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because of symmetry, the potentiaki®) = u. Without loss of

A simple, general, and numerically robust algorithm is presented generality, we can assunmze> u > 0 provided the concentra-
for calculating the disjoining pressure and interaction free energy tions and the signs of the valencies of all the asymmetric ion
per unit area between two identically charged flat plates due to elec- species are adjusted accordingly.
trical double layer interactions according to the nonlinear Poisson— Herewith the key results While' details of the derivation ar

Boltzmann theory. The result is applicable to electrolytes with any def d he | fthi icle. Af licati fth
number of ionic species having any combination of valencies as eterred to the latter part of this article. After application of the

well as to constant potential, constant charge, or charge regula- POUNdary condition at the median plane- 0, the first integral
tion boundary conditions on the plates. The algorithm is very sim- of [1]

ple to implement on commonly available numerical software en-

vironments and is therefore particularly suitable for use in data dy

12
analysis. © 2002 Elsevier Science E = 21/2 {Z (0] [EXp(— Vi y) - exp(_ Ui U)] } [2]
i

The nonlinear Poisson-Boltzmann theory provides an acqi, pe integrated fro = 0 tox L /2, that is, fromy = U to z
rate mean field description of electrical double layer interactiog@give

in the colloidal regime and it is used extensively in interpreting

direct and indirect measurements of colloidal forces. For inter- z d
actions involving symmetric electrolytes the problem has been | = 2/2 / y 7 [3a]
studied extensively (1). For mixed valence systems, only spe- ) {Xiailexptuiy) — expEviu)] |

cific cases have been analyzed and the solutions are not simple
to implement. It is therefore most desirable to have a simple, o 25ds
general and robust method of calculating electrical double layer = /
interactions for all electrolyte compositions.

Consider two identical, uniformly charged planar surfaces lo-
catedak = —L/2andak = L/2 (adistancé apart) separated where
by an electrolyte solution in contact with a bulk reservoir that
comprisesy; ions per unit volume of speciéswith valencey;. G(x,Y)
The mean electrostatic potentia{x) obeys the nondimensional

1/2
Poisson—Boltzmann equation 1 1
q = {_Z“‘eXp[_Evi(Xer)] smh[ivi(x—y)]} .

d2
@Z = - Zi:ai viexpCuiy). —«L/2=<&=<«klL/2. [1] [4]

G(s?2+u,u)’ [30]

with y(£) = ey (x)/KT, the potential scaled by the protonicThe _disjoining pressgr@(L) is given, as usual, in terms of the
chargee and the thermal energyT; andé = «x, the coordi- Median plane potential

nate scaled by the Debye parametes (n,€?/coe kT)Y? of

the electrolyte with ionic strengti, = " njv? and ion num-  P(L) =kT Z ni{exp[—viu] — 1} = 2nkT[G(u, 0)1% [5]
ber ratiosy; = n;j/n,. The scaled surface potential of each plate i

IS y(cL/2) = 2. Atthe median plana = 0, where ¢/dx = 0 The interaction free energy per unit area can be obtained |

integrating the disjoining pressuR®L) [5] with respect to the
1 E-mail: D.Chan@unimelb.edu.au. Fax: +61 3 8344 4599. separatiori.
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The results given thus far are completely general and are W=(L) is given by
dependent of boundary conditions on the surfaces. However,

expressions for the interaction free energy per unit area will u
vary with the type of boundary conditions: Ve(L) = Nok T {—ZKL[G(U 0% + 4/G(y 0) dy
(i) For surfaces that interact undeonstant surface potential * 0
where the surface potentiais independent of the median plane z
potentialu, the interaction free energy per unit ad#L ) is +4/[G(y 0) — G(y, W] dy + 4 — 2..)G(Uw, 0)
u
kT i z
_ Mo _ 2
Vp(L) = ; { 2¢L[G(u, 0)] +4/G(y, 0)dy —4/G(y, 0) dy} (8]
0 2
z
+4/[G(y, 0) — G(y, u)] dYJ : [6] (iii) For surfaces that interact undeharge regulation the
u scaled surface potential has to be found using the surface

charge—surface potential relationshifz) that characterizes the
charge regulation process. For a given median plane potenti
The following remarks are in order: u, the surface potentiat, has to be obtained by first solving the

() Equations [3][6] express the separatiorthe disjoin- ©9uation

ing pressureP(L), and the interaction free energy per unit area,
Vp(L), parametrically in terms of the median plane potential G _es(?) 9
These are to be used to generate the trigiletP (L), Vp(L )} for (zu) = cor KTk [9]
a suitable range of values An evenly spaced set of values
between 0 andis sufficient for almost all practical applications. ] ] ) ] ]

(b) The integrands in Egs. [3] and [6] are well behavehich has a unique solution far > 0. Using this solution,
throughout the domains of integration: in particular, the int&=as- [3] and [5] will give the seperatioh and the disjoining
grand in Eq. [3b] is finite at the lower limit= 0 so that no spe- pressureP (L), while t_he mter_actlon free energy per unit ares
cial numerical integration methods are required. Furthermotg!der charge regulatioriz(L) is
the functions and the integrals have been arranged and grouped
to minimize loss of significant figures at extreme values of the
parameters, e.g., &s— oo; thatis,u — 0. Vr(L) = nok T [—ZKL[G(u, 0)12

K

(c) By using list handling capabilities and adaptive numer- R
ical integration routines of software packages suciMathe-

matica (2), the entire algorithm can be implemented in a few . z
lines of code, see Table 1 (3). F(L) and Vp(L) are needed +4/ G(y, 0) dy+4f[G(y, 0) — G(y, u)]dy
as functions oL, the data pair$L, P(L)} and{L, Vp(L)} can 0 "

be used to construct interpolation functions (4). The function ,

G(x, y) is used throughout to take advantage of the precision of e

built-in intrinsic forms of the hyperbolic sine function. + ZgogrkTK /o(y) dy — 4/ G(y.O)dy . [10]
Zy

Zso

z

(ii) For surfaces that interact undeonstant surface charge
the surface potentia for a given value of the median plane

potentialu has to be found by first solving the equation For large separations| > 1, results for the different bound-

ary conditions all approach those obtained from the so called
perposition approximatioor weak overlap approximatiorar
G(z, u) = G(z, 0), [7] from an isolated surface with surface poten#gl, the poten-
tial has the asymptotic form(x) = (kT/€) A z, € ¥, kX > 1.
From this result, we obtain the disjoining pressure and the inte
where the constant surface charge density is characterized@@tion energy valid fok L > 1:
terms of the scaled surface potential at infinite separatign,

Equation [7] has a unique root located in maxt,,) < z < oo. P(L) = nokT{222 Aze*"L}

Oncez is found for a given value ofi, Egs. [3] and [5] will *©

give the separatior,, and the disjoining pressur®(L), while V(L) = ﬁ{zf e
the interaction free energy per unit area under constant charge K o ’
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TABLE 1
Poisson-Boltzmann Plates—Asymmetric Electrolyte

m Define functions for pressure and energy

Glx_, y_] t= V-ai.{ v+ t+n/2 ginh(vi (x-y) /2]) ;

2s
xLasym[z_, u_} := NIntegrate{m—u-] P {s, o, ‘Vz—u}]:
.

pasym{u_] := 2 (G[u, 0])%;

vasymP(z_, u_, xL_} := -2 xL {G[u, 0})2 +
4 NIntegrate[G[y, 0}, {y, 0, u}] + 4 NIntegrate[G[y, 0] -G[y, ul, {y, u, z}];

vasymClze_, z_, u_, xL_] :=
vasymP [z, u, xL] -4 (NIntegrate[G[y, 0}, {v, z«:, 2}] - G{zw, 0] (z-z«));

m Constant potential sample calculation

vi = {1, -1, 1, -2); (+« valence of ionic species x)
ci= {0, 0, 210%, 1073}; (» molar concentration of ionic species x)
Print["Electroneutrality check: “, ci.vi};

. ci
ai = w—
ci.(vi)?

(*+ MKS Units for Pressure, Energy,
Potential and Debye kappa- Pmks, Vmks, ymks & x )

Block[{T = 25+273, e = 1.602192« 107*°, k = 1.380622 + 107,
€ = (8.85 107*?) 78.3, avo=6.022 10%°, no}, no = 1000 avo ci.{vi)?;

no e? kT
; Pmks = nok T; Vmks = Punit /x; ymks = —-—-;];
ekT e

zco = 4.0; (+ surface potential at infinite separation x)

u = 3.5; (+« pick a value «)

zZ = Zowy '

xL = xLasym[z, u];

Pres = Pasym[u];

Vp = VasymP|z, u, xL] ;

Print{"Constant potential: «xL = ", xL,
" Pres = “, Pres, ™ Vp = ", Vp, “ ysurf = %, z];

Print{"Physical units: L(m) = ", xL/x, * P(N/m®) = ",
Pres Pmks, * Vp(J/m®) = %, VpVmks, " (V) = ", z dmks];

m Constant charge sample calculation

vi ={1, ~1, 1, -2}; (» valence of ionic species &)
ci= {0, 0, 2103, 107%); (* wmolar concentration of ionic species )
Print["Electroneutrality check: *, ci.vi];

ci

Al 5 —

ci.(vi)?

(* MKS Units for Pressure, Energy,
Potential and Debye kappa- Pmks, Vmks, Ymks & x «)

Block[{T = 25+273, e = 1.602192+ 107*, k = 1.380622 + 107,
€ = (8.85 107?) 78.3, avo=6.022 10®, no}, no = 1000 avo ci.(vi)?;

no e? kT
; Pmks = nok T; Vmks = Punit/x; ymks = —;1;
€ekT e °

zoo= 4.0; (* surface potential at infinite separation =)
u = 3.5; (+« pick a value =)
z =z /. FindRoot [G[z, u] ==G[ze, 0], {z, {Max[u, zw], 6 z«}}];
xL = xLasym{z, u];
Pres = Pasym{u];
Ve = VasymC{zw, 2z, u, xL];
Print{"Constant charge: xL = ", xIL,
¥ Pres = %, Pres, ¥ Vc = *, Vc,' - ysurf = =, z];
Print["Physical units: L(m) = ", xL/x, * P(N/m?®) = *,
PresPmks, ¥ Vc(J/m®) = ", VcVmks, "  Y(V) = ", z ymks);
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where the constari is given by [6] for constant potentiasurfaces becomes

Zr kT 1 1
y —2G(y. 0) | Vo(L) = {16 sint? ZU—+L [sinhu + 22 sinh> u}
K

logA = y.
2yG(y, 0)

1 1 vz
This completes the specification of the method for calculat- - 8[smh§(z —u)sinh(z+ u)}

ing electrical double layer interactions involving asymmetric
electrolytes between identical plates for all common boundary — geu/Z[E((p’ m) — E(Z’ m)} } [13]
conditions. With modern numerical computation software pack- 2
ages, this method of calculating the separatiothe disjoining
pressureP (L), and the interaction energy per unit akéél) is
very easy to implement.

We now give details of the derivation of the above results. T
function G(x, y) which follows from the identity

whereE(p, m) is the elliptic integral of the second kind (6). For
constant chargsurfaces the expression for the interaction free
iehergy per unit areajc(L) [8], is given by

_ NoKT o1 , W2 e L
e _ & — 2602 ginhix — y),2] 1) Ve(L) = {16 sintf 7u kL |:S|nhu + 2¢ smh2 u
1/2
is used to obtain Eq. [3b] from [3a] in order to circumvent the — S[Sinh}(z —u) sinh}(z + u)}
potential loss of significant figures in [3a]. A similar transfor- 2 2
mation is used to ensure that the disjoining pressure in Eq. [5] is 02 bs
evaluated accurately for smaill In Eq. [3a], the change to the —8e [E(ﬁ"v m) — E(Ev m)}
new integration variabls defined byy = s? + uin Eq. [3b] re- 1
moves the integrable inverse square root singularity at the lower + 4(z — 2) sinhE Zs
limit y = u.
The derivation of the interaction free energy at constant po- B 1 .
tential V(L) requires an integration by parts 16 Slnh4 (2= 2) Slnh4 (@+2) [14]
L Fodp and the explicit solution of [7] for the surface potenias
Vp(L) = —/ P(L)dL = —P(L)L +/ Lm du, [12] 1
5 0 z= arcosl’(Z sint? 5Zot coshu). [15]

where d®/du is obtained from Eq. [5], while Eq. [3a] is used

to replacel in the same integrand to obtain a double iterated ACKNOWLEDGMENT
integral. If the surface potentialis a constant, an interchange
in the order of integration together with a regrouping of termﬂs1
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