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Using an extension of the Debye-Hückel theory for strong electrolytes, the thermodynamics, phase
behavior, and effective pair colloidal potentials of deionized charged dispersions have been investigated.
With the inclusion of colloid size effects, this model predicts the possibility of the existence of two critical
points, one of which is thermodynamically metastable but can exhibit interesting behavior at high colloid
charges. This analytic model also serves as a pedagogic demonstration that the phase transition is driven
by cohesive Coulomb interactions between all charged species in the system and that this cohesion is not
inconsistent with a repulsive effective pair potential between the colloidal particles.

Introduction

In a series of very careful experimental studies, Ise et
al.1 demonstrated that stable deionized aqueous disper-
sions of polystyrene latex colloids exhibit simultaneously
regions of high and low colloid densities. When the density
of the latex particles is carefully matched with that of the
suspending aqueous medium (with a H2O/D2O mixture),
large void regions of low particle concentration were
observed to coexist with a phase of high particle concen-
tration. In both the high and low particle concentration
regions, the colloidal particles remain as individual
particlessthere is no coagulation or flocculation between
the particles. The observed coexistence of low and high
particle number density phases is reminiscent of a gas-
liquid-phase equilibrium.

If the dispersion is regarded as a one-component system
comprised of colloidal particles interacting via an effective
pair potential, then the familiar van der Waals picture of
vapor-liquid equilibrium will require the existence of an
attractive interaction between the particles. However,
even in the more concentrated region, the interparticle
separations are sufficiently large that attractive dispersion
forces are totally negligible and therefore only Coulomb
interactions among the charged colloidal particles and
their neutralizing counterions are important in such
systems. Therefore, within the one-component paradigm
it must follow that the like-charged colloidal particles must
have an attractive component in their effective pair
potential. This point of view led to the development of the
Sogami2 pair potential to explain the observed phase
separation. While the Sogami potential exhibits the
required attraction between like-charged particles at large
separations, its theoretical foundation is not without
controversy.3 In the traditional model for colloidal inter-

actions based on the Deryaguin-Landau-Verwey-Over-
beek4 (DLVO) picture, the colloidal dispersion is treated
as a one-component fluid of colloidal particles interacting
under a combination of attractive dispersion forces and
repulsive electrical double layer forces. In particular, the
electrical double layer interaction between identically
charged particles is repulsive for all separations. In this
situation, the purely repulsive double layer interaction
due to Coulomb interaction between the colloidal particles
cannot, within the van der Waals picture, give rise to a
vapor-liquid equilibrium. This is the dilemma that one
faces in attempting to reconcile the observed phase
separation behavior with the well-tested DLVO theory.

We propose to study phase behavior in a deionized
colloidal dispersion or in a dispersion with added elec-
trolyte, by going beyond the one-component paradigm,
which only focuses on the separation dependent effective
pair potential between colloidal particles, as in the
Sogami-Ise approach. Instead, we consider the total free
energy of the system that arises from Coulomb interactions
between all species in the system-between the colloidal
particles and the small ions as well as between the small
ions. By focusing on the free energy of the entire system,
there is in fact no conflict between the picture of a purely
repulsive effective interaction between any pair of colloidal
particles and the possible existence of vapor-liquid
equilibrium for the whole system.

In this paper, we use a simple extension of the Debye-
Hückel theory for strong electrolytes to provide a simple
and transparent illustration of how Coulomb interactions
alone are sufficient to drive a vapor-liquid like phase
transition in deionized colloidal systems and to resolve
the apparent paradox of the existence of phase separation
behavior between like-charged colloidal particles that only
experience mutual repulsion over all interparticle separa-
tions. While this approach may have the limited utility
of being able to provide accurate quantitative predictions,
its analytic nature is still very instructive in helping to
illuminate two different ways of thinking about Coulomb
interactions in colloidal systems. Furthermore, this ex-
tended Debye-Hückel theory of de-ionized colloidal
systems predicts the existence of a critical point as well
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as an interesting metastable phase behavior that can be
long-lived at high colloid charges. There is the possibility
that the vapor-liquid like phase separation observed in
deionized latex systems corresponds to this long-lived
metastable state.

The present work also provides a clear analytic dem-
onstration that while there are different equivalent
methods of calculating the thermodynamic properties of
Coulomb systems, those approaches that use an effective
pair potential between the colloids will involve cancel-
lations between terms of similar magnitude that arise for
instance from one-body and two-body terms, and therefore
these should be evaluated in a consistent manner.

The study of the statistical thermodynamics of systems
involving long-ranged Coulomb interactions can be quite
subtle, and sometimes well-established approximations
that are valid in treating systems with short-ranged
potentials can lead to incorrect conclusions. We therefore
also attempt a comparison between the present work and
the work of van Roij et al. and of Warren, who took similar
approaches to study the phase separation problem. The
general physical content invoked in explaining the phase
separation phenomenon in these papers is very similar to
that discussed here. However, the technical details of each
approach are quite different in each case, so that in spec-
ial known limits, there are significant quantitative dif-
ferences between the results obtained via different ap-
proaches.

Very recently, computer simulation studies of the
structure and thermodynamics of charged colloidal sys-
tems using a model of discrete small ions and discrete
charged colloidal particles have been performed.5,6 While
it is not yet feasible at present to carry out simulations
for system parameters that are within the range where
phase separation has been observed in experimental
systems, the simulation results clearly indicate the
existence of a Coulomb-interaction-driven phase separa-
tion.

Colloidal System as an Asymmetric Electrolyte

Our starting point for considering phase behavior of
Coulomb dispersions is to calculate the Helmholtz free
energy and the pressure of the system, and hence we first
summarize the necessary standard formalism.9 For a
deionized colloidal dispersion stabilized only by Coulomb
interactions, we model the colloidal particles as hard
spheres of radius R0 and valence z0 that are neutralized
by counterions of radius R1 and of valence z1. Later we
will study in detail the limits z0 ) Z . 1, z1 ) -1, and R1
) 0. We assume N0 colloidal particles and N1 counterions
in a volume V and that the amount of residual electrolyte
or added salt is negligible. The number densities of the
colloids n0 ) N0/V and of the counterions n1 ) N1/V that
neutralize the colloidal charge are related by the bulk
electroneutrality condition: n0z0 + n1z1 ) 0. The aqueous
solvent is treated as a dielectric continuum with a relative
dielectric permittivity ε.

The interaction potential between two ionic species at
a distance r between their centers is taken to be made up
of a hard-sphere (hs) part and a Coulomb (coul) part uRâ(r)
) uRâ

hs(r) + uRâ
coul(r) where R and â denote either a colloidal

particle (0) or a counterion (1). The hard-sphere and the
Coulomb interactions are given by

with e denoting the protonic charge. This is the specifica-
tion of our primitive asymmetric electrolyte model for the
deionized colloidal dispersion.

The configurational part of the Hamiltonian of this
system is a sum of hard-sphere interactions, Hhs, and
Coulomb interactions, Hcoul, where the latter has the form

The (excess) electrostatic internal energy, Ecoul, arising
from the Coulomb interactions is given in terms of the
pair distribution functions, gRâ(r), between various species

Taken individually, each integral in eq 4 diverges because
of the long-ranged nature of the Coulomb potential. But
using the total correlation function hRâ(r) ) gRâ(r) - 1 and
the bulk electroneutrality condition, the divergences in
eq 4 cancel to give finite integrals in eq 5. The second term
in eq 5 follows from the exact condition hRâ(r) ) -1 which
must hold for r < (RR + Râ) and arises from the combined
effects of size differences and Coulombic interactions
between the charged species.

The configurational part of the Helmholtz free energy
F can accordingly be separated as a sum of the hard-
sphere free energy Fhs and the (excess) electrostatic free
energy Fcoul. By employing a coupling constant or charging
integration, Fcoul can be evaluated from Ecoul using the
formally exact relation

where Ecoul(λ) t Ecoul(e2fλe2).
The pair distribution functions, gRâ(r), obey the local

electroneutrality condition about an ionic species of
valence zR

This condition expresses the requirement that the total
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∞
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1
Ecoul(λ) dλ
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zR ) -∑
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net charge surrounding a particular particle of valence zR
must cancel the charge on that particle exactly. This
condition provides a check on approximate expressions
for gRâ(r). Also as a consequence of the long-ranged 1/r
form of the Coulomb potential, the Stillinger-Lovett
second moment condition should also hold for the gRâ(r):10

Up till now, all the results are completely general and
we are in the position to investigate various approximate
methods of calculating the free energy of a system of
deionized colloidal dispersions and, from that, study the
phase behavior of such systems. In general, one only has
available approximate expressions for gRâ(r), so the
accuracy of any approximation will depend on the method
that one uses to compute the relevant thermodynamic
quantities. Equations 4 and 6 provide one such method,
but equally, one can calculate the pressure directly using
the virial equation9 or one may choose a free energy density
functional formalism7 or some other approach. The very
general local electroneutrality and Stillinger-Lovett
conditions, both of which are consequences of the Coulomb
potential, provide simple checks on the internal consis-
tency of the approximate pair distribution functions
gRâ(r).

Point-Ion Debye-Hu1 ckel Theory

Thermodynamics. While the thermodynamics of an
electrolyte described by the Debye-Hückel theory is well-
known, its analytic nature means that one can readily
make explicit the subtle cancellations that arise when
trying to describe a colloidal system in terms of effective
pair potentials when it is treated as an asymmetric
electrolyte. For point colloids and point ions (R0 ) 0 ) R1),
the potential, φâ(r), at r given that there is a point charge
(zâe) at the origin satisfies the Poisson equation:

which together with the linearized mean-field approxi-
mation, gRâ(r) = 1 - zReφâ(r)/kT, gives the approximate
total correlation function

where κD is the inverse Debye screening length of the
asymmetric electrolyte

The inverse Debye screening length has contributions from
both the colloidal particles, κ0, and the counterions, κ1.
The total correlation functions, eq 10, satisfy the local
electroneutrality condition, eq 7, as well as the Stillinger-
Lovett condition, eq 8.

Substitution of eqs 2 and 10 into eq 5 gives the Coulomb
contribution to the internal energy per unit volume

When |z0| . |z1|, the dominant contribution is from the
first (colloid-colloid) term. It follows from eq 6 that the
Coulomb contribution to the free energy per unit volume
is

and the Coulomb contribution to the pressure is

From eq 12 we see that the Coulomb contributions due to
colloid-colloid, colloid-counterion, and counterion-coun-
terion interactions are always negative. In other words,
the bare Coulomb repulsions between the colloid-colloid
species and between the counterion-counterion species
are outweighed by the bare Coulomb attraction between
the colloid-counterion species with the net effect that the
Coulomb interaction provides a cohesive effect that will
tend to collapse the ionic system; this cohesive effect
counter-balances the ever-present entropic effects.

For a deionized colloidal dispersion with monovalent
counterions, modeled as a Z:1 electrolyte with z0 ) Z (>0)
and z1 ) -1, the inverse Debye screening length κD

2 )
4e2n0Z(Z + 1)/(εkT) is dominated by the highly charged
(Z . 1) colloidal particles. The explicit expressions for the
total pressure, P, which in the present model will include
an entropic contribution from colloids and counterions
treated as an ideal gas mixture, is

The simple treatment provided by the point-ion Debye-
Hückel theory demonstrates the existence of a cohesive
contribution to the free energy due to Coulomb interactions
and therefore signals the possibility of a vapor-liquid
phase equilibrium. Indeed, this is precisely the point of
view adopted by Langmuir11 in considering phase behavior
in strongly interacting dispersions and by Michaeli et al.12

in considering phase separation in polyelectrolytes.
However, this simple instructive treatment cannot as

yet predict a phase transition. This is evident from the
pressure in eq 15, where at low densities (n0 f 0) the ideal
gas term dominates as expected but at high densities the
cohesion due to Coulomb interactions (∼n0

3/2) overwhelms
the ideal gas term. This offers no great surprise, as the
point-ion Debye-Hückel theory is only expected to be valid
at low concentrations. In a later section, we will provide
an attempt to remedy this shortcoming.

(10) Stillinger, F. H.; Lovell, R. J. Chem. Phys. 1968, 49, 1991. Carnie,
S. L.; Chan, D. Y. C. Mol. Phys. 1984, 51, 1047.
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1957, 23, 443.

3εkT

2πe2
) -∑

R,â

nRzRnâzâ∫r2gRâ(r) dr

(Stillinger-Lovett) (8)

∇2
φâ(r) ) -

4πe

ε
∑

γ

nγzγgγâ(r) -
4πzâe

ε
δ(r), r g 0 (9)

hRâ(r) ) -
zRzâe

2

εkT
exp(-κDr)

r
, r > 0 (DHLL) (10)

κD
2 ) 4πe2

εkT
(n0z0

2) + 4πe2

εkT
(n1z1

2)

t κ0
2 + κ1

2 (11)

Ecoul

V
) - 2πe2

ε
2kTκD

{n0
2z0

4 + 2(n0z0
2)(n1z1

2) + n1
2z1

4}

) -
kTκD

3

8π
(DHLL) (12)

Fcoul

V
) ∫0

1(-
kTκD

3λ3/2

8π ) dλ
λ

) -
kTκD

3

12π
∼ n0

3/2Z3 (DHLL) (13)

Pcoul t - ∂Fcoul

∂V
) -

kTκD
3

24π
(DHLL) (14)

P ) Pideal + Pcoul

) n0(Z + 1)kT - kT
24π(4πe2

εkT )3/2

[n0Z(Z + 1)]3/2 (15)

Phase Separation in Deionized Colloidal Systems Langmuir C



We can understand the origin of this cohesion in more
detail by considering the forms of the pair distribution
functions within the point-ion model. Equation 12 showed
that when |z0| . |z1|, the dominant term in the cohesive
contribution to the internal energy is from the colloid-
colloid term.Since the total correlation functionh00(r) given
by eq 10 is negative, this implies that there is a depletion
of other colloidal particles in the neighborhood of any given
colloidal particle; or equivalently, the colloidal particles
repel each other. The apparent paradox that a repulsion
between colloidal particles can give rise to a cohesion in
the system can be explained as follows. The total bare
Coulomb interaction between colloidal particles is obvi-
ously repulsive. However, bulk electroneutrality has
enforced the cancellation of the effects of the bare Coulomb
repulsions between colloidal particles that are far apart,
assuming a homogeneous distribution. Now since there
is a depletion of other colloidal particles in the neighbor-
hood of any given colloid, this depletion means that the
repulsion is now less than what would be there if the
colloid-colloid distribution is uniform. It is this absence
of repulsion that is manifested as a negative contribution
to the energy.

EffectivePairPotential. Given the traditional picture
of colloidal interactions, which, according to the DLVO
picture, can be understood in terms of an effective pair
potential between colloidal particles, the natural ques-
tions that arise are as follows: Within the point-ion
Debye-Hückel theory, what is the nature of the interac-
tion between any two colloidal particles in a deionized
dispersion? Do the colloidal particles attract each other
as in the Sogami theory? If an effective pair potential can
be defined between colloidal particles, how is it related to
the colloid-colloid correlation function, h00(r)? And how
should this pair potential be used to calculate thermo-
dynamic properties of the colloidal dispersion and used to
study phase separation?

This question of an effective pair potential between
colloidal particles in a deionized dispersion has been
considered in an earlier paper.13 We summarize the results
here for completeness and refer the reader to that paper
for technical details.

A consistent way to define the effective interaction
among colloidal particles is to consider a fixed spatial
configuration of colloidal particles and average over all
possible configurations of the counterions. This is achieved
by writing the configurational integral of the system as
follows

where Heff({R}), defined by eq 16, is the potential of mean
force9 of a fixed configuration of colloidal particles at
positions {R} ) {R1, R2, ..., RN0}. This definition will
guarantee that the system of colloidal particles interacting
with the effective Hamiltonian Heff({R}) will give the same
thermodynamic properties as the original system of
colloids and counterions. However, Heff({R}) will be both
number density and temperature dependent and so will
vary from state point to state point.

In general, the effective Hamiltonian Heff({R}) will
comprise of a sum of one-, two-, three-, ...-body terms:
Heff({R}) ) N0W1 + ∑i<jW2(Ri,Rj) + ∑i<j<kW3(Ri,Rj,Rk) +

.... Within the point-ion Debye-Hückel theory, the
expansion ends exactly after two terms:

with rij/|Ri - Rj|. The one-body term W1 takes the form13

and since z0 and z1 have opposite signs, W1 is always
negative. While the W1 term is position independent, it is
both temperature and density dependent through κ1 (eq
11), and the term can be interpreted as the change in the
free energy in bringing a single colloidal particle into the
presence of all other colloidal particles and their coun-
terions at a given density; however, all the colloidal
particles are very far away from each other. The two-body
W2(r) term takes the form13

and possesses an explicit dependence on the colloid-colloid
separations as well as a temperature and density depen-
dence through κ1. The effective pair potential, W2(r), is
the bare Coulomb potential screened by the counterions
Debye parameter, κ1 (see eq 11), rather than the Debye
parameter of the whole system, κD. An alternative deriva-
tion of this effective two-body potential is to begin with
a formal asymptotic analysis of the Ornstein-Zernike
equations for the asymmetric electrolyte system.13 This
effective pair potential, derived by two very different
methods, is the same and is repulsive for all separations.

Within the Debye-Hückel model, W2(r) is the effective
colloid-colloid pair potential to use if one wishes to use
the paradigm of a one-component system comprising
interacting colloidal particles. This pair potential is the
repulsive pair interaction between like-charged particles
that one would expect from the DLVO picture. We will
now recover the excess electrostatic free energy (eq 13) by
treating the dispersion as a one-component system with
the effective one- and two-body potentials W1 and W2(r)
given above. This will also demonstrate that while W2(r)
is a short-ranged and exponentially screened potential, it
is nonetheless a density dependent potential, and so care
must be exercised in order to obtain the correct density
dependent contribution of this term to the thermodynam-
ics.

According to eq 17, the excess electrostatic free energy
possesses two terms:

The one-body term is given by13

where all three contributions in eq 21 are negative. The
two-body potential W2(r) is screened exponentially and
appears to be short-ranged, but because of the Coulombic
nature of the system and the fact that W2(r) is a density
dependent potential, the following steps are needed to
recover the expected result in eq 13. The two-body term
F2 can be written formally as a coupling constant integral
of an “internal energy” of the effective one-component

(13) Beresford-Smith, B.; Chan, D. Y. C.; Mitchell, D. J. J. Colloid
Interface Sci. 1985, 105, 216.

1
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coul ) N0W1 + ∑

i<j

W2(rij) (17)

W1 ) -
κ1(z0e)2

2ε
+

κ1z0z1e
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3ε
+

z0kT
2z1
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W2(r) )
(z0e)2

ε

exp(-κ1r)
r

(19)

Fcoul ) F1 + F2 ) N0W1 + F2 (20)

F1

V
) n0W1 ) -

kTκ0
2
κ1

8π
-

kTκ1
3

12π
+

n0z0kT
2z1

(21)
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system with the pair potential W2(r):

where g(r,λ) ) 1 + h(r,λ) is the pair distribution function
of a one-component system that interacts via the pair
potential [λW2(r)]. To ensure we collect all terms of the
same order in density n0, we sum simple ring diagrams9

by calculating the Fourier transform of h(r,λ), namely
h̃(k,λ), which is a function of wavenumber, k, by the
Ornstein-Zernike equation:

with

This gives13

where

Using eqs 25 and 26 in the second integral of eq 22, we
obtain for the two-body free energy, F2

All terms in parentheses are positive (since z0 and z1 have
opposite signs) while the last term is negative.

The substitution of eqs 21 and 27 into eq 20 gives the
total excess electrostatic Helmholtz free energy from the
effective one-component pair potential description

which is exactly the point-ion Debye-Hückel result (eq
13) that we expect to recover. Notice how the terms in the
two-body free energy F2 that arise from the effective pair
potential W2(r) cancel out all three terms in the one-body
or volume term F1 to give the point-ion Debye-Hückel
result.

While this calculation is for the idealized case of point
ions, the analytic result suggests that computing ther-
modynamic quantities using eqs 4 and 6 is likely to be
more robust numerically. On the other hand, using the
effective one-component approach will require the evalu-
ation of one- and two-body and possibly higher body
potentials between the colloids as well as the calculation
of the contributions to the free energy from the effective
colloid-colloid potentials. Indeed, in the effective one-
component approach for point ions, while the final answer

originates from the part of F2 that arises from the effective
pair potential W2(r), the significant cancellation between
contributions from the one- and two-body terms means
that there is a risk of errors arising from incomplete
cancellations when inconsistent approximations are used
in different parts of the calculation. This appears to be
the case in the work of Levin, Barbosa, and Tamashiro,14

who used different approximations to calculate the
contributions to the free energy from colloid-colloid,
colloid-counterion, and counterion-counterion interac-
tions and as a result concluded that phase separation
cannot arise from Coulomb interactions in such systems.

At this point, we can compare our result with that of
van Roij, Dijkstra, and Hansen (vRDH)7,8 for a Z:1
(Z > 0) electrolyte with point colloids and point counterions
in the limit of no salt. Using a density functional
formulation, their treatment of electrostatic interactions
is nearly identical to the present work. In their effective
one-component treatment, they also obtained a negative
one-body term, which in our notation has the form

This result differs from our one-body potential given by
eq 21 by the term kTκ1

3/(12π). Noting that the order in
density and charge dependence of the three terms in eq
21 is ∼n0

3/2Z5/2, ∼n0
3/2Z3/2, and ∼n0Z, respectively, we see

that the term kTκ1
3/(12π) omitted by vRDH is of the same

order (∼n0
3/2) in the colloid density as is the leading term

but has an intermediate dependence (∼Z3/2) on the colloid
charge. From a comparison with the work of Beresford-
Smith et al.,13 it is evident that this omitted term arises
from contributions to the free energy due to counterion-
counterioncorrelationseffects.Thiseffecthasbeen ignored
explicitly at the outset in the density functional formula-
tion of vRDH. The second term in eq 29 was also omitted
in an earlier paper by vRDH.7

Another difference in the vRDH approach is that the
contribution to the free energy from the two-body effective
potential between colloidal particles was estimated nu-
merically by a variational method. In the low-density limit,
they obtained8

instead of retaining both terms in eq 22.
In the point-ion limit, their excess electrostatic free

energy, obtained as the sum of eqs 29 and 30 according
to eq 20, becomes8 (again in our notation)

which differs from the point-ion Debye-Hückel limiting
law (eq 13) by a factor (2/3)Z1/2, a difference that can be
significant when Z . 1, as in typical colloidal systems.1
The reason for this difference is thus traced to the way
in which the free energy contributions F1 and F2 were
calculated.

(14) Levin, Y.; Barbosa, M. C.; Tamashiro, M. N. Europhys. Lett.
1988, 41, 123. Tamashiro, M. N.; Levin, Y.; Barbosa, M. C. Physica A
1988, 258, 341. Tamashiro, M. N.; Levin, Y.; Barbosa, M. C. Eur. Phys.
J. B 1988, 1, 337.
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In their density functional formulation, vRDH neglected
the ion-ion correlation term in the one-body potential as
well as omitted the important ring diagram contributions
to the electrostatic free energy from the two-body term,9
so their result will not reduce to the Debye-Hückel
limiting law expected in the point-ion and point-colloid
limit or at low densities. In their calculation that included
effects of finite colloid size and added salt, the free energy
contribution from the colloid-colloid effective pair po-
tential is calculated using a variational approach based
on a hard-sphere reference system. Since some of the
interesting phase behavior founded by vRDH occurs at
very low colloid densities, it seem important to be able to
recover known low-density limiting behavior.

Warren15 also studied phase separation of a colloidal
dispersion under only Coulombic interactions. The physi-
cal model and initial assumptions are very similar to that
of vRDH and that in this paper. Warren also started the
analysis with expressions for the internal energy as given
by eq 4. However, all the approximate pair distribution
functions used by Warren to calculate internal energies
do not satisfy the local electroneutrality condition (eq 7).
Also, like vRDH, he also used a variational method to
calculate the contribution of the effective pair potential
to the colloid-colloid free energy, but he did not give a
detailed justification of the form of the pair potential he
used. As a consequence, it is not possible to make a more
detailed comparison with the work of Warren.

For finite colloid size, the exact term that arises from
the combined effects of size differences and Coulombic
interactions between the charged speciessthe second term
in eq 5sis not present in the treatments of vRDH or
Warren.

Extended Debye-Hu1 ckel TheorysFinite Colloid
Size

Thermodynamics. The Debye-Hückel theory for
electrolytes can be extended to include hard-sphere radii
RR > 0. Due to the hard-sphere repulsion, gRâ(r) ) 0 (or
equivalently hRâ(r) ) -1) for r < (RR + Râ). An ap-
proximation for the total correlation functions hRâ(r) for
r > (RR+ Râ) is to retain the Debye-Hückel form hRâ(r)
≈ -zReφâ(r)/kT, for r > (RR+ Râ), whereφâ(r) is the potential
at r given that there is a point charge (zâe) at the origin
and satisfies ∇2φâ(r) - κD

2φâ(r) ) 0, r > (RR + Râ). In other
words, the size effect is taken into account by assuming
that the point charge model remains valid up to the
distance of closest approach (RR + Râ) between species.
This gives

These correlation functions satisfy the local electroneu-
trality condition (eq 7) but not the second moment
condition (eq 8). Equation 32 for the colloid-counterion
correlation function is identical to that in the treatment
of vRDH.

Insertion of z0 ) Z, z1 ) -1, R0 ) R, and R1 ) 0 into eq
32 gives the excess electrostatic internal energy from eq
5

in which all terms are negative, with the colloid-colloid
term being dominant when Z . 1. The last term in eq 33,
which is exact, arises from the contributions from the
domains r < 2R and r < R in the colloid-colloid and
colloid-counterion integrals, respectively.

The excess electrostatic free energy can again be found
by a coupling constant integration over λ. Substitution of
eq 33 into eq 6 and remembering that κD f λ1/2κD and e2

f λe2 leads to

where f(x) t (3/x3)(log(1 + x) - x + x2/2), and in the point-
colloid limit R f 0, eq 34 reduces to the point-ion Debye-
Hückel result of eq 13, since f(0) ) 1.

The Coulomb contribution to the pressure is

where p(x) t (3/x3)((1 + x) - 1/(1 + x) - 2 log(1 + x)). In
eq 35, we have identified for later discussion the contri-
bution from charge correlations Pcc

coul that arises from
the three integrals involving correlation functions in eq
33 and the exact term Pex

coul, which arises from the size
difference between the charged species. In the point-colloid
limit R f 0, eq 35 reduces to the point-ion Debye-Hückel
result of eq 14, since p(0) ) 1.

Critical Points and Phase Diagrams. We will now
investigate the phase behavior of the extended Debye-
Hückel theory by examining the critical points of the
equation of state. The state of the Z:1 colloidal system can
be characterized by the following three nondimensional
variables: the colloid charge Z, the colloid volume fraction
φ, and the coupling strength or inverse temperature Γ
defined by6

and all other nondimensional parameters can be con-
structed from these, for example, (κDR)2 ) 3φΓZ(Z + 1).

To analyze the critical behavior of the system, we use
the Carnahan-Starling formula9 for the contribution to
the pressure, Phs, from the reference system of uncharged
hard sphere colloids and uncharged point ions:

(15) Warren, P. B. J. Chem. Phys. 2000, 112, 4683.
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All thermodynamic functions can now be written in terms
of the three nondimensional parameters (Z, φ, and Γ):

Electrostatic Internal Energy

Helmholtz Free Energy

where

Pressure

Chemical Potential

Equation 41 is a standard thermodynamic relation for
the chemical potential µ of a single colloid particle plus
its neutralizing counterions.

Critical points can be located by solving (∂P/∂V) ) 0 )
(∂2P/∂V2). For Z . 1, we can retain only the leading term
in Z in Pcc

coul in eq 40 and write the pressure as

There are two density regimes of interest: κDR e 1 and
κDR . 1 that we can examine. When κDR e 1, the second
term on the RHS of eq 42 is of order (κDR)3 ∼ φ3/2Γ3/2Z3 and
is therefore the larger of the two negative terms when Z
. 1. So by retaining only the first two leading terms in
eq 42 and approximating Φ(φ,Z) by 1, we have

The critical parameters can now be estimated by solving
(∂P/∂V) ) 0 ) (∂2P/∂V2) to give approximate expressions
for the low density critical parameters.

Extended Debye-Hückel Theory Low-Density Critical
Point (Z . 1)

These analytical results demonstrate qualitatively the
possibility of the existence of a vapor-liquid-phase
transition in a deionized dispersion driven by Coulomb
interactions and ideal gas entropy. For Z . 1, this critical
point occurs at a very low volume fraction. If the critical
temperature is to be around room temperature and the
relative dielectric permittivity ε is to be the aqueous value
of 78, the present extended Debye-Hückel theory with
finite-sized colloids would predict a colloidal charge Z ∼
2200 for a colloidal radius of 50 nm. Experimental colloidal
charges are estimated to be around this order of magni-
tude.1

The above estimates for the low-density critical values
have the same form as that obtained earlier for a Debye-
Hückel treatment of symmetric electrolyte with equal size
ions.16 For this restrictive primitive model electrolyte, the
third term (Pex

coul) in eq 40 for the pressure that originates
from size differences between the charged species is
identically zero. Indeed, the study of phase transitions in
symmetric electrolytes is covered very extensively in the
literature, and the general consensus is that while the
Debye-Hückel theory is able to provide instructive
analytical results, it has only qualitative accuracy17

because of the inherent linearization assumptions.
Extended Debye-Hückel Theory High-Density Critical

Point (Z . 1). At higher densities for which κDR . 1, the
second term for the pressure in eq 42 is of order (κDR) ∼
φ1/2Γ1/2Z, and so it is small compared to the third term.
Hence for Z . 1 we can neglect the second term in eq 42
to give

and we find a second critical point characterized ap-
proximately by

This high-density critical point occurs at a volume fraction
φHcr of around 33%, and it is determined by the hard-
sphere contribution Phs and the exact Coulomb contribu-
tion Pex

coul due to the size-difference effects between the
colloids and the ions.

The general form of the pressure isotherm is shown in
Figure 1 for a colloid charge Z ) 100. Note the location
of the two critical points at very different volume frac-
tions: one at around φ ∼ 10-4 (eq 44) and one at around
φ ∼ 10-1 (eq 46) separated by a region of near ideal gas
behavior at φ ∼ 10-3 . At Z ) 10, only the high-density
critical point is present (see Figure 2). In fact, in this model,
the system only exhibits two critical points provided Z g

(16) McGahay, V.; Tomozawa, M. J. Chem. Phys. 1992, 97, 2609.
(17) Fisher, M. E.; Levin, Y. Phys. Rev. Lett. 1993, 71, 3826. Fisher,

M. E.; Levin, Y. J. Stat. Phys. 1994, 75, 1. Levin, Y.; Fisher, M. E.
Physica A 1996, 225, 164.

(18) Blum, L.; Høye, J. S. J. Chem. Phys. 1977, 81, 1311.
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11. From the magnitude of the pressure, only the high-
density critical point around φ ∼ 10-1 is thermodynami-
cally stable and examples of the temperature-volume
fraction phase diagram for a range of colloid charges Z
are given in Figure 3. For the case Z ) 10, the present
theory predicts a critical point at φc ) 0.24 and Γc ) 0.32,
and for Z ) 20, φc ) 0.27 and Γc ) 0.14. These modest
colloid charges are certainly accessible by simulation
studies.6

The critical point at low volume fraction is in the
metastable region of the pressure isotherm. This general
feature of the pressure isotherm is illustrated schemati-
cally in Figure 4. The portion of the isotherm between
points A and B is in a thermodynamically metastable
region. At the composition S, the system may phase

separate into the metastable points C and D, and will
finally attain thermodynamic equilibrium at the equi-
librium state points A and B. To obtain a simple measure
of the “stability” of the metastable states C and D, we
consider the variation of the chemical potential in the
neighborhood of the metastable low-density critical point.

Figure 1. Pressure (P) scaled by the approximate low-density
critical pressure PLcr (see eq 44) as a function of the colloid
volume fraction æ at colloid charge Z ) 100. From bottom to
top, the isotherms are at Γ ) (e2/kTR) ) 32/(ZT*) for T* ) 0.8,
0.9, 1.2, 2, 4, 9, and 15. The pressure is plotted on an arcsinh
scale.

Figure 2. Pressure (P) scaled by the approximate low-density
critical pressure PLcr (see eq 44) as a function of the colloid
volume fraction φ at colloid charge Z ) 10. From bottom to top,
the isotherms are at Γ ) (e2/kTR) ) 32/(ZT*) for T* ) 0.8, 1.1,
1.25, 1.5, 2.5, 5, 8, 10, and 15. The pressure is plotted on an
arcsinh scale.

Figure 3. Scaled temperature ΓHcr/Γ ) 9/(4ZΓ) ) 9kTR/(4Ze2)
versus volume fractionφphase diagram corresponding to colloid
charges of Z ) 10-1000.

Figure 4. Schematic illustration of the pressure isotherm with
two critical points.

Figure 5. Free energy (F/FLcr), pressure (P/PLcr), and chemical
potential (µ/kT) versus volume fraction φ at the scaled tem-
perature of 1/Γ ) (kTR/e2) ) 0.95(1/ΓLcr) ) 0.95 (Z/32) near the
metastable critical point for a colloid charge of Z ) 100. FLcr is
the free energy (eq 39) evaluated at the state point given by eq
44. Horizontal tie lines and the common tangent construction
between the equilibrium densities are shown.
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In Figure 5 we show the variation of the free energy,
pressure, and chemical potential with volume fraction for
a system with colloid charge Z ) 100 at a reduced
temperature of (1/Γ) ) 0.95(Z/32). The usual common
tangent construction for the free energy (Figure 5a) and
the Maxwell equal area construction for the pressure
(Figure 5b) are indicated by the dotted lines. We observe
that there is a large barrier in the chemical potential
associated with the pressure maximum (point K in Figure
4). We note from Figure 5c that, at Z ) 100, the chemical
potential barrier is of the order 100kT and, at Z ) 50 (not
shown), the chemical potential barrier still has a mag-
nitude of about 30kT. While considerations of the lifetime
of the metastable states are beyond a simple equilibrium
study undertaken here, this observation would suggest
that, at large colloid charges, the low-density critical point
offers the possibility of the existence of long-lived meta-
stable states that may be manifested as the vapor-liquid
like phase separation observed in deionized latex disper-
sions.1 Finally, we observe that the variation of the free
energy between the two metastable states is only around
2-3%, which gives an indication of the numerical precision
needed if this metastable region is to be explored by
simulation studies.

In Figure 6, we compare the characteristics of the
temperaturesvolume fraction coexistence phase bound-
aries about the low-density and high-density critical points
for a colloid charge Z ) 100. The results have been scaled
with respect to their own critical values for comparison.
The phase boundaries corresponding to the low-density
(metastable) critical point have a very large density
difference between the metastable states which is remi-
niscent of the low particle densities observed within the
void regions in deionized dispersions1.

Clearly, the reliability of the above results obtained
from the extended (linear) Debye-Hückel model is difficult
to gauge without further work. We can gain some insight
by comparing with earlier studies of the critical behavior
of the restricted primitive model (RPM) electrolytesa
symmetric electrolyte in which the anions and cations
have equal hard sphere radii. For this system, the extended

Debye-Hückel model gave a scaled critical temperature
(kTcεR/e2) ) 1/32, which is within about 10% of the best
estimate from Monte Carlo simulations.17 However, the
predicted critical density is too low by over a factor of 5.
This would suggest that the extended Debye-Hückel
model may also be reasonable in estimating the critical
temperature of the Z:1 system. Hopefully, the results
obtained herein will stimulate further theoretical and
simulation studies.

Conclusion
Using an extension of the Debye-Hückel theory of an

asymmetric electrolyte, we have demonstrated how a
vapor-liquid phase separation can be driven by Coulomb
interactions between the charged species because the
overall Coulomb interaction is cohesive. We also showed
that this cohesive contribution to the free energy due to
Coulomb interactions is consistent with a purely repulsive
effective pair interaction potential between the colloidal
particles in the system within the primitive model. While
the DLVO paradigm of regarding a colloidal system as a
one-component system of colloidal particles interacting
with pair potentials has been extremely successful in
understanding colloidal stability, the phase separation
phenomenon requires consideration of the thermodynamic
state of the whole system. In low salt or deionized systems
where Coulomb interactions dominate, a consideration of
the colloid-colloid pair interaction alone will not provide
sufficient insight into the phase behavior of the system;
instead it is necessary to consider additional contributions
from the small ions.

As with other studies,7,13,15 our consideration of the
point-ion, point-colloid Debye-Hückel model indicates
that, in using the effective pair potential paradigm to
calculate thermodynamic properties, there will be sig-
nificant cancellations between contributions from the one-
and two-body terms because both contribute to the same
order in the colloid density. More generally, with finite
colloid size, higher body terms will appear although their
contributions to the thermodynamics may remain small.
Nonetheless, it is important to ensure that all types of
terms are calculated in a consistent manner. On the other
hand, a direct approach to calculate the internal energy
in terms of distribution functions does not involve such
cancellations and may provide a numerically more stable
route to system thermodynamics.

So far, previous theories7,13,15 of such colloidal systems
are based on variants of the linear Debye-Hückel theory.
However, it is possible to go beyond the linear Debye-
Hückel theory by exploiting the idea of effective pair
potentials between colloidal particles to include nonlinear
effects in the Coulomb interaction. This will be presented
in the next paper in this series.
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Figure 6. Temperature-volume fraction phase boundaries at
the low- and high-density critical points. The colloid charge Z
) 100. Each curve is scaled with respect to its own critical
values.
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