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A computationally simple and accurate model is presented for predicting partial structure factors of
binary mixtures of electrostatically stabilized colloidal particles. The theory is based on the mean spherical
approximation of a binary mixture of hard sphere fluids interacting with a screened Coulomb (Yukawa)
potential and a rescaling of the hard sphere sizes of the components. The utility of the approach is tested
against data from small-angle neutron scattering experiments and Monte Carlo simulations.

I. Introduction

In recent small-angle neutron scattering (SANS) ex-
periments, Ottewill et al.! measured partial structure
factors of dispersions containing two types of spherical
polystyrene lattices. The dispersions are held at a
relatively low background electrolyte concentration, such
that the electrostatic repulsion is strong enough to induce
significant structure in the system. With the total volume
fraction of particles between 2% and 3%, van der Waals
attraction is negligible and effects due to multiple scat-
tering are not important.

By using the deuterated form of the polymer lattices as
one of the components, it is possible to measure individual
structure factors between the large or between the small
sized particles by using a mixture of D,O/H,0 in the
aqueous dispersion to achieve contrast matching and to
make one of the species “invisible” to the neutrons. The
mixed structure factor between the large and small
particles can then be deduced by additional measurements.
However, as we shall see, the experimental uncertainties
in the mixed structure factor seem to be high and it
requires further experimental refinement.

Lutterbach et al.?3 have since presented SANS mea-
surements for a two-component dispersion of highly
charged polystyrene (PS) and perfluorinated (PFA) par-
ticles at higher volume fractions of approximately 9%.
They compared their partial structure factor measure-
ments between the colloidal particles with theoretical
predictions from the hypernetted chain (HNC) integral
equation and found good agreement.

The structural properties of a colloidal dispersion can
be determined by Monte Carlo (MC) simulation, and within
statistical uncertainty, it provides an exact answer for
the given model. However, this approach is highly resource
consuming, and the time needed to complete the simula-
tions can be quite substantial, particularly for highly
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charged systems. Therefore, it is desirable to develop a
simple but reliable theoretical approximation to determine
the structural properties of these systems. Svennson and
Jonsson* have tested the RMSA model against Monte
Carlo simulations for one-component systems, and they
found good agreement for low surface charge densities
and volume fractions, provided that the supporting
electrolyte is monovalent. In this paper, we present a
computationally simple and accurate model based on the
rescaled mean spherical approximation (RMSA) for pre-
dicting partial structure factors of charged binary colloidal
dispersions. The utility of the approach is also tested
against SANS data and Monte Carlo simulations.

1. Experimental Details and Pair Potentials

The experimental details regarding the SANS experi-
ments are given elsewhere,! we simply summarize the
main features. The dispersion consisted of two types of
spherical polystyrene lattices, and the size ratio of the
particles was 3:1. The volume fraction of the larger (L)
particles was held constant, while the volume fraction of
the smaller (S) particles was varied to give small/large
(Ns/Np) number ratios of 9 and 15. The total volume
fraction was kept low to reduce the effects of multiple
neutron scattering—such effects were ignored in the
determination of the partial structure factors. Systems
with only one of the components present were also studied
by SANS, photocorrelation spectroscopy, and transmission
electron microscopy to determine particle size and inter-
action parameters. The physical parameters of the system
are given in Table 1.

At an added univalent salt concentration of 6 x 1075 M,
the counterions from the dissociation of surface groups on
the particles make a negligible contribution to the Debye
screening length in the aqueous medium.>® The inverse
Debye length, «, for the system can be taken to be

2
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where e is the proton charge, n is the number concentration
of the added salt, ¢ is the relativity permittivity of the
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Table 1. Composition of Binary Mixtures

system radius, a (A) vol fraction, ¢ (%) number ratio (Ns/Ny)

large (L) 510 21
small (S) 170 07,11 9,15

agueous suspension, ¢ is the permittivity of free space,
k is Boltzmann's constant, and T is the absolute temper-
ature. At 6 x 1075 M of added NacCl, the Debye length is
k"1 =390 A, so that the scaled particle radii are of order
unity:

xka, =13 xkag = 0.44 @)

To obtain an estimate of the mean separation between
particles, let us consider the small/large number ratio (Ns/
N, ) of 15 with the volume fraction of large particles ¢, =
2%. Consider a collection of large particles of radius a,,
arranged in an fcc lattice with a volume fraction of 16¢, .
The distance r between the centers of particles is given

by

r\e_ al(3v2) _ _
(Z_aL) —Teg Of r=26a,=13%6A (3

where 7/(3+/2) = 0.74 is the fcc closed pack volume fraction
for spheres. Now if 15 out of every 16 large particles are
replaced by small particles of radius as = a, /3 and no two
large particles are adjacent to one another, then the
smallest surface-to-surface distance, hnin, between par-
ticles will be between adjacent large and small spheres
with
hun=r—a, —as=13a =17« "~ 660A (4)
At this separation or larger, and for scaled particle radii
of order 1, the superposition approximation expression
for the double layer interaction energy is expected to be
accurate to within 10%.72 In general, one would expect
the typical surface-to-surface separations would be larger
than that estimated in eq 4 and would therefore make the
superposition approximation even more accurate. Thus,
for modeling the structure of these binary colloidal
dispersions, we used the following superposition repre-
sentation® for the repulsive electrical double interaction
between the particles belonging to speciesa, =1L, S, at
a separation r, between their centers

Uaﬁ(r) =
dmee, a6V, exp(ka,) azeW, exp(kag) exp(—«r)
e? kT kT r

r=> o, (5

where 0,3 = a, + ag is the mean diameter. The parameters
W, and W are coefficients that characterize the asymptotic
screened Coulomb form of the potential profile from a
single particle and are not necessarily the actual surface
potentials of the particles.
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I1l. Theory

A. Structure Factors and Ornstein—Zernike Equa-
tion for Binary Mixtures. The structure of a binary
colloidal mixture can be quantified by means of radial
distribution functions gqs(r) which measure the relative
density of a particle of type f at adistance r from a particle
of type a. The total correlation functions heg(r) = gas(r) —
1 can be calculated directly from computer simulations or
from liquid state theory by solving the Ornstein—Zernike
(0Z) equation, which relates total correlation functions
hes(r) to direct correlation functions c.s(r)

hes(r) = Cop(r) + znyfcw/(r')nyhyﬁ(r —r)dr (6)
Y

where n, is the bulk number density of species y. The
three partial structure factors in the binary mixture, S, -
(k), Sis(k), and Sss(k), are obtained from SANS experi-
ments, and these are simply the Fourier transforms of
the total correlation functions heg(r)

4n(nny)"?

Sep(K) = 044 + Tj:’rhaﬁ(r) sin(kr) dr (7)

where . is the Kronecker delta function (1 if a = and
0 otherwise), n, is the number density (N./V), and k is the
wavenumber. We can proceed formally by defining the
Fourier transforms

Hos() = (Nanp)*? [hy(r) explik-rldr  (8)

Cop(K) = (NuN)™ ¢ s(r) explik-r] dr
so that eq 6 can be written in matrix form
[1 = CIIN + HK)] = I )

where the components of the 2 x 2 matrixes H(k) and C(k)
are the functions Hes(k) and C,s(k) and 1 is the identity
matrix. A formal solution'® of eq 9 can be expressed in
terms of an auxiliary matrix Q(k) whereby C(k) is
factorized into the form

I = C(K) = QRIQ(-K)I" (10)

where Q(k) have the required analytic properties. Then
the structure factor matrix becomes

S(K) =1+ H(K) =[I = C1* = ([Q(-k)1") Q)™
(11)

From the general result in eq 11, it is possible to deduce
a general inequality®! (see Appendix)

[SLS(k)]2 = S (K) Sgs(k) (12)

which must hold for all wavenumbers between the three
partial structure factors. This general inequality can be
useful in determining the internal consistency or accuracy
of experimental results.

B. Rescaled Mean Spherical Approximation. To
solve the Ornstein—Zernike equation (eq 6) for the total
correlation functions hys(r) or the structure factors Sqs(K),
an additional closure relation involving the direct cor-
relation cqs(r) is required. This closure condition is in

(10) Baxter, R. J. J. Chem. Phys. 1970, 52, 4559.
(11) Bartlett, P.; Ottewill, R. H. J. Chem. Phys. 1992, 96, 3306.
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general an approximation. For particles interacting via a
repulsive screened Coulomb or Yukawa potential asin eq
5, the mean spherical approximation (MSA) is given by
the conditions

U ™) 1> 4, (13)

and affords an analytic solution that is particularly useful
if it is needed to explore a large range of parameter space.
For repulsive screened Coulomb potentials at low
volume fractions, the MSA yields unphysical, negative
values for the radial distribution functions? ge(r) for
separations near contact. However, Hansen and Hayter?!?
suggested a heuristic approach based on increasing or
rescaling the hard core size of the colloids without altering
the form of the repulsive potential outside the hard core.
In this approach, the particle size is increased until the
radial distribution functions cease to be negative. This
turnsout to be a remarkably accurate method of obtaining
the structure factors for systems of one-component
particles with repulsive Yukawa interactions, and it is
called the rescaled mean spherical approximation (RMSA).
Ginoza' provides a method of solving eq 6 with the

Yukawa closure
hes(r) = —1, r <0y

exp(—zr)

14
Cop(n) = Kddy———, 1> T (14)

where K, z, and d, are constants. Ginoza's solution builds
on previous work by Baxter!® and Blum and Hgye.!®
Substituting the superposition approximation (eq 5) into
the MSA (eq 14) gives cq(r) in the required form (eq 14),
with

_ 4mekT

eZ

K:

-
d, = Aol exp(ka,),

Z=k (15)

It is worth emphasizing that Ginoza's solution requires
the prefactor of c.4(r) in eq 14 to be factorizable into a- and
p-dependent components. The solution would be more
complicated if c.s(r) could only be expressed in the more
general form

exp(—zr)

Cop(r) = Kog— (16)

C. Rescaling. Once Ginoza's solution has been used to
calculate the partial structure factors Sg(k), radial
distribution functions gqs(r) can be found by

1 ) .
gaﬂ(r) =1+ W'ﬁ) [Saﬂ(k) - 6aﬂ]k sm(kr) dr
(17)

In Ginoza's solution, the contact value gqs(ges™) can also
be calculated directly, without resorting to Fourier
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Table 2. Key Parameters for RMSA Calculations Plotted
in Figures 1 and 2

9:1 (Figure 1)

15:1 (Figure 2)

surface potentials yielding Y. =21mV Y =21mV
the best fit to experiment  Ws=7mV WYs=7mV
RMSA scale factors s; =1.67 s; =1.63
sg=1 sg=1
effective radii a} =852 A a; =831 A
ai =168 A ai =168 A

transforms. This contact value is the limiting value of
Jup(r) as r approaches o,s from above. Since gqs(r) is zero
for all r < o4, gus(r) is discontinuous at r = o if the
contact value is nonzero.

Hayter and Penfold'? have previously derived a method
of calculating structure factors S(k) and radial distribution
functions g(r) for one-component systems, analogous to
Ginoza's. Subsequently, Hansen and Hayter!® noted the
tendency of g(o") to become negative under the MSA
closure. To overcome this problem, they proposed a
rescaled mean spherical approximation (RMSA) model in
which particles have an effective hard sphere radius larger
than their true radius by some scale factor s > 1, without
changing the form of the pair potential. Let g(s;r) denote
the radial distribution function g(r) found by solving the
OZ equation with scale factor s. Then, since we would
expect the rescaled contact value g(s;so*) to increase
monotonically as a function of s, there should be a unique
s* for which g(s*;s*0™) = 0. Aniteration scheme is required
to find s*.

For our binary mixtures, we must ensure that three
distribution functions are non-negative at contact, while
we only have two adjustable effective diameters at our
disposal. Let gqs(SL,Ss;) denote the radial distribution
functions found by solving the OZ equation with the large
and small particle radii scaled by factors s and ss. We
searched numerically for a pair of scale factors (s.*,ss*)
such that the rescaled contact values g (S.*,Ss*;S.*0L)
and gss(SL*,Ss*;Ss*0s) are zero. As in the one-component
case, we expect the root (s_*,ss*) to be unique, since it is
likely that g, | (si,Ss;SL01) and gss(St,Ss;Ss0s) both increase
monotonically as functions of both s_ and ss.

Once the root (s *,ss*) is found, we have to check that
the contact value of the third pair distribution function
dus(sL*,ss*;(sL*oL + ss*0s)/2) is also non-negative, which
turned out to be true for all the cases we considered. Some
typical scale factors (s *,ss*) are given in Table 2, and
they tend to increase as the surface potentials are
increased. In some cases for low surface potentials
rescaling is not required.

1V. Monte Carlo Simulation

As well as comparing the RMSA results with SANS
experiments, RMSA predictions were tested against Monte
Carlo (MC) simulations. The MC simulations were carried
out using the canonical ensemble with 200 large particles
and 9 x 200 or 15 x 200 small particles enclosed in a cubic
box with periodic boundary conditions. The particles
interacted using the pair potential in eq 5, which is also
used in the RMSA model. The simulations involved 2000
MC passes (attempted moves per particle) for equilibration
and then 40 000 passes for production runs. All the
simulations were performed using the integrated Monte
Carlo/molecular dynamics/Brownian dynamics simulation
package MOLSIM.!¢ Radial distribution functions gus(r)
were calculated by averaging over all but the first 2000
cycles. From the expressions for gqs(r), partial structure

(16) Linse, P. MOLSIM; Lund University: Sweden, 2002.



1124 Langmuir, Vol. 19, No. 4, 2003

(a)
1.00
0.75
£
o 0.50
0.25
0.00 : + |
0.000 0.002 0.004 0.006 0.008
k(A™Y)
(b)
a
0.0 |
-]
f
—_ 0.5 o
S
w 1.0 a a
Q
1.5 o
Q
-2.0 +
0.000 0.002 0.004 0.006 0.008
k(A
(c)
1.2

0.8
0.000

0.010 0.015

k(A

0.005 0.020

Petris et al.

(d)

1.25

1.00 |

0.75

9.(n

0.50 1

0.25 1
!

0 2000

0.00

4000 6000

r(Ad)

8000

(e)

1.00

0.75

g.n

0.50 1

0.25 ,

0.00

0 2000 4000 6000 8000
r(A)

)

0.75

0.50 |

9,41

0.25

0.00

0 1000 2000 3000 4000 5000
r(A)

Figure 1. Partial structure factors (a) S .(k), (b) S.s(k), and (c) Sss(k) and radial distribution functions (d) g..(r), (e) gus(r), and
(f) gss(r) for mixtures of large (L) and small (S) colloids with the number ratio Ns/N_ = 9. The points are the experimental results
of Ottewill et al.,! the RMSA (dashed lines), and the MC simulation (continuous lines). The points in part a come from the fitted
experimental curve for S; (k) presented by Ottewill et al.,® while the points in parts b and c are their actual experimental data.

factors Ss(k) were found by evaluating eq 7 with a fast
Fourier transform.

V. Results

A. Partial Structure Factors. Ottewill et al.! fitted
their one-component structure factor measurements using
the RMSA procedure of Hayter and Hansen, and from
these fits, they estimated the surface potentials of the
large and small particles to be W = 15 mV and Ws = 8
mV. We found that Ginoza's RMSA solution gave the best
fit to the binary system measurements if the surface
potentials used ineq 5 were ¥, =21 mV and Ws =7 mV.
With such a low potential on the small particle, no rescaling
was required, while the large particles were rescaled for
both cases. Some key parameters for the RMSA calcula-
tions are given in Table 2.

In Figure 1, the experimental partial structure factors
are compared with the RMSA and MC simulation results
for the number ratio of 9. Figure 1a shows the large/large
partial structure factors, and it illustrates that S, (k)
values from the RMSA, experiment, and MC simulation
compare very well, as all three curves are almost identical.
Sii(k) has the typical shape for a “fluidlike” structure
with repulsive forces acting between the particles.

The greatest discrepancy between experiment, theory,
and simulation is for the large/small partial structure
factor S s(k), which is shown in Figure 1b. The RMSA and
MC simulation curves are in very close agreement with
each other, but the experimental values for S s(k) are
much larger in magnitude for low k. Ottewill et al. pointed
out that the experimental values for S, s(k) were larger in
magnitude than expected and noted that these measure-
ments were considerably more difficult to obtain accurately
than the measurements of S| (k) and Sss(k). Indeed, it
seems likely that there was some error in the measurement
of S s(k), since partial structure factors should satisfy the
inequality®* in eq 12 for all k (see Appendix). The
experimental results appear to be inconsistent with the
inequality, since the values of S s(k) can be much less
than —1 but the values of S (k) and Sss(k) are rarely
much greater than 1.

The small/small partial structure factors Sss(k) are
compared in Figure 1c. The RMSA and MC simulation
curves are in very close agreement with each other, and
they are in qualitative agreement with the experimental
data. The first minimum in Sgs(K) is fairly weak in the
experimental data, and it is much more prominent in the
RMSA and MC curves. Ottewill et al.! were somewhat
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Figure 2. Partial structure factors (a) S..(k), (b) S.s(k), and (c) Sss(k) and radial distribution functions (d) g..(r), (e) gus(r), and
(f) gss(r) for mixtures of large (L) and small (S) colloids with the number ratio Ns/N_ = 15. The points are the experimental results
of Ottewill et al.,* the RMSA (dashed lines), and the MC simulation (continuous lines). The points in part a come from the fitted
experimental curve for S (k) presented by Ottewill et al.,! while the points in parts b and ¢ are their actual experimental data.

surprised by the considerable rise in Sss(k) at low Kk,
indicating a long-range correlation between the small
particles due to depletion effects which cause the small
particles to cluster. Interestingly, this characteristic rise
in Sss(k) was also evident in the RMSA and MC results.
In Figure 2, the experimental partial structure factors
are compared with the RMSA and MC simulation results
for the number ratio of 15. Once again, the large/large
partial structure factors (Figure 2a) from experiment,
RMSA, and MC simulation compare very well, as all three
curves are almost identical. Within experimental error,
the values of S, (k) for both number ratios appear to be
very close in form and in the positions of the peaks.! This
observation is also the case for the RMSA and MC
simulations. There was very little change in S| (k) as the
number ratio was increased from 9 to 15; thus, it seems
that the small particles do not greatly affect the repulsive
electrostatic interaction between the large particles.
Once again there was a significant discrepancy between
theoretical and experimental values of S s(k) in Figure
2b. The RMSA and MC simulation curves are in very close
agreement with each other, but the experimental values
of S s(K) seem improbably large in magnitude and again
violate the partial structure factor inequality in eq 12.

The small/small partial structure factors Sss(k) are
compared in Figure 2c. The RMSA and MC simulation
Sss(K) curves are in very close agreement with each other,
and they are in qualitative agreement with the experi-
mental values. The position and depth of the first
minimum in Sss(k) are approximately the same in theory
and experiment (around 0.004 A~*and 0.82, respectively);
however, the observed structure for larger k seen in the
experiments is not as prominent in the RMSA results.

B. Radial Distribution Functions. The radial dis-
tribution functions calculated using the RMSA model and
MC simulation are compared in Figures 1d—f and 2d—f,
for the number ratios of 9 and 15, respectively. No
experimental curves are shown because the data were
not obtained over a large enough range of k values to yield
smooth and accurate radial distribution functions.

The RMSA and MC radial distribution functions display
the typical characteristics for afluid, which isa pronounced
first maximum at some interparticle distance, followed
by successive minima and maxima of reduced amplitude.
The amplitudes and positions of the maxima and minima
from theory and simulation are in very close agreement.
However, in the Monte Carlo simulations, there is some
possibility that the particles may approach one another
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to within a distance slightly smaller than their effective
diameters allow in the RMSA model.

Svennson and Jonsson* commented that distribution
functions calculated with a screened Coulomb potential
are virtually identical to HNC results for a system with
both colloids and counterions interacting via a Coulombic
potential. Lutterbach et al.?® solved the HNC equation
with a screened Coulomb potential to compare with their
experimental partial structure factors. We thus compared
our RMSA predictions for the two-component dispersion
of Lutterbach et al.2® and found them to be virtually
identical to their HNC predictions. Recently, we have
developed a technique called the boot-strap Poisson
Boltzmann (BSPB) theory!” to determine all the pair
distribution functions for a system of colloids and explicit
counterions.

VI. Conclusions

We have used Ginoza's RMSA solution of the OZ
equation to calculate partial structure factors for a binary
mixture of charged colloidal particles. The RMSA model
can reproduce the most significant features of the SANS
experiments conducted by Ottewill et al.:* the increase in
the small/small partial structure factor Sss(k) as k
approaches zero and the fluidlike large/large partial
structure factor S (k). The RMSA also agrees with the
observation of Ottewill et al.* that the arrangement of the
larger particles is not affected significantly by the presence
of the smaller particles. However, analysis suggests that
the experimental measurements of S s(k) are inaccurate
because some of the values violate an inequality between
the partial structure factors. Following the example of
Bartlett and Ottewill*! in their SANS studies of binary
colloidal crystals, it would be interesting to see whether
extra SANS measurements at other scattering densities
yield more information about this cross-particle correla-
tion. The RMSA results were also found to compare very
favorably with Monte Carlo simulations of particles
interacting via a Yukawa potential.
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Appendix: Inequality Relating the Partial
Structure Factors

The inequality (eq 12) relating the three partial
structure factors for our binary system was deduced by
Bartlett and Ottewill'* by expressing the scattered
intensity I(k) of a neutron beam in terms of the three
structure factors and noting that I(k) must be positive for
all k. The inequality can also be deduced from the
factorization (eq 11) of the partial structure factor matrix
S(k) in terms of the matrix Q(k). Q(k) is expressed in terms
of scalar functions Qg(k), which can be written in terms
of a function Qeg(r) (eq 3 in ref 14):

(17) Petris, S.N.; Chan, D.Y.C.; Linse, P.J. Chem. Phys., submitted.

Petris et al.
Qqp(k) = L/;exp(ikr)Qaﬁ(r) dr (A1)

where 1,5 = (0o — 03)/2. Since the Qq(r) are real, it follows
that Q(—k) is the complex conjugate of Q(K).

For our binary system with components L and S, we
can write the matrix (Q(—k))! in the form

XL (K) + iy (K) % s(K) + iy s(K)

o
QK (xLL(k)+iyLL(k) Xes(K) + iys(k) | A2

where the x.s and y,s are real functions. Substituting eq
A.2 into eq 11 and using the fact that Q(—k) and Q(k) are
conjugates gives

(S0 Sisk)
S“‘"(Si(k) Si(m)

_ ()P HYL)*HXL)*HYLs) XL XL sHY LY LsTXsi XssTYsLYss
X XYY s TXs Xss T s Yss  (XLs) (Y s)*+(Xss) +(Vss)

_ ((ZLL)2+(ZSL)Z ZLL'ZLS+ZSL'ZSS) (A.3)

2,2, 5+24 255 (2,)*+(2g)°

defining the vector zag = (Xas,Yas) With magnitude zag.
Note that we have dropped the imaginary component

(XLLYLs t XsLYss — XisYLL — XssYsL) Of Sis, since S s must
be real.
Now from eq A.3 we have that

(SLS)2 = (ZLL.ZLS)Z + 2(z°Z,5)(Zs."Zss) T (ZSL'ZSS)2
= (ZLL'ZLS)Z + 2|z, 07, gllZg Zgg| + (ZSL‘ZSS)Z

< @2)X(209)” + 2(20,209) (251 Zss) T+ (25 (2ss)’
(A.4)

using the Cauchy—Schwarz inequality to obtain the last
line. The middle term on the last line 2(z,, 2, s)(zs.Zss) IS
less than (z1)%(zss)? + (zs)?(zLs)?, since

(ZLL)Z(ZSS)Z + (ZSL)Z(ZLS)Z = 2(212.6)(Zs1255) =
(Zuizss — ZSLZLS)2 =0 (A5)

Thus

(SLS)2 = (Zl_l_)z(zl_s)2 + [(Z|_|_)2(Zss)2 + (ZSL)Z(ZLS)Z] +
(ZSL)Z(ZSS)Z = S 1(K) Sss(K)

as required.
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