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Abstract. We have evaluated the dynamical image interaction between a moving charge and a 
spatially dispersive medium as well as the Van der Waals dispersion energy between a 
dipole and the same substrate. The spatially dispersive medium is represented by the ‘infinite 
barrier’ model with specular reflection of current fluctuations at the interface. Numerical 
estimates of the effect are computed using a hydrodynamic model for the dielectricpermittivity. 

1. Introduction 

In a series of papers we have considered the effects of spatial dispersion on the Lifshitz- 
van der Waals interaction between macroscopic bodies (Chan and Richmond 1975a, b-- 
to be referred to as I and 11). Our derivation in terms of a general wavevector-dependent 
bulk dielectric permittivity E ( q ,  w) was based on the so-called ‘infinite barrier’ model. 
That is, we supposed that the charge carriers were reflected specularly at the interfaces. 
Similar results have recently been derived independently by Inglesfield and. Wikborg 
(1975) and Harris and Griffin (1975). 

Now calculations which include retardation effects for interacting metal bodies 
across air indicate that the effect of spatial dispersion may be quite significant (Chan 
and Richmond 1976). However, the distances at which this effect occurs are not large 
(6 30 A) and although it may be possible to observe the effect using particle removal 
experiments such as have been done in colloid science (Visser 1973) these are likely to 
be difficult. Another way may be via physisorption experiments such as measurements of 
the isosteric heats of adsorption which are related directly to the interaction potential 
between the atom and substrate. For example, using a simple Lifshitz-van der Waals 
potential combined with a fixed cut-off distance we have recently correlated the isosteric 
heats for homologous series of hydrocarbons and alcohols on graphite (Chan and 
Richmond 1975~).  Clearly similar experiments may be done on metals. 

A complete theoretical analysis of this situation should strictly include a treatment 
of the overlap of the electron wavefunctions. However, an analysis of the Lifshitz-van 
der Waals interaction using the infinite barrier model may give a useful estimate of the 
physisorption potential for certain atoms. This combined with a cut-off in the manner 
suggested above may then yield isosteric heats. 
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Another way of studying spatial dispersion may be via electron scattering techniques. 
Thus it is also of interest to calculate the effect of spatial dispersion on the dynamical 
image interaction of a charged particle moving with respect to a substrate. The dynamical 
image interaction of charges with dielectrics has been studied by a number of authors 
(Ray and Mahan 1972, Takimoto 1966, Ritchie 1957). We have shown elsewhere how 
classical techniques may be used to calculate this interaction (Chan and Richmond 1973). 

In this note we compute both the static interaction between a dipole and spatially 
dispersive substrate as well as the dynamical interaction between a charge and the same 
substrate. 

2. Dynamical image interaction 

Consider a charge of strength Q with velocity U moving with respect to a planar spatially 
dispersive substrate with bulk dielectric permittivity E ( q  ; w). We suppose the charge 
may not penetrate the surface but is reflected at time t = 0. Choosing a co-ordinate 
system with z axis perpendicular to the plane substrate which occupies the half space 
z < 0 we may write the charge density of the moving particle D(Y, t) = QS(x)S(y - v l l t )  
6(z - ul l t ( )  where u l ,  is the component of the velocity parallel to the surface ( y  axis) 
and uL is the magnitude of the z component, 

We now introduce the two-dimensional Fourier transform of the electric potential 
0: 

where U and K are two-dimensional vectors: o = (x, y )  and K = ( K x ,  K J .  Following our 
earlier work (references I and 11) we may write: 

eikz 

4nB(K. w) 
- m  271 ( k 2  + K2)E(q, CO) 

z < 0 (3) 

where p(q, w) is the usual three-dimensional Fourier transform of the charge density 
given by : 

and 

p(q; W) = dr  dt exp [ -i(q . Y - o t ) ] p ( r ;  t )  ss 
m 

= 2Q dt exp ( -  ik u,t) cos (w - KyulI)t. 
- m  

The z components are of the displacement vector are 

D " z ; K ; w )  = - a4/az  z > o  

and 
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Expressed in this form, the specular reflection of fluctuating currents at the surface of 
the spatially dispersive medium is automatically accounted for (note q = (K, k)). 

Now after some elementary manipulations we obtain from ( 5 ) :  

- exp( - Kz)} .  (8) 
It is now a straightforward matter to match the usual boundary conditions across the 
interface at z = 0 to obtain: 

where 

The dynamical image interaction, 
region z > 0: 

is now given in terms of the induced potential in the 

V = d3rp(u, t)Qind(r, t )  s 
where 

From (9) (1 1) and ( 1 2 )  we immediately obtain : 

V(z = U J t l )  = - - Q2vL Id'K dw exp [-i(w - K9ul l ) t ]  
-a, 

For an incoming particle t < 0 the integral over w may be done by closing the contour 
in the UHP. (Note that Z is analytic in the UHP since it is a 'retarded' function.) 
Thus we finally obtain : 

e - 2 K z  

V = s h 2 K  471 -[%I K E  ̂ + 1 w = K g C I I + i K o l *  (14) 

In order to proceed we use the well documented hydrodynamic model for the dielectric 
function, i.e. 

(1 5 )  

in conjunction with the relation p2 = 3 VE where V, is the Fermi velocity. This definition 
ensures the long-wavelength dispersion of the bulk plasmon mode agrees with that given 
by complete quantum mechanical calculations. Furthermore, we have considered only 
normal incidence, i.e. u l l  = 0. We now obtain for the interaction energy 

o2 
E ( q ,  0) = 1 + - 

p 2 q 2  - w2 



166 Derek Chan and Peter Richmond 

Clearly as z .+ m the exponential dominates the integral and we may replace K by zero 
in the remainder to obtain the leading order 

V,(z) - 2 - Q 2 ~ ~ d K e - 2 K z x  1 = -Q2/4z (17) 

which is the usual Coulomb potential. However, for finite values of z, the present result 
deviates significantly from this potential. We have computed the dynamical image 
potential for the case of an aluminium substrate where hwp = 14.2 eV and the Fermi 
energy E ,  = 11.64 eV. In figures la-c we have plotted the ratio (solid curves) 

R(B, 2) = V,(Z; uI; PI/( - Q2/4z) 
and compared it with the local limit R(0, z) (broken curves) to illustrate how spatial 
dispersion affects the dynamical image interaction. The results in figure la-c correspond 
to incident electrons of energy 1,10,100 eV respectively. 

0.2 l/k, ( U )  I /kF ( b )  I/k, (C) 
I ,  , 

I I t I  I I 4 1  I I 

5 IO 15 5 IO 15 5 IO 15 
ztA, 

Figure 1. The ratio of the dynamical image interaction energy to the coulomb potential, 
R(b. z) (see text), with (solid curves) and without (broken curve) spatial dispersion, as a function 
of distance (A). The substrate is aluminium hmp = 14.2eV, E ,  = 11.64eV. Figures a-c 
correspond to incident electrons of energy 1, 10, 100 eV respectively. 

From the results we see that for fast electrons spatial dispersion is not important 
(figure IC) since the electron only couples effectively with the high-frequency, long- 
wavelength surface excitations. For slow electrons, the short-wavelength response of 
the surface plasmon modifies significantly the dynamical image interaction (figure la). 
In this case the charges in the substrate have sufficient time to respond and screen out the 
interaction. 

3. Van der Waals interaction 

Consider now an oscillating dipole which for simplicity is assumed to have an isotropic 
polarizability ~(0). The dipole is situated in air at v1 = (cl, zl) (zl > 0) above a planar 
semi-infinite spatially dispersive substrate occupying z < 0. 

We may obtain the van der Waals interaction using the well known method of normal 
modes (van Kampen et al 1968). This may be obtained directly from the response to an 
oscillating test charge situated at r1 (Richmond 1974). Thus, using the same notation as 
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above we have: 

z < o  (19) 

where now we have: 

p(q, w) = dv exp ( -  iq . r )p (v ,  w)  s 
and 

p(v,  w)  = 6(v - vl) e'"'. (21) 
The z component of the displacement vector is given by equations (6) and (7). Matching 
boundary conditions now yields the charge response function : 

4iindir; r1 ; w)  = - exp [iK . (a - a,)] - - (22) 
4n 
2K 1 + 1  

- l )  exp [ - K ( z  + z,)]. 

The dipole response matrix G is now readily obtained. We have: 

G(v; w) = - lim [V,; Vrl Oind(v; v1  ; w)].  

D(w) = 11 - M G ~  

(23) 
r'rl 

Imposing self-consistency, i.e. P = aGP, now yields the required secular determinant: 

(24) 
The van der Waals interaction between dipole and substrate is now 

m '  
VvDw = kBT 1 In11 - aGI 

n = O  
\?) , 

n = O  
N -kBT Tr (G}a(iC,). 

From equations (22), (23) and (25) we now finally obtain : 

Z - 1  m VvDw = -2k,T c' m a(iCn)f dKK2e-2K'(-), 
0 2 + 1  n = O  

For metals the dominant contribution comes from frequencies 5, = 2xnkBT/h - wp 
and we may replace the sum over frequencies by an integral using the prescription 

kBT + h/2x dt .  
n = O  s, 

As before, in order to proceed we have used the hydrodynamic model for the dielectric 
function (equation 15) and a simple oscillator representation for the dipole, i.e. 

.(it) = xo/(l + t2/w,"). 

We now obtain from equation (26): 
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Figure 2. The ratio of the van der Waals potential with or without spatial dispersion for an 
isotropic dipole of characteristic frequency w,, = 2 x lox6 rads-'  as a function of distance 
(A). Other data are the same as in figure 1. In the regime which is denoted by a broken line, 
our result becomes less accurate since the detailed nature of the interface becomes important. 

where y = wp/wo, [ = /3/2wpz. Clearly, in the limit /3 = 0, we obtain the normal van der 
Waals interaction VV,,(O; z) = - hw a y/8z3.  In figure 2 we have plotted Vv,,(/3; z)/ 
VVDw(O; z )  for wo = 2 x rad s - l ,  hwp = 14.2 eV and E ,  = 11.64 eV. (Note that 
this ratio is independent of ao.) The effects of spatial dispersion are clearly evident well 
before we expect the theory to break down z 2 k; '. This should then be reflected in the 
isosteric heat since it is essentially proportional to the minimum in the interaction poten- 
tial, i.e. a calculation omitting spatial dispersion would give an over-estimate of the isos- 
teric heat. 

P O  
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