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Abstract. A general expression, including retardation effects, is derived for the van der Waals 
free energy of interaction between two spatially dispersive semi-infinite half spaces using the 
infinite barrier model in which the currents are reflected specularly at the interface. The 
answer is given in terms of model independent longitudinal and transverse bulk dielectric 
permittivities which are functions of the wavenumber. Numerical estimates of the effects of 
spatial dispersion on the interaction energy are given using the hydrodynamic model for the 
permittivities. The choice for the hydrodynamic model is based on its analytical simplicity 
and its ability to yield an estimate of the minimum effect of spatial dispersion. It is demon- 
strated that, for two like metallic half spaces across vacuum, spatial dispersion can cause at 
least a 20% reduction in the effective Hamaker ‘constant’ at separations rr 4kF1 where k ,  is 
the Fermi wavenumber. Some inadequacies in the hydrodynamic model are pointed out. 

1. Introduction 

There is currently much interest in van der Waals forces between macroscopic bodies. 
The practical applications of such calculations are of great importance and relevant to 
many areas of science and technology. Modern theoretical studies stem from the early 
work of Lifshitz (1956) who studied the van der Waals interaction between two dielectric 
bodies across a vacuum. More recently, emphasis has been placed on the modifications 
of the Lifshitz expression due to spatial dispersion in the material media. In general this 
problem is very difficult. However a fairly simple model which regards the material 
surfaces as infinite barriers from which the charges are specularly reflected is amenable to 
analysis. 

Recently we (Chan and Richmond 1975a, b (I), 197%; see also Lushnikov and Malov 
1974) have demonstrated how free energies for such a system may be derived without 
using a particular model for the dielectric permittivity as has been implicit in some earlier 
works (Davies and Ninham 1972, Richmond et al 1972, Chang et a/ 1971, Heinrichs 
1975a, b). For the case of two media interacting across a vacuum an interesting feature 
emerged from our calculations. We demonstrated that unlike the result for simple 
dielectrics, the work done against van der Waals forces and the surface free energy differ 
by a ‘healing’ or ‘cleavage’ energy. A similar result has been obtained independently by 
Harris and Griffin (1975) and Wikborg and Inglesfield (1975). The origin of this energy 
is quite simple to understand. In order to create a surface in this model from a bulk 
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medium it is necessary to cleave the medium first by erecting a reflecting barrier before 
pulling the surfaces apart against van der Waals forces. Now because of the nature of 
specular reflection, the set of modes for a medium of width 2L differ from those appro- 
priate to two adjacent media each of width L. The energy involved is therefore non-zero 
and contributes to the surface energy. In a recent paper Heinrichs (1975b) argues that the 
surface energy is to be identified solely with the work done against van der Waals forces 
and that the cleavage energy given by the model is unphysical. Now in a more realistic 
system, which accounts in more detail for the readjustment of charge density, at an 
interface, at the moment of cleavage, one will not obtain such a simple splitting between 
‘cleavage’ and van der Waals free energy. However there must be a ‘cleavage’ contribution. 
Only a study of a more realistic model can resolve the question of its magnitude. 

The effects of spatial dispersion on van der Waals interactions have also been studied 
recently by Agarwal (1975) and Barnes (1975). Agarwal’s model differed slightly in that 
he imposed diffuse reflection of charges at an interface rather than specular reflection. 
In this case it is not possible to obtain a result valid for a general dielectric permittivity 
but a particular choice must be made and Agarwal used the hydrodynamic model for the 
permittivity. In terms of this model the diffuse boundary condition effectively says that 
J = %S where S is the normal derivative of the normal component of the current J and 2 
is a model-dependent parameter which tends to zero in the limit of no spatial dispersion. 
(Specular reflection insists that J = 0.) The final result obtained by Agarwal does not 
appear to differ qualitatively from that obtained using specular boundary condition : 
however, no detailed comparisons have been made. 

Having obtained the result for the non-retarded van der Waals interaction between 
two spatially dispersive media across vacuum, we computed the expression for the 
particular case of two like media characterized by the familiar hydrodynamic dielectric 
permittivity. We found, as did Harris and Griffin, that spatial dispersion significantly 
reduced the van der Waals interaction energy from the value given by Lifshitz theory at 
distances comparable with the inverse term wavenumber, kF What we did not expect 
however was that reductions of up to 10% would be still evident at distances - 10k; 
where retardation effects were also beginning to come into play. Now complete charac- 
terization of the interparticle potential is of some importance in this regime for colloid 
science applications; therefore it is necessary to evaluate fully van der Waals interaction 
energy in this regime. This is the object of this paper. The method we follow is essentially 
that used in our earlier papers in that the solution for the inhomogeneous system is 
constructed using a set of auxiliary homogeneous systems. However rather than evalu- 
ating a response function we merely obtain the secular determinant for the normal mode 
frequencies of the surface plasmons and use this directly to obtain the van der Waals 
interaction energy following standard prescriptions (van Kampen er a[ 1968 : Richmond 
and Ninham 1971; Mitchell and Richmond 1974). The details of the derivation of the 
free energy of interaction are given in S: 2 and $3. A model calculation is then done in 
which tEe spatially dispersive medium is modelled using hydrodynamic-type permit- 
tivities. 

2. Retarded response function 

To obtain the free energy of interaction of two spatially dispersive media interacting 
across a vacuum gap within the framework of our model it is first necessary to obtain the 
response of a uniform, homogeneous spatially dispersive medium to a fluctuating surface 
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current (Chan and Richmond 1975b, Flores 1973). Consider then a uniform medium 
subject to a planar surface current .f(s:y)d(z - z'). (The z component of the current 
vector is zero.) The retarded response is determined by Maxwell's equations. Thus, in 
an obvious notation, 

v x E = (iw/c) B 
v x H = (471/~)3 - (iw/c)B 

(2.1) 

(2.2) 
v . D  = 4np 

v . B  = 0. 
(2.3) 

(2.4) 
In the following we shall ignore magnetic effects and assume B = k. Now from equations 
(2.1) and (2.2) we have 

V(V . E )  - v2E - ( W ~ / / C ~ ) ) B  = (471 i0/c2)3. (2.5) 

Now we introduce Fourier transforms such that 

Equation (2.5) then becomes 

-q (q  , E )  + q 2 E  - ( 0 2 / c 2 ) D  = (471i0/c2)J, (2.7) 

It is convenient to resolve the electric field into longitudinal and transverse components 
i.e., 

E = E ,  + ECr 

where 

E ,  = 4(4  E)/cl2; E ,  = (4 x E )  x q/q2 .  (2.8) 

The displacement vector is related to the electric field via the longitudinal and transverse 
permittivities E,, eT i.e., 

D = €,E,  + E@,. 

The solution to equation (2.7) is now readily obtained. Thus 

and 

471iuerr (q  x J )  x q 471 q(q . J )  
D =  +------. 

P ( q 2  - 0zeT/('2) (I2 1 0  q 2  

(2.9) 

(2.10) 

(2.11) 

Taking the Fourier transform of equation (2.1) and using equation (2.10) gives the mag- 
netic induction 

(2.12) 

In order to later match the boundary conditions across the planar interfaces of our 
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inhomogeneous system we must invert these transforms with respect to k, the z compo- 
nent of the vector q = ( K ,  k). It is convenient to introduce the vectors 

(2.13) U = K / K ;  ft = k/k; J = (Js, 0) 

and note the relations 

U . 4  = K ;  

B . ( q  x J) = (k/K)(J,  x K I ;  

& . q  = k; 

& . ( q  x J) = IK x Jsl. (2.14) 

We now obtain the component of D perpendicular to the planar surface from 

O3 dk k 
exp[ik(z - z')] ( K  . J J ;  (2.15) 

(q2 - W2E7,./C2) 

the component of the electric field E parallel to K from (2.10), 

the normal component of B from (2.12) 

4ni IK x Jsl O0 dk 1 
c K 2n (42 - 02E.,./C2) 

B'(K; z ;  z') = - -- - exp[ik(z - z ' )]  ; (2.17) 

the component of B parallel to K from (2.12) 

Our solution must satisfy the following boundary condition : 

B",J'(z'+ ; z') - B"'(z'- ; 2') = 471 Jz ' " / c .  

From equation (2.11) we see that this implies 

To see this consider the following integral? 

(2.19) 

(2.20) 

Noting that 1imq+, E - r ( q ;  o) -+ 1 + O(q-"), n 2 2, we have 

? We are grateful to Dr B Davies for this derivation. 
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If we make the physically reasonable assumption that eT is a function of I q I only we may 
let z --f 0 with impunity in the second term on the RHS and the integrand is then seen to 
be well behaved as k -+ CO and is an odd function of k. The integral is therefore zero. The 
first integral may be evaluated after it is noted that w must have a small positive ima- 
ginary part to ensure we are dealing with retarded time-dependent quantities. This 
determines the position of the poles in the complex k plane and we obtain 

I = - $ sgn (z). (2.22) 
Equation (2.19) readily follows from equation (2.22). 

3. Retarded free energy of interaction 

Consider now two semi-infinite half spaces of spatially dispersive media separated by a 
vacuum. The bulk dielectric permittivities are E ~ , ~  and The vacuum layer 
has width 21 and we shall choose the axis of a Cartesian coordinate system perpendicular 
to the interfaces which coincide with the planes z = + I .  The free energy of interaction 
is then given by the following: 

where D ( K ,  is,,) is a secular determinant evaluated at imaginary frequencies i:,, = 
i2nrckBT/h. The secular determinant may be obtained from the mode equations for 
electromagnetic surface waves in the above system. Strictly D(i<) is the analytic continu- 
ation of D(w) which is obtained by including incoming and outgoing waves. However 
it may be demonstrated that D(i<) may be obtained by simply considering 'outgoing 
waves' evaluated at the imaginary frequencies i<,, (Schram 1973, Langbein 1973). 

Thus following the procedure in I and substituting o -+ it in equations (2.15)-(2.18) 
of the previous section we obtain 

(3.3) 

i (3.4) 
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BL(K;z) = 

(3.5) 
4ni z > l  

lm dk exp[ik(z + l ) ] ]  + IK x J i \  
271 q 2  + r 2 / c 2  - m  2n q 2  + <2/c‘ 

a dk exp[ik(z - 41 

z <  -1 4ni (3.7) 

z > l  (3.8) 471 
. 

OC dk 
+ IK 

< 

(3.9) x exp[ik(z + 1)k 
4’ + <2/c’ 

a dk exp[ik(z + I)]k ] z < - 1  (3.10) 
- m  

B ~ ~ ( K ; z )  = 

(3.11) a dk exp[ik(z - l ) ] k  > 471i 

- m  

47ci OC dk 
C 

(3.12) exp[ik(z + l)]k x __--__- 
q 2  + <’/e’ 

z <  -1 .  (3.13) 471i 
C 

The currents J’  to J: are now fictitious fluctuating surface currents of our inhomogeneous 
system and are determined by imposing the usual boundary conditions. Thus continuity 
of E” at z = 1 I gives 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

and 
S’ = K’ + <’/e’ 
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The terms on the RHS of equations (3.14)-(3.15) are obtained by evaluating the integrals 
in equation (3.3). 

Similarly continuity of B' at z = kl gives 

(3.18) 1 - - ( K  x J,"I = IK x J , " I  + e-2S'IK x J,"I 
r 3  

where 

(3.20) 

Matching D' and B"  and evaluating all the integrals (using arguments similar to those 
invoked to derive equation (2.19) to evaluate those arising from equations (3.Q (3.10), 
(3.11), and (3.13)) we obtain 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Equations (3.14), (3.15), (3.21) and (3.22) yield the 'secular determinant' for electric modes 
(P modes). 

(3.25) 

( K  , J:)  = e-2S'(K. Jf) - ( K .  J,") 

( K . J k )  = - (K.Jf )  + e-2s'(K.J:) 

I K  x J % I  = e-2sLlK x ~ f l  - I K  x $ 1  
I K  x J,'i = - I K  x J ~ I  + e-Zs'lK x JII .  

D , (K;  is) = 1 - AlA3 e-2s' 
where 

(3.26) 

Similarly equations (3.18), (3.19), (3.23) and (3.24) yield the 'secular determinant' for mag- 
netic modes ( S  modes) 

(3.27) 

(3.28) 

The function D required to compute the free energy of interaction according to equation 
(3.1) is now given by 

D = D,D, (3.29) 

D,(K;  if) = 1 - KIA3 e-2s' 

- where 
= (1 - rJ(1  + Va l  

Further, the conditions when the denominators of A and vanish, namely 

< K  
-+,+s=O 
CZrr EL 

and 
l + v ] = O  

(3.30) 

(3.31) 
correspond, as expected, to the surface plasmon modes dispersion relations for a vacuum/ 
medium interface (see for example Kliewer and Fuchs 1968). 
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4. Results and discussion 

We have computed the free energy of interaction for two identical semi-infinite half 
spaces using for the permittivities err and eL forms appropriate to a hydrodynamic model. 
Thus we chose 

CO2 
EL(q:  i<) = 1 + -J-- r2 + p z k 2  

and 

er(q; ic) = 1 + w$’C2. (4.2) 
These are appropriate to a model jellium in which only compression forces are allowed 
(Davies and Ninham 1972). Shear waves are supposed not to exist. This is the reason 
why the transverse permittivity is independent of q.  One point we note here is that 
and eL given by equations (4.1) and (4.2) do not satisfy the general relations (Ehrenreich 
1966) 

E ;  y q ,  0) = 1 - 4x&(q, 0) 

e; y q ,  0) = [(47cB + 1)c2q2 - 02]-’[(4nii - l ) 0 2  + ‘2421 

where &(q, w) is the macroscopic polarizability. However, we note that if we were to use a 
q-dependent transverse permittivity, the difference would be an enhancement of the 
effect of spatial dispersion obtained below. The advantage of using the above simple 
forms is that &r, CI- and q can all be easily derived analytically. Thus from the definitions 
(equation (3.16), (3.17) and (3.20)) we obtain 

(4.4) 

and 

The parameter p is chosen so that the longitudinal permittivity yields the correct 
dispersion relation for bulk plasmons in the long-wavelength limit. Thus p2 = (315)~: 
where uF is a Fermi velocity. This may be related to the plasma frequency wp and Fermi 
energy E, as follows: uF = ( 16e2/3xh)(EF/hw,)2. 

In figure 1 we show our results for an aluminium jellium for which kw, = 14.2eV 
and E ,  = 11.64 eV. The Fermi wavelength k; = 3 W. We have chosen to plot the effec- 
tive ‘Hamaker constant’ H which is related to the free energy of interaction F(l)  by the 
formula 

Curve A is the usual Lifshitz interaction free enerm without any spatial dispersion 
(i.e. p = 0). As would be expected H is constant at small distances; at larger distances 
retardation sets in and H K 111 such that the free energy of interaction F(1) cc l/13. 



Free energies across inhomogeneous dispersive media: 111 161 

A 80- 
- 

Figure I .  The Hamaker constants in units of k,T as a function of separation for aluminium 
calculated using (A) Lifshitz theory with retardation but without spatial dispersion, (B) 
present theory, (C) non-retarded theory with spatial dispersion (reference I). 

Curve B is the result obtained by including spatial dispersion. Clearly the difference 
becomes quite marked at distances less than -5OA. At small distances (-4/k,) we 
expect that our results will start to become inaccurate due to overlap of the electronic 
charge distributions from each half space. Nevertheless at this distance, which for our 
example is 12.4, spatial dispersion has resulted in a 20% reduction in the Hamaker 
constant given by the conventional Lifshitz theory and we emphasize again our comment 
that if a wavevector-dependent expression for eT is used this reduction will be even greater. 
Furthermore we note that the hydrodynamic model is only valid for small wavenumbers, 
as it has the wrong asymptotic behaviours at large q, and we expect that the present 
calculation in common with others using the hydrodynamic model gives an estimate of 
the effects of spatial dispersion only at small distances. 

Finally we have plotted (curve C) the results for a non-retarded spatially dispersive 
interaction (c -+ a). The effect of the magnetic terms can be seen to reduce slightly the 
effect of spatial dispersion. 

References 

Agarwal G S 1975 Phys. Rev. A 11 243 
Barnes C J 1975 PhD Thesis Australian National University 
Chan D and Richmond P 1975a Phys. Lett. 51A 323 
. -~ 1975b J .  Phys. C: Solid St .  Phys. 8 2509 
-. - ~ 1975c J .  Phys. C :  Solid St.  Phys. 8 3211 
Chang D B, Cooper R L, Drummond J E and Young A C 1971 Phys. Lett. A 37 31 1 
Davies B and Ninham B W 1972 J .  Chem.. Phys. 56 5797 
Ehrenreich H 1966 in Optical Properties of Solids, Proc. Int. School of Phys. ‘Enrico Fermi’ (Varenna, Italy) 

34 Course XXXIV (New York: Academic Press) 
Flores F 1973 Nuovo Cim. 14B 1 
Harris J and Griffin A 1975 Phys. Rev. B 11 3669 



162 Derek Chan and Peter Richmond 

Heinrichs J 1975a Phys. Rev. B 11 3625 
.. 1975b Phys. Rev. B 11 3637 

Kliewer K L and Fuchs R 1968 Phys. Rev. 172 607 
Langbein D 1973 J .  Chem. Phys. 58 4476 
Lifshitz E M 1956 Sou. Phys.-JETP 2 73 
Lushnikov A A and Malov V V 1974 Phys. Lett. 49A 317 
Mitchell D J and Richmond P 1974 J .  Coil. I/iterface Sci. 46 118 
Richmond P, Davies B and Ninham B W 1972 J. Chem. Phys. 58 744 
Richmond P and Ninham B W 1971 J .  Phys. C:  Solid St. Phys. 4 1988 
Schram K 1973 Phys. Lett. 43A 282 
van Kampen N G ,  Nijboer B R A and Schram K 1968 Phvs. Left .  26A 307 
Wikborg E and Inglesfield J E 1975 Solid St. Commun. 16 335 


