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Stochastically evolving networks
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We discuss a class of models for the evolution of networks in which new nodes are recruited into the
network at random times, and links between existing nodes that are not yet directly connected may also form
at random times. The class contains both models that produce ‘‘small-world’’ networks and less tightly linked
models. We produce both trees, appropriate in certain biological applications, and networks in which closed
loops can appear, which model communication networks and networks of human sexual interactions. One of
our models is closely related to random recursive trees, and some exact results known in that context can be
exploited. The other models are more subtle and difficult to analyze. Our analysis includes a number of exact
results for moments, correlations, and distributions of coordination number and network size. We report
simulations and also discuss some mean-field approximations. If the system has evolved for a long time and the
state of a random node~which thus has a random age! is observed, power-law distributions for properties of the
system arise in some of these models.
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I. INTRODUCTION

The rapidly increasing volume of theoretical work o
models of growing networks parallels the continuing exp
sive growth of the communication networks that the mod
purport to describe@1#. Evolving network models also hav
important applications in biology and social phenomena@2#.
The reviews of Albert and Baraba´si @3# and Dorogovtsev and
Mendes@4# collect many applications of evolving networ
models, and outline the principal approaches to date in
formulation and analysis of such models. There is particu
interest in ‘‘scale-free’’ networks for which many propertie
have power-law distributions, and in networks that poss
the ‘‘small-world’’ property that internode distances are typ
cally small.

In this paper, we formulate a class of network models
well-defined stochastically evolving systems, and we
able to exhibit a number of exact results on the time evo
tion of the number of nodes in the network, the coordinat
number@5# of a chosen node, and other observable netw
properties. In addition, computer simulations and me
field-type arguments@6# are used to study interesting quan
ties that do not seem easily captured by analytic argume
Some of the results of Secs. II and III have been previou
obtained in analogous discrete-step models@7#, but the
continuous-time models discussed here are especially s
to the analysis by techniques with which physicists may
more familiar and these techniques are found useful for
more subtle models of Sec. IV.

The models are discussed in order of increasing comp
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ity. In Sec. II, we consider a growing tree, based on the b
process of Yule. We recover the limiting coordinatio
number distribution 22k (kPN) long known as a rigorous
result for the ‘‘random recursive tree’’ discrete-time anal
@8#, and exploiting the relation between Yule trees and r
dom recursive trees@9–11# leads to additional exact result
for Yule trees.

Yule trees lack the small-world property of many o
served networks. In Sec. III, we discuss a stochastic mode
the spirit of the discrete-time models of Szyman´ski @12,13#
and Albert and Baraba´si @3#, introduced by Reed and Hughe
@14#, in which nodes of high coordination number in a grow
ing tree are favored to recruit new nodes into the netwo
and an asymptotic power-law distribution of coordinati
number~long known @12# and periodically rediscovered in
the discrete context! is rigorously derived.

In Sec. IV, we consider the extensions of the models
Secs. II and III to incorporate cross-linking. Here the ana
sis becomes more difficult, but some analytic results are
available. Mean-field arguments suggest that for one of
cross-linked models, the mean coordination number is
ymptotically proportional to the network size, while for th
other model mean coordination number grows as the sq
root of network size. The first of these mean-field results
also established rigorously, while the second is shown
excellent agreement with simulation.

Several different types of observation of evolving ne
works need to be carefully distinguished. One may consi
the number of nodes in the network, or the coordinat
number of an individualfixednode in the network, as a func
tion of time, and many interesting observable properties
hibit exponential growth or decay. For the second type
observation, arandom nodeis selected. The distribution o
the coordination number of this node gives the marginal d
tribution of the coordination number over all nodes in su
©2003 The American Physical Society24-1
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networks. As the age of the randomly chosen node is it
random, this has an influence on the coordination numbe
the node and, for some of the models, power-law distri
tions for the coordination number result. For the third type
observation, the whole network is inspected at arandom time
with a given probability density function, and the variatio
of node age affects the properties of the system. This mo
the structure of a network at the instant before its death
to a single catastrophic random disaster.

Where we find power laws, these result from the com
tition between exponential growth of the structural prop
ties, and exponential decay of the waiting-time density
the random observation or for the probability density fun
tion for node age, paralleling similar observations of two
the authors in a number of other contexts in taxonomy
living @15# and extinct@16# genera, gene and protein fami
size distributions@17#, surname distributions@18#, and other
areas@19#, and in a similar spirit to an explanation propos
by Fermi for the energy spectrum of cosmic rays@20#. Some
remarks on possible applications of the network grow
models in the present paper will be found in Sec. V.

The distribution of shortest path lengths between node
random networks is of considerable interest, and we incl
some mean-field predictions for our two treelike netwo
and simulation results for all networks we have studied
related quantity is the ‘‘Wiener index’’@21#, which is the sum
of the shortest connecting path lengths for all pairs of no
in the network, and we include some results for this quan

We adopt the following notational conventions: rando
variables are capitalized, with their generic values deno
by corresponding lowercase letters; angle brackets de
expectation; and if a subscripted quantity is summed o
one of its subscripts, that subscript is replaced by a bu
e.g., al ,•,n5(mal ,m,n . In a number of figures, we displa
predicted distributions of integer-valued random variabl
For clarity in the comparison between predictions and sim
lation results, the predicted distributions are usually inter
lated to produce continuous curves. These interpolations
made by analytic continuations of the formulas for the p
dicted distributions, for example, replacingk! by G(k11),
and all special function calculations are performed us
MATHEMATICA @22#. Standard deviations of simulation da
are always computed as the standard deviation of the em
cal distribution, which differs only slightly for the sampl
sizes considered from the standard deviations that would
obtained from unbiased estimates of the variance.

II. YULE TREES

Suppose there aren nodes in the network, with varying
coordination numbers@5#. We allow any node to connect t
an external isolated node, thereby bringing it into the n
work. For the present, we make this phenomenon indep
dent of the current coordination number of the node, and
assume that the probability of a given node bringing a n
node into the network in the time interval (t,t1h# is lh
1o(h) as h→0. This process is simply a standard line
birth process~Yule process!, so that we shall call the result
ing time-evolving trees ‘‘Yule trees,’’ but we shall ask som
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questions about the trees that have no natural analog in
original birth process.

Since we shall answer some questions about this pro
using simulation, we observe that apart from the efficie
choice of a data structure to store information of interest~see
Appendix A!, simulation is straightforward. The waiting
time density for a given node next to give birth isle2lt.
Each time any node gives birth, we draw exponentially d
tributed random numbers to determine when that node n
gives birth, and when its newly created offspring next giv
birth. We can therefore easily create the complete time
tory of a realization of the process, and collect data a
function of time, or as a function of the size~number of
nodes! in the network.

Denote the number of nodes in the network at timet by
N(t) and the number connected to a specific node~call it
node *! by K(t). Let pk,n(t)5Pr$K(t)5k,N(t)5n%, with
pk,n(t)50 for n<0. Then

pk,n~ t1h!5pk21,n21~ t !lh1pk,n21~ t !lh~n22!

1pk,n~ t !@12lhn#1o~h!. ~1!

The first three terms on the right-hand side account for
birth at node *, one birth at some node other than node
and no births at all in the time interval (t,t1h#, respectively.
All other events have probabilities that areo(h) ash→0 and
so are negligible compared to the three terms exhibited. S
tractingpk,n(t) from both sides of Eq.~1!, dividing byh, and
taking the limit h→0, we obtain the differential-difference
equation

d

dt
pk,n5lpk21,n211l~n22!pk,n212lnpk,n . ~2!

The equivalent partial differential equation for the gen
ating functionP(k,z,t)5(k50

` (n51
` pk,n(t)kkzn is solved in

Appendix B 1, and from that solution we are able to sho
that K(t) and N(t) are correlated for all finite timest, but
that the correlation decays to zero ast→`. We are also able
to obtain exact formulas for the conditional mean and va
ance ofK(t) for a given network size, from which follow the
asymptotic formulas

^K~ t !uN~ t !5n&5 ln n1k02c~n0!1O~n21!, ~3!

var$K~ t !uN~ t !5n%5 ln n2c~n0!2c8~n0!1O~n21!,
~4!

where the digamma functionc(z)5G8(z)/G(z) is the loga-
rithmic derivative of the usualG function.

We are able obtain more directly several quantities of
terest that also come from the full analysis of Appendix B
If we sum overk we find that the marginal distribution o
N(t), p•,n(t)5(k50

` pk,n(t)5Pr$N(t)5n%, satisfies the evo-
lution equation

d

dt
p•,n5l~n21!p•,n212lnp•,n ~5!
4-2
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of the standard Yule process@23# with parameterl. It follows
from standard results~an easy proof uses generating fun
tions! that N(t) has a negative binomial distribution wit
parametersn0 ande2lt:

p•,n~ t !5
~n21!!e2n0lt~12e2lt!n2n0

~n021!! ~n2n0!!
, n>n0 ; ~6!

^N~ t !&5n0elt, var$N~ t !%5n0elt~elt21!. ~7!

In particular, withn051 we obtain the geometric distribu
tion

p•,n~ t !5e2lt~12e2lt!n21 for n51,2, . . . . ~8!

We record for later use the result that forn051,

K 1

N~ t !L 5
e2lt

12e2lt (
n51

`
~12e2lt!n

n
5

lte2lt

12e2lt
. ~9!

If we sum overn in Eq. ~2!, we find that the marginal distri
bution pk,•(t)5(n51

` pk,n(t)5Pr$K(t)5k% of K(t) satisfies
the evolution equation

d

dt
pk,•5lpk21,•2lpk,• . ~10!

This equation governs the Poisson process, and so has
tion corresponding to the initial conditionK(0)50 given by
pk,•(t)5e2lt(lt)k/k! for k50,1,2, . . . . This is the solution
appropriate for the unique initial node of the system, wh
we shall call the ‘‘primal node.’’ For any other node, joine
to the network at timet* , we haveK(t* )51, and we find
that

pk,•~ t !5e2l(t2t
*

)@l~ t2t* !#k21/~k21!! ~11!

for kPN and t>t* .
Feigin @24# has shown that for a small number of stocha

tic processes that create elements at random times and
sess the ‘‘order statistics property,’’ the lifetime distributio
of a random element can be simply calculated. In particu
for the Yule process that underlies the present model,
lifetime probability density function for a node~other than
the primal node from which the entire network was creat!
is given by

f ~t!5
le2lt

12e2lt
, 0<t<t, ~12!

if the current age of the whole system ist. Hence the
coordination-number distribution of a randomly chosen no
is given by
06612
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Pr$K~ t !5k~random node!%5
e2lt~lt !k

k! K 1

N~ t !L
1 K 12

1

N~ t !L E0

t l~lt!k21e22ltdt

~12e2lt!~k21!!
. ~13!

Using Eq.~9! we deduce that

lim
t→`

Pr$K~ t !5k ~random node!%522k. ~14!

In Fig. 1 we compare the limiting coordination-number d
tribution 22k with one realization of a network of 10 00
nodes. The fit is excellent except for the largest coordinat
numbers encountered. For the limiting distribution the me
coordination number is exactly 2, and half of all nodes ha
a single link. In the discrete-time context, the limiting dist
bution ~14! was proved in 1987 by Szyman´ski @8#, who also
notes that it was known earlier, and has been independe
obtained in a nonrigorous manner more recently by Krap
sky et al. @25#.

In the present model, each node has a unique path bac
the primal node from which the entire tree has grown. W
may think of all nodes with the same distance back to
primal node as lying on the same ring when the tree is dra
so that its nodes lie on concentric rings, and we refer to
number of links between a given node and the primal node
the ‘‘ring number’’ r. We shall derive a mean-field estima
~that is, an estimate neglecting fluctuations! @6# of the num-
ber of nodes with ring numberr at timet, and we denote this
estimate byn(r ,t). We have, in a mean-field treatment,

]

]t
n~r ,t !5ln~r 21,t !, r>1, ~15!

with n(r ,0)50 for r>1, andn(0,t)51 for all t. The obvi-
ous generating function solution shows that

n~r ,t !5~lt !r /r !, ~16!

and the total number of nodes present at timet is predicted to
be nt5( r(lt) r /r ! 5elt. This agrees with the exact resu
that ^N(t)&5elt noted above. We therefore predict that for
randomly chosen node,

FIG. 1. For Yule trees~Sec. II! we compare in a log-linear plo
the limiting coordination-number distribution 22k ~solid line! with
the distribution obtained from one realization of a tree of 10 0
nodes obtained atlt'12.35.
4-3
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Pr$ring number5r %5e2lt~lt !r /r !, ~17!

a Poisson distribution with meanlt. In Fig. 2 we compare
simulation results with prediction~17!. We find that for a
fixed time t, the realization-to-realization fluctuations in th
ring-number distribution are large and, in particular, the
fects of those realizations in which the number of nodes g
erated is comparatively small spoils the performance of
mean-field theory.

From the mean-field prediction~17!, we can infer a cor-
responding mean-field prediction for the ring number a
given network size by writinglt5 ln nt . We arrive at the
prediction that

Pr$ring number5r %5~ ln nt!
r /~ntr ! !, ~18!

with the mean ring number being given by lnnt . We have
compared prediction~18! with statistics gathered for net
works of fixed size in Fig. 3. The fluctuations are grea
reduced, and the mean-field calculation closely tracks
mean found in simulations. Note however that Eq.~4! shows

FIG. 2. For Yule trees~Sec. II!, we compare the ring-numbe
distribution predicted by the mean-field theory~17!, shown as the
solid line, with simulations, showing mean6one standard deviation
The data correspond to 100 realizations stopped atlt59.5, when
the mean network size is approximately 11 201 nodes~standard
deviation'13 061!. The dotted line is the exact ring-number dist
bution ~23!.

FIG. 3. For Yule trees~Sec. II!, we compare the ring-numbe
distribution predicted by the mean-field theory~18!, shown as the
solid line, with simulations, showing mean6one standard deviation
The data correspond to 100 realizations, all stopped when the
work size is exactly 10 000 nodes (lt mean value'10.03, with
standard deviation'1.30!.
06612
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that even after conditioning on a fixed large network si
there can be large fluctuations in the coordination number
older nodes~corresponding tok051 andn0 small!.

We can extend the mean-field theory to include the co
dination number of nodes. If we letn(k,r ,t) denote the
mean-field estimate of the number of nodes with coordi
tion numberk and ring numberr, we have

d

dt
n~k,r ,t !'ln~k21,r ,t !2ln~k,r ,t !

1dk,1 (
k8>1

ln~k8,r 21,t !. ~19!

We solve this equation using generating functions in App
dix C 1 and deduce that

lim
t→`

(
r 50

`

n~k,r ,t !

(
k50

`

(
r 50

`

n~k,r ,t !

522k, ~20!

so the mean-field theory produces the correct limiti
coordination-number distribution~14!.

If we suppress the explicit time dependence and study
structure of the tree that grows solely in terms of the num
of nodes present at a given time~that is, we condition on
Nt5nt), then the problem reduces to that of the ‘‘rando
recursive tree,’’ for which several exact results are know
From work of Szyma´nski @8# it is known that for a randomly
chosen node the ring-number distribution has the genera
function

(
r 50

`

Pr$ring number5r uNt5nt%r
r5

G~nt1r!

G~nt11!G~r11!
~21!

and Pr$ring number5r uNt5nt% can be expressed in terms o
Stirling numbers. The mean ring number, found by differe
tiation of Eq.~21!, is

c~nt11!2c~2!5 ln~nt11!112g1O~nt
21!; ln nt ,

wherec is the digamma function as before andg is Euler’s
constant, so that the error in the mean-field prediction of
mean ring number at given network sizent is O(1) as nt
→`.

For the case of a time-evolving tree network grown fro
a single initial node, we know the distribution of the numb
of nodesNt from Eq. ~8!. Thus we can determine the gene
ating function for the ring-number distribution at timet:

et-
4-4
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(
r 50

`

Pr$ring number5r %r r

5 (
n51

`
G~n1r!

G~n11!G~r11!
e2lt~12e2lt!n21

5
e2lt

12e2lt (
n50

`
G~n1r11!

n!G~r11!
E

0

12e2lt

zndz

5
e2lt

12e2ltE0

12e2lt

~12z!212rdz

5
erlt21

r~elt21!
5(

r 50

`
~lt !r 11r r

~elt21!~r 11!!
~22!

and so we have the exact ring-number distribution

Pr$ring number5r %5
~lt !r 11

~elt21!~r 11!!
. ~23!

The exact mean ring number, found by differentiation of E
~22!, is lt(12e2lt)2121;lt as t→`. Mean-field theory
predicted the mean ring numberlt for all t.0. We have
plotted the exact distribution~23! as the dotted line in Fig. 2
It may be emphasized that this exact distribution is cal
lated over all tree realizations. It reproduces well the sim
lation averages, but the large standard deviations of the s
lation data reflect the fact that this exact distribution m
poorly capture the relative abundance of ring numbers
particular realizations at a given time of the time-evolvi
random tree. The covariance of the numbers of nodes for
given ring numbers is known for the random recursive t
@11#, so that exact results for the covariance of the rin
number distribution for our time-evolving problem shou
also be able to be deduced, though we do not pursue
here.

In the mean-field treatment,n(1,t)→` as t→`, that is,
the number of different branches of the tree that join at
primal node diverges. Mean-field theory cannot resolve
sizes of these branches. It is tempting~though ill-advised, as
discussed below! to propose on symmetry grounds that t
branches are of comparable size, and if this is so, the p
ability that the~unique! shortest path joining an arbitrary pa
of nodes with ring numbersr ands does not pass through th
primal node decays to zero, and we may estimate the p
ability distribution function for the shortest path by assumi
that the nodes inhabit different branches of the tree that
at the primal node. Hence

Pr$path length5 l %

'(
r 50

l

Pr$ring number5 l 2r %Pr$ring number5r %

~24!

and evaluating the sum on the right-hand side we find tha
the simplest mean-field treatment,
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Pr$path length5 l %'e22lt~2lt ! l / l !. ~25!

For an estimate written in terms of the number of nodes
the network rather than time, we setn5elt for the number of
nodes, and deduce that

Pr$path length5 l %'~2 lnnt!
l /~nt

2l ! !. ~26!

When prediction~25! is compared against simulations
fixed time, it performs quite poorly. The fixed size predictio
~26! does somewhat better, but is still disappointing~see Fig.
4, where the solid curve is the simple mean-field theory!.

The reason for the failure of the mean-field theory to ca
ture the path-length distribution comes from the typic
asymmetry of individual realizations of the tree. Each pair
distinct nodes is joined by a unique path, and if we regard
nodes themselves as belonging to the path, there is a w
defined smallest ring number encountered on the path
Table I, we show estimates from simulation of the probab
ity f r that two randomly chosen distinct nodes haver for the
smallest ring number encountered on the path that jo
them. The data suggest that in an appropriate limit of lo
time or large network size,f r→22r 21, but we have not
been able to prove this. The probability that the path linki
two arbitrarily chosen nodes passes through the primal n
is around 0.5, whereas in the mean-field argument this p
ability should converge to 1 as time progresses.

We shall give a simple argument to demonstrate the as
metry. Consider that the model of this section started
only with the primal node but with the primal node O and
first daughter A present at timet50. At this instant, because
of the lack of memory inherent in the exponential waitin
time density for births, the nodes O and A become equiva
and independent and their number of offspring will in ea
case be'elt as t→`, so the first daughter has as desce
dents half the nodes of the tree. This conclusion can also
obtained by a more formal rigorous argument, based on g
erating functions@26#. This shows that individual realization
of the process typically exhibit significant asymmetry wh

FIG. 4. For Yule trees~Sec. II!, we compare the internode dis
tance distribution predicted by mean-field arguments with simu
tions ~showing mean6one standard deviation!. The data correspond
to 100 realizations, all stopped when the network size is exa
10 000 nodes (lt mean value'10.03, with standard deviation
'1.30!. The solid curve is the simple mean-field theory~26!. The
dotted curve is the improved mean-field theory~30!.
4-5
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viewed from the primal node, and this is why the mean-fi
prediction performs so poorly in comparison to simulatio
in Fig. 4.

We have been able to derive an improved mean-fi
theory. We consider network of size 2m and we writewm( l )
for the probability that for an arbitrarily chosen pair of nod
the separation isl. The corresponding mean-field predictio
is, from Eq.~26!,

wm
0 ~ l !'~m ln 4! l /~22ml ! !. ~27!

Assuming equivalence of the independent branches from
and A, we write

wm11~ l !5 1
2 @wm

0 ~ l !1wm~ l !#. ~28!

The two terms on the right correspond to cases where
nodes are on separate branches from the primal node@so
each branch has approximately 2m nodes—this is why we
usewm

0 ( l ) rather thanwm11
0 ( l )], or on the same branch. Th

initial condition for the difference equation isw1( l )5d l ,1 ,
and it is easy to deduce the exact solution

wm~ l !5
1

2m S (
k51

m21

2kwk
0~ l !12d l ,1D . ~29!

TABLE I. For Yule trees~Sec. II!, we show estimates of the
probability f r that the smallest ring number encountered on
unique path joining two randomly chosen distinct nodes isr. The
results~experimental meanf r and standard deviation! are obtained
from 100 simulations of a network of 10 000 nodes.

r f r Standard deviation 2r 11f r

0 5.0331021 2.0331021 1.006
1 2.4631021 1.4731021 0.983
2 1.2331021 8.1031022 0.982
3 6.5731022 5.4031022 1.051
4 3.2331022 2.6831022 1.035
5 1.4731022 1.3031022 0.943
6 8.1131023 7.3131023 1.038
7 3.7631023 3.2831023 0.963
8 1.9431023 1.8231023 0.992
9 9.6931024 8.3131024 0.992
10 4.4531024 3.7831024 0.911
11 2.0631024 1.6531024 0.842
12 1.0131024 1.1731024 0.825
13 4.5631025 5.4031025 0.748
14 1.8931025 2.5831025 0.619
15 7.6731026 1.1331025 0.502
16 3.8731026 9.0131026 0.507
17 1.3531026 3.2431026 0.355
18 4.8331027 1.5131026 0.253
19 1.5031027 4.9831027 0.157
20 5.1631028 2.2131027 0.108
21 1.9231028 1.0031027 0.081
22 6.2031029 3.7331028 0.052
23 8.00310210 6.2731029 0.013
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This leads to a prediction of the internode distance distri
tion, but it is inconveniently restricted to networks of siz
2m. We recall that Lerch’s transcendentF(z,s,a) and the
polylogarithm Lim(z) are defined@27# by

F~z,s,a!5 (
k50

`
zk

~a1k!s
, Lim~z!5 (

k51

`
zk

km
,

respectively. We now see that

(
k51

m21

2kwm
0 ~ l !5

~ ln 4! l

l ! (
k51

m21
kl

2k

5
~ ln 4! l

l ! FLi2 l S 1

2D2FS 1

2
,2 l ,mD G .

Since Lerch’s transcendentF(z,s,a) is defined for all posi-
tive values ofa, we are able to deduce a predicted interno
distribution for arbitrary network sizen by writing m
5 log2n, giving

Pr$path length5 l %'
2d l ,1

n
1

~ ln 4! l

l !n

3FLi2 l S 1

2D2FS 1

2
,2 l , log2nD G .

~30!

This improved internode distance distribution is shown
the dotted curve in Fig. 4. The major failure of the simp
mean-field theory has been effectively repaired.

The average distance between pairs of nodes in a ran
recursive tree has been discussed by Moon@9# and Dobrow
@28#. The related problem of the determination of the Wien
index W(n), which is the sum over all node pairs of th
internode distances, has been addressed by Neininger@29#.
Where Hn5(k51

n k21 is the nth harmonic number, it is
known @29# that

^Wn&5n2Hn22n21nHn . ~31!

As Hn5 ln n1g1o(1) for n→`, whereg is Euler’s constant,
we have the exact asymptotic form

^W~n!&5n2~ ln n1g22!1o~n2!. ~32!

We can use our naive mean-field theory to estimate
Wiener index

W~n!'
1

2 (
r 50

`

(
s50

`

~r 1s!
~lt !r

r !

~lt !s

s!
5lte2lt. ~33!

As noted above, in the mean-field approximation the to
number of nodes isn5elt, so we predict that

W~n!'n2ln n. ~34!

The mean-field prediction thus agrees with the exact
sult to leading order, but the slow growth of the logarith
ensures that for quite large values ofn the mean-field esti-

e
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mate differs significantly from the exact result. In Fig. 5 w
compare the mean-field predictionn22^W(n)&' ln n with
the better approximationn22^W(n)&'(ln n1g22) based on
the exact asymptotic form and simulation data. It is known
general that for an arbitrary tree ofn nodes, the Wiener index
W(n) satisfies the inequality (n21)2<W(n)<n(n221)/6,
with equality if and only if the tree is either a star or a line
chain, respectively@30#, but neither of these bounds is us
fully close to the exact result for̂W(n)&. One could derive
an improved mean-field estimate of the expected Wiener
dex using Eq.~30!, but as we have the exact value alrea
we have not pursued this.

The expected Wiener index as a function of time can
calculated exactly, using Eqs.~8! and ~31!. We find after a
little algebra that

^W~ t !&5 (
n51

`

e2lt~12e2lt!n21~n2Hn22n21nHn!

52~lt11!e2lt2elt. ~35!

Note that although the naive mean-field theory produced
correct asymptotic form for the average Wiener index a
function of the number of nodes present, it is more seriou
deficient for the time evolution.

To conclude our discussion of this simplest model o
growing network, note that if the growing network is kille
at a random timeT after the creation of the primal node
where T has probability density functionC(t), then from
Eq. ~8! the network sizeN† at death has the probability dis
tribution

Pr$N†5n%5E
0

`

C~ t !e2lt~12e2lt!n21dt

FIG. 5. For Yule trees~Sec. II!, we compare the Wiener inde
predicted by Eq.~34! with simulations~ten realizations!. We show
the mean Wiener index̂W(n)& from simulation6one standard de
viation, scaled againstn2. The solid curve is the mean-field est
mateW(n)/n2' ln n, which is asymptotically correct asn→`, but
performs poorly for the range ofn values for which we have simu
lation data. The dotted line is the improved approximati
^W(n)&/n2' ln n1g22 based on the exact asymptotic form
^W(n)&. Both approximations perform much better than the rig
ous lower boundW(n)/n25(12n22);1 and the rigorous uppe
boundW(n)/n25n(12n22)/6;n/6 known for general trees.
06612
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for n51,2,3, . . . . In particular, for death at an exponential
distributed time, with C(t)5ne2nt, we find ~cf. Refs.
@15,19#!

Pr$N†5n%5
nG~n/l11!G~n!

lG~n1n/l11!
;

const

nn/l11

asn→`. We can also calculate the ring-number distributi
for a randomly killed tree from the exact distribution~23!.
Let R† denote the ring number of a randomly chosen node
a randomly killed tree. Then

Pr$R†5r %5E
0

` C~ t !~lt !r 11dt

~elt21!~r 11!!
.

For death at an exponentially distributed time, withC(t)
5ne2nt, the integral can be evaluated exactly in terms of
Hurwitz zeta function@31#

z~s,a!5 (
n50

`
1

~n1a!s
5

1

G~s!
E

0

` xs21e(12a)xdx

ex21
,

and we find that

Pr$R†5r %5
n

l
zS r 12,

n

l
11D;

n/l

~11n/l!r 12

as r→`.

III. REED-HUGHES TREES

In 1985, Szyman´ski @12# considered a discrete-time ran
domly growing tree for which the probability of selection o
a node as the next node to give birth is proportional to
node’s coordination number. In Theorem 5 of his paper
proves a result which implies, but is slightly stronger tha
the statement that the probability that a randomly cho
node has coordination numberk converges as the tree siz
grows to 4/@k(k11)(k12)#. Coordination-number depen
dent growth probabilities, or mechanisms equivalent to t
differently expressed, have been made popular by the w
of Albert and Baraba´si @32# and Dorogovtsev and Mende
@33# and co-authors and generalized in various ways, but
paper of Szyman´ski @12# has received little recognition.

We shall consider a continuous-time tree model that
vors birth from nodes of high coordination number and lea
to scale-free networks. In this specific form the model is t
introduced by Reed and Hughes@34#. It is essentially a
continuous-time analog of Szyman´ski’s problem, but also~as
in our discussion of Yule trees! the Reed-Hughes formulatio
addresses the joint time evolution of the coordination nu
ber of a tagged node and the overall network size.

For a node in the network, with coordination numberki at
time t, suppose that the probability of it bringing a new no
into the network in the time interval (t,t1h# is lkih
1o(h) as h→0. Thus the well-connected nodes are mu
more likely to establish a new connection than the less w
connected nodes. As in Sec. II, we denote the numbe

-
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nodes in the network at timet by N(t) and the number con
nected to a specific node~node *, say! by K(t). Let pk,n(t)
5Pr$K(t)5k,N(t)5n%. By similar arguments to those use
to derive Eq.~1!, we find that

pk,n~ t1h!5pk21,n21~ t !l~k21!h1pk,n21~ t !lh(
iÞ*

ki

1pk,n~ t !S 12lh(
i

ki D 1o~h!. ~36!

When N(t)5n, we know that( i 51
n ki52n22, since the

system evolves from one in which( i 51
n ki52 whenn52,

and the addition of each new node to the network increa
the sum over coordination numbers of all nodes by 2. In
limit h→0, the recurrence relation~36! yields the
differential-difference equation

d

dt
pk,n5l~k21!pk21,n211l~2n242k!pk,n21

2l~2n22!pk,n . ~37!

We shall extract some results of interest and comp
them with simulations. If a node currently has coordinati
numberk, then its waiting-time density for the next birth
that is, the creation of its next link, islke2lkt. In all other
respects, the simulation of this model is identical to the Y
tree model of Sec. II.

Summing Eq. ~37! over n ~from 1 to `! yields a
differential-difference equation for the marginal distributio
pk,•(t)5(npk,n(t) of K(t):

d

dt
pk,•5l~k21!pk21,•2lkpk,• . ~38!

This is the equation of a Yule process with parameterl @cf.
Sec. II, where we found that for the simpler model of th
section, it isN(t) that evolves as a Yule process#. ThusK(t)
has a negative binomial distribution with parametersk0
5K(0) ande2lt. In particular, withk051 this reduces to a
geometric distribution with

pk,•~ t !5e2lt~12e2lt!k21 for k51,2, . . . . ~39!

Similarly by summing Eq.~37! from k from 1 to `, we
obtain an evolution equation for the marginal distributi
p•,n(t)5(kpk,n(t) of N(t):

d

dt
p•,n52l~n22!p•,n2122l~n21!p•,n . ~40!

It is easily shown by generating functions that the solution
the system corresponding to the initial conditionN(0)52 is

p•,n~ t !5e22lt~12e22lt!n22 ~41!

and consequently that for allt.0,

^N~ t !&5e2lt11, var$N~ t !%5e4lt2e2lt, ~42!
06612
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while ^1/N(t)&;2lte22lt as t→`.
Equation~40! is the evolution equation of a nonhomog

neous birth process with

Pr$birth in ~ t,t1h#uN~ t !5n!%52l~n21!. ~43!

From this it follows that the number of new nodes,U(t)
5N(t)2n0, connected in (0,t# is a birth process with immi-
gration and has a negative binomial distribution. Such a p
cess is an ‘‘order statistic’’ process@24#, which means that
the times of births since the start of the process have
same joint distribution as those of the order statistics o
sample of independent, identically distributed random va
ables: in this case of random variables with a trunca
exponential distribution, that is, with probability densi
function

f ~t!5
2le22lt

12e22lt
, 0,t,t, ~44!

where t is the elapsed time since the founding of the n
work. By similar arguments to those in Sec. II, we find th
the limiting distribution of the coordination number of a
arbitrary node is

lim
t→`

Pr$K~ t !5k~random node!%

5E
0

`

2le22lte2lt~12e2lt!k21dt

5E
0

1

2x2~12x!k21dx

5
2G~3!G~k!

G~k13!
5

4

k~k11!~k12!
;

4

k3
, ~45!

an asymptotic power-law distribution, as found in th
discrete-time analog of the Reed-Hughes tree by Szyma´ski
@12# and subsequent authors@35#. We compare limit~45!
with a simulation in Fig. 6. Note that

lim
t→`

^K~ t !urandom node&5 (
k51

`
4

~k11!~k12!
52.

We have managed to produce these results without ha
to determine the joint distributionpk,n(t). In Appendix B 2
we obtain the exact solution for the generating function
pk,n(t), and we show that the correlation coefficient for t
number of nodes present and the coordination number
specified starting node does not decay to zero in the lo
time limit. This is another way in which the variable birth
rate model differs from the constant birth-rate Yule tr
model of Sec. II.

By generalizing the ideas of Sec. II, we can derive
mean-field prediction of the ring-number distribution. If w
denote the number of nodes with ring numberr and coordi-
nation numberk at time t by n(k,r ,t), we have
4-8
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d

dt
n~k,r ,t !'l~k21!n~k21,r ,t !2lkn~k,r ,t !

1dk,1 (
k8>1

lk8n~k8,r 21,t !. ~46!

We seek the solution, given that we start with one link a
two nodes:n(k,r ,0)5(d r ,01d r ,1)dk,1 . In Appendix C 2 we
show that

(
k50

`

(
r 50

`

n~k,r ,t !kkr r5E
0

t lr~11r!kel(11r)tdt

k1el(t2t)~12k!

1
~11r!k

k1elt~12k!
. ~47!

Observe that in the mean-field theory the total number
nodes present at timet is given by

nt5(
k

(
r

n~k,r ,t !5e2lt11. ~48!

Recalling the exact result~42! that ^N(t)&5e2lt11, we see
that the mean-field theory correctly produces one exact re
for all t>0: nt5^N(t)&.

Let us evaluate the mean-field prediction of t
coordination-number distribution. Settingr51 in solution
~47! for the generating function and then expanding in po
ers ofk, we find after a little algebra that

(
r

n~k,r ,t !52e2lt~12e2lt!k21

1e2ltE
0

t

2le23lt~12e2lt!k21dt.

~49!

FIG. 6. For the Reed-Hughes tree model of Sec. III, wh
growth rates depend on coordination number, we compare in a
linear plot the limiting coordination-number distribution 4/@k(k
11)(k12)# predicted by Eq.~45!, shown as the curve, with th
distribution obtained from one realization of a tree of 10 000 no
(lt'7.97). In this realization all coordination numbersk with 1
<k<27 arose, but beyond there gaps appear. There were un
nodes with coordination numbers 220 and 209; the next lar
coordination number was 76.
06612
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Thus the mean-field coordination-number distributi
( rn(k,r ,t)/nt converges att→` to the same limit~45! as
the earlier exact calculation.

Although we do not have a rigorous result for the dist
bution over ring numbers, we can easily extract a mean-fi
prediction. If we setk51 in Eq. ~47! and extract the coeffi-
cient of r r we deduce that

(
k

n~k,r ,t !5elt~lt !r 21/~r 21!!, r>1, ~50!

while (kn(k,0,t)51. We now have mean-field prediction
of the ring-number distribution for an arbitrarily chose
node:

Pr$ring number5r %5
elt~lt !r 21

~e2lt11!~r 21!!
, r>1; ~51!

Pr$ring number50%51/~e2lt11!. ~52!

The predicted mean ring number is (lt11)(11e22lt)21.
The mean-field prediction~51! is compared to simulations in
Fig. 7. As in the Yule tree model of Sec. II, for a syste
inspected at a modest fixed time, the simulation results h
the ring-number mode~most probable value! clearly less
than the mean-field prediction~shown as a solid line!. Figure
7 illustrates the effect of network size fluctuations in mod
simulations. For the 100 realizations at fixed timet55.5
with l51, the experimental mean network size is 15 416
but with standard deviation'29 500. The exact mean ne
work size should bee1111559 875.1 . . . . If instead we use
the mean-field distribution with time t given by
t5 ln(nt21)/(2l), wherent is taken as the experimental mea

e
g-

s

ue
st

FIG. 7. For the Reed-Hughes tree model of Sec. III, we sh
the ring-number distribution obtained from 100 realizations a
fixed stopping timelt55.5, corresponding to a mean network si
'15 400 and standard deviation'29 500. The plotted data show
the mean6 one standard deviation. The continuous curve sho
the mean-field prediction~51!, while the broken curve correspond
to mean-field theory with the time adjusted so that the mean-fi
network size corresponds to the experimental mean network si
4-9



s

ig
e

tic
th
o
al
-

en

at
o-

ld
to
e-
nd
r to
an-
sed
II.
2
ur-

e
on
es

ata

e-
lly

ow
t
ea

ve

are

CHAN et al. PHYSICAL REVIEW E 68, 066124 ~2003!
network size, we obtain the mean-field prediction shown a
broken line in Fig. 7, which is significantly better.

If we eliminate time in favor of network sizent , the
mean-field prediction becomes

Pr$ring number5r %5
~nt21!1/2@ ln~nt21!# r 21

2r 21~r 21!!nt

~53!

for r>1, with Pr$ring number50%5nt
21 . Prediction~53! is

compared to simulation data for a fixed network size in F
8. We find here very good agreement between mean-fi
theory and simulations.

As in Sec. II, we may attempt to predict the asympto
distribution of internode distances, using the observation
the statistics are dominated by node pairs for which the c
necting path passes through one of the two nodes initi
present, so that Eq.~24! applies. Using the mean-field ring
number distribution~50! we predict that forl>2,

Pr$path length5 l %5
e2lt~2lt ! l 22

~e2lt11!2~ l 22!!

1
2elt~lt ! l 21

~e2lt11!2~ l 21!!
,

so that Pr$path length5 l %;e22lt(2lt) l 22/( l 22)!, while

Pr$path length50%5~e2lt11!22;e24lt,

Pr$path length51%52elt~e2lt11!22;2e23lt.

Eliminating time in favor ofn5e2lt11, we infer a corre-
sponding a mean-field path length distribution for a giv
network sizen:

Pr$path length50%5n22, ~54!

FIG. 8. For the Reed-Hughes tree model of Sec. III, we sh
the ring-number distribution obtained from 100 realizations a
fixed network size of 10 000 nodes, corresponding to a m
elapsed timelt'6.13~standard deviation'1.21!. The plotted data
show the mean6 one standard deviation. The continuous cur
shows the mean-field prediction~53!.
06612
a

.
ld

at
n-
ly

Pr$path length51%52~n21!1/2n22, ~55!

and

Pr$path length5 l %5
~n21!@ ln~n21!# l 22

n2~ l 22!!

1

2~n21!1/2F1

2
ln~n21!G l 21

n2~ l 21!!
~ l>2!.

~56!

The mean-field prediction of the path length distribution
constant time performs badly~as was the case with the anal
gous prediction for Yule trees in Sec. II!. Prediction~56! is a
little better, but still disappointing~Fig. 9!.

As in Sec. II, the disappointing quality of the mean-fie
predictions of the distance distribution in comparison
simulations in Fig. 9 is due to the asymmetry of typical r
alizations of the tree when viewed from the primal node, a
the argument to demonstrate this phenomenon is simila
that in Sec. II. One may attempt to derive an improved me
field theory for the present model using the approach ba
on Eq. ~28!, which was successful for Yule trees in Sec.
However, the natural interpolation from networks of sizem

to general sizes seems very difficult, and we have not p
sued this here.

As for the Yule tree model of Sec. II, we may study th
probability f r that the smallest ring number encountered
the unique path joining two randomly chosen distinct nod
is r. Some simulation data is reported in Table II. The d
are tolerably well approximated by

f r
05H 1/2, r 50

32r , r .0,
~57!

for which we now offer a partial explanation. In some r
spects the designation of one of the two nodes initia
present as the origin~node O, with ring number 0! and the

a
n

FIG. 9. For the Reed-Hughes tree model of Sec. III, we comp
the internode distance distribution predicted by Eq.~56! with simu-
lations for 100 realizations of fixed network size 10 000~mean run-
ning timelt56.1282, standard deviation 1.2097!.
4-10
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STOCHASTICALLY EVOLVING NETWORKS PHYSICAL REVIEW E68, 066124 ~2003!
other as offspring~node A, having ring number 1! is a little
artificial. Let us instead consider as our measure of rem
ness the shortest distance~measured in units of link length!
from whichever of nodes O or A is closest, and writef̂ r for
the probability that for the unique path joining any two arb
trary nodes, the smallest remoteness isr. For paths that are
closer to O than to A, this value ofr is the same as the rin
number, but for paths that are closer to A, it is one less t
the ring number. If we assume that the two branches of
tree are statistically equivalent, which is appropriate as
time t50 the initial states of nodes O and A are identical,
see that

f̂05f0
01

f1
0

2
; f̂ r5

f r
01f r 11

0

2
~r>1!. ~58!

The empirical approximation~57! takes the simple form

f̂ r5
2

3r 11
~r>0!. ~59!

It would be interesting to have a result of this type est
lished rigorously.

From the mean-field distance distribution it is easy to
timate the Wiener indexW(n) and we predict that

W~n!; 1
2 n2ln n, ~60!

cf. Fig. 10. The performance of the mean-field estimate
the Wiener index is much better for the Reed-Hughes

TABLE II. For the Reed-Hughes tree model of Sec. III, w
show estimates of the probabilityf r that the smallest ring numbe
encountered on the unique path joining two randomly chosen
tinct nodes isr. The results~experimental meanf r and standard
deviation! are obtained from 100 simulations of a network
10 000 nodes. The last column compares the experimental m
with the empirical relation~57!.

r f r Standard deviation f r /f r
0

0 5.1031021 2.9831021 1.021
1 3.4031021 2.4431021 1.020
2 9.7731022 1.0631021 0.879
3 3.5931022 5.3531022 0.969
4 1.0731022 1.7731022 0.866
5 3.8231023 7.2631023 0.928
6 1.1531023 1.6931023 0.841
7 3.6931024 5.3931024 0.808
8 1.2431024 2.0131024 0.816
9 3.4531025 5.5331025 0.679

10 9.9731026 2.1831025 0.589
11 2.4131026 5.3831026 0.426
12 5.8031027 1.1231026 0.308
13 1.3131027 3.2131027 0.208
14 1.8031028 5.6831028 0.086
15 3.6031029 1.5831028 0.052
16 4.00310210 2.8031029 0.017
06612
e-

n
e

at

-

-

r
e

model than for the Yule tree model of Sec. II, and better th
one might expect, given the inadequacy of the mean-fi
distance distribution prediction manifest in Fig. 9.

If the growing network is killed at a random timeT after
the creation of the first two nodes, whereT has probability
density functionC(t), then from Eq.~41! the network size
N† at death has the probability distribution

Pr$N†5n%5E
0

`

C~ t !e22lt~12e22lt!n22dt

for n52,3,4, . . . . In particular, for death at an exponential
distributed time, withC(t)5ne2nt, we find

Pr$N†5n%5
nG~n/~2l!11!G~n21!

2lG~n1n/~2l!!
;

const

nn/(2l)11

asn→`.
A natural generalization of the continuous-time mod

discussed above would replace the birth ratelKi(t) at node
i by a more general function ofKi(t), and there has bee
work in this direction for discrete-time models. For examp
Krapivsky et al. @25# consider growth nodes selected wi
probabilities proportional toKi(t)

g. Wheng is neither 0 or
1, the sum rules that enable us to focus on the coordinat
number distribution of a tagged node in the Yule tree a
Reed-Hughes tree models, respectively, are lost, and
mean-field and simulation approaches seem profitable@36#.

IV. CROSS-LINKED NETWORKS

The models of Secs. II~Yule trees! and III ~Reed-Hughes
trees! can be extended to allow for cross-linking in the ne
work structure. It is simplest to explain the simulation alg
rithm first, as this raises a subtle issue.

A. A class of models for simulation

We associate with each node * a waiting-time density
C* (t) for it next to create a new link to a node not yet pa
of the network. We consider two cases:constant fertility,
C* (t)5le2lt ~cf. Sec. II! and variable fertility, C* (t)

s-

an

FIG. 10. For the Reed-Hughes tree model of Sec. III, we co
pare the Wiener index predicted by Eq.~60! with simulations~ten
realizations withl51!. We show the mean Wiener indexW(n)6
one standard deviation, scaled againstn2. The solid curve is the
mean-field estimateW(n)/n2'(1/2)lnn which performs much bet-
ter than the rigorous lower boundW(n)/n25(12n22);1 and the
rigorous upper boundW(n)/n25n(12n22)/6;n/6.
4-11
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5kle2klt ~cf. Sec. III!. In the variable fertility case,k is the
number of nodes to which node * has given birth. The va
of k is updated each time a birth occurs and as the expo
tial distribution has no memory, we draw a new random ti
for the next birth from the same mother. Thus far, the c
stant and variable fertility cases are the same as the Yule
model of Sec. II and the Reed-Hughes tree model of Sec.
respectively.

To escape the strict tree structure, we also introduc
random waiting time for the creation of the next link to a
existing node to which node * has not been previou
linked. This link can be described as ‘‘marriage.’’ If the num
ber of eligible suitors~marriage partners! for node * at time
t is denoted bys, we associate a waiting-time densi
f* (t)5mse2mst for node * to initiate its next marriage
However, this waiting-time density only applies until eith
~a! a node other than * gives birth, or~b! some node othe
than * initiates a marriage to node *, or~c! a pair of nodes
not including * marry. As these events all change the eligi
suitor set for some nodes, continual resetting of the waiti
time densities for marriages for all nodes must be accom
dated. Although this may be seen as a practical nuisanc
simulation, it enables us to switch off attempted marriag
for node * for appropriate time intervals when there are
suitors available, but resume seeking marriages when
eligible partners are created.

It remains to define precisely what is meant by an eligi
suitor, and we distinguish between the following two qu
different cases.

~1! Polygamy: an eligible suitor for node * is any node no
yet linked to it as parent or offspring or by marriage.

~2! Monogamy: an eligible suitor for node * is any nod
not yet linked to it as parent or offspring that has not y
been married, so that in this case, no node ever contr
more than one marriage.

We shall only develop theory and report simulations
polygamous cases, in which extensive cross-linking can
cur. The monogamous case, or a variant in which each n
is allowed to acquire a limited number of marriage partne
produces a more sparsely linked network.

B. Transitions due to marriage

Let N(t), K j (t), andSj (t), respectively, denote the num
ber of nodes in the network, the coordination number of no
j of the network, and the number of eligible suitors of nodj
at time t. Note that

Sj~ t !5N~ t !212K j~ t !, ~61!

so that although we useSj (t) in the derivation of our evolu-
tion equations, it can be eliminated in the later stages of
analysis. For a specified node * of the network, we shall
brevity replaceK* (t) andS* (t) with K(t) andS(t), respec-
tively. The set of suitor nodes eligible to marry node *
time t will be denoted bys(* ). In addition, letM (t) denote
the total number of links in the network, so that

(
j

K j~ t !5K~ t !1 (
j Þ*

K j~ t !52M ~ t !. ~62!
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We shall calculate the probability of marriages occurri
in the time interval (t,t1h). For brevity, all quantities tha
areo(h) are suppressed in the analysis. Consider first a m
riage involving node *. This marriage may be initiated b
node * with probabilitymS(t)h, or initiated by another node
j Ps(* ). In the latter case, nodej initiates marriages with
probabilitymSj (t)h, but only one out of itsSj (t) choices of
partner selects node *, so its probability of initiating a ma
riage to node * ismh. Thus

Pr$node* marries%5mS~ t !h1 (
j Ps(* )

mh52mS~ t !h

52m@N~ t !212K~ t !#h.

A marriage not involving node * may be initiated by a nod
eligible to marry node *, or a node not eligible to marry no
*, and thus

Pr$marriage not involving*%

5 (
j Ps(* )

m~Sj~ t !21!h1 (
j ¹s(* ), j Þ*

mSj~ t !h

5(
j

mSj~ t !h22mS~ t !h

5m$N~ t !@N~ t !21#22M ~ t !22@N~ t !212K~ t !#%h,

where we have used Eqs.~61! and ~62!. Considering the
complement of the events just considered, we deduce th

Pr$no marriages%512m$N~ t !@N~ t !21#22M ~ t !%h.

We briefly consider a system in which there are no birt
with links only created via marriage. A state of the system
which K(t)5k,M (t)5m,N(t)5n, andS(t)5s will be de-
noted by (k,m,n,s) for brevity, and recalling thatS(t) is
determined byN(t) andK(t) we write

Pr$K~ t !5k,M ~ t !5m,N~ t !5n%5pk,m,n~ t !.

This probability is zero if any ofk, m, n is negative, or if
k>n. Ignoring all events with probabilityo(h), the system
can be found in state (k,m,n,s) at time t1h in only the
following three ways.

~i! Node * marries between timest andt1h, correspond-
ing to (k21,m21,n,s11)→(k,m,n,s), with probability
2m@n212(k21)#hpk21,m21,n(t).

~ii ! A marriage that does not include node * occurs, so t
(k,m21,n,s)→(k,m,n,s) with probability m@n(n21)
22(m21)22(n212k)#hpk,m21,n(t).

~iii ! No marriages occur, so that (k,m,n,s)→(k,m,n,s)
with probability $12m@n(n21)22m#h%pk,m,n(t). We
readily deduce the evolution equation
4-12



th

n

a

s
. I

e

t
s.

a
e

field
ap-
ar-
ge

ion

al
o

b-
ly-

e

STOCHASTICALLY EVOLVING NETWORKS PHYSICAL REVIEW E68, 066124 ~2003!
d

dt
pk,m,n52m~n2k!pk21,m21,n

1m@n~n21!22~m21!22~n212k!#pk,m21,n

2m@n~n21!22m#pk,m,n . ~63!

Note thatn is constant in the process, as there are no bir
If we sum overm we find that

d

dt
pk,•,n52m~n2k!pk21,•,n22m~n212k!pk,•,n

and hence the generating function

Pn~k,t !5 (
k50

`

pk,•,n~ t !kk

satisfies the partial differential equation

]Pn

]t
22mk~12k!

]Pn

]k
522m~n21!~12k!Pn . ~64!

One may verify directly that the solution of this equatio
given thatK(0)5k0<n21, is

Pn~k,t !5kk0@e22mt1k~12e22mt!#n212k0, ~65!

from which it follows that fork0<k<n21,

pk,•,n~ t !5S n212k0

k2k0
De22mt(n212k)~12e22mt!k2k0.

~66!

The model evolves sensibly and converges to the fully m
ried or fully cross-linked stateK(t)5N(t)21 in the sense
that Pr$K(t)5n21%→1 ast→`.

In Secs. IV C and IV D we add this marriage or cros
linking mechanism to the models with birth rates of Secs
and III, respectively. We note that the special case of Eq.~66!
for the initial conditionk050 is produced exactly by the
following mean-field argument. Let the number of nod
with coordination numberk be denoted byn(k,t). For each
such node, the number of eligible suitors isn0212k.
~Later, when we allow the number of nodes in the network
change,n0 will be replaced by the current number of node!
We take the evolution equation

]

]t
n~k,t !52m@n0212~k21!#n~k21,t !

22m~n0212k!n~k,s,t !, ~67!

with initial condition n(k,s,0)5n0dk,0 . The coefficient 2m
appears in the evolution equation because a node may m
either at its own initiative or at the initiative of an eligibl
suitor ~cf. the earlier exact analysis!. A standard generating
function solution~see Appendix C 3! shows that

n~k,t !

n0
5S n021

k D ~12e22mt!ke22mt(n0212k).
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This result establishes the appropriateness of the mean-
treatment of the marriage contribution in our subsequent
proximate analysis of models in which both birth and m
riage occur. Indeed, for this special model with marria
alone, the mean-field evolution equation~67! is equivalent to
the exact evolution equation~64!, with pk,•,n(t) correspond-
ing to n(k,t)/n0.

C. Constant fertility polygamy

We retain the notation of Sec. IV B and seek an evolut
equation for the distributionpk,m,n(t) of a system with con-
stant birth rates~cf. the Yule trees in Sec. II! and the mar-
riage mechanism of Sec. IV B. In the infinitesimal interv
(t,t1h# the following four transitions that add one link t
the network can occur to produce the state (k,m,n); all other
events involving multiple births and/or marriages have pro
ability o(h), and allo(h) terms are suppressed in the ana
sis for brevity as usual.

~i! Node * gives birth:

~k21,m21,n21,s!→~k,m,n,s!,

with probability lhpk21,m21,n21(t).
~ii ! A node other than * gives birth:

~k,m21,n21,s21!→~k,m,n,s!,

with probability l(n22)hpk,m21,n21(t).
~iii ! Node * marries:

~k21,m21,n,s11!→~k,m,n,s!,

with probability 2m(n2k)hpk21,m21,n(t).
~iv! A marriage that does not involve * occurs:

~k,m21,n,s!→~k,m,n,s!,

with probability

m@n~n21!22~m21!22~n212k!#hpk,m21,n~ t !.

The probability that no event of the types~i!–~iv! occurs is
$12lnh2m@n(n21)22m#h%pk,m,n(t). We now readily
deduce that

d

dt
pk,m,n5lpk21,m21,n211l~n22!pk,m21,n21

12m~n2k!pk21,m21,n

1m@n~n21!22~m21!22~n212k!#pk,m21,n

2$ln1m@n~n21!22m#%pk,m,n . ~68!

As the random variableM (t) is not of primary importance,
we sum out overm to obtain an evolution equation for th
joint distributionpk,•,n(t) of K(t) andN(t):
4-13
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d

dt
pk,•,n5lpk21,•,n211l~n22!pk,•,n21

12m~n2k!pk21,•,n2$2m~n2k21!1ln%pk,•,n .

~69!

Note that if we also sum out overk, we obtain an evolution
equation for the marginal distributionp•,•,n5Pr$N(t)5n%,
namely,

d

dt
p•,•,n5l~n21!p•,•,n212lnp•,•,n , ~70!

so thatN(t) is a Yule process and the node ages theref
have the order statistic property as in Sec. II. However
instead we attempt to sum out overn in Eq. ~69! we do not
obtain an evolution equation for the marginal distribution
K(t) alone.

We introduce the generating function

P~k,z,t !5 (
k50

`

(
n51

`

pk,•,n~ t !kkzn ~71!

and obtain the partial differential equation

]P
]t

1$lz~12z!12mz~12k!%
]P
]z

22mk~12k!
]P
]k

5~lz22m!~k21!P. ~72!

Although it is possible to solve this equation using simi
methods to those employed in Appendix B for the tree m
els of Secs. II and III and for the model with marriage alo
in Sec. IV B, the resulting solution is expressed in terms o
relatively intractable integral, which we refrain from recor
ing here.

If we only wish to extract the means ofN(t) andK(t) we
can do so more directly by differentiating Eq.~72! with re-
spect toz or k and settingk5z51, from which we find that

]

]t
^N~ t !&2l^N~ t !&50, ~73!

]

]t
^K~ t !&12m^K~ t !&5l22m12m^N~ t !&. ~74!

With the initial conditionsN(0)5n0 andK(0)5k0, we find
that

^N~ t !&5n0elt, ~75!

^K~ t !&5k0e22mt1
l22m

2m
~12e22mt!

1
2mn0

l12m
~elt2e22mt!. ~76!

If we want the mean coordination number for an arbitra
node ~other than the primal node!, we have to average th
latter equation appropriately to take account of the time
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node has been in existence, which has probability den
functionle2lt/(12e2lt) if the chosen node was created
time t2t. Then the initial network sizen0 has to be taken as
the random variableN(t2t) for a process started at time
with one node initially present, and so has expectat
el(t2t). We thus have for a random node other than the p
mal node

~12e2lt!^K~ t !urandom nonprimal node&

5E
0

t

le2ltH l

2m
211S 22

l

2m De22mtJ dt

1E
0

t

le2ltel(t2t)
2m

l12m
~elt2e22mt!dt

5S l

2m
21D ~12e2lt!1

l~4m2l!

2m~l12m!
~12e2(l12m)t!

1
2melt

l12m H 12e2lt2
l

2~l1m!
~12e22(l1m)t!J

~77!

and so ast→`,

^K~ t !urandom nonprimal node&5
melt

l1m
1O~1!. ~78!

That is, for a process started at time 0 from a single prim
node,

^K~ t !urandom nonprimal node&;
m

l1m
^N~ t !&. ~79!

In Fig. 11 we show estimates of the mean coordination nu
ber as a function ofm/l ~20 realizations of a network of 100
nodes for eachm/l value shown!, together with the approxi-
mation 1000m/~l1m! based on Eq.~79!. The fit is excellent
for m/l.0.01. For a given network size, the difference b
tween the mean-field prediction and simulations is to be
pected for sufficiently smallm/l, since we know from Sec. II
that for m50, the mean coordination number of a random

FIG. 11. The mean coordination number of the constant ferti
polygamy case of Sec. IV C. We show results obtained from
realizations of a network of 1000 nodes for eachm/l value. The
curve is the approximation 1000m/~l1m! based on Eq.~79!.
4-14
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chosen node converges to 2 asn→`. Some simulations a
constant time are reported in Table III.

Consider now the mean-field approximation for th
model. We denote byn(k,t) the number of nodes with coor
dination numberk at timet and we writen(t)5(kn(k,t) for
the total number of nodes in the network at timet. The evo-
lution equation forn(k,t) is obtained by combining the
growth terms of the mean-field analysis of Sec. II, with t
terms from the mean-field treatment of network evoluti
due to marriage in Sec. IV B:

]

]t
n~k,t !5ln~k21,t !2ln~k,t !1ldk,1n~ t !

12m@n~ t !212~k21!#n~k21,t !

22m@n~ t !212k#n~k,t !. ~80!

In the third term we have noted that each birth create
node able to marry all but one of the nodes currently pres
The equation is slightly in error, since we treatn(t) as an
integer variable in setting up the evolution equation, but s
sequently treatn(t) andn(k,t) as continuously varying func
tions of time. We shall consider here only the initial cond
tion n(k,0)5dk,0 appropriate to a network grown from
single initial node. If we sum Eq.~80! over k we obtain
n8(t)5ln(t), leading to the appropriate mean-field pred
tion thatn(t)5elt, which we now use. The solution of th
mean-field Eq.~80! using generating functions is discuss
in Appendix C 4. We show there in particular that ast→`,
the mean-field model predicts that the mean coordina
number is

1

n~ t ! (
k

kn~k,t !;
mn~ t !

l1m
, ~81!

which agrees with the rigorous asymptotic value
^Kurandom node& given by Eq.~79!.

A sample of simulation data for networks inspected
fixed times is given in Table IV. These data illustrate t

TABLE III. We show the results of ten simulations of mea
coordination number scaled against network size for constant b
rate polygamy at three fixed times (t54, t56, andt58) for l51
and three values ofm ~m50.1, 1, or 10!, together with the corre-
sponding predictionm/~l1m! for this ratio.

Time Mean Standard deviation Predicted

m/l50.1 t54 0.1895 0.1037 0.0909 ~1/11!
t56 0.1094 0.0276
t58 0.0931 0.0038

m/l51 t54 0.5113 0.0736 0.5000 ~1/2!

t56 0.5107 0.0353
t58 0.5039 0.0289

m/l510 t54 0.7803 0.1570 0.9091~10/11!
t56 0.8851 0.0626
t58 0.9056 0.0076
06612
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significant fluctuations in network size and coordinati
number, but show that at fixed sufficiently large times t
fluctuations in internode distance are small. For fixed s
data, see Table V. We have not been able to find a sim
prediction of the mean internode distance.

D. Variable fertility polygamy

We continue the notation of Sec. IV B and seek an e
lution equation for the distributionpk,m,n(t) of a system with
variable birth rates as in Sec. III and the marriage mechan
of Sec. IV B. In the infinitesimal interval (t,t1h# the fol-
lowing four transitions that add one link to the network c
occur to produce the state (k,m,n); all other events involv-

h-
TABLE IV. Mean coordination number and internode distan

for constant birth-rate polygamy at three fixed times (t54, t56,
and t58) for l51 and three values ofm ~m50.1, 1, or 10!.

Casel51, m50.1 Mean Standard deviation

Number of nodes t54 25.4 13.7
generated t56 181.2 104.4

t58 1346.2 806.8

^K(t)urandom node& t54 3.641 1.514
t56 18.065 9.900
t58 123.043 72.112

Mean internode t54 2.376 0.527
distance t56 2.273 0.223

t58 2.030 0.095

Casel51, m51 Mean Standard deviation

Number of nodes t54 26.7 18.4
generated t56 192.2 137.6

t58 1398.0 1041.1

^K(t)urandom node& t54 13.010 8.185
t56 94.446 65.942
t58 700.192 522.527

Mean internode t54 1.446 0.133
distance t56 1.494 0.037

t58 1.499 0.026

Casel51, m510 Mean Standard deviation

Number of nodes t54 28.6 19.1
generated t56 227.1 163.0

t58 1680.0 1215.6

^K(t)urandom node& t54 24.689 17.927
t56 205.851 148.890
t58 1524.762 1103.106

Mean internode t54 1.160 0.102
distance t56 1.104 0.061

t58 1.092 0.007
4-15
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ing multiple births and/or marriages, or have probabil
o(h) and all o(h) terms are suppressed in the analysis
brevity as usual.

~i! Node * gives birth:

~k21,m21,n21,s!→~k,m,n,s!,

with probability l(k21)hpk21,m21,n21.
~ii ! A node other than * gives birth:

~k,m21,n21,s21!→~k,m,n,s!,

with probability

(
j Þ*

lkjhpk,m21,n215l@2~m21!2k#hpk,m21,n21 .

~iii ! Node * marries, as in Secs. IV B and IV C.
~iv! A marriage that does not involve * occurs as in Se

IV B and IV C.
The probability that no event of types~i!–~iv! occurs is

$122lmh2m@n(n21)22m#h%pk,m,n(t).
We again adopt the convention thatpk,m,n50 if k<0, or

m,0, n,0, or k>n. Taking account of all the events dis
cussed above, we obtain the evolution equation

d

dt
pk,m,n5l~k21!pk21,m21,n211l@2~m21!2k#

3pk,m21,n2112m~n2k!pk21,m21,n

1m@n~n21!22~m21!22~n212k!#

3pk,m21,n2$2lm1m@n~n21!22m#%pk,m,n .

~82!

If we introduce the generating function

P~k,j,z,t !5(
k

(
m

(
n

pk,m,n~ t !kkjmzn, ~83!

we find that

TABLE V. Mean coordination number and internode distan
for constant birth-rate polygamy~20 realizations of a network o
1000 nodes!.

Coordination
number

Internode
path length

m/l Mean Standard deviation Mean Standard deviati

0.001 3.012 0.047 6.0522 0.0891
0.01 11.84 0.41 3.1541 0.0362
0.1 93.18 2.49 2.0072 0.0112
1 499.4 12.9 1.5033 0.0133
10 904.7 5.4 1.0947 0.0054
100 987.3 1.9 1.0118 0.0019
1000 996.2 0.9 1.0028 0.0009
06612
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]P
]t

1mz2~12j!
]2P
]z2

1k~12k!j~lz22m!
]P
]k

1@2lj~12jz!22mj~12j!#
]P
]j

12mjz~12k!
]P
]z

52mj~12k!P. ~84!

The second-orderz derivative in this equation makes th
analysis somewhat more difficult than that encountered
the previous models. It is possible to obtain a slightly simp
equation forQ(j,z,t)5P(1,j,z,t), but even this equation
does not appear to permit any significant analytical progr
towards the calculation of probability distributions of inte
est, so we confine our attention to an analysis of momen

Before attempting an exact analysis of moments, we t
to mean-field arguments for guidance, knowing these ar
ments have given correct results for the models studied
lier in this paper. The mean-field evolution equation f
n(k,t), the number of nodes with coordination numberk, is

]

]t
n~k,t !5l~k21!n~k21,t !2kln~k,t !

1ldk,1(
k8

k8n~k8,t !12m@n~ t !212~k21!#

3n~k21,t !22m@n~ t !212k#n~k,t !. ~85!

This is a direct combination of the mean-field treatments
the model of Sec. III and of marriage in Sec. IV B. Th
initial condition isn(k,0)52dk,1 . We show in Appendix C 5
that Eq.~85! implies that the number of nodesn(t) and the
mean coordination numberc(t) are related by

c~ t !5
n8~ t !

ln~ t !
, ~86!

while

nc
dc

dn
22S 12

m

l D c1c25
2m~n21!

l
. ~87!

We have not found a closed-form solution of this different
equation except form/l51 ~see below!, but it is easily veri-
fied that the asymptotic solution for largen is

c5S 4mn

3l D 1/2

1
4

5 S 12
m

l D1O~n21/2!. ~88!

In Fig. 12 we show estimates of the mean coordinat
number for a network of 1000 nodes as a function ofm/l.
Simulations~20 realizations for eachm/l value! are shown
as disks. The straight line corresponds to the first term in
asymptotic expansion~88!. We note that for a fixed largen,
expansion~88! must fail in the limitsm/l→0 andm/l→`,
since we know from our earlier analyzes thatc(t)→2 and
c(t)5n(t)211••• in the casesm50 and l50, respec-
tively. However, we find that a numerical solution@37# of the
differential Eq. ~87! ~with the appropriate initial condition
4-16
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c51 for n52) gives mean-field predictions~shown by the
continuous curve in Fig. 12! that closely coincide with the
simulation results for nine decades ofm/l. The quality of the
mean-field approximation can also be seen from the d
given in Table VI.

In the special casem/l51, the differential equation~87! is
easily shown to have the exact solution

c25
4n

3
221

4

3n2
~89!

and so

n8~ t !

ln~ t !
5S 4

3D 1/2S n2
3

2
1

1

n2D 1/2

, ~90!

that is

l
dt

dn
5

A3

2l S n32
3

2
n211D 21/2

. ~91!

FIG. 12. The mean coordination number of the variable ferti
polygamy case of Sec. IV D. Results obtained from 20 realizati
of a network ofn(t)51000 nodes for eachm/l value are shown as
disks. The dashed line corresponds to the one-term mean-field
proximationA4mn(t)/(3l), and the continuous curve to the nu
merical solutions of the differential equation~87! for the mean-field
treatment. At the resolution of the figure, the latter curve is ind
tinguishable from the simulation results.
06612
ta

Integrating this fromn52 to n5`, we deduce that in mean
field theory forl5m, the network size becomes infinite a
the finite time

tc5
A3

2lE2

` dn

An32~3/2!n211
'

1.44

l
. ~92!

Moreover, we have for largen(t),

tc2t;
A3

2lEn(t)

` dz

z3/2
5

A3

lAn~ t !
. ~93!

Thus

n~ t !;
3

@l~ tc2t !#2
as t→tc . ~94!

One may argue from an asymptotic analysis of the diff
ential Eq.~87! for generall/m that in the mean-field treat
ment divergence of the network size occurs at some fi
time tc(l,m) for 0,m/l,`, but we have not pursued accu
rate estimates oftc(l,m) other than the special valu
tc(l,l) found above.

Guided by the mean-field analysis, we see what we
establish by exact arguments. Rigorous relations involv
averages ofK(t), M (t), andN(t) can be found by differen-
tiating Eq. ~84! with respect tok, j, or z and settingk5j
5z51, and we find that

d

dt
^K~ t !&2~l22m!^K~ t !&52m@^N~ t !&21#, ~95!

d

dt
^M ~ t !&22~l2m!^M ~ t !&5m^N~ t !@N~ t !21#&,

~96!

d

dt
^N~ t !&52l^M ~ t !&. ~97!

As these equations do not decouple, we cannot extract e
formulas for the moments. However, if we eliminate^M (t)&,
we deduce that

s

p-

-

nodes.
expan-

rect

0

1.5

.9

13.0
7.2

.086
0.007
TABLE VI. Mean coordination number and mean internode distances for variable birth-rate polygamy for a network of 1000
Simulation results for 0.0001<m/l<10 000 are averages over 20 realizations. We also give mean-field predictions. The asymptotic
sion ~88!, taken to one or two terms, is only useful for 0.01<m/l<100, and indeed the two-term expansion becomes negative for largem/l.
However, the predictions based on numerical solution of Eq.~87! agree well with simulations over the entire range and show the cor
transition to known long-time limits~2 for m/l→0 and 999 form/l→`).

m/l 0.0001 0.001 0.01 0.1 1 10 100 1000 10 00

Mean-field approximation One term from expansion~88! 0.365 1.155 3.651 11.55 36.51 115.5 365.1 1154.7 365
for mean coordination Two terms from expansion~88! 1.165 1.954 4.443 12.27 36.51 108.3 285.9 355.5 (,0)
number Numerical solution of Eq.~87! 2.047 2.432 4.589 12.29 36.49 108.5 297.0 640.7 917

Computer simulation for Mean 2.046 2.429 4.595 12.36 36.64 108.5 298.0 642.2 9
coordination number Standard deviation 0.010 0.019 0.088 0.19 0.84 2.2 7.1 9.8

Computer simulation for Mean 6.642 5.710 4.256 3.086 2.388 1.986 1.714 1.359 1
internode distance Standard deviation 0.402 0.187 0.031 0.014 0.018 0.011 0.009 0.010
4-17
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d2

dt2
^N~ t !&22~l2m!

d

dt
^N~ t !&12lm^N~ t !&

52lm^N~ t !2&

52lm@^N~ t !&21var$N~ t !%#>2lm^N~ t !&2.

If we assume that there exist constantstc , G, and g with
^N(t)&;G(tc2t)2g as t→tc , we see from inequality~98!
that for t sufficiently close totc we have

Gg~g11!~ tc2t !2g22>2lmG2~ tc2t !22g,

so thatg<2 and ifg52, thenG<3/(lm). Further, ifg.1, it
follows from Eq.~95! that for any fixed node,

^K~ t !&;2mG~g21!21~ tc2t !12g ~98!

and thus aŝN(t)&→` we have

^K~ t !&;
2mG1/g

g21
^N~ t !&121/g. ~99!

The mean-field calculation forl5m suggests thatg52. If
one makes this stronger assumption, it follows that^K(t)&
;H^N(t)&1/2, with the constantH<2A3m/l, for any fixed
node.

V. DISCUSSION

In this paper we have considered four models for the s
chastic growth of networks. All four models are based
well-defined time-evolving random processes, and we h
been able to study properties of the resulting networks b
as functions of time and as functions of network size, us
exact analysis, mean-field approximations and simulation

The first two models produce trees, that is, random n
works without cross-links. The ‘‘Yule tree’’ model of Sec.
assigns constant birth rates to nodes, while the ‘‘Re
Hughes tree’’ model of Sec. III has coordination-number d
pendent birth rates. In both cases, the mean coordina
number in the network converges to 2 in the long-time lim
but the coordination-number distributions differ greatly.
the constant birth-rate Yule tree model, the coordinati
number distribution converges to 22k, k51,2,3, . . . @Eq.
~14!#. For the variable birth-rate Reed-Hughes tree mod
the coordination-number distribution converges to the hea
tailed distribution 4/@k(k11)(k12)#, k51,2,3, . . . @Eq.
~45!#. These limiting distributions have been derived rigo
ously here~they have been previously proven@8,12# and re-
discovered@25# for the discrete analog! and are also identica
with the limiting distributions in a mean-field treatment. Th
striking difference between the two models reflects the f
that when a random node is examined, its coordinati
number distribution depends on how long the node has b
present in the network. The interplay of exponential grow
of a system and random lifetime of elements in the sys
being able to produce heavy tails is in line with general o
servations of two of the authors@19# that find applications in
a wide variety of contexts@15–18#, and embody a perspec
tive that goes back at least to Fermi in 1949@20#, but may
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have a much longer history, and should perhaps be be
known.

For the tree networks we have made some progres
studying the metrical structure of the network. The ex
results we give for Yule trees build on known results f
random recursive trees, a discrete-time model that unde
Yule trees. The apparent absence of analogous discrete-
results applicable to Reed-Hughes trees makes analys
this problem somewhat harder.

For both tree models we have discussed, mean-field tr
ments give predictions of the distribution of the ring numb
~the distance of nodes from the initial node! that agree well
with simulations for a given large network size. Realizatio
to-realization temporal fluctuations make the mean-field p
dictions much less accurate for predicting the distribution
a given time. For Yule trees, building on results for rando
recursive trees, we have derived the exact distribution for
ring number at fixed time.

In contrast to these successes of mean-field theory,
simple mean-field approach gives disappointing predicti
of the internode distance distribution, which can be und
stood by noting~as we have shown! that the treelike struc-
tures have a strong statistical anisotropy. For Yule trees
improved mean-field theory that addresses this anisotr
enables us to find a much better approximation to the in
node distance distribution

One quantitative measure of the metrical structure of
tree is the Wiener index, a sum over all internode distanc
For Yule trees the mean Wiener index for fixed network s
is known from earlier work on random recursive trees. W
have deduced from this the mean Wiener index at fixed tim
For both tree models, our mean-field analysis suggests
the Wiener index grows asymptotically as a multiple
^n&2ln ^n&, where n is the network size. This prediction
agrees to leading order with the exact result for the m
Wiener index for Yule trees. One may conjecture that w
high probability in any given realizationv of either process,
the Wiener indexWt(v) will have the asymptotic behavio
Wt(v);C(v)N(t)2ln N(t) ast→`, whereC(v) has a well-
defined distribution.

Concerning applications of our treelike models, the Yu
tree ~constant birth rate! model of Sec. II can be viewed a
the classical linear birth process, and therefore inherits
applications of that process, although the questions we h
asked differ from those normally asked in many of the st
dard applications. The Yule tree does not exhibit scale-f
@3# behavior. In contrast, the Reed-Hughes tree~variable
birth rate! model of Sec. III does produce scale-free n
works.

Both the Yule tree and the Reed-Hughes tree can
thought of as models for the spread of infectious disea
the former for diseases such as influenza or SARS, and
latter for sexually transmitted diseases in which more p
miscuous individuals~those with many previous contacts!
are more likely to spread the disease to new uninfected p
ners. The Reed-Hughes tree may also be a reasonable m
for food webs and networks of interacting proteins. For t
4-18
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Reed-Hughes model to apply to a system, the exponen
the empirical distributions of connectivities should be clo
to 3. In fact estimates cited by Albert and Baraba´si @3# are 3.4
for a network of sexual partners, 2.4 for the protein netw
of the yeastSaccharomyces cerevisiae, and 1.05 and 1.13 fo
two food webs. The first two are not too far from the value
3 derived in the model. Those for the food webs however
very different, but it should be borne in mind that the fo
webs are rather small, the largest having 186 nodes, so t
is probably considerable sampling error in the estimates

In Sec. IV we have addressed models in which links
tween nodes can be established not only by birth~which
brings new nodes into the network! but also by a cross
linking process that we describe as marriage, which in
duces a new characteristic cross-linking rate parameterm. In
the casem50 the models of Sec. IV reduce to the tre
growing models of previous sections. Models with cro
linking are of more potential interest in communication n
work modeling, since existing tortuous connection paths m
be supplanted as the network evolves by shorter paths.

We have studied the degenerate case in which the b
component of network evolution is disabled in Sec. IV
and shown that a mean-field treatment produ
coordination-number predictions that agree exactly with r
orous calculations. When constant birth rates and marr
are combined in Sec. IV C, we find that the problem rema
sufficiently tractable such that we can prove rigorously t
the mean coordination number of the network is asympt
cally proportional to the mean network size in the long-tim
limit ~this is also predicted by a mean-field analysis!. There
is scope for further work on the properties of this mod
including the difficult problem of determining the distribu
tion of internode distance.

The last specific model we have studied~Sec. IV D! com-
bines coordination number dependent birth rates with m
riage. The typical example of such a network is the Wo
Wide Web. When new nodes are added to the web, they
more likely to have links to nodes, such as Google, Ado
etc., that are already well connected than to weakly c
nected nodes, and nodes already present in the networ
more likely to be found by and linked to already we
connected modes. For the model of Sec. IV D few ex
results seem to be available, but mean-field arguments
simulations predict that the mean coordination number sc
as the square root of current network size~in excellent agree-
ment with simulations!, and also predict that the mean num
ber of nodes present in the system diverges as (tc2t)22 at a
finite time tc . Some rigorous bounds on exponents that m
characterize divergence of the mean number of nodes an
mean coordination number of a fixed node are derived,
there are opportunities for further analysis. In particular, n
works with directed links merit examination, and the tec
niques of the present paper may be useful in that contex
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APPENDIX A: SIMULATION DETAILS

Simulation code was written in C. For brevity below,~fp!
and ~int! denote floating point and integer, respectively. F
simulating trees~Secs. II and III!, two lists are maintained
The first is a list of allbirth events, both past and future
Each birth event is a C structure consisting of birth time~fp!,
identity number of mother~int!, and ring number of mothe
~int!. This list is sorted in order of increasing birth times, a
the data structure used for the list is a binary search t
Since we will often be inserting new items into the middle
a sorted list, the binary tree data structure should be m
more efficient than either arrays or linked lists.

The second list, namely, thenode property listis a list of
nodes and certain information associated with each no
Each node entry is a C structure consisting of birth time~fp!,
ring number~int!, identity number of mother~int!, number of
daughters~int!, list of daughters~implemented as an array!
consisting of daughter’s identity number~int! and daughter’s
birthtime ~fp!, and dlimit ~int!—a number used to chec
whether we have filled up the daughters array, to then a
cate more memory. The node property list is also imp
mented as an array, and the subscript of the array is use
the identity number of the node. Identity numbers are
dered such that higher identity numbers are created at
times.

For trees, the calculation of the distance between any
of nodes is straightforward, since there is a unique path jo
ing the nodes. We first move back through the tree towa
the primal node from the node with higher ring number un
we have the same ring number as the other node. We
move from both nodes towards the primal node until
encounter a common node.

For simulatingnetworks with internal links, three lists are
maintained. The first is a list of all birth events, both past a
future. The second is a list ofall birth and marriage events
that have occurred, but no future events. Each event is a
structure consisting of time of event~fp!, type of event~b or
m!, id1 ~int!, and id2~int!. For birth events, id1 gives birth to
id2. For marriage events, id1 chooses to link to id2. Bo
lists are sorted in order of increasing birth times. The list
birth events is implemented as a binary search tree for
same reasons as for tree networks. The list of all events
have occurred is implemented as an array. This list is
really required in practice, but is a useful check that t
simulation is running correctly. The third list is a list o
nodes. Each node entry is a C structure consisting of birt
time ~fp!, number of partners~int!, list of partners~imple-
mented as an array! consisting of partner’s identity numbe
~int! and time the link was created with partner~fp! sorted in
order of increasing link times~we do not differentiate be-
tween nodes being a mother, daughter, etc.!, plimit ~int!, a
number used to check whether we have filled up the partn
array, to then allocate more memory. The node list is imp
mented as an array, and the subscript of the array is use
the identity number of the node, as for trees.

The algorithm used in determining the shortest dista
4-19
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between any two nodes in a network with cross-links is
‘‘breadth first search’’ algorithm@38#. Conceptually this is
quite simple. To find the shortest distanced(A,B) between
two distinct nodes A and B, we pick one of the nodes, say
and set all of A’s nearest neighbors to be distance 1 from
Call this set of nearest neighborsS1. If BPS1, then
d(A,B)51 and the search ends. Otherwise, consider e
node ofS1 in turn, search its nearest neighbors, and for a
of them that have not yet been assigned a distance from
assign distance 2. The process continues until node B is
signed a distance. Since the network is connected, nod
will always be found.

So far as the actual practical implementation of this al
rithm goes, we control the order in which we process
different nodes with a first-in first-out queue data structu
The queue used is array based, though queues using li
lists are also possible@39#. When we first set all of A’s near
est neighbors to be distance 1 from A, we also put the id
tity numbers of these nearest neighbors into a queue. N
we get the first element from the queue, search among
nearest neighbors, and any of these nodes which have
already been processed or is already in the queue are ins
into the end of the queue. Then we get the second eleme
the queue and repeat the step above. We keep repeatin
until either B is found~this always occurs for a connecte
network such as those considered in the present paper! or the
queue is empty~for a disconnected network with A and B i
disjoint components of the network!.

When we wish to determine the distances between
pairs of nodes in the network, the simple approach of cho
ing each pair~A,B! of nodes in turn and implementing th
above algorithm is inefficient. Instead it is better to consid
each node A in turn, and use the basic breadth-first se
algorithm to determine the distances of all nodes from A

APPENDIX B: JOINT DISTRIBUTIONS

We outline here the solution for the joint distributions
coordination number and nodes for the models of rando
growing trees discussed in Secs. II and III. The method
characteristics is used to solve an appropriate first-order
tial differential equation for the generating function

P~k,z,t !5 (
k50

`

(
n51

`

pk,n~ t !kkzn, ~B1!

where pk,n(t)5Pr$K(t)5k,N(t)5n%. The same technique
can be used for the exact analysis of model involving m
riage without birth discussed in Sec. IV B, but as the det
are practically identical to those for the mean-field analy
of that model in Appendix C 3, we do not give them he
The models with cross-linking produce harder partial diff
ential equations. For the model of Sec. IV C, the partial d
ferential equation for the generating function of

Pr$K~ t !5k,N~ t !5n%5pk,•,n~ t !5(
m

pk,m,n~ t !
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can be solved in terms of an integral, but as useful ex
results do not appear easily extracted from it, we do not g
details here. The second of our models with cross-link
~Sec. IV D! produces a partial differential equation of seco
order for the generating function, and does not appear a
nable to explicit solution.

1. The Yule tree model of Sec. II

From Eq.~2! we find that the partial differential equatio
to be solved for the generating functionP(k,z,t) defined by
Eq. ~B1! is

]P
]t

1lz~12z!
]P
]z

5l~k21!zP. ~B2!

We first solve the ordinary differential equationdz/dt
5lz(12z), which giveselt(12z)/z5const as the charac
teristic curves of Eq. ~B2!. We then write P(k,z,t)
5F(X,t), whereX5elt(12z)/z and obtain the equation

1

F

]F

]t
5

l~k21!elt

X1elt
,

giving F(X,t)5F(X)(X1elt)k21. The function F(X) is
found from the initial conditionP(k,z,0)5kk0zn0, corre-
sponding toK(0)5k0 andN(0)5n0, and we deduce that

P~k,z,t !5
kk0zn0e2n0lt

@12z~12e2lt!#n01k21
. ~B3!

This reduces in the special casesk51 andz51 to simple
single-variable generating functions from which the margi
distributions ofN(t) andK(t), respectively, follow. We can
also deduce by differentiating the generating function app
priately the moments of the distribution. The covariance
cov$K(t),N(t)%5elt21, and the correlation coefficient is

cov$K~ t !N~ t !%

Avar$K~ t !%var$N~ t !%
5

~12e2lt!1/2

~n0lt !1/2
,

so thatK(t) and N(t) are asymptotically uncorrelated ast
→`.

The expansion of the generating function we have fou
in both variables is messy and unenlightening, but we
serve that where (a)n5G(n1a)/G(a), with G the usual
Gamma function, we have

(
k5k0

`

pk,n~ t !kk5
~n01k21!n2n0

kk0

en0lt~n2n0!!
~12e2lt!n2n0,

while

(
k5k0

`

pk,n~ t !5p•,n~ t !5
~n0!n2n0

en0lt~n2n0!!
~12e2lt!n2n0

and so the generating function for the conditional distrib
tion of K(t), givenN(t)5n, has the form
4-20
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(
k5k0

`

Pr$K~ t !5kuN~ t !5n%kk5
~n01k21!n2n0

kk0

~n0!n2n0

,

~B4!

and this contains no explicit time dependence. Moreover,
a polynomial ink, and for values ofn that are not extrava
gantly large, we can calculate the conditional probabilit
using standard computer algebra packages.

We note, in particular, that on appropriately differentiati
Eq. ~B4! and settingk51 the conditional mean and varianc
of the coordination number can be found exactly in terms
the digamma functionc(z)5G8(z)/G(z) and its derivative,
and the large-n asymptotic behavior extracted:

^K~ t !uN~ t !5n&5k01c~n!2c~n0!5k01 (
j 5n0

n21
1

j
,

var$K~ t !uN~ t !5n%5c~n!2c~n0!1c8~n!2c8~n0!

and the asymptotic forms~3! and ~4! follow.

2. The Reed-Hughes tree model of Sec. III

From Eq.~37! the partial differential equation for the gen
erating functionP(k,z,t) is

]P
]t

1lk~12k!z
]P
]k

12lz~12z!
]P
]z

52l~12z!P.

We construct two families of characteristics by solving t
simultaneous equations

dk

dt
5lk~12k!z,

dz

dt
52lz~12z!,

and are thus led to writeP(k,z,t)5exp@Q(X,Y,t)#, where

X5S 12k

k D 2 1

12z
, Y5e2ltS 12z

z D .

This gives

]Q
]t

52lS 12
e2lt

Y1e2ltD ,

so thatQ(X,Y,t)52lt2 ln(Y1e2lt)1f(X,Y), with the func-
tion f (X,Y) to be determined from the initial condition
which we take to beP(k,z,0)5kz2, so that the specified
node whose coordination we study is here taken to be on
the two nodes initially present. After a little algebra we fin
that

P~k,z,t !5
z2e22lt

12~12e22lt!z
S 11

~12k!/k

A12~12e22lt!z
D 21

.

From derivatives of this solution we may show that the c
variance is cov$K(t),N(t)%5 1

2 (e3lt2elt). The correlation
coefficient is
06612
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cov$K~ t !,N~ t !%

Avar$K~ t !%var$N~ t !%
5

~12e22lt!1/2

2~12e2lt!1/2
,

and this converges to 1/2 in the long-time limit, so that t
coordination number of a given one of the two starting nod
retains its correlation with the number of nodes present
all times. Observe that the correlation coefficient does
converge to 1 ast→01; a similar result holds for the con
stant birth-rate model when the system is started with m
than one node initially present.

APPENDIX C: MEAN-FIELD SOLUTIONS

1. The Yule tree model of Sec. II

If we define the generating function

N~k,r,t !5 (
k50

`

(
r 50

`

kkr rn~k,r ,t !, ~C1!

we find the evolution Eq.~19! corresponds to

]N
]t

~k,r,t !1l~12k!N~k,r,t !5lkrN~1,r,t !, ~C2!

which we solve with initial conditionn(k,r ,0)5dk,0d r ,0 , so
that N(k,r,0)51. Write F(r,t)5N(1,r,t), so that
F(r,0)51, and setk51 in Eq. ~C2! to deduce that

]

]t
F~r,t !5lrF~r,t !

so thatF(r,t)5elrt and the required solution of Eq.~C2! is
easily shown to be

N~k,r,t !5
~11r!~12k!e2l(12k)t

11r2k
1

kr

11r2k
elrt.

Thus

lim
t→`

(
k50

`

(
r 50

`

n~k,r ,t !kk

(
k50

`

(
r 50

`

n~k,r ,t !

5 lim
t→`

N~k,1,t !

N~1,1,t !
5

k

22k
5 (

k51

`
kk

2k

and Eq.~20! follows.

2. The Reed-Hughes tree model of Sec. III

If we again introduce the generating function~C1!, we
find that the evolution Eq.~46! and initial condition corre-
spond to

]N
]t

1lk~12k!
]N
]k

5lkr
]N
]k U

k51

, ~C3!
4-21
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andN~k,r,0!5~11r!k, respectively. To solve the partial dif
ferential equation~C3!, we use a variant of the method o
characteristics. Suppressing the dependence onr in notation
for brevity, we define

F~ t !5
]N
]k U

k51

~C4!

so that the equation to be solved is

]N
]t

1lk~12k!
]N
]k

5lkrF~ t !. ~C5!

Solving the equationdk/dt5lk(12k) we find the charac-
teristic curves to be given byX5elt(12k)/k, and we seek
the general solution of Eq.~C5! by writing N5Q(X,t),
which gives

]Q

]t
5

lreltF~ t !

X1elt
.

Integrating from 0 tot and writing F(X)5Q(X,0), we de-
duce that

N~k,r,t !5E
0

t lreltF~t!dt

X1elt
1F~elt~12k!/k!.

From the initial conditionN(k,r,0)5(11r)k we have
F(k2121)5(11r)k, whenceF(z)5(11r)/(11z). Re-
placing the variableX by the original variables, we have no
shown that

N~k,r,t !5E
0

t lrkF~t!dt

k1el(t2t)~12k!
1

~11r!k

k1elt~12k!
.

To determine the functionF(t), we differentiate with re-
spect tok and setk51, giving

F~ t !5~11r!elt1lreltE
0

t

F~t!e2ltdt.

If we write F(t)5eltx(t) we obtain

x~ t !511r1lrE
0

t

x~t!dt,

leading to the differential equationx8(t)5lrx(t) and initial
condition x~0!511r, so x(t)5(11r)elrt, and it follows
that

N~k,r,t !5E
0

t lr~11r!kel(11r)tdt

k1el(t2t)~12k!
1

~11r!k

k1elt~12k!
,

which is Eq.~47!.

3. Marriage alone

With N(k,t)5(k50
` n(k,t)kk, the evolution Eq.~67! be-

comes
06612
]N
]t

22mk~12k!
]N
]k

12m~12k!~n021!N50,

with the initial conditionn(k,0)5n0dk,0 becomingN(k,0)
5n0. Solving the equationdk/dt522mk(12k) we find
the characteristic curvesX5e22mt(12k)/k, and write
N(k,t)5Q(X,t). This gives

]Q

]t
12mS 12

e22mt

X1e22mtD ~n021!Q50,

and so

Q~X,t !5Q~X,0!e22m(n021)t/~X1e22mt!n021.

Fitting the initial condition, we find that

N~k,t !5n0e22m(n021)tS X11

X1e22mtD n021

5n0@e22mt~12k!1k#n021

and using the binomial theorem to extract the coefficient
kk, we obtain the mean-field approximation

n~k,t !5n0S n021
k D ~12e22mt!ke22mt(n0212k),

which agrees with an exact calculation of the coordinatio
number distribution in Sec. IV B. The general solution~66!
of the exact evolution Eq.~64! for pk,•,n(t) can be con-
structed by a slight extension of the preceding analysis.

4. Constant birth-rate polygamy

We introduce the generating function

N~k,t !5 (
k50

`

n~k,t !kk,

so that the initial condition isN~k,0!51. As we have already
noted thatn(t)5elt ~both rigorously and in mean field!, we
are able to deduce from Eq.~80! that

]N
]t

22mk~12k!
]N
]k

1~12k!@l12m~elt21!#N

5klelt, ~C6!

with the initial conditionn(k,0)5dk,0 becomingN~k,0!51.
The solution by characteristics is very similar to that in A
pendix C 3, but the integrals that arise in the solution do
appear to be simply evaluable and we do not write th
out. We settle for extracting the mean-field prediction
the mean coordination number. Writem(t)5(kkn(k,t)
5]N/]kuk51. Then on differentiating Eq.~C6! with respect
to k and settingk51 we deduce that

m8~ t !12mm~ t !2lelt22m~elt21!elt5lelt,
4-22
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with m(0)50. This differential equation is easily solved. W
find that ast→`, m(t);me2lt/(l1m), and so the mean
field prediction of the mean coordination number
m(t)/n(t);mn(t)/(l1m).

5. Variable birth-rate polygamy

IntroducingN(k,t) as in Appendix C 4 and noting tha
the relevant initial condition isN(k,0)52k, we find the
evolution equation

]N
]t

1~l22m!k~12k!
]N
]k

12m~12k!

3@Nuk5121#N5lk
]N
]k U

k51

. ~C7!

We write for brevityn(t)5N(1,t) for the total number of
nodes present andm(t)5]N/]kuk51. The mean coordina
tion number is then
at
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06612
c~ t !5N~1,t !21]N/]kuk515m~ t !/n~ t !.

Setting k51 in Eq. ~C7! gives n8(t)5lm(t) and soc(t)
5n8(t)/@ln(t)#. Differentiating Eq.~C7! with respect tok
and then settingk51 gives

m8~ t !22~l2m!m~ t !22m@n~ t !21#n~ t !50.

We may now eliminatem(t) in favor of n(t) to obtain the
mean-field evolution equation forn(t),

n9~ t !22~l2m!n8~ t !22lm@n~ t !21#n~ t !50, ~C8!

to be solved subject to the initial conditionsn(0)52,
n8(0)52l. The differential Eq.~C8! is autonomous, so we
can obtain an associated first-order differential equation
the standard way. Writev5n85lnc so thatn95v dv/dn
5l2nc d(nc)/dn, giving an evolution Eq.~87! for c as a
function of n.
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