JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 11 15 MARCH 2003

A boot-strap Poisson—Boltzmann theory for the structure
and thermodynamics of charged colloidal solutions
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The structural properties and thermodynamics of one- and two-component solutions of charged
colloidal particles with explicit counterions have been investigated by Monte Carlo simulation. A
boot-strap Poisson—BoltzmafBSPB) theory has been developed to interpret these results and the
accuracy of its predictions is compared with other existing theories. The BSPB was also used to
predict the gas—liquid binodal and spinodal curves for a one-component system with colloid charge
to counterion-charge ratid, =10. © 2003 American Institute of Physics.
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I. INTRODUCTION Here we present a new theoretical approach to calculate
] ] _the structural and thermodynamic properties of charged col-

Over the past decade, the interest in charged colloidghqa) solutions using a boot-strap Poisson—Boltzmann
solutions has grown enormously. Charged colloidal solutionggspg) theory. Comparisons of the structure, internal en-
can be investigated using the primitive model, in which allgrgy and pressure are made with Monte Carlo simulations of

charged species are treated on an equal footing. The strugne. and two-component charged colloidal solutions to as-

tural and thermodynamic properties of the solution can bgggs the accuracy of the BSPB theory.

calculated by Monte CarlMC) simulations, and within sta-

tistical uncertainty, they provide exact answers for the given

model. However, this approach is highly resource consuming

and the time needed to complete the simulations can be quite MODEL

substantial, particularly for highly charged systems. There- Charged colloidal solutions can be investigated using the

fore it i.s de§irable o deve!op a simple but refiable theoreticalprimitive model(PM), in which the large colloidal particles

appro X|mat|on' to determine the structural and thermody-and small ions are represented as charged hard-spheres with

hamic properties (.)f these s_ystems. . . _differing hard-sphere radR,, number densityr,,, and va-
Charged colloidal solutions can be investigated experiy, o~ obeying the electroneutrality condition

mentally using small-angle neutron scatterif®@ANS) ex- @

periments. Partial structure factors may be measured in solu-

tions containing various proportions of heavy water and E n,Z,=0. (1)

directly compared with simulation results and predictions

from simple liquid theories. Lutterbackt al.* have P'€- " The interaction potential between two ionic specieand 3
sented SANS measurements for & two-component dispersioq} 5 gistance between their centers, is taken to be made up

of highly charged polystyrene and perfluorinated particles ap¢ 5 hard-spheréns part and a CoulomkCoul) part,
a volume fraction of approximately 9%. They compared their

partial structure factor measurements between the colloidal y_,(r)=uM,(r)+u%(r) 2
) . i N af af af ’
particles with theoretical predictions from the hypernetted
chain integral equation and found good agreement. Ottewilvhere the hard-sphere and the Coulomb interactions are
et al3 have used SANS to measure partial structure factorgiven by
for more dilute two-component suspensions containing salt,

for volume fractions around 3%. In general, relatively low hs *, I<(Ry+Rp)

volume fraction solutions are desirable for SANS experi- Uap(r) = 0, r=(R,+Rp)’ (3
ments to reduce the effects of multiple neutron scattering.

However, due to long-ranged interparticle interactions such coul ZaZBeZ

systems can exhibit significant liquid-like structure. Ugg (N=———, 1>0, (4)

dAuthor to whom all correspondence should be addressed; electronic maiW_heree_ is the_ prOtoni(? charge. _The _30|Ver‘t is tre_at_e_d as a
spetris@ms.unimelb.edu.au dielectric continuum with a relative dielectric permittivigy
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I1l. SIMULATION ASPECTS Determination of the rdfs enables the calculation of the

) ) ) . electrostatic internal energy per unit volume of the system,
Simulation studies of one-component charged colloidal

solutions with explicit counterions have been done by Linse  EC°U 1
and they are described in an earlier publicafidincontains a v 2 azk nanﬁf
comprehensive set of MC results over a wide range of salt- '

U (r)g,p(r)dr @)

free colloidal solutions for structure, internal energy, and 272 %

pressure. Although there are both colloidal particles and I E nazanﬁzgf rhg(r)dr
counterions in the system, it is referred to as a one- B RatRg

component colloidal solution because the number density of el

counterions is directly proportional to the number density of - Tc% NoZaNgZs(Ro+Rp)2. 8

colloidal particles due to electroneutrality.

Simulation studies of two-component colloidal solutions Taken individually, each integral in E¢7) diverges because
have recently been undertaken. The system consists of g the long-ranged nature of the electrostatic potential; how-
common counterion species and two like-charged but differever, the divergences, when taken together, will cancel be-
ent sized colloidal particles, denoted as the lafgeand  cause of the bulk electroneutrality condition, E6). In Eq.
small(S) colloids. The number ratio of small to large colloids (8), the integrals that determine the electrostatic internal en-
was varied to investigate the effect ¢in the structure and ergy per unit volume have been broken down into compo-
(i) the electrostatic internal energy of the two-componenients. The first term comes from integrating beyond the
colloidal solutions. hard-core radii of the charged specieand g to infinity. The

All of the MC simulations were done using the canonical second term comes from integrating inside the hard-core ra-
ensemble. The particles were enclosed in a cubic box angii of the particles and will be referred to as the electrostatic
periodic boundary conditions were applied. The long-range@xcluded volume contribution.

Coulomb interaction was handled by the Ewald summation  The Helmholtz free energl is the important thermody-
technique using conducting boundary conditions, and th@amic quantity required to investigate phase behavior. The
mobility of the colloids was enhanced by the use of the clusHelmholtz free energy of this system can be separated into
ter move techniqué.The simulations involved 20000 MC an ideal gas contributioR™, a hard-sphere contributidas,
passedattempted moves per partigléor equilibration and  and an electrostatic contributidaceu!

then 60000 passes for production runs. All the simulations ‘

were performed using the integrated Monte Carlo/molecular ~ F=F*+F"+Fu ©)

dynamics/Brownian dynamics simulation packagetsiu. By employing a coupling constant or charging integration,

the electrostatic contribution to the Helmholtz free energy
can be evaluated using the formally exact relation
IV. THEORY

1 da

A. General theory FC°”'=J ECOU'()\)T, (10)
The structure of a colloidal solution can be quantified by °

means of radial distribution functiortsdfs) g,s(r), which ~ where E®®(\)=E*"(e*>—\e?). This method is often re-
measures the relative density of a particle of typeat a  ferred to as the charging process. The Coulomb free energy
distancer from a particle of typea. The total correlation contribution is always cohesive and tends to destabilize the
functions h,4(r)=g,s(r)—1 can be calculated directly system. In other words, the net Coulomb repulsion between
from computer simulations or from liquid state theory by like charged species is outweighed by the net Coulomb at-
solving the Ornstein—Zernik€0Z) equation, which relates traction between species of opposite charge. The ideal and

total correlation function$,4(r) to direct correlation func- hard-sphere contributions are stabilizing terms and the com-

tionsc,g(r), bination of all three terms allows for the possibility of a
liquid—gas like phase separation under certain circumstances.
haﬁ(f)ZCaﬁ(r)+z nyf Cay(r NN, 5(r—r")dr’, The total system pressufecan be calculated from dif-
Y ferentiation of the Helmholtz free energy with respect to vol-
B ume,
wheren, is the bulk number density of specigs The rdfs oF
also obey the local electroneutrality conditions about an p— _ (_> ] (12)
ionic species of valencg,,, N|;
_ Alternatively, the total pressut@ can be calculated using the
Za= 2,3 nﬁzﬁf Jap(r)dr. ©®  \irial path’
This condition expresses the requirement that the total net pv gCoul v
charge surrounding a particular charge of valeAgemust NKT 1Nk T 3N ; Eﬁ NaNgdap(Rat+Rp)
exactly cancel the charge on that particle. This condition pro-
vides a check on any approximate expressiongfoy(r). X(R,+ RB)3, (12
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whereN is the total number of particles in the system. The aW5(r) Ze
first term in Eq.(12) is the ideal contribution, while the =T R
second and third terms account for the Coulomb and hard- r=Ry J
sphere contributions, respectively. For a one-component sys- V,(r)—0, r—x. (18

tem, the critical point and spinodal curve of the gas—liquid

phase transition can be obtained through Equation(17) is a nonlinear differential equation fo¥ ;(r)

if all the g;¢(r) are known. Now consider the mean electro-

Py 9°P ical pol static potential¥;(r) about a given point iom, which obeys
EN T_ “lav2 ; (critical poind, the Poisson equation
13 41
P =0 (spinoda) () Vzwi(r)=—?p(r)
N pInoas).
i 4me

However, for two or more components the technique for lo- =T El nZg;(r)
cating the critical point and the spinodal curve is more com-
plicated. Up until now, all the results are completely general
and a theoretical method is required to calculate the distribu- +; NkZkGik(r)|, r>0. (19
tion functions and then the subsequent thermodynamic quan- )
tities. This time, we shall assume to have expressions for all the

colloid—ion rdfs gix(r) and use the linearized Boltzmann
approximation for the ion—ion rdf
We will now outline the BSPB theory, which can be'used gii () ~exd — BZ,edi(r)]~1— BZey(r), (20)
to calculate the approximate rdfs for a general solution of_ . , _ _
colloidal particles and point ions. Let; be the number den- Poisson’s equation for the potentig(r) becomes
sity of colloids of valenc&; and hard-sphere radiu®;, and ) 4me
n; be the number density of point counterions of valeAce Vai(r)=— T( El nZ(1—BZeyi(r))
Electroneutrality requires that

B. Boot-strap Poisson—Boltzmann  (BSPB) theory

+ N Z ik (r , r>0 21
2 niZi"'E n;Z;=0. (14) ; kZk ik ( )) (21
i J

with the appropriate boundary conditions

There are three distinct types of rdfs that characterize this

type of solution. These are the colloid—colloig x(r), (ﬁi(r)ﬁﬁ, r—0,
colloid—ion, g;i(r), and ion—ion rdfsg; (r). er
Consider the mean electrostatic potentig)(r) about a Pi(r)—0, r—oo, (22)

given colloidal particlel, which obeys the Poisson equation ) ) _ . ) _ )
Equation(21) is a linear differential equation fag;(r) if all

the gjk(r) are known.

V. ONE-COMPONENT SOLUTIONS

To begin with, we shall focus on the one-component
Z N;iZigsi(r) solutions consisting of one type of colloidal particle and one
type of point counterion species. Lef, be the number den-
sity of colloids of valenc&,, and hard sphere radi#, and
n, be the number density of counterions of valedg¢e Elec-

_ _ _ troneutrality requires that
We adopt this approach in order to make mean-field approxi-
n|Z|+nMZM=0. (23)

mations for the colloid—ion and ion—ion interactions. Let us
assume at this stage we have expressions for all the colloidthe BSPB initially relies on the knowledge of the colloid—
colloid rdfsg;k(r) and that the colloid—ion rdfs are given by colloid rdfs to calculate the colloid—ion rdfs by solving Eg.

4
VAW (1) === p(1)

_ 4me

+; NkZk93x(r) |, r>R;. (15

the Boltzmann approximation (17) and then calculate the ion—ion rdfs by solving E2fl).
_ 7 o 1 For a one-component system, the colloid—colloid rdf can be
9ai(r)~exp - BZieWy(r)], (16) calculated approximately using an effective Yukawa pair po-
then Poisson’s equation for the potenti}(r) becomes tential in which the presence of the counterions is taken into
4 account via a screening constant. For the effective pair po-
me tential between colloidal particles, we use the form
VW (r)=— — iZi — BZ; '
AN==— (2 niZ; ex — BZieWy(r)] o
L) = (Zy) e exp(2kRy)
B 1+ kRy)?
+ nKZKgJK(r))y r>R; 17 = (1+xRw)
’ 14 )2 2P R 24
with the following boundary conditions: X(1+ ¢m) r » 1>(2Rw), 24
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wheredg,, is the total volume fraction anﬁ',f,lﬁ is the effective (a)
colloidal charge, which may be much smaller than the actual 150 7

chargeZ,, . An effective charge is used to adequately ac- 125 1

count for the non-linear accumulation of counterions near the

colloids while still using a linear theory. We followed the = 1%

charge renormalization procedure proposed by Alexander = 0757

et al® In this procedure, the linearized Poisson—Boltzmann c% 0.50

(PB) equation is a spherical Wigner—Seitz cell is solved with
the effective chargi,ﬁ",lff adjusted to match the counterion 0.25 §
density at the cell boundafy.e., the pressujebtained from

the nonlinear PB equation. We used the same screening pa-
rameter for the pair potential as specified by Alexander
et al® askK* in their Eq.(1.4), which depends on the effec-

tive density of counterions, where ®)
100.0 ¢

0.00

n®z,+nyz=0 (25)

and 100 +

gMI(r/RM)

47e? me?
2_ eff>2__ eff
K SkT n| Z| SkT nM|ZMZ||. (26)

10§

This definition ofk was found to give good agreement with
the MC simulations in a previous study by Lobaskin and 0.1 R
Linse_7 0 1 2 3 4 5 6 7 8

For a one-component system of colloids interacting via a Ry
Yukawa pair potential, Hayter and Penffldobtained an (c)
analytic solution of the OZ equation using the closure of the 8.0
mean spherical approximatioiMSA). With dilute disper-
sions, however, this solution yields unphysical, negative val- 6.0 1]
ues of the rdf at small separations. Hansen and HHyter
overcame this problem by assuming the existence of an im-
penetrable boundary layer around each particle and rescaling
the MSA solution, which became known as the renormalized
mean spherical approximatigRMSA).

We used the RMSA to calculate a rescaled particle di-
ameter and then the colloid—colloid rdf,y(r), and found 0.0
this to be an effective technique to initiate the BSPB. With an
expression forgym(r), Eq. (17) for the potential¥,(r)
around a colloid was solved numerically to determine theriG. 1. (a Colloid—colloid, (b) colloid—counterion, andc) counterion—
colloid—counterion rdfgy,(r). Finally, using the approxi- counterion rdfs from MC simulation &olid curveg and BSPB theorydot-
mate form forgy,(r), Eq. (21) for the potential (r) tf((jgo gugzeg;l?g;r a one-component  system at Z(éw.I')
around a counterion is solved numerically to determine the ~
counterion—counterion rdjy, (r).

4.0 1

g"(r/RM)

2.0 1

Linse* has previously reported a comprehensive set of 2
. e Lg
MC results for the structure, reduced internal energy, and [ =———= =,
reduced pressure for a wide range of solutions. We present ekTRy Ry

predictions of the BSPB model for structure, internal energywhereLB:eZ/s kT is the Bjerrum |engthk is the Boltzmann
and pressure and compare them with the corresponding Mgonstant, and is the temperature. In the following, separa-
results. The system can be completely described in terms @fons will be scaled by the colloid radiuRy, .

three nondimensional variablés the colloid to counterion

charge ratiZ, , (ii) the colloid volume fractionp,, , and(iii) _

the electrostatic coupling parameter or inverse temperatur@: Structural properties

I',;, defined according to the following: A typical structure comparison is presented in Fig. 1 for
Z,=80 and¢),=0.01, at an intermediate coupling strength
7 —— Z_M of I';;=0.178. At this state pointxR,,;=0.46 and the renor-
oz malized colloidal valence i€%"=—Z7,=40.2, approxi-
5 mately half the actual valence. The renormalized colloidal
_47TRM N 27) valence is strongly dependent on the coupling strength and
Pu= 3 Mo only weakly dependent on the colloid volume fraction. The
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1.35 The BSPB and MC counterion—counterion rdfs are com-
1.30 - pared in Fig. {c). There is an inconsistency in that the
1.25 1 counterion—counterion rdf is linearized with respect to the
EE ’ mean electrostatic potential, whereas these correlations can
= 1201 be quite large at high coupling strengths. FoR,,=3, the
és 1.15 - agreement is very good, but inside this region the BSPB
o 1.10 1 cannot predict the intricate details of the MC counterion—
counterion rdf. The broad MC peak fofRy, <2 reflects the
1.05 1 strong spatial correlations between counterions in the double
1.00 . . layer of the same colloid. There is a sharp edge in the MC
0.01 0.1 1 curve atr/Ry,=~2, which indicates a rapid drop in the local

I, density of counterions outside the double layer that the
mean-field BSPB cannot reproduce. The MC peak value oc-
curs atr/Ry;,~0.3, and its position changes as the state point
is varied. There is a less pronounced peak in the BSPB curve
atr/Ry,=1, which does not change as the state point is var-
ied. It is due to the discontinuity in the functigy,,(r/Ry)
BSPB and MC colloid—colloid rdfs are shown in Figial  atr/Ry,=1 when solving Eq(17) for the potential around a
Each curve displays the typical characteristics for a fluid,counterion.
which has a pronounced first maximum at some interparticle In Fig. 2, the heights of the colloid—colloid rdf first
distance, followed by successive minima and maxima of remaximum from the BSPB model and MC simulations,
duced amplitude. The general agreement between the twg[j3}(r/Ry), are plotted against coupling strengfor Z,
curves is very good and remains so for lower and higher=80 and ¢,,=0.01. For very low coupling strengths, the
coupling strengths. The BSPB first maximum occurs atheight of the first maximum increases with coupling strength,
r/Ry=7.3 and the amplitude value is 1.36, while the MC which corresponds to a more ordered colloid—colloid struc-
first maximum occurs at/Ry,=7.9 and the amplitude value ture. The height of the first maximum reaches a peak value at
is 1.41. the coupling strength’;,; =0.178 and above this value, the
The BSPB and MC colloid—counterion rdfs are shown inheight decreases due to increased screening effects of the
Fig. 1(b). The curves are sharply peakedr&Ry, =1, which  counterions. The BSPB model is capable of predicting all of
demonstrates a strong accumulation of counterions near ththese features in very close agreement with the MC simula-
colloid surface in the double layer. The BSPB contact valugions.
atr/Ry,=1 is 122, which is near the extrapolated MC value
of 124. The BSPB first minimum occurs etRy=4.03 and B, Thermodynamics
the amplitude value is 0.58, which compares well with the
MC minimum atr/R, =3.88 with an amplitude value of 1 /nternal energy
0.44. The agreement between the two curves remains good at Internal energies were calculated via Ef) using the
lower and higher coupling strengths, although the predicte@®SPB distribution functions. This method allows the separa-
contact values are better for low coupling strengths. tion of the electrostatic internal energy into the following

FIG. 2. Colloid—colloid rdf peak valuegha(r/Ry) from MC simulatiort
(solid curve$ and BSPB theory(dashed curvegsobtained for a one-
component system a¥( ,¢y)=(80,0.01) over a range df,, .

TABLE I. Reduced electrostatic internal energy E/NkT) for differentZ, andT’,, values at¢,,=0.01.

Iy

Z, 0.0222 0.0445 0.0889 0.178 0.356 0.712 1.42
MC 0.0226 0.0546 0.131 0.312 0.772 211 5.99

10 BSPB 0.0220 0.0552 0.132 0.314 0.786 2.18 5.99
SPB 0.0216 0.0520 0.122 0.284 0.653 1.49 3.34
MSA 0.0225 0.0561 0.137 0.331 0.785 1.84 4.25
MC 0.0615 0.142 0.327 0.786 2.10 5.79 14.3

20 BSPB 0.0625 0.143 0.327 0.798 2.19 6.02 14.4
SPB 0.0575 0.130 0.286 0.629 1.36 2.90 6.16
MSA 0.0659 0.158 0.372 0.862 1.97 4.43 9.86
MC 0.151 0.338 0.794 2.09 5.64 13.7 30.3

40 BSPB 0.150 0.335 0.805 2.20 6.00 14.4 30.5
SPB 0.135 0.288 0.602 1.26 2.62 5.41 11.3
MSA 0.181 0.417 0.945 211 4.66 10.2 22.0
MC 0.345 0.800 2.08 5.54 13.3 29.1 a

80 BSPB 0.346 0.808 2.19 6.01 14.4 30.4 60.6
SPB 0.285 0.584 1.19 2.45 4.98 10.2 211
MSA 0.462 1.030 2.26 4.90 10.5 13.7 47.4

@Unstable system.
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TABLE II. Reduced excess internal energy E/NkT) for different ¢y, andI';, values atZ,=40.

l—‘II

bw 0.0222 0.0445 0.0889 0.178 0.356 0.712
0.001 25 MC 0.0735 0.168 0.415 1.35 491 13.2
BSPB 0.0748 0.170 0.427 1.49 5.76 16.2
SPB 0.0678 0.149 0.324 0.709 1.53 3.25

MSA 0.101 0.25 0.602 1.42 3.3 7.51

0.0025 MC 0.0944 0.215 0.526 1.60 5.17 13.4
BSPB 0.0956 0.217 0.543 1.75 5.95 15.7
SPB 0.0861 0.187 0.402 0.862 1.83 3.84

MSA 0.125 0.303 0.713 1.65 3.76 8.41

0.005 MC 0.120 0.271 0.654 1.85 5.41 135
BSPB 0.121 0.273 0.671 1.99 6.04 15.1
SPB 0.108 0.233 0.495 1.05 211 4.55

MSA 0.152 0.359 0.828 1.88 4.21 9.30

0.01 MC 0.151 0.338 0.794 2.09 5.64 13.7
BSPB 0.150 0.335 0.805 2.20 6.00 14.4
SPB 0.135 0.288 0.602 1.26 2.62 5.41

MSA 0.181 0.417 0.945 211 4.66 10.2

0.02 MC 0.186 0.412 0.943 2.32 5.86 13.8
BSPB 0.182 0.402 0.930 2.36 5.97 13.7
SPB 0.165 0.350 0.731 1.51 3.12 6.42

MSA 0.211 0.477 1.060 2.34 5.09 11.0

0.04 MC 0.226 0.493 1.10 2.55 6.08 14.0
BSPB 0.214 0.466 1.05 2.49 5.01 13.2
SPB 0.198 0.420 0.874 1.80 3.69 7.57

MSA 0.242 0.537 1.18 2.56 5.52 11.8

0.08 MC 0.268 0.578 1.25 2.78 6.32 14.1
BSPB 0.241 0.520 1.14 2.59 5.90 13.0
SPB 0.234 0.492 1.02 2.11 4.32 8.81

MSA 0.274 0.598 1.29 2.78 5.94 12.7

four components(i) colloid-colloid, Eyy, (ii) colloid—  lation of counterions near the colloid surface is relatively
counterion,Ey,,, (iii) counterion—counterioft;,, and (iv) low, so correlations between these species are weak in this

excluded volumeEg,: region.
Coul_ In general, the BSPB internal energy estimates become

B =Bum T Evi T Eut Eoa: (28) less accurate as eithef,, or I';; is increased. The main
It is useful to separate the total energy into these componentsurce of error in the BSPB model comes from the relatively
and compare the BSPB and MC values to examine the accypoor prediction of ion—ion correlations. As either the volume
racy of each term. In Tables | and I, we compare the BSPBraction ¢, or coupling parametdr,, is raised, the accumu-
internal energies in two planes, with the MC values of Lfnse lation of counterions near the colloid surface increases and
and the symmetric Poisson—Boltzman8PB and mean colloids—counterion and counterion—counterion correlations
spherical approximationMSA) values of Bhuiyan and become more significant. As a consequence, the colloid—
Outhwaite!? The energies are for state points in tiZg (I';)  counterionE,,, and counterion—counteridg,, contributions
plane at volume fractiogy, = 0.01 and on state points in the to the internal energy become relatively more important. For
(éwm.I'y)) plane atZ,=40. The BSPB internal energy pre- I';,=0.178,E,, replacesE,, as the dominant contribution
dictions are in excellent agreement with the MC values forto the internal energy.
all the state points considered in Tables | and I, whereas the
SPB and MSA are only in good agreement with the MC
values for a small number of state points. The BSPB energie& Fréssure
are in particularly good agreement with the MC values for = The BSPB pressures were calculated via the virial path
low volume fraction¢,, and low coupling parametdr, , (BSPB,) using Eq.(12). In Table lll, they are compared with
because the BSPB predictions of the colloid—colloid distri-the MC pressures, and the SPB pressures via the virial
bution functiongym(r/Ry) and consequently the colloid— (SPB,), charging (SPB), and compressibility routes
colloid energy Eyy (which comes from integrating (SPB) in the (¢y,I'))) plane atZ,=40. Like the internal
gum(r/Ry)) are very accurate. In this region of phase spaceenergy values, the BSPB pressures are in excellent agree-
Euwm is the dominant contribution to the total internal energy.ment with MC values for lowpy, and lowI’;;, but become
The colloid—counteriorkey,, and counterion—counterio, less accurate as either of these system parameters is in-
energy contributions are less significant because the accumareased. There is considerable uncertainty in the virial path
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TABLE Ill. Reduced pressur®V/NKT for different ¢»y, and I}, values atZ,=40. The MC values are from
Linse* and the SPB values are from Bhuiyan and Outhwaite

Iy
oy 0.0222 0.0445 0.0889 0.178 0.356 0.712
0.001 25 MC 0.978 0.949 0.882 0.713 0.446 0.258
BSPB, 0.978 0.949 0.878 0.671 0.108  —1.120
SPB, 0.980 0.955 0.902 0.793 0.568 0.103
SPB 1.08 0.991 0.921 0.839 0.733 0.598
SPRBy, 0.985 0.961 0.914 0.821 0.648 0.321
0.0025 MC 0.974 0.938 0.857 0.673 0.410 0.247
BSPB, 0.973 0.937 0.852 0.628 0.099 -0.941
SPB, 0.976 0.946 0.882 0.752 0.486  —0.064
SPB 1.03 0.968 0.907 0.821 0.704 0.555
SPBy, 0.985 0.956 0.900 0.790 0.584 0.189
0.005 MC 0.967 0.927 0.834 0.641 0.387 0.241
BSPB, 0.969 0.926 0.828 0.596 0.125 -0.704
SPB, 0.973 0.937 0.862 0.709 0.395 —-0.253
SPB 1.00 0.954 0.893 0.801 0.672 0.513
SPB, 0.989 0.956 0.889 0.761 0.517 0.045
0.01 MC 0.967 0.917 0.814 0.621 0.379 0.231
BSPB, 0.968 0.918 0.811 0.583 0.198 —-0.419
SPB, 0.974 0.932 0.846 0.668 0.305 —0.449
SPB 0.990 0.948 0.883 0.783 0.642 0.474
SPBy, 1.00 0.966 0.889 0.740 0.456  —0.100
0.02 MC 0.941 0.915 0.804 0.608 0.379 0.213
BSPB, 0.972 0.918 0.807 0.595 0.274  —0.140
SPB, 0.983 0.938 0.845 0.650 0.248 -0.512
SPB 0.990 0.951 0.884 0.776 0.624 0.447
SPB, 1.04 0.999 0.913 0.745 0.421  —-0.220
0.04 MC 0.987 0.929 0.811 0.618 0.383 0.213
BSPB, 0.989 0.920 0.822 0.629 0.371 0.090
SPB, 1.02 0.976 0.889 0.697 0.278  —0.635
SPB 1.00 0.975 0.917 0.810 0.646 0.451
SPEBy, 1.13 1.08 0.993 0.812 0.454 —0.263
0.08 MC 1.03 0.970 0.851 0.656 0.421 0.225
BSPB, 1.03 0.973 0.869 0.692 0.467 0.206
SPB, 112 111 1.07 0.920 0.544 —0.401
SPB 1.05 1.07 1.09 1.09 0.945 0.610
SPBy, 1.34 1.29 1.20 1.01 0.637 —0.129

to calculate the pressure because it requires a very precise It was not possible to locate any spinodal curvesZpr
knowledge of the colloid—counterion contact value =20 using the BSPB This is somewhat surprising consid-
dm(Rwm). The pressure is determined by the small differencesring the good agreement between the BSPB and MC rdfs
of two large numbers—a negative Coulombic contributionand internal energies, but if one examines the internal ener-
and a positive hard-core repulsibiThe BSPB contact val- gies in the ¢,,,I'},) plane atZ,=40 in Table Il it can be
uesgy(Ru) are most accurate for low coupling strengthsunderstood. For the highest coupling strendth,=0.712,

'y, and become less accuratelgs is increased. This eX- the BSPB internal energies are in better agreement with the
plains why at the highest coupling strength,;=0.712, the  \C values than the SPB or MSA values for all the volume
BSPE,, SPE,, and SPR, can predict unphysical negative fractions considered. However, the trend is for the BSPB

pressures. internal energies to decrease @g is raised. Whereas the
MC, SPB, and MSA internal energies all increasedgs is
C. Phase Behavior raised, which is the correct type of trend conducive to a

Spinodal and binodal curves were determined using théiquid—gas type separation. Hence the trend in the BSPB
BSPB internal energy pattBSPE) and they are compared internal energies is in error at high coupling strengths, which
in Fig. 3 with the MSA curveS and the MC simulation leads to its failure to predict spinodal curves Ie20. This
curves of Ré&c and Linse** which are only available for failure in the BSPB theory can be attributed to its underesti-
Z,=10. The BSPB binodal and critical point are in much mation of the counterion—counterion repulsion at small sepa-
better agreement with the MC results than the MSA. A comJation. ForZ, =10, it is still possible to find the spinodal
parison of the critical point predictions using the BSPB using the BSPB model because the error in predicting ion—
SPB,, MSA, and extended Debye—HuckéEDH,)'® theo- ion correlations is not significant enough to inhibit the
ries forZ,=10, is presented in Table IV. liquid—gas separation.
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0.8 TABLE V. Comparison of the MC critical values with those from the
MSA Binodal\ z, =10 BSPB, MSA, SPB, and EDH theories fofZ10.
e MC BSPB, MSA, SPB, SPB  EDHhigh
0.6 BSPB ,Binodal
1 o bm 0.15 0.10 0.07 0.01 0.02 0.24
—_ e —
T - ~Z Iy 2.6 1.9 1.5 2.3 15 0.32
0.2 ; ; ; The constants in Eq29) can now be specified
0.05 0.10 0.15 0.20 o2
0 K=—=(1+¢)?
’ (1 9)
FIG. 3. Gas-liquid binodafsolid) and spinodaldashed curves from the off
MSA,, BSPR, and MC simulatiolf* for a one-component system wit . ZJ exp( KRJ) 4
=10. The critical points are marked with anon each curve. J7 1+kR (34)
J
=K.
VI. TWO-COMPONENT SOLUTIONS In the RMSA, patrticles are assigned an effective hard sphere

Subsequent to the work of Hayter and Penfold diameter larger than or equal to their true diameter by some
Ginozd®8 developed an analytic solution of the OZ equa-Scale factors=1. Ginoza® '8 outlines an iteration scheme,

tion for mixtures of Yukawa particles under the MSA clo- Which we have followed to find this. S
sure. We used Ginoza’s solution with a rescaling argument The BSPB was applied to a system containing like
(RMSA), together with a charge renormalizafistheme to  charged large(l) and small(S) colloidal particles and a
calculate the correlation functions between mixtures of colCOMmon neutralizing counterion specigs We used Gino-
loidal particles. Ginozd provides a method for solving the za’'s RMSA solution to determine the rdfs between the col-

OZ equation(4) with the Yukawa closure loidal particles gn_d then t_he BS_PB theory in Sec. A t(_) cal-
culate the remaining rdfs involving the counterion species. In
hap(r)==1, r<(R,+Rg), such a system there are now six relevant distribution func-
expl — zr) (290 tions to consider; namely th@) L—L, (ii) L-S, (iii) S-S,
caﬁ(r)deadﬁf, r>(R,+Rp), (iv) L=1, (v) S—I, and(vi) I-I. Letn_ be the number den-

sity of large colloids of valenc&, and hard sphere radius
whereR, andR; are the radii of species and g, K, z d, R_, ng be the number density of large colloids of valeizee
anddg are constants. Ginoza’s solution builds on the previ-and hard sphere radidgs andn, be the number density of
ous work by Baxte® and Blum and Hayé° point counterions of valencg,. Electroneutrality requires
To apply Ginoza’s solution to the model system we needhat
to express the direct correlation functioryg;(r) in the form

of Eq. (29) using the MSA M2+ N2+ NsZs=0. 39
off The state of the two-component colloidal solution is
Coplr)=— Uap(T) (30) uniquely specified in terms of six nondimensional variables:
“« kT
Z

For the effective pair potential between colloidal particles of ~ Z.=— 70
type J and K, we use the general form derived for large '

colloidal size and char§e . Zs
S— = I
)= 75%78Me? exp(kR,) exp kRy) Z
K € 1+ xRy 1+ «kRg N Ng
R™
, EXP(— KT) ne
X(1+¢) — r>(R;+Ry), (31 R (36)
s
R :_!
where ¢ is the total volume fractionzS" and z&" are the "R
effective colloidal charges, arklis the screening parameter, e?
which depends on the effective density of counterions, where T, =m,
nfiz,+ > n,z8t=0 (32 47R?
JJ#i o= n..
3
and i i _ i )
5 We investigated the effect of adding different number ratios
4qe _ - .
2= nef(z,)2. 33 (Ng=ng/n.) of small colloids on(i) the structure of the

~ ekT large colloids andii) the electrostatic internal energy. The
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125 .
121 FIG. 4. (@) Large-large,(b) large—
small, (¢) small-small, (d) large—
counterion,(e) small-counterion, and
(f) counterion—counterion rdfs from
MC simulation (solid curve$ and

8

6

41 BSPB theory (dotted curves for
2 a two-component colloidal system
0 - at (ZL. Zs, Nr. Rr, ¢, Ty)

=(80,10,2,0.4,0.01,0.178).

1.00 {

0.75

g,.(fR)

0.50

0.25 7

0.00

U]

9..(rR)
g,(rR)

properties of the system were chosen to be similar to those(80,10,2,0.4,0.01,0.178), where the number ratio of small

used in the SANS experiments of Ottewéll al. colloids to large colloids iNg=ng/n =2. The renormal-
Z,=— =80, ized charges were determined by considering the two-
component system as a mixture of separate one-component
Zs=— =10, systems ofl. and S colloids. The renormalized valences for
theL andS colloids in their respective one-component solu-
Ng= 1,2,4,8,16, tions arezf"=40.2 andz&'=9.35 and«R_=0.56. In Figs.
(37) 4(a), 4(b), and 4c) the BSPB and MQ_—-L, L-S, andS-S
Rg= 0.4, colloid—colloid rdfs are shown. The colloid—colloid rdfs
display the typical characteristics for a fluid, which has a
I,,=0.178, pronounced first maximum at some interparticle distance,
followed by successive minima and maxima of reduced am-
¢, =0.01. plitude. The amplitudes and positions of the maxima and

The coupling strength and large colloid volume fraction arennima from theory and simulation agree well, in particular

the same as in the one-component example in Fig. 1, whicWe S-S curves, which are almost identical. The BSPBL

is the system with no small colloids. All separations havell'St maximum occurs at/R, =6.4 and the amplitude value

been scaled by the large colloid hard sphere raBius is 1.26, while the MCL-L first maximum occurs at/R,
) =6.8 and the amplitude value is 1.31.
A. Structural properties In Figs. 4d) and 4e) the BSPB and MC large-

The BSPB and MC rdfs are compared in Fig. 4 atcounterion(L—I) and small-counteriofS-I) rdfs are shown.
this point in phase space Z(,Zs,Nr,Rg,¢..I'})) TheL-I curve is sharply peaked atR_ =1, and indicates a
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strong accumulation of counterions near the surface of the-9.1 and«R, =0.78. In Figs. %a), 5(b), and 5c) the BSPB
large colloid, analogous to the one-component system. Thgnd MC L-L, L-S, and S-S colloid—colloid rdfs are
BSPBL~-I contact value is 101, which is a slight overesti- shown. The BSPR.—L first maximum is ar/R,_ =4.94 and
mate of the extrapolated MC value of 93. Thel contact the peak value is 1.21, while the MC-L first maximum
value in the two-component solution is approximately 25%is atr/R, =5.88 and the peak value is 1.22. The BSPB pre-
lower in comparison with th&1 —I contact value in the one- diction of the L—L first maximum position gets progres-
component solution. The main explanation for the reducedively worse as the ratio of small to large colloids is in-
LI contact value is that the average concentration of councreased. In Figs.(8) and 5e) the BSPB and M-I and
terions has increased due to the extra counterions accompg-| rdfs are shown. The BSPB—I contact value is 63,
nying the small colloids. TheS-I curve peaks at/R_  which very slightly overestimates the extrapolated MC value
=0.4, and indicates a reasonable accumulation of counterpf 61.1. TheL—I contact value is considerably reduced com-
ons near the small colloid surface. The BSPB contact valugared with the value for the ratio tdg=2. The BSPB and

is 13.2, which also is a slight overestimate of the extrapoMC S—| contact values are 11.3 and 10.7, respectively,

lated MC value of 11.5. Thé~I rdf in Fig. 4(f) is very  which are also lower than the respective values for the ratio
similar to Fig. Xc) for the one-component solution. of Ng=2.

The BSPB and MC two-component rdfs are shown in
Figure 5 at a higher ratio of small colloids to large colloids of
Ngr=8 at the same coupling strength. Using the phase spa .
point  (Z,,Zs,Ng,Re, b .T')=(80,10,8,0.4,0.01,0.178), 8. Thermodynamics
the renormalized charges for theand S colloids in their Internal energies were calculated using B).from the
respective one-component solutions Z{éf:40.2 andzgff BSPB distribution functions using the charging process. For
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TABLE V. Reduced internal energif/ NKT for a binary colloid soultion at differer¥l, values atl";; =0.178.

LL LS SS LI Sl I Excl E/NKT

N,=0 MC —2.02 0 0 —4.20 0 089 -0.21 —5.54
BSPB —2.06 0 0 —4.54 0 079 -0.21 —6.02

N,=1 MC —1.73 —0.23 —-0.0031 —3.58 0.094 0.71 -0.20 —4.96
BSPB —-1.79 -0.21 —0.0050 —4.25 0.070 0.81 -0.20 —5.58

N, =2 MC —1.44 -0.34 —0.016 —3.34 0.13 0.67 -0.20 —4.54
BSPB —1.34 —0.36 —0.018 —3.93 0.11 0.77 -0.20 —4.97

N, =4 MC —-1.12 —0.43 —0.055 —2.84 0.12 0.56 -0.20 —-3.97
BSPB —0.87 —0.51 —0.055 —3.47 0.14 0.72 -0.20 —4.23

N,=8 MC —0.69 —0.52 -0.11 —2.32 0.11 0.44 -0.20 —3.28
BSPB —0.47 —0.57 -0.14 —2.80 0.12 0.63 —0.20 —3.43

N,=16 MC —0.31 —0.57 -0.19 —1.65 0.011 029 -0.21 —2.63
BSPB —0.19 —0.49 -0.27 —2.02 0.020 0.48 -0.21 —2.69

this system, the electrostatic internal energy can be separated The BSPB was used to predict the gas—liquid binodal
into seven terms to examine the strengths and weaknessesasfd spinodal curves for a one-component solution with a

the BSPB theory, colloid charge to counterion-charge ratfp=10, in good
agreement with the MC simulation curves. At this stage, we
ECU=E | +E g+ EsstE| |+ Egit+E} + Eayal- (39 have not searched for any spinodal curves for systems with

i i two colloidal species using the BSPB, because of the inabil-
The BSPB reduced internal energies are compared term tm, of the BSPB to predict a spinodal curve for one-

term with the MC values in Table V for selected n“mbercomponent solutions wittz,=20. However, we hope to
ratios of small to large colloids between 0 and 16. 'I_'he BSPBjake improvements to the BSPB theory in the near future,
energy terms become less accurate compared with the MG, ch a5 to improve the prediction of ion—ion correlations at
terms as the ratio of small to large colloids is increased. Thigy, 4| separations, which will hopefully allow for a more

trend reflects the agreement between the BSPB and Metajled investigation of the phase behavior of charged col-
structures, which is generally better for low number ratios|iqal solutions.

such as thdlg=2 case in Fig. 4 than for high number ratios

such as thé&\r=8 case in Fig. 5. ThéL, Sl andll energy
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