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Forces between a Rigid Probe Particle and a Liquid Interface

I. The Repulsive Case
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The effect of disjoining pressure between a rigid spherical probe
particle (attached to an AFM cantilever) and a liquid interface (e.g.,
oil/water or air/water) is treated in an analytic manner to describe
the total force F exerted on the probe as a function of the distance
X of the probe from the rigid substrate (AFM stage) on which the
liquid interface resides. Two cases (i) a flat interface under grav-
ity and (ii) a drop whose size is sufficiently small that gravity can
be neglected have been examined. A simple numerical algorithm
is given for computing F(X) (the AFM observable) from a given
form for the disjoining pressure. Numerical results are displayed
for electrostatic probe/interface interactions which reveal the linear
compliance regime experimentally observed in AFM experiments
on these systems. The slope of the linear compliance regime is shown
to be a function of the properties of the interface (capillary length,
particle radius, drop size, contact angle of drop on rigid substrate
etc.). C© 2001 Academic Press

Key Words: liquid interface; deformable interface; AFM; colloidal
probe; constant compliance; oil drop; flat interface.
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1. INTRODUCTION

The interaction of solid colloidal particles with deformab
liquid interfaces is of fundamental interest in technologic
important areas such as flotation, deinking of paper, and w
purification. The measurement of these forces by atomic f
microscope (AFM) is becoming commonplace. Duckeret al.(1)
measured forces across water between a silica particle att
to the AFM cantilever and an air bubble anchored to the pi
driven stage. A similar experiment was reported by Fieldenet al.
(2), Butt (3), and Preuss and Butt (4). Measurements of fo
between probe particle and sessile oil drops in water hav
cently been reported by Mulvaneyet al. (5), Snyderet al. (6),
and Hartleyet al.(7). The interpretation of these measureme
1 Current address: Centre for Particulate Fluid Processing, Departm
of Mathematics and Statistics, University of Melbourne, Parkville 305
Melbourne, Australia.

2 To whom all correspondence should be addressed at Department of C
ical Engineering, Carnegie Mellon University, Doherty Hall, 5000 Forb
Avenue, Pittsburgh, PA 15213-3890.
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has been via a procedure introduced by Duckeret al. (1) which
we describe below.

It should be appreciated that the display of force versus cen
separation distance,Do, between probe particle surface and th
surface of the liquid fixed to the movable stage can be achie
only by observing a “linear compliance” regime in the measu
ment. By this we mean that cantilever deflectiond (as measured
by a light reflection technique) is observed to asymptote to
linear behavior when plotted against stage displacementl (de-
termined by piezo voltage). For a rigid substrate and probe,
linear regime is interpreted as the stage (i.e., substrate) and
tilever tip (i.e., probe particle) moving together. From Fig. 1 w
observe that the separation distance between rigid particles
substrate is given by

Do = d + lo − l [1.1]

where

lo = L − 2a− zo. [1.2]

In generallo is not a constant since the substrate is deform
by the force,F , exerted by the probe on the substrate. If th
substrate is a linearly elastic body then we may write

F = −Kd
(
zo − z∞o

)
, [1.3]

wherez∞o is the height of the undistorted substrate from th
rigid stage so thatzo − z∞o is the central deformation of the
substrate. The elastic properties of the substrate are conta
in the effective “spring constant”Kd for the substrate. We also
have that

F = Kcd, [1.4]

whereKc is the spring constant of the AFM cantilever. Subs
tuting [1.4], [1.3], into [1.2] we have

lo = l∞o +
Kc

Kd
d, [1.5]
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FIG. 1. Geometry of the AFM measurement.

where

l∞o = L − 2a− z∞o , [1.6]

and [1.1] may be written as

Do =
(

1+ Kc

Kd

)
d − l + l∞o . [1.7]

Experimentally, we observe at close separation of the surf
an apparent “linear compliance” region whered is observed to
vary linearly withl . Conventionally, this region is explained b
invoking the onset of a short-range repulsive force (hard sp
overlap) with a very small decay length. At these separati
small separation decrease results in a large increase in the
F . Thus in this region, while the forceF is accommodated b
the substrate,Do is effectively constant (Do = Dw) and we see
from [1.7], that

d = 1(
1+ Kc

Kd

)(l − (l∞o − Dw

))
. [1.8]

The slope of the linear compliance region is thus (1+ Kc/Kd)−1

and the intercept on thel axis isl∞o − Dw. Having determined
these quantities from the linear compliance region, we may
culateDo outside this region using [1.7] in the form

Do = Dw + d

(
1

slope

)
− l + intercept. [1.9]

For rigid interfaces,Kd À Kc, and hence the linear complian
region of ad vs l plot will have slope 1. Indeed the calibratio
factor for the conversion of split diode voltage to cantilever
flection may be calculated by requiring the slope to be unit
the linear compliance regime.

Since Dw ∼ 0.2 nm for the onset of “hard sphere” overla
forces,Dw is usually neglected with respect to the typicalDo
values corresponding to colloidal forces. Graphically, for a giv
deflection,d, the separation distanceDo is shown in Fig. 2 is the
E, AND WHITE
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horizontal distance between the experimentald vs l curve and
the extrapolated linear compliance line.

When AFM is employed to measure the surface forces
bubble/drop substrates with a rigid probe particle in situatio
where the colloidal forces are predominately repulsive, an a
parent linear region (with a slope significantly less than one)
thed vs l curve is observed and the use of the above analysis
extractDo values is immediately suggested. This is, in essen
the Ducker analysis (1) of bubble/drop systems. By assum
(i) that the drop behaves like a Hookean spring with an effect
spring constantKd < Kc and (ii) that linearity is due toDo≈ Dw

(constant), Ducker and later researchers were able to back
F(Do) curves (assumingDw ¿ colloidal force range and could
therefore be neglected).

The aim of the present paper is to elucidate the validity
otherwise of these assumptions. We analyze the action of in
surface disjoining pressure on a deformable liquid interface a
the consequences for AFM measurement of such forces. We
examine two limiting cases where the problem can be treated
alytically in the most part. We consider a rigid spherical prob
particle (radius a) interacting with

(a) a flat liquid interface whereDo ¿ a, λ
(b) a drop (bubble) interface (radiusRo) such thatDo ¿ a <

Ro ¿ λ.

Here Do is a separation distance at which disjoining pressur
manifest themselves andλ is the capillary length under gravity
(g) of the interface, viz.

λ =
(
γ

1ρg

)1/2

, [1.10]

whereγ is the interfacial tension and1ρ is the density dif-
ference between substrate and bathing medium. SinceDo is
typically 10−9

m , a ∼ 10−6
m , andλ ∼ 10−3

m the above cases are
enFIG. 2. The extraction of separation distanceDo from the linear compliance
region.
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not unnecessarily restrictive. Clearly for case (b) we should
drops (bubbles) withR< 10−4

m (i.e., a tenth of a millimeter). We
note that a similar treatment has been given earlier by Mikla
and co-workers (8, 9) using a perturbation theory approach

2. DEFORMATION OF THE LIQUID INTERFACE

We consider first the case of the infinite flat liquid surface. T
interface here is flat due to the large volume of the substrate
(or bubble) and the action of gravity. The geometry is show
Fig. 3. We choose as a fundamental variable the vertical dist
X between the origin fixed to the stage and the lowest poin
the probe sphere as shown in Fig. 3. This quantity (or at leas
change in1X from some reference point) is obtainable direc
from AFM d versusl measurements since from Eq. [1.1],

X = zo + Do [2.1]

= Xo + d − l , [2.2]

where

Xo = L − 2a. [2.3]

Our aim is to calculate the forceF exerted on the probe by th
disjoining pressure from the liquid interface as a function
X. At radial distancer from the axis (see Fig. 3) the surfac
separation isD(r ) given by

D(r )= [r 2+ (X + a)2− 2(X + a)z(r )+ z2(r )]1/2− a, [2.4]

where the surface profile is given by the functionz(r ) as shown
in Fig. 3. For a general surface profile the free energyF can be
written as

F = 2π

∞∫
0

dr r

[
γ (1+ z′2)1/2+ E(D(r, z))+ 1

2
1ρg

(
z∞o − z

)2]
+ shape-independent terms. [2.5]
FIG. 3. Geometry of the rigid spherical probe at a flat liquid interface in th
presence of gravity. (The deformation is not shown to scale.)
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Here we use the Derjaguin approximation (10) for the inter
tion energy between the surfaces so thatE(D) is the interaction
energy per unit area between parallel flat half spaces of pr
and substrate material across a distanceD of bathing medium.
Minimizing the free energy with respect to drop shape (11),
obtain the augmented Young-Laplace equation

γ
d

dr

[
z′r

(1+ z′2)1/2

]
− r5(D(r ))+ r1ρg

(
z∞o − z

) = 0

(0< r <∞) [2.6]

and the boundary condition

z′(0)= 0. [2.7]

In deriving [2.6] we use the constraint that

z(∞) = z∞o [2.8]

together with the approximation that

∂D(r, z)

∂z
= z− X − a

a+ D

≈ −1+ O(Do/a) [2.9]

and the definition of disjoining pressure as

5(D) = −∂E(D)

∂D
. [2.10]

Hence we have limited ourselves to the regimeDo ¿ a from
the outset. The fact that∂D/∂z is not−1 for r ∼ a is not of
consequence since, in the derivation, it occurs multiplied
5(D(r )) which will be vanishingly small by the timer achieves
any small fraction of the sphere radiusa. In the region where
5(D) is not negligible, [2.9] is accurate toO(Do/a). That this is
so is easily seen from the fact that we are interested inDo values
of order the decay length of the disjoining pressure5(D). Hence
we expect that

z(r )− zo ∼ O(Do) [2.11]

in the deformed region and we see from (2.1) and (2.4) that

r 2 = 2a[D(r )− Do + z− zo]

(
1+ O

(
Do

a

))
. [2.12]

Thus the radial extent of the deformed region isO((aDo)1/2)¿
a. It follows that Fig. 3 is not shown strictly to scale, the d
formation being over a very small section of the interface w
insider ∼ a. The analysis below is therefore limited to later
esurface deformations which are small compared to the probe
radius. In the case of “wrapping” (see Section 5) deformation
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of the interface may become comparable to probe radius a
more complicated treatment is necessary here.

Equation [2.6] is simply the Young-Laplace equation fo
liquid interface under gravity in the presence of a disjoin
pressure. Physically it is a statement that the local pressure
ference across the interface (the Laplace (curvature) compo
plus the disjoining pressure) is equal to the pressure differe
due to the gravitational headz∞o − z. It is convenient to rearrang
the equation as follows

z′′ + 1

r
z′ − (1+ z′2)3/25(D)

γ
+ 1

λ2
(1+ z′2)3/2

(
z∞o − z

)
+ 1

r
z′3 = 0, [2.13]

where we introduce the capillary length [1.10]. We solve t
equation by matching inner (r ∼ (Doa)1/2) and outer (r ∼ a)
solutions. To obtain the inner solution we write

r = (aDo)1/2t [2.14]

z− zo = Doξ (t) [2.15]

so that

D(t) = Do

(
1− ξ + t2

2
+ O(Do/a)

)
. [2.16]

Substituting these scalings into [2.13] we obtain

ξ ′′ + 1

t
ξ ′ − a5(Do(1− ξ + t2/2))

γ
= 0+ O(Do/a) [2.17]

subject to

ξ ′(0) = 0 [2.18]

ξ (0) = 0 [2.19]

which follows directly from [2.7] and [2.15]. The inner DE is n
analytically solvable for a general5(D) but its larget asymptotic
form is readily extracted.

A first integral of [2.17] is

tξ ′ = a

γ

∫ t

0
dt t5(D(t)), [2.20]

where [2.18] is used to eliminate the constant of integration
second integral is then

ξ (t) = a

γ

t∫
0

dt′

t ′

t ′∫
0

dt′′ t ′′5(D(t ′′)) [2.21]
where we make use of [2.19]. For larget ,5(D(t)) restricts the
integration range by vanishing. Thus fort À 1 (i.e., outside the
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range of5(D) but well inside the sphere radius)

ξ (t) ∼ 1

Do
[G(Do) ln t − H (Do)], [2.22]

where

G(Do) = aDo

γ

∫ ∞
0

dt t5(Do(1+ t2/2− ξ ))

H (Do) = aDo

γ

∫ ∞
0

dt t ln t5(Do(1+ t2/2− ξ )).

 [2.23]

In unscaled variables the outer behavior of the inner solutio

z(r ) = zo − H (Do)+ G(Do) ln

(
r

(aDo)1/2

)
. [2.24]

We note in passing that the total force on the interface is (in
Derjaguin approximation)

F(Do) = 2π
∫ ∞

0
dr r5(D(r )) [2.25]

= 2πγG(Do). [2.26]

The outer solution is scaled as

r = λs [2.27]

z− z∞o = aχ (s). [2.28]

Here5(D) is negligible and Eq. [2.13] reduces to

χ ′′ + 1

s
χ ′ − χ = 0+ O

((
a

λ

)2)
[2.29]

with

χ, χ ′ −−−→
s→∞

0. [2.30]

A suitable solution is

χ (s) = −AKo(s), [2.31]

whereKo is the modified Bessel function of the second kind (1
In unscaled variables the outer solution can be written

z(r ) = z∞o − a AKo(r/λ). [2.32]

For small values of its argument (12)

z

Ko(z) ∼ −ln

2
− C+ O(z2 ln z), [2.33]
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where C= 0.57721566 is Euler’s constant. Thus the inn
asymptote of the outer solution is

z(r ) = z∞o + a A[ln(r/2λ)+ C]+ · · ·

= z∞o + a A ln
(
r/(Doa)1/2

)− a A ln
2λ

(Doa)1/2
+ a AC.

[2.34]

Comparison of [2.34] and [2.24] show that

a A= G(Do) [2.35]

and

zo − H (Do) = z∞o − a A ln

(
2λ

(Doa)1/2

)
+ a AC. [2.36]

Hence

zo = z∞o + H (Do)− G(Do)

(
ln

(
2λ

(Doa)1/2

)
− C

)
. [2.37]

In terms of the AFM observable

X(Do) = X∞ + Do + H (Do)+ G(Do)

[
C− ln

2λ

(Doa)1/2

]
,

[2.38]

where

X∞ = z∞o . [2.39]

For computational convenience, we use [2.16] to rewrite
inner differential equation [2.17] as

D′′ + 1

t
D′ −

(
2− a5(D)

γ

)
Do = 0. [2.40]

For the spherical drop/bubble case with a finite radius,Ro, and
contact angle,θc, a similar analysis is employed and is presen
in the appendix. The differential equation for the inner pro
of the drop/bubble case is expressed in terms ofD(t) is (from
[A.3] and [2.12])

D′′ + 1

t
D′ −

(
2

(
1+ a

Ro

)
− a5(D)

γ

)
Do = 0 [2.41]

so that it reduces to the planar case whena/Ro ¿ 1. Indeed, we
note on comparison of the flat interface result [2.37] with
drop case [A.58] that, in both cases,
X(Do)= X∞+ Do+ H (Do)+G(Do)(1/2 ln Do+ B), [2.42]
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where B is a constant depending on the properties of the isol
interface, viz.

B∞ = C+ ln

(
a1/2

2λ

)
BRo = P(θc)+ ln

(
a1/2

2Ro

)
 [2.43]

while X∞ (= z∞o ) is the height of the undistorted interface at t
center.

The theoretical calculation ofF(X), the observable re
sult of an AFM experiment, is performed as follows. For
given function5(D), we solve [2.40] (or [2.41]) fromt = 0
whereD(0)= Do andD′(0)= 0 toward infinity evaluating the
integrals

G = aDo

γ

∫ t

0
dt t5(D(t))

H = aDo

γ

∫ t

0
dt t ln t5(D(t))

 [2.44]

as we solve, untilG andH have converged toG(Do) andH (Do)
to within a specified accuracy. The forceF(Do) is given by [2.26]
and the distanceX(Do) is given by [2.42]. Thus asDo is varied
systematically, we may plotF(X) parametric inDo. We show the
results of those calculations for some model probe/drop syst
in Section 3.

3. MODEL CALCULATIONS

We have chosen to illustrate theF(X) behavior of a drop/probe
system by using the electrostatic disjoining pressure alone
have not included an attractive term as the treatment of sys
where5(D) has an attractive component will be discussed i
subsequent paper where the interfacial instability will be trea
The disjoining pressure is calculated from the numerical solu
of the full Poisson-Boltzmann equation between flats for 1
electrolyte with constant charge boundary conditions. The pr
particle radius was set at 2µm and the drop radiusRo at 0.5 mm.
The calculation ofF(Do) and X(Do) was performed by the
algorithm discussed above for various values of the drop con
angleθc, the interfacial tensionγ , surface potentials at infinite
separationψ∞01

, ψ∞02
of probe and drop interfaces and doub

layer decay length,κ−1.
In Figs. 4a and b we plotF(Do)/a, 1X(Do) (i.e., X(Do)−

X∞) as functions of central separationDo for ψ∞01
= ψ∞02

=
50 mV, θc = 30◦, γ = 30 dyn/cm. We note that both function
are strongly varying functions ofDo. Remarkably whenF/a is
plotted against1X (parametric inDo) in Fig. 4c to produce the
simulated AFM measurement, we observe the apparent o
of a linear compliance regime once1X(Do) becomes negative

(i.e., the bottom of the probe sphere is closer to the stage base
than the top of the undistorted drop). In Fig. 5, we plotF(1X)/a
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FIG. 4. F(Do)/a as a function of central separation distance,Do, for
ψ∞01
= ψ∞02

= 50 mV,θc = 30◦, γ = 30 dyn/cm,κ−1 = 100 A
a
, anda = 2µm.

The dashed vertical line denotes the wrapping distance,Dw . (b)1X(Do) (i.e.,
X(Do)− X∞) as a function of central separation distance,Do, forψ∞01

= ψ∞02
=

50 mV, θc = 30◦, γ = 30 dyn/cm,κ−1 = 100 A
a
, anda = 2 µm. The dashed

vertical line denotes the wrapping distance,Dw . (c) F(Do)/a and1X(Do)

plotted parametrically as a function of central separation distance,Do, for
ψ∞01
= ψ∞02

= 50 mV,θc = 30◦, γ = 30 dyn/cm,κ−1 = 100 A
a
, anda = 2µm.
E, AND WHITE

FIG. 5. F(1X)/a as a function of1X showing the effect of changing sur
face potential with system parametersθc = 30◦, γ = 50 dyn/cm,κ−1 = 100 A

a
,

anda = 2µm.

curves showing the effect of changing surface potential for int
acting similar surfaces. Clearly the linear regime is a feature a
surface potentials. The slope of the linear compliance regio
independent ofψo. The curves exhibit the asymptotic saturatio
behavior at large surface potentials that is a feature of elec
static5(D)’s calculated from the full nonlinear P-B equation

In Fig. 6, we plotF(1X)/a for similar interacting surfaces
with ψ∞01

= ψ∞02
= 50 mV, γ = 50 dyn/cm, andθc = 30◦ for

various values of the Debye screening lengthκ−1. We note the
slope of the linear compliance region depends weakly onκ−1. In
Fig. 7, we plotF(1X)/a curves forψ∞01

= ψ∞02
= 50 mV and

γ = 50 dyn/cm for various values of the drop contact angleθc.
Again we note the linear compliance region and a modera

FIG. 6. F(1X)/a as a function of1X for various values of the Debye

screening lengthκ with system parametersψ01

= ψ02
= 50 mV, θc = 30 ,

γ = 50 dyn/cm, anda = 2µm.
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FIG. 7. F(1X)/a as a function of1X for various values of the dro
contact angleθc with system parametersψ∞01

= ψ∞02
= 50 mV, κ−1 = 100 A

a
,

γ = 50 dyn/cm, anda = 2µm.

strong dependence of the compliance (slope) on contact a
In Fig. 8, we plotF(1X)/a curves for dissimilar interacting su
faces with surface potentialsψ∞01

andψ∞02
as shown forθc = 30◦

andγ = 50 dyn/cm. The disjoining pressure5(D) for dissimi-
lar surfaces has more structure than in the similar surfaces
and cannot be well approximated at smaller separations
single exponential decay as it can at larger separations. N
theless, the linear compliance region still manifests itself
weak function of surface potentials. Clearly linear complianc
not associated just with approximately exponential force la
Finally in Fig. 9 we plotF(1X)/2πγa as a function of1X
for ψ∞01

= ψ∞02
= 50 mV,θc = 30◦, and various values ofγ and

we note a very weak residual dependence of the complian

FIG. 8. F(1X)/a as a function of1X for dissimilar interacting surface
∞ ∞ −1 ◦
with surface potentialsψ01

andψ02
for κ = 100,θc = 30 , γ = 50 dyn/cm,

anda = 2µm.
IQUID INTERFACE FORCES 147
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FIG. 9. F(1X)/2πγa as a function of1X for various values ofγ with sys-
tem parametersψ∞01

= ψ∞02
= 50 mV,κ−1 = 100 A

a
, θc = 30◦, anda = 2µm.

surface tension over and above the explicit linear depende
which we removed by plottingF/(25γa).

4. THE DROP AS A HOOKEAN SPRING

We test here the assumption that the distorted drop/bubble
haves mechanically as a Hookean spring. We see from [1.7]
the definition [2.1] ofX(Do) that we wish to test the hypothes
that

F(Do) = −K (1X(Do)− Do), [4.1]

whereK is a constant for allDo values. We note that the poin
1X − Do = 0 corresponds to infinite separation of drop a
probe. At large separation the disjoining pressure (along w
G(Do) andH (Do)) vanishes and1X ∼ Do. In Fig. 10, we replot
FIG. 10. Replot the curves of Fig. 5 showing the effect of changing surface
potential asF/a versus1X − Do.
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FIG. 11. Replot the curves of Fig. 6 for variousκ−1 values asF/a versus
1X − Do.

the curves of Fig. 5 asF/a versus1X − Do. The curves for
lower surface potentials show a weak dependence on su
potential while curves for higher surface potentials collapse
a single curve over most of their length. Again this behavio
indicative of the asymptotic saturation at higher surface po
tials for electrostatic force laws as discussed in Section 3
Fig. 11, we replot the curves of Fig. 6 for variousκ−1 values
against1X − Do. The moderate dependence of the complia
onκ−1 should be noted. In Fig. 12 we replot the curves of Fig
for various contact anglesθc as a function of1X − Do. There
is again the strong dependence of compliance onθc. In Fig. 13,
we replot the curves of Fig. 8 for dissimilar surface potent
as functions of1X − Do and we note a similar behavior as
Fig. 10. In Fig. 14, we replot theF(1X)/2πγa curves of Fig. 9
(whereγ was varied) as functions of the distortion1X − Do
FIG. 12. Replot the curves of Fig. 7 for various contact anglesθc as F/a
versus1X − Do.
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FIG. 13. Replot the curves of Fig. 8 for dissimilar surface potentials asF/a
versus1X − Do.

and note the marked insensitivity to the value ofγ even though
the linear region ofF(1X) in Fig. 9 does exhibit a moderate
dependence.

We note from these plots that a Hookean force law is va
for low to moderate distortions with perhaps a slight strengthe
ing of the spring constant as distortion becomes large. As sta
above the present theory is restricted to lateral deformation
the order (aDo)1/2. We note the dependence of the spring co
stant on contact angleθc and the rangeκ−1 of the disjoining
pressure, and the linear dependence on interfacial tensionγ .
The spring constant appears to be insensitive to the magnit
of the disjoining pressure for higher surface potentials. In t
next section, we develop a tentative theory for the Hookean
sponse of a drop, which goes some way toward explaining a
quantifying these features.
FIG. 14. Replot theF(1X)/2πγa curves of Fig. 9 for various values ofγ
asF/a versus1X − Do.
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5. THE DISJOINING PRESSURE ORIGIN
OF LINEAR COMPLIANCE

Useful light may be shed on origins of the linear complian
by a rescaling of the inner profile equation [2.41]. We introdu
the variable

x = D1/2
o

[
−∂ ln5

∂D

∣∣∣∣
Do

]1/2

t [5.1]

= r(
a
[− ∂ ln5

∂D

∣∣
Do

]−1
)1/2 [5.2]

which amounts to using the true range of the disjoining press
instead ofDo in the scaling of the radial distancer . With this
scaling

G(Do) = a

γ
(
− ∂ ln5

∂D

∣∣
Do

) ∫ x

0
dx x5(D(x)) [5.3]

H (Do) = G(Do)

[
−1

2
ln Do − 1

2
ln

(
−∂ ln5

∂D

∣∣∣∣
Do

)

+
∫ x

0 dx x ln x5(D(x))∫ x
0 dx x5(D(x))

]
[5.4]

so that from [2.42]

X(Do) = X∞ + Do + G(Do)

[
B− 1

2
ln

(
−∂ ln5

∂D

∣∣∣∣
Do

)

+
∫ x

0 dx x ln x5(D(x))∫ x
0 dx x5(D(x))

]
. [5.5]

We may therefore write (using [2.26])

F(Do) = −K (Do)[X(Do)− X∞ − Do], [5.6]

where

2πγ

K (Do)
= −B+ 1

2
ln

(
−∂ ln5

∂D

∣∣∣∣
Do

)
−
∫ x

0 dx x ln x5(D(x))∫ x
0 dx x5(D(x))

.

[5.7]

This is an exact result, which suggests (but does not prove)
a linear compliance region exists provided1X(Do)À Do and
that the system is Hookean. To prove this we must be abl
argue thatK (Do) is sensibly a constant. We know from the n
merical results of the previous section that such an argum
must be able to be made in view of the linearity of the Hooke
plots under a fairly broad range of conditions for small to mo

erate deformations.
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Since the second and third terms in [5.7] are already insen
tive to the magnitude of5(Do) the observation of insensitivity of
the effective spring constant of the drop to the surface potentia
immediately explained. The second term varies logarithmica
with the range of the disjoining pressure and may well expla
the observed weak dependence onκ−1. It is clear from [5.7] that
the contact angle dependence is contained solely and explic
in theB term since the second and third terms are independen
the particulars of the outer solution. We note that the third ter
retains a dependence on surface tension sinceD(t) satisfies a
differential equation ([2.40] or [2.41]) which explicitly contains
γ but from the numerical results of Section 4, theγ dependence
of the third term must be very weak.

It is clear from the inner equation for the drop profiles
Eq. [2.41], that whenDo = Dw where the wrapping distance
is defined by

5(Dw) = 2γ

(
1

a
+ 1

Ro

)
[5.8]

the solutionD(t) is

D(t) = Dw (0< t <∞) [5.9]

and

G(Dw) = H (Dw) = ∞. [5.10]

For constant charge interactions where5(D) diverges asD→ 0
a wrapping distanceDw will always exist. For low potentials
and high surface tensions, theDw value for constant charge
interaction will be small. If the disjoining pressure scales a
γ /Do (À2γ /a) (as is the case for dispersion forces), then th
wrapping distance could be at a considerable separation dista
just as the disjoining pressure begins to rise. For dissimilar s
faces under constant potential, there is a maximum repuls
electrostatic pressure and ultimate attraction. This sort of5(D)
curve can also be achieved by adding an attractive interaction
in classical DLVO theory) which ultimately dominates the tota
interaction. The present analysis is applicable to these syste
only up to theDo values of the maximum repulsive pressure (se
Fig. 8). For smallerDo values, these sorts of disjoining pressure
require a an additional treatment to monitor for the cantilev
and interfacial instabilities, which are inherent. Such cases w
be discussed in detail in a subsequent publication.

We note in passing that the addition of ionic surfactant to th
probe/oil drop system has a twofold mechanism for encourag
wrapping to occur. It enhances both interfacial surface potenti
and tends to make them equal (i.e.,5(D) for similar surfaces
>5(D) for dissimilar surfaces) and it lowers the surface tensio
of the drop.

We see thatDw is a parameter that can range widely de
pending on the nature of the disjoining pressure function5(D).

Physically the wrapping distance is such that the repulsive
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FIG. 15. Drop profiles, (D(t)− Do)/Do, as a function of dimensionles
radial distance,r/

√
aDo, for the calculations pertaining to Fig. 4 for variousDo

values.D(t) was calculated by solving the ordinary differential equation giv
in Eq. [3.54]. The dots denote the point at whichG (Eq. [2.44]) is equal to 90%
of its limiting valueG(Do) for eachDo value.

disjoining pressure is large enough to cancel the Laplace p
sure difference 2γ /Ro of the undistorted drop and then to ben
the interface in the opposite direction with an additional press

2γ
(a+ Dw) = 2γ

a (1+O(Dw/a)) so that the liquid interface con
forms to the shape of the probe particle. In Figs. 4a and b
mark the wrapping distanceDw that pertains to that disjoining
pressure, surface tension, and sphere radius. Clearly the l
compliance region has set in forDo values much larger thanDw.
This is a feature common to all cases examined. So the ons
wrapping is not the origin of the linearity assumed in the co
ventional renormalization of AFM measurements and discus
in Section 1 above.Linear compliance does not imply consta
compliance(Do = Dw).

Nevertheless, the concept that, asDo decreases, the drop pro
file flattens and then inverts (withD(t) becoming flatter and
the flattened region extending further from the center) is
root cause of the linearity. In Fig. 15 we show drop profil
(D(t)− Do)/Do, for the calculations pertaining to Fig. 4 fo
variousDo values, which clearly illustrates the effect for a ty
ical repulsive disjoining pressure. It follows that, as the pro
flattens, the contributions to theG(Do), H (Do) integrals from
the flattened regionD ∼ Do are becoming dominant. This i
illustrated in Fig. 15 where we mark the position along ea
curve at whichG (Eq. [2.44]) is equal to 90% of its limiting
value G(Do). This observation suggests a variety of appro
mate methods for evaluating the third term of Eq. [5.7] for t
drop “spring constant.” We will not pursue this matter furth
here.

6. IMPLICATIONS FOR THE AFM MEASUREMENT
We have demonstrated numerically and analytically that t
drop/probe system behaves as a Hookean spring for small
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moderate central deformations of the drop so that Eq. [1.7]
Do is valid in this regime. As we have demonstratedDo is not
constant in the apparent linear compliance region but, exp
mentallyl andl∞ are substantially greater thanDo in this regime
so thatDo can be neglected in Eq. [1.7] to produce the line
compliance equation.

d =
(

1+ Kc

Kd

)−1

(l − l∞). [6.1]

The interceptl∞ determined from the linear compliance regio
will be systematically inaccurate by an amount of order theDo

values pertaining to that region. Having obtained a value of 1+
Kc/Kd andl∞ we could use [1.7] to obtainDo values outside
the constant compliance regime but they would be too small
the amount thatl∞ is in error.

If one examines theF(1X) curves calculated in Section 4
above, it will be noted that the linear compliance region do
not intercept the1X axis at the origin but at a distance on th
positive side comparable to theDo values pertaining to the linear
compliance region. This is precisely the systematic error we c
not avoid in attempting to renormalize the AFM measuremen
to obtain absoluteDo values. Equation [1.7] is not useful excep
at very largeDo values where the error would be relatively sma
The Ducker equation [1.9] exhibits a similar problem in thatDw

is not knowna priori and it is not negligible. Of course, [1.9]
should not be used to obtainDo since we have demonstrated tha
Do can be substantially larger thanDw and is varying over the
linear compliance region.

It is our opinion that the best that can be done is to meas
F(X). Any attempt to obtainDo values must be made in the
manner outlined in this paper, viz. assume a parameterized5(D)
form and calculate a theoreticalF(X) curve which can be fitted
to the measured curve to obtain the best fit parameter valu
TheDo values are obtained in the course of that calculation. W
will examine such a fitting procedure in a future publication.

APPENDIX

The geometry of the probe/drop case is shown in Fig. A
Here we assume the drop (bubble) in isolation has a spher
shape with radius of curvatureRo and a radial extent on the stag
r1. We assumea < Ro ¿ λ so that gravity may be neglected
As the probe is pressed into the drop, the drop will bulge
a very small amount. We assume that the contact line does
move during this displacement so thatr1 is fixed. The existence
of finite contact angle hysteresis for experimental systems w
ensure this. The free energy is now

F = 2π

r1∫
0

dr r
[
γ (1+ z′2)1/2+ E(D(r, z))

]

he
and + shape-independent terms. [A.1]
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FIG. A1. The geometry of the probe/drop experiment. The drop ha
undistorted radius of curvature,Ro, such thata¿ Ro ¿ λ so that gravitationa
distortion can be neglected. (The deformation is not shown to scale.)

To obtain the drop shape equation, we minimizeF with respect
to z(r ) as previously, but we must now constrain the variat
with the constancy of the drop volume

V = 2π

 R+∫
0

dr rz−
R+∫

r 1

dr rz

 , [A.2]

where R+ is the maximum radial extent of the drop [A.32
Introducing the undetermined multiplier3 and minimizing
F −3V we obtain (11)

±γ d

dr

(
z′r

(1+ z′2)1/2

)
− r5(D) = −3r [A.3]

and the trivial boundary condition

z′(0)= 0. [A.4]

The upper sign in [A.3] pertains for a drop which makes an a
contact angle with the substrate. For obtuse contact angle
upper sign pertains to the upper part of the drop and the lo
sign to the lower part between the contact pointr = r1 and the
maximum radiusr = R+ (see [A.32]). Again we have made th
approximations (Do/a¿ 1) discussed in the previous secti
in deriving [A.2]. Physically, [A.3] asserts that the local press
difference (Laplace pressure+ disjoining pressure) should be
constant everywhere on the interface—the constant, of co
being the difference in internal and external liquid pressures
convenience we write the parameter3 as

3 = 2γ

R
, [A.5]

where the constantR is very close to the undistorted radiusRo
but the difference is important as discussed below.R does not
have a geometric interpretation on Fig. 4. A first integral of [A.
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using [A.4] is

± z′r
(1+ z′2)1/2

= −r 2

R
+ 0(r ), [A.6]

where

0(r ) = 1

γ

∫ r

0
dr r5(D(r )). [A.7]

Rearranging [1.10] we obtain

z′ = ±(−r 2/R+ 0(r ))

{r 2− (−r 2/R+ 0(r ))2}1/2 . [A.8]

Equation [A.8] is the start of the process of generating inn
and outer solutions for matching purposes. With the usual inn
scaling [2.14], [2.15], and [2.16] the inner differential equatio
becomes

ξ ′ = − a

R
t + 0(t)

Dot
+ O

(
Do

R

)
, [A.9]

where we regard0/Do as, at least, anO(1) quantity. To see why,
we write [A.7] as

0(t)

Do
= a

γ

(aDo)1/2t∫
0

dt t5(D(t)). [A.10]

The disjoining pressure scales as

5(D) ∼ γ

Do
f (D/Do) [A.11]

so that

0(t)

Do
∼ a

Do

(aDo)1/2t∫
0

dt t f (D(t)/Do). [A.12]

Thus how large0(t)/Do can be will depend on the value off (1)
which for someDo values will be small.

A second integral of [2.7] using the boundary condition [2.1
yields

ξ (t) = − a

2R
t2+ 1

Do

∫ t

0

dt

t
0(t)

= − a

2R
t2+ a

γ

∫ t

0
dt ′t ′5(D(t ′))(ln t − ln t ′) [A.13]

with the aid of [2.15] and a change of order of integration. Th
we have, for larget ,
3]
ξ (t) = − a

2R
t2− H (Do)

Do
+ G(Do)

Do
ln t + · · ·+, [A.14]



IN

I

e

T

t

e

2]
152 CHAN, DAGAST

where H (Do) and G(Do) have been defined in Section 2.
unscaled variables, the outer form of the inner solution is

z(r ) = zo − r 2

2R
− H (Do)+ G(Do) ln

(
r

(aDo)1/2

)
+ · · · + .

[A.15]

For the outer solution we adopt the scalings

r = (G R)1/2s z(r ) = (G R)1/2χ (s) [A.16]

and recognize the0(r ), in this distance regime, can be replac
by0(∞) which from [A.10] is simplyG(Do) which we restrict
here to positive values (predominately repulsive potentials).
profile equation becomes, for the outer region,

χ ′ = ±(1− s2)

(s2+ − s2)1/2(s2− s2−)1/2
, [A.17]

where

s2
+s2
− = 1 [A.18]

s2
+ + s2

− =
R

G
+ 2 [A.19]

with solution

χ =
s+∫

s

ds(s2− 1)

(s2+ − s2)1/2(s2− s2−)1/2
∓

s+∫
s1

ds(s2− 1)

(s2+ − s2)1/2(s2− s2−)1/2
,

[A.20]

where

s1 = r/(G R)1/2(À1). [A.21]

In [A.20] the upper sign refers to acute drop profiles and
lower sign refers to obtuse drop profiles. Fortunately the in
gral [A.20] can be evaluated exactly in terms of the incompl
elliptic integrals (12) E and F. We have that

χ (s) = s+E(K(s),q)− 1

s+
F(K(s),q)

∓
(
s+E(K(s1),q)− 1

s+
F(K(s1),q)

)
[A.22]

where

K(s) = Sin−1

(
s2
+ − s2

s2+ − s2−

)1/2

[A.23]

( )2
q2 = 1− s−
s+

[A.24]
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F(K,q) = s+

s+∫
s

ds

(s2+ − s2)1/2(s2− s2−)1/2
[A.25]

E(K,q) = 1

s+

s+∫
s

ds s2

(s2+ − s2)1/2(s2− s2−)1/2
. [A.26]

To match this solution to the inner solution, we considers in
ranges− ¿ s¿ s+ (i.e.,G¿ r ¿ R). From [A.18] and [A.19]
it follows that

s+ = (R/G)1/2(1+ G/R+ · · ·) [A.27]

s− = (G/R)1/2(1− R/G+ · · ·). [A.28]

Hence

q2 = 1− O((G/R)2) [A.29]

Sin K(s) = 1− G

2R
s2(1+ O(G/R)) [A.30]

Sin K(s1) = (1− (r1/R+)2)1/2(1+ O(G/R)2), [A.31]

where

R+ = (RG)1/2s+ = R+ G+ · · · . [A.32]

Note that forq2 ≈ 1 (12),

E(K,q) = Sin K+ · · · [A.33]

F(K,q) = 1

2
ln

(
1+ Sin K

1− Sin K

)
+ · · · . [A.34]

Substitution of these limiting forms in the exact equation [A.2
yields

χ (s) =
(

R

G

)1/2(
1+ G

R

)[
1− Gs2

2R
∓
(

1−
(

r1

R+

)2)1/2
]

−
(

G

R

)1/2[
−1

2
ln

(
Gs2

4R2

)

∓ 1

2
ln

(
1+ (1− (r1/R+)2)1/2

1− (1− (r1/R+)2)1/2

)]
+ · · · [A.35]

which in unscaled variables can be written as

z(r ) = R

(
1∓

(
1−

(
r1

R+

)2)1/2

− r2

2R2

)

+G

[
1

2
ln

(
r 2

4R2

)
± 1

2
ln

(
1+ (1− (r1/R+)2)1/2

1− (1− (r1/R+)2)1/2

)
( ( )2)1/2

]

+ 1∓ 1− r1

R+
+ · · · . [A.36]
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Comparison of this form with the inner solution [A.15] yields

zo = R(1∓ (1− (r1/R+)2)1/2)+ H (Do)+ G(Do)

×
{

1

2
ln

(
aDo

4R2

)
± 1

2
ln

[
1+ (1− (r1/R)2)1/2

1− (1− (r1/R)2)1/2

]

+ 1∓
(

1−
(

r1

R+

)2)1/2
}
. [A.37]

We now write

R+ = Ro + δR+ G [A.38]

and use the fact thatδR/Ro is O(G/R) to rewrite [A.37] as

zo = Ro(1∓ (1− (r1/Ro)2)1/2)

+ δR

[
1∓ 1

(1− (r1/Ro)2)1/2

]
+ H (Do)+ G(Do)

×
{

1

2
ln

(
aDo

4R2
o

)
± 1

2
ln

(
1+ (1− (r1/Ro)2)1/2

1− (1− (r1/Ro)2)1/2

)
+ 1∓ 1

(1− (r1/Ro)2)1/2

}
, [A.39]

where we have neglectedO((G/R)2) terms. In deriving [A.39]
we have assumed that 1− (r1/Ro)2À G/Ro. This will not be
valid for contact angles very close toπ/2 (i.e., r1 = Ro) and
a separate analysis for this case would need to be made.
the result which we will derive for contact angles such that 1−
(r1/Ro)2À G/Ro will be valid for |θc − π/2| À (G/R) and
since this result does not diverge asθc→ π/2 from above or
below we do not examine this limit here.

The last three terms on the RHS of [A.36] areO(Do) terms.
Clearly we need to calculateδR to complete the solution. Th
undetermined multiplier 2γ /R is determineda postioriby the
volume constraint. By integration by parts [A.2] may be writt
as

V = VO + VI , [A.40]

where

VI =
∫ r o

0
dr r 2z′ [A.41]

and

VO = −π
∫ R+

r o

dr r 2z′ + π
∫ R+

r 1

dr r 2z′, [A.42]

wherero is a value ofr in the matching region (G¿ ro < R).
In the region 0< r < ro z′ is given by (from [A.9])
z′ = − r

R
+ 0(r )

r
+ · · · [A.43]
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so that

VI = −π
r o∫

0

dr r

(
−r 2

R
+ 0(r )

)
+ · · ·

= −πaD2
o

r o/(aDo)1/2∫
0

dt t

(
− a

R
t2+ 0/Do

)

= V

(
a

Ro

)
O((Do/Ro)2), [A.44]

where the drop volumeV is O(R3
o). To calculateδR, the drop

volume must be calculated toO(Do/Ro). It follows thatVI can
be neglected to this order and hence (using the outer sca
[A.16])

V = π (RG)3/2

 s+∫
so

ds s2(s2− 1)

(s2+ − s2)1/2(s2− s2−)1/2

±
s+∫

s1

ds s2(s2− 1)

(s2+ − s2)1/2(s2− s2−)1/2

+ · · · , [A.45]

where we use the outer form [A.17] for the scaledz′.
Performing the integrations we obtain

V = π (RG)3/2[ J(so)∓ J(s1)], [A.46]

where

J(s) = s

3
(s2
+ − s2)1/2(s2− s2

−)1/2− 1

3s+
F(K(s),q)

+
(

2R

G
+ 1

)
s+
3

E(K(s),q). [A.47]

Using the limiting forms [A.29] to [A.34] we obtain

J(so) =
(

R

G

)3/2(2

3
+ G

R
+ O((G/R)2)

)
[A.48]

and

J(s1) =
(

R

G

)3/2(2

3
+ 1

3

(
r1

R

)2

+ G

R

(
1+ 1

3

(
r1

R

)2)

+O((G/R)2)

)(
1−

(
r1

R+

)2)1/2

. [A.49]

Hence

V = πR3

[
2

3
∓ 1

3

(
2+

(
r1

R

)2)(
1−

(
r1

R+

)2)1/2

+ G

R( (
1
(

r
)2)( (

r
)2)1/2)]
× 1∓ 1+
3

1

R+
1− 1

R+
[A.50]
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using [A.37] and [A.38] we obtain

V = πR3
o

[
2

3
− cosθc + 1

3
cos3 θc

+ δR

Ro

[
−2+ 2 cosθc + 1

3 cos2 θc − 1
3 cos4 θc

cosθc

]

+ G

Ro

[
−2+ cosθc + 4

3 cos2 θc − 1
3 cos4 θc

cosθc

]

+O(G/Ro)2

]
[A.51]

using the result

cosθc = ±
(

1−
(

r1

Ro

)2)1/2

, [A.52]

whereθc is the contact angle of the undistorted drop on
substrate.

Since the drop volume must also equal the undistorted volu
viz,

V = πR3
o

(
2/3− cosθc + 1

3
cos3 θc

)
, [A.53]

we see that

δR = −G

[−2+ cosθc + 4
3 cos2 θc − 1

3 cos4 θc
][−2+ 2 cosθc + 1

3 cos2 θc − 1
3 cos4 θc

]
[ ]
= −G 1− cosθc

−2+ 1/3 cos2 θc + 1/3 cos3 θc
. [A.54]
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Substituting in [A.39] yields

zo = z∞o + H (Do)+ G(Do)

[
1

2
ln

(
aDo

4R2

)
+ P(θc)

]
, [A.55]

where

z∞o = Ro(1− cosθc) [A.56]

is the central height of the undistorted drop and

P(θc) = 1

2
ln

(
1+ Cosθc

1− Cosθc

)
+ 1− Cosθc

[2− 1/3 cos2 θc − 1/3 cos3 θc]
.

[A.57]

Substituting this result in [2.1] we obtain

X(Do)= z∞o + Do+ H (Do)+G(Do)

{
1

2
ln

(
aDo

4R2
o

)
+ P(θc)

}
.

[A.58]
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