

iso/Fs
iso for which the effective potentialFeff, and

ence the interaction free energyDF(R), vanishes. In Table
e present results for confinement by a single plate, forka 5
.3. Wenote that these results do not depend on the elec
ature of the plate, but only on the sphere properties,
vident from [9]. From Table 1 it is clear that for two C
pheres,DF(R) vanishes at practically achievable values

p
iso/Fs

iso. These results contrast with those for CC sphe
here highly unreasonable values ofFp

iso/Fs
iso must be ob

ained. Similar results are also found for confinement betw
wo plates, see Table 2. However, in contrast to the single-
ase, these results depend on the electrical nature of the
ning plates. For the interaction of two CP spheres, we a
bserve that the interaction can vanish at practically achie
alues ofFp

iso/Fs
iso, whereas the same cannot be said for the

phere case.

4. CONCLUSIONS

The double-layer interaction between two spherical part
mmersed in an unbounded electrolyte has been extens

Values of Fp /Fs for which Feff 5 0 at Different
Sphere–Plate Separations H/2a

H

2a

F p
iso

F s
iso

CC plates CP plates

CP spheres CC spheres CP spheres CC sp

.5 1.09 247.4 0.46 220.0
1.17 250.9 0.63 227.3
1.41 261.5 1.01 244.1
2.32 2101 2.10 291.4

Note.CC and CP spheres are confined between two CC and CP pla
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roximity effects of one or two charged plates on the pairw
ouble-layer interaction between two identical spherical p
les. We found that the proximity of one or two flat plates
ramatically affect this pairwise interaction, resulting in
eduction, enhancement, or elimination of the interaction,
ehavior being strongly dependent on the electrical prope
f the spheres and that of the confining plate(s). In partic
e found that the interaction between two confined CC sph

s primarily affected by the electrical nature of the confin
late(s), whereas the charge or potential of the plate(s) e
nly a weak influence. This contrasts with the interac
etween two CP spheres which is strongly affected by bot
otential/charge and the electrical properties of the confi
late(s). These findings indicate that greater control and

fication of the pairwise interaction is achievable in practice
P spheres in comparison to CC spheres.
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