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A model is developed to describe the dynamic forces acting between two deformable drops, or
between one drop and a solid surface, when they are in relative axisymmetric motion at separations
of =100 nm in a Newtonian liquid. Forces arise from hydrodynamic pressure in the draining liquid
film that separates the interfaces and from disjoining pressure due to repulsive or attractive surface
forces. Predictions of the model are successfully compared with recent experimental measurements
of the force between two micrometer-scale surfactant stabilized decane drops in water in an atomic
force microscope [S. L. Carnie, D. Y. C. Chan, C. Lewis, R. Manica, and R. R. Dagastine, Langmuir
21, 2912 (2005); R. R. Dagastine, R. Manica, S. L. Carnie, D. Y. C. Chan, G. W. Stevens, and F.
Grieser, Science 313, 210 (2006)] and with subnanometer resolution measurements of
time-dependent deformations of a millimeter-scale mercury drop approaching a flat mica surface in
a modified surface force apparatus [J. N. Connor and R. G. Horn, Faraday Discuss. 123, 193 (2003);
R. G. Horn, M. Asadullah, and J. N. Connor, Langmuir 22, 2610 (2006)]. Special limits of the
model applicable to small and moderate deformation regimes are also studied to elucidate the key
physical ingredients that contribute to the characteristic behavior of dynamic collisions involving

fluid interfaces. © 2008 American Institute of Physics. [DOI: 10.1063/1.2839577]

I. INTRODUCTION

In many multiphase processes ranging from ore flotation
in the mineral industry to controlling emulsion stability in
the manufacture of pharmaceutical and health care products,
an important objective is to quantify and control the interac-
tion involving deformable interfaces. For instance, the stabil-
ity of two interacting drops in a suspension depends on the
interplay between the intrinsic electrochemical forces be-
tween the interfaces of the drops and forces arising from the
hydrodynamic flow in the thin (~1-100 nm) film between
the drop surfaces. Deformations of the drop surfaces also
play a key role in modulating these interaction mechanisms.

There have been a number of adaptations of the atomic
force microscope (AFM) to measure both static forces in-
volving deformable bubbles' ™ and oil dropss’14 in solution
and the dynamic forces that arise when the drops in such
systems are in relative motion.'””"” In AFM measurements of
dynamic forces between two oil drops in water, the drops are
mounted on the AFM cantilever and on the substrate which
are then driven together and separated according to a preset
velocity schedule. The resulting time and separation depen-
dent force that arise from hydrodynamic flow of the aqueous
thin film between the deformable drops as well as electrical
double layer interactions is measured by monitoring the de-
flection of the cantilever (Fig. 1). In typical force measure-
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ments between decane emulsion drops of radii in the range
40-500 um stabilized by anionic surfactants (sodium dode-
cyl sulfate) the dynamic forces as a function of displacement
can be measured with a precision within 0.1 nN over a range
of attractive and repulsive forces that span over 10 nN. '8!
These experiments are relevant to the study of emulsion sta-
bility because the range of relative velocities that can be
achieved in the AFM experiments span the average thermal
velocity of emulsion drops in the same size range in solution.
While AFM experiments provide direct information about
variations of the force between interacting deformable drops
in equilibrium or in relative motion, there is at present no
direct information about details of surface deformations that
occur as a result of the drop-drop interaction.

In contrast, the surface force apparatus (SFA) has re-
cently been adapted to visualize deformations of a mercury/
electrolyte interface that arise from interactions with an ap-
proaching mica plate (Fig. 2). This technique provides real
time measurements of the hydrodynamic drainage process of
the intervening aqueous film for thicknesses down to
~50 nm with subnanometer resolution,zo’21 but currently
does not yield direct information about the forces or pressure
distributions that give rise to the observed interfacial defor-
mations. However, if the colloidal forces in the SFA experi-
ments can be quantified, it is possible to extract the time-
dependent hydrodynamic pressure distribution in the
draining film.” Being a conducting liquid, a bias voltage can
be applied between the mercury and the bulk electrolyte to
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FIG. 1. Schematic configuration of the atomic force microscope (AFM) for measuring dynamic forces between two decane drops stabilized by sodium dodecyl
sulfate in aqueous electrolyte solution. Relative motion between the drops is generated by specifying the displacement X(#) as a function of time which can,
for example, be driven at a set ramp speed V (see inset). The force is deduced from the measured cantilever deflection As using the independently determined

spring constant K of the cantilever.

control the surface potential and hence the electrical double
layer interaction that provides a disjoining pressure between
the mercury and the mica plate. Strongly repulsive, strongly
attractive or intermediate forms of the disjoining pressure
can be obtained by selecting different values for the bias
voltage (Fig. 2).

The complementary nature of the AFM and SFA experi-
ments has been bridged by a model which has proved very
successful in predicting AFM dynamic force measurements
between two moving decane drops stabilized by sodium
dodecyl sulfate in an aqueous electrolyte as depicted sche-
matically in Fig. 1."%1%2 The same model can also account
for the time-dependent interfacial deformations of a mercury/
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aqueous electrolyte interface that arise from hydrodynamic
interactions with an approaching flat mica surface in the SFA
(see Fig. 2).2** The theory performs equally well for inter-
acting decane drops of 40—500 wm radius in the AFM ex-
periments and for mercury interfaces of ~2 mm radius in the
SFA experiments where in addition, the surface forces be-
tween the mica plate and the mercury drop arising from elec-
trical double layer interactions can be made to be repulsive
or attractive by adjusting the bias voltage between the mer-
cury and the bulk electrolyte solution.”*

Given the progress thus far in direct measurements and
quantitative modeling of surface deformations and dynamic
force involving drops, we now aim:
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FIG. 2. Schematic diagram of a mica surface approaching a protuberant mercury drop from a sealed constant volume capillary tube of diameter ~2 mm.
Variations of the aqueous film thickness, A(r,7) resolved to subnanometer precision are obtained from analysis of fringes of equal chromatic order captured
on the spectrometer. (Top inset) Variations of the position of the mica when driven at constant velocity for a fixed time. (Bottom inset) Disjoining pressures
between the mica plate and the mercury drop with various surface potentials as calculated from the nonlinear Poisson-Boltzmann theory (Ref. 26); strongly
repulsive (SR, =492 mV), weakly repulsive (WR, =52 mV), weakly attractive (WA, —12 mV), and strongly attractive (SA, +408 mV) due to electrical double
layer interactions with the mica surface (~100 mV) at 0.1 mM 1:1 electrolyte concentration. It has been shown in Ref. 20 that the experimental disjoining
pressure is accurately described by this theory. The disjoining pressure due to van der Waals forces is shown in the dotted line and the magnitude of the

Laplace pressure (207/R) is indicated by the horizontal dashed line.
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(1) to elucidate the key physical principles underlying force
measurements involving deformable surfaces by deriv-
ing from the general governing equations limiting forms
which are valid for small and large (in the context of
surface force measurements) forces;

(2) to point out the need to use the correct far field boundary
condition for the interfacial velocity that reflects the
constant volume constraints of interacting drops;

(3) to demonstrate how drive-and-stop displacement proto-
col of SFA measurement gives rise to constant force
condition;

(4) to undertake further comparisons between components
of the dynamic force derived from SFA experiments
with theory; and

(5) to explore variations of the measured force in AFM ex-
periments with capillary number and contact angle
which can inform the design of further AFM
experiments.

This paper is organized as follows: In the next section
we detail the governing equations and the far field boundary
condition that follows from the constant volume constraint
appropriate for describing dynamic force measurements be-
tween two drops with the AFM and deformation studies us-
ing the SFA. From the displacement protocol of the SFA
experiments, we make the connection between the present
model and existing constant Velocity27 and constant force™
boundary conditions. We also derive simple expressions for
the force-displacement result that are valid for small and for
large forces. These results are validated by comparison with
the full numerical solutions of the governing equations. They
prove to be accurate and convenient approximations in lim-
iting cases that can circumvent the need for more cumber-
some numerical computations. Comparisons between AFM
and SFA experimental results and theory are given Sec. III.
The paper closes with a discussion that considers reasons
why the no-slip or immobile hydrodynamic boundary condi-
tion at the liquid/liquid interface provides the best agreement
between experiments and theory and other assumptions of
the model.

Il. MODEL
A. Governing equations

In both the AFM and SFA experiments, the film thick-
ness, h, the radial dimension of the film, s and the unper-
turbed radius of curvature of the drops, R, obey the inequali-
ties R;>>>ry>>h, and characteristic fluid velocities are in the
regime where the familiar Stokes—Reynolds thin film drain-
age model applies. For a film with axial symmetry the gov-
erning equation for the film thickness h(r,z) is

dh 1 4 d
n_ Lo o) .
dt  12urdr ar

where u is the shear viscosity of the aqueous film and p(r,?)
is the hydrodynamic pressure in the film relative to the bulk
pressure. Implicit in Eq. (1) is the assumption of the no-slip
hydrodynamic boundary condition at all interfaces. Theoret-
ical predictions with the no-slip boundary condition offer the
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best agreement between experiment and theory in our studies
involving deformable surfaces using the AFM'" and using
the SFA.** For the AFM experiments, the presence of
charged surfactants (sodium dodecyl sulfate) near the critical
micelle concentration renders the oil/water interface immo-
bile. Electrokinetic mobility experiments29 indicate that such
emulsion drops behave hydrodynamically like a solid par-
ticle with a no-slip hydrodynamic boundary condition. For
the SFA experiments with mercury drops, previous
works™" indicate that since the mercury/electrolyte inter-
face is charged, the constraint of electroneutrality of a thin
electrical double layer at the charged interface gives rise to
an effective no-slip hydrodynamic boundary condition.

In the configuration of a mercury drop against a rigid
surface with local radius of curvature R, the axisymmetric
deformation of the drop, consistent with the thin film ap-
proximation, is governed by the modified Young-Laplace
equation in the form® >’

ad( oh I 1
g—(r—) = 20(1_? n I?) —(p+1II) one drop (SFA),

rodr\ oJr s

(2a)

where I1(h(r,7)) is the disjoining pressure in the film due to
surface forces such as electrical double layer interactions or
van der Waals forces, o is the interfacial tension of the drop
and (20/R) is the Laplace pressure of the drop. The SFA
configuration of a rigid mica plate (Fig. 2) corresponds to the
limit R;— 0. For the AFM configuration of two interacting
drops (Fig. 1) the modified Young-Laplace equation is

(p+11)

o d| dh 20
g2 _22 two drops (AFM),  (2b)

r - _
2rdr\ dr R

where 0‘1=(0':.]+0';1)/2 and R‘1=(R;1+R;1)/2 are defined
in terms of the interfacial tensions and Laplace pressures
(20./R,) and (20,/R,) of the two drops which may have
dissimilar properties. Implicit in Eq. (2) is the assumption
that deformations take place under quasiequilibrium condi-
tions under a dynamic pressure (p+1I1)."®

The instantaneous force, F(r) exerted on the drop has
contributions from hydrodynamics and disjoining pressures

F(t) =2moG(t) = 27wa [p(r,t) + IL(h(r,1))]rdr. (3)
0

This assumes that the drop radius is much larger than the
range of hydrodynamic forces so that the interacting inter-
faces are nearly flat and parallel. The length G(¢) defined in
Eq. (3) arises naturally in later discussions. Equations (1) and
(2) are to be solved numerically in a suitable radial domain
0<r<ry.x Where the surfaces at r>r,,, are sufficiently far
apart that effects of disjoining pressure can be omitted. The
initial film thickness is taken to be
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}’2

hgtar + R, one drop (SFA),

h(}", tslart) = r2 (4)
Rgar + — two drops (AFM),
R

where in the one drop case R;'=(R;'+R;"') with R, as the
unperturbed radius of the drop. For the AFM configuration of
two interacting drops (Fig. 1) Ry is the value of R in Eq. (2b)
expressed in terms of the unperturbed radii of the drops.
These expressions for the initial film thickness assume that
the interfaces are far apart and the surfaces are undeformed.

Symmetry considerations require dh/dr=0 and dp/dr
=0 at r=0. At the outer boundary r~r,,,, the expected
asymptotic form of the pressure p~r~*°° for large r is
implemented as

at 7 =rypax- (5)
The integral for the force can be evaluated as

F)=2m f () + THh(r, 1) rdr
0

oo

+ 27

r

p(r,t)rdr, (6)

max

where r,,, has been chosen large enough to ensure that
[I(A(r>ry.)) < 20/R, so disjoining pressure can be ignored
in the second integral and the asymptotic form of the pres-
sure p is used to evaluate the integral directly.

1 1+cos @ .
1+ < log| —— |, pinned TPL,
2 1—cos 0
B(6) =
1 1+cos @ 1 .
1+~ log - , slip TPL.
2 1-cos @/ 2+coséb
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A further boundary condition or constraint, the nature of
which depends on the physical problem under consideration,
is required to completely specify the solution. One such case
is the constant force constraint that is imposed on Eq. (3) and
is appropriate for interaction under gravity or buoyancy ef-
fects. This case has been considered in detail by Yiantsios
and Davis.”*® Another boundary condition that is commonly
used in the literature is the constant velocity condition which
states that at r=ry,., Jh/dt=V, an imposed constant
velocity.”’37 However, the modeling of measurements under-
taken using the AFM and the SFA require a new boundary
condition that reflects how drops interact and deform under a
constant volume constraint as they are driven together or
pulled apart by an externally controlled displacement as de-
picted in Figs. 1 and 2.

It has been shown that when a sessile drop with an equi-
librium contact angle @ (see Fig. 2) and unperturbed drop
height z, is subjected to an applied force that is localized
around the apex, the perturbed drop height z°“*'(r) outside
the zone in which the force acts has the following small r (on
the drop scale) asymptotic form as the drop deforms under

constant volume,' 1%
o) = 20 4 ( ; ) B(6) (M)
) = —_+ 0 - + ]
Z r 20 R g 2Rd

The constant B(#) depends whether during deformation, the
three phase contact line (TPL) remains pinned or is free to
slip on the substrate to maintain the unperturbed contact
angle 6 and is given by

(8)

Equation (7) for the drop profile, which reflects the constant volume constraint on the deforming sessile drop, is an expansion
correct to first order in (G/R,). This result together with the geometric condition (see Figs. 1 and 2),

one drop (SFA),

h(r,t) +z(r.1),
X(t) = { two drops (AFM),

h(r,1) +z,(r,t) + z.(r,1),

9)

give the required boundary condition at r,, by a differentiation with respect to ¢ to eliminate the constants

dX oh dGg
—=—+a—— at r=rp.x
dt ot dt
where
log<@> +B(6), one drop (SFA),
2R,
o=

/

VR.R,

rmﬂx
2 10g< T) +B(6.)+B(6,),  two drops (AFM).

(10)

(1)
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Equation (10) is the appropriate constant drop volume
boundary condition for AFM and SFA experiments in which
the variation of the displacement function X(z) with time 7 is
specified. In these experiments, the effects of driving the
drops via the displacement function X(z) enter as the bound-
ary condition, Eq. (10), for the film drainage Stokes—
Reynolds equation (1) and surface deformation, Eq. (2). The
term adG/dt in Eq. (10) accounts for effects due to defor-
mations of the drop outside the interaction zone under a con-
stant volume constraint. The unperturbed contact angles 6,
and 6, are defined in Fig. 1. For convenience of later discus-
sions, we define

X(1) = 2o, one drop (SFA),

AX(t) - {X(I) - Zp() — 200> two dI'OpS (AFM) (12)

where AX(r)=0 corresponds to the position where mica and
the mercury drop (SFA) or where the two drops (AFM)
would have come into contact had the drops not deformed.

In the SFA experiment when the mica plate is pushed
towards the mercury drop for a time interval and then stops
(see Fig. 2), whereupon dX/dt=0 thereafter, we expect dh/ dt
will also vanish at r,, so we will have dG/dt=0 as well
from Eq. (10). So from Eq. (3) we can see that after the mica
stops, the system will evolve as a constant force system as it
approaches equilibrium.

The governing equations (1)-(6) and Egs. (8)—(11) can
be solved by the method of lines through central difference
discretization in r. Since the force, Eq. (3), enters in the new
boundary condition, Eq. (10), we have a system of
differential-algebraic equations. With the scaling (based on
the capillary number Ca=uV/0), h.=R,Ca'?, r,.=R,Ca"*,
p.=0/Ry and t,=uCa'?/p. we can achieve more than
seven digit precision with a scaled grid size in r=0.02 and a
scaled r,,x=10—15. The system of typically around 500
equations can be solved by using the MATLAB routine
ode15s."® The domain size of our numerical scheme satis-
fies 7./ Rp<<0.3 and the value of r,, is checked to ensure
that deformations and forces are independent of its precise
value. Thus we can see from Eq. (10) that if dX/dt=-V (a
constant), then the constant velocity boundary condition
oh/dt=-V is only valid if r,,=ry, the radius of the capillary
tube in the SFA experiment.

Before we obtain numerical solutions of the governing
equations of the model and compare with experimental re-
sults we can obtain two limiting solutions that are valid for
small and large forces at low velocities.

B. Approximate analytical results

While the numerical solution of the governing equations
(1)=(11) can be readily obtained, a certain amount of famil-
iarity with numerical analysis and software tools is required.
This section presents relatively simple and accurate approxi-
mate analytical results for the physically interesting and im-
portant force-displacement relationships for both small and
large forces. These formulas are validated by comparison
with full numerical solutions in the next section.

We first provide a result applicable for small forces when
deformations of the interfaces are small. In the AFM and
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SFA experiments the capillary number Ca<107>. We scale
all physical variables using37 {G,AX ,h}~(Ca?R), r
~(Ca"*R), {p,II}~(d/R), t~(Ca™"? Ru/ o) and seek a so-
lution for the nondimensional film thickness of the form

h(r,t) = a(t) + Br? (13)

to obtain an expression for the dynamic force, F(r) defined
by Eq. (3), in physical units,

F(t) =— 6mRaCa'?df/dt, (14)

where f(r)=log(a(z)) and the function a(t) obeys the follow-
ing differential equation:

3 da(1) s 1 i

o) dr {B(0)+log(Ca//2)+2 log(2a(?)) | - a(t)
=—AX(r) (SFA), (152)

3 da) 5

4a(t) dr [B (6) +B(6,) +2 log(Ca'™12)

+ % log(a(t))] —a(t)=—-AX(t) (AFM). (15b)

The derivation of this result is given in Appendices A
and B. The range of applicability of this result can be seen by
comparing against the full numerical solution in Fig. 6
below.

When the dynamic deformation of the interacting sur-
faces is large, we can identify a film radius, Iy which char-
acterizes the extent of flattening of the surface due to inter-
actions. This radius is given by (see Appendix C)

R.[* (I
rp= :T[fo (p+1IDrdr| =GR, (16)

so that the dynamic pressure profile can be approximated by

(Z(T/Rf), o<r< rf,
(p+1I) = ' '
0, r>ry.

(17)

With this simplified picture of the surface deformation
and pressure profile, we obtain the desired result that links
two experimental quantities: the displacement AX(¢) and the
force F(t) (see Appendix C),

F FR,
AX = hs+ log 5
4o 8moR;

+2B(0) — 1] one drop (SFA),

(18a)

AX=h,+ F 1 ( d >+B(0)+B(¢9) 1
= —| log| —— . -
I w8 8770'\"?13,, .

27o

- 7} two drops (AFM). (18b)

The constant thickness Ay is an approximate attempt to
account for the fact that the force will start to be significant
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when the surfaces are at hy apart (where AX =hf) rather than
at AX=0, when the surfaces would have come into contact
without deformation.

An important observation about Eq. (18) is the nonlinear
nature of the force-displacement relationship over the typical
range force magnitudes. Also this force-displacement rela-
tionship depends on properties of the drop such as the unde-
formed drop radius, interfacial tension, contact angle, the
particle radius, as well as whether the three phase contact
line is pinned or is free to slip via the function, B(6). This
has implications in any attempt to locate the constant com-
pliance region of AFM results. Earlier work on the interpre-
tation of direct force measurements involving drops and
bubbles assumed that they deform as Hookean springs.l’”

lll. RESULTS
A. Approximate formulas: SFA geometry

We compare the extent to which the approximate results
for small forces equation (14) and large forces equation (18)
are able to model the force-displacement curves due to hy-
drodynamic interactions for the case of a single drop against
a moving flat plate in the SFA configuration as given by the
model described by Egs. (1)—(12). Disjoining pressure ef-
fects have not been included in this comparison.

In Fig. 3(a), we compare the large force analytic formula
given by Eq. (18a) with the numerical solution of Egs.
(1)—(12) for the approach of a mica plate at constant velocity
(V=24 pum/s) towards a mercury drop. The mica plate is
driven to 17.5 um beyond the point at which the mica would
have made contact with the mercury drop if the drop did not
deform (AX=-17.5 um). We see that the analytic formula
tracks the full numerical results closely for AX<-5 pm.

To assess the accuracy of the small force result given by
Egs. (14) and (15a), the mica plate is driven towards the
mercury drop at 24 um/s until AX=0 (where the surfaces
would have touched if the mercury did not deform), and is
then retracted at the same speed. In Fig. 3(b) we can see that
all the key features of the force-displacement curve, includ-
ing the force maximum at AX=0 and the depth and position
of the attractive minimum in the retraction branch are repro-
duced quantitatively by the approximate formula. For com-
parison, the constant velocity Reynolds formula applicable to
rigid spheres, F=6muR>V/AX=67uR*V/[X(0)-Vt], which
diverges at AX=0 is also given. This comparison validates
the utility of the simple approximate small force result in
replicating quantitative and qualitative features of the force
versus displacement result without the need to obtain a more
complicated full numerical solution.

B. Comparison with SFA experiments

An assessment of the model given in Egs. (1)—(12) in
predicting measured time evolution of the deformations of a
mercury/electrolyte interface due to an approaching mica
plate at constant velocity is given in Fig. 4. We see that for
the system with disjoining pressures detailed in Fig. 1 the
model performs equally well in the presence of a strongly
repulsive (SR) disjoining pressure between the mica and the
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FIG. 3. Comparison of approximate results (solid lines) for large [Eq. (18a)]
and small forces [Eqs. (14) and (15a)] with full numerical solution (broken
lines) for the force against mica displacement between a single mercury
drop (surface tension 420 mN/m, undeformed radius of curvature 1.9 mm)
interacting with a flat mica plate in the SFA geometry across water driven at
a constant velocity of 24 um/s. (a) The mica plate is driven to a position
17.5 pm beyond the position where the mica and the mercury would have
made contact if the mercury did not deform (i.e., AX=-17.5 um) and h,
=0. (b) The mica plate is driven to AX=0 and is then retracted at the same
speed. There is no disjoining pressure term between the mica and the mer-
cury interface. The constant velocity Reynolds result (dotted line) is also
included for comparison.

mercury that leads to an equilibrium flat film when the mica
stops, or in the presence of a strongly attractive (SA) disjoin-
ing pressure that lead to an unstable film that ultimately col-
lapses as the mercury jumps into contact with the mica plate.
Similar results have been presented previously.24

From the film profiles, the total force between the mica
and the deformable mercury drop can be calculated and sepa-
rated into contributions from hydrodynamic and disjoining
pressure contributions.” In Figs. 5(a) and 5(b) we can see
excellent agreement between the force components predicted
from theory and deduced experimentally. This is not surpris-
ing since the profiles as seen in Fig. 4 are in excellent agree-
ment. It is interesting to note that until the mica stops, after
which the mercury interface of the strongly attractive case
collapses onto the mica, the force as a function of time is
nearly identical between the strongly repulsive and the
strongly attractive cases [Fig. 5(c)]. Indeed this portion of the
force curve is also well described by the large force formula,
Eq. (18a).

The results in Fig. 5(c) also demonstrate that after the
mica stops, the interface in the strongly repulsive case
evolves towards the equilibrium film under constant force as
pointed out in Sec. II A. To leading order, the value of the
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FIG. 4. Comparisons between numerical solutions of Eqs. (1)-(12) (lines)
and SFA experiments (symbols) of the profile of an aqueous film between a
deformable mercury drop and an approaching mica plate at constant velocity
V for (a) strongly repulsive (SR) disjoining pressures at r=—0.02, 0.02, 0.06,
0.14, 0.26, 0.42, 0.555 (dashed curve, without data points—mica stops),
0.62, 0.82, 1.62, 3.62, and 13.62 s. (b) Strongly attractive (SA) disjoining
pressures at 1=—0.02, 0.02, 0.06, 0.14, 0.26, 0.42, 0.5 (dashed curve, without
data points—mica stops), 0.58, and 0.64 s. The point =0 is defined to be
the time at which the curvature of the profile at =0 changes sign, A is the
initial distance of closest approach between the mica and the mercury and
AX,.x is the maximum displacement of the mica plate. See Fig. 1 for details
of system parameters (Refs. 21 and 24).

constant force is approximately equal to the Laplace pressure
of the drop multiplied by the film radius which is approxi-
mately constant [curves (d)—(g) in the inset of Fig. 5(c)] after
the mica stops. As the deformation of the drop remains small
compared to the drop dimension, the Laplace pressure re-
mains essentially constant.

C. Comparison with AFM experiments

We now compare predictions of the force calculated
from Egs. (1)-(12) as well as from the approximate formula
for small forces [Egs. (14) and (15b)] and large forces [Eq.
(18b)] with an example of the dynamic force between two oil
drops with adsorbed sodium dodecyl sulfate (SDS) as mea-
sured on the AFM at a relatively low drive velocity of
2 ,Lml/s.19 Other relevant system and input parameters are
R.=41 pm, R,=90 um, 6,=100°, 6,=50°, h;=26 nm, Ay,
=1.81 um, AX_,=2 um, o=10 mN/m, surface potential
¥,=-100 mV, Debye length «'=3.3 nm, and Ca=1.8
X107

From Fig. 6 we see that for AX=0, the small force
approximation given by Egs. (14) and (15b) is very close to
the full numerical solution and to the experimental data. For
F=1 nN, the large force analytic result, Eq. (18b), becomes
applicable. The full numerical solution of the governing
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FIG. 5. Comparisons between numerical solutions of Egs. (1)-(12) (lines)
and SFA experimental (symbols) determinations of components of the total
force as a function of time for (a) the strongly repulsive (SR) disjoining
pressure (note the change in scale on the time axis at 7=2 s). (b) Strongly
attractive (SA) disjoining pressures. The time at which the mica stops is
indicated by the vertical arrow. (c) An illustration that the force between the
SR and SA cases are nearly identical until the mica stops when the SA
system jumps into contact while the SR case continues to evolve to the
equilibrium film under a constant force condition—from point (d) when the
mica stops to point (g).

equation is in excellent agreement with experimental results
at all displacements. As the drive velocity increases, the full
numerical solution becomes necessary in bridging the transi-
tion region between the low force limit and the moderate
deformation regime. One should also bear in mind that the
governing equations given by Egs. (1)-(12) have been ob-
tained under a small strain assumption, as defined by
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2
10 mM SDS
V=2um/s
15
E 1} Small Experiment
o force
Eq. (14)
Numerical solution
0.5
Large force
formula Eq. (18b)
0 L I "
-200 -100 0 100 200
AX (nm)

FIG. 6. Comparisons between the numerical solution of Egs. (1)—(12) which
lies on top of experimental forces measured on the AFM between two dec-
ane drops on approach, the large force formula given by Eq. (18b) and the
small forces result given by Eqs. (14) and (15b). The drive velocity is
2 pm/s. The disjoining pressure due to electrical double layer interactions
between the drops is repulsive (Ref. 19).

(F12moR) < 1 (see also Sec. IV). Fortunately current AFM
and SFA measurements fall within this regime.

IV. DISCUSSION

The AFM and SFA experiments probe the behavior in-
volving deforming interfaces on very different scales. For
example the characteristic drop sizes are of order micrometer
in the AFM and millimeter in the SFA experiments. The
forces involved also differ by three orders of magnitude: nN
for the AFM and uN for the SFA. Also the interfacial ten-
sions: oil/water and mercury/water, differ by two orders of
magnitude. However, the two types of experiments are simi-
lar when viewed on an appropriate scale.

In both cases, the deformation of the interface on the
macroscopic scale is characterized by AX and there is a char-
acteristic length associated with the interaction force, F' and
the interfacial tension o, G=F/2mo. Dimensional analysis
expects a functional relationship between the dimensionless
ratio (G/R) and the strain (AX/R) that can also depend on
the contact angle €. In Fig. 7, it is evident where the AFM
and SFA experimental systems reside in this scaled domain.

The effects of varying the drive velocity, V in AFM force
measurement and the associated variations with the capillary
number (Ca=uV/ o) are demonstrated in Fig. 8. We observe

5
I AFM
0? "
4 0 V=2um/s i
1
N 03 Experiment |1
2 ! increasing |,
%3  SFA e Ca number | ! 1
— 101 1
Z / \
&2 V =24 um/s 5 1
c |
1
1
1 | |
|
0 |

-10 -5 3 0 5
AX/R (x 10%)

FIG. 7. Comparisons between AFM and SFA forces on the same scale. The
inset provides details due to variations in the capillary number, Ca.
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FIG. 8. AFM results plotted on the dimensionless force-strain scale. (a) For
such experiments, unrealistically large drive velocities still correspond to
small capillary numbers, Ca. (b) Comparison with AFM experimental results
at 1 mM SDS. The large force result [Eq. (18b)] is applicable to low veloci-
ties or Ca=107". The full numerical solution is required to describe results
at higher capillary numbers.

that the large force formula [Eq. (18b)] is applicable for
AX/R=0 at low velocities =2um/s or Ca=< 1077, while the
full numerical solution of Egs. (1)-(12) is required to de-
scribe results at higher capillary numbers.

Finally we demonstrate the effects of contact angle in
SFA (one drop) and AFM configurations (two drops, assum-
ing identical contact angles) on the dependence of the force
on the displacement in Fig. 9 in the limit of zero capillary
number. With increasing contact angle, the drop(s) become
more compliant which results in a lower scaled force for the
same value of the scaled strain or deformation (AX/R).

AX/R (Two drops)
-0.4 -0.3 -0.2 -0.1 0
0.1
0.08 6 =50
6=90
& 0.06
©
B
[
T .04 0=150
0.02
-%.2 -0.15 -0. -0.05 0

1
AX/R (One drop)

FIG. 9. Variations of the scaled force with scaled deformation for the AFM
(two drops, identical contact angles) and SFA (one drop) configurations at
zero capillary number.
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In this study we have demonstrated the utility of a model
based on the Stokes—Reynolds theory of thin film drainage
and the Young—Laplace equation of drop deformation that
can provide accurate descriptions of force measurement and
deformation studies based on the AFM and the SFA. A key
element of the model is that the constant volume constraint
of interacting drops gives rise to a new boundary condition
for the set of partial differential equations. Two simple ana-
lytic limits of this model have been derived. One is appli-
cable at large separations and small forces for which contri-
butions of the disjoining pressure can be neglected and the
other is applicable at large force but at low capillary numbers
or drive velocities where a stable dynamic film forms be-
tween the interacting interfaces. While the model is essen-
tially a small strain model, it has been demonstrated that it
covers the practical range of direct force measurement based
on this family of apparatus. Fortunately, this regime also
covers the domain of interactions of interest in typical drop-
let and emulsion interactions. The model also assumes that
the deformable interface can be modeled by a constant inter-
facial tension. This can be justified as follows. In the AFM
force measurements between decane drops stabilized by the
charged surfactant sodium dodecyl sulfate, the surfactant
concentration is high, near the critical micelle concentration.
As such the oil/water interface is fully populated by surfac-
tants which then renders the interface to be “immobile” in
the traditional hydrodynamic sense. Also in the low capillary
number regime of these experiments, tangential stress due to
hydrodynamic flow are four orders of magnitude smaller
than the surface pressure of surfactant at such concentrations.
For the mercury/electrolyte interface, the interfacial tension
is over 40 times higher than the decane/water system. We
also find that the measured time dependence of the surface
deformation can only be accounted for by a no-slip boundary
condition. This observation is consistent with studies of the
electrokinetic properties of mercury drops where an apparent
no-slip condition can be shown to be the result of the
(highly) charged nature of the mercury/electrolyte
interface.”

The present detailed modeling effort of deformations and
hydrodynamic drainage on the nanoscale can be extended to
applications where the hydrodynamic conditions are more
vigorous, as for example, in mineral flotation applications,
where there may be large scale deviations of the drop geom-
etry from sphericity. A possible approach may be along the
lines of a recent study40 but with a more detailed matching of
the outer boundary condition of the thin film domain to large
deformations of a moving drop or bubble, as we have done

P r
AX(r) + ﬁ - G|:10g<2—Rd> + B(@):|
houter(r, t) — r2

AX(r) + ' G{z log<2

/

VIR LY,

,
W) +B(6,) + B(01,)] two drops (AFM),
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here by matching with a physical constraint of constant
volume.
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APPENDIX A: FORMAL RESULTS

We first derive some formal results from the governing
equations relevant to both the SFA (one drop) and the AFM
(two drops) configuration. Equation (1) can be integrated for-

mally to give
ds ¥ oh(x,t)
3 X dx
sh’(s,1) J ot

p(r)=- 12,uf (A1)
and Eqgs. (2a) (in the flat plate limit, R,—0) and (2b) can
also be integrated to give the inner solution

maner(r’ l) - ,Bh(O,t) + r— + —J Ky log(s/r)[p + H]dSs
2R ()

(A2)

where the constant S=1 for the one drop against a flat plate
geometry [SFA equation (2a)] and 8=1/2 for the two drop
geometry [AFM equation (2b)]. Now p(r,f) can be elimi-
nated from Egs. (Al) and (A2) to give the formal but exact
result

maner(r’ t) — Bh(()’t) + L + —f Ky log(S/V)HdS
2R gJy

6,uf’ s log(s/r)ds fs dh(x,1)
- dx

X
g Jy h3(s,t) 0 ot

3u (" sds J S Oh(x,t)
+— 3 X dx
g Jy h (S, t) 0 Jt

3 " d 5 oh(x,t
+—Mr2f 3s f X (x )dx.
g 0 Sh (S,t) 0 ot

When r is large compared to the radial extent of the film, this
inner solution matches the outer solution that follows from
Egs. (7), (9), and (12),

(A3)

one drop (SFA),
(A4)
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and we can identify the coefficient of log(r) as

0=, ), o

gJo

(A5)

which from Eq. (Al), is equivalent to the definition of the
force given in Eq. (3).

APPENDIX B: SMALL FORCE LIMIT

We can develop a solution valid for weak interactions
that include hydrodynamic interactions and surface deforma-
tions but omitting effects due to disjoining pressure. The re-
sult is expected to be accurate for AX>0 before surface
forces become important. We first scale variables using the
capillary number Ca=(uV/0),” {G,AX,h}~(Ca'?R), r
~(Ca"R), {p,II}~ (d/R), t~(Ca~"? Ru/ o) and use a trial
solution of the (nondimensional) form

h(r,t) =a(t) + Br? (B1)

on the right-hand side of Eq. (A3) to construct the inner
solution. While the trial solution assumes that the film profile
has a parabolic shape, the inner solution given by Eq. (A3)
will contain the requisite logarithmic term to match with the
outer solution, Eq. (A4). To determine the unknown function
a(t) we substitute Eq. (B1) into the right-hand side of Egq.
(A3), take the r— oo limiting form to match the result to the
outer solution Eq. (A4). This matching gives a first order
differential equation for a(z),

ida(t) » 1 )

alt) dr [B<0)+10g(ca//2)+210g(2a(t)) a(t)
=-AX(r) (SFA), (B22)
3 da(r)

4a(r) Zt [B(af)J’B(ep)+210g(Ca”4/2)

+ % log(a(t))} —a(t)=—AX(r) (AFM). (B2b)

By setting f(¢)=log(a()) the numerical solution of Eq.
(B2) is straightforward to determine and the force, Eq. (6),
can be expressed in terms of this dimensionless function f(z),
which is a function of the dimensionless time according to
the scaling

F=-6mRoCa (B3)

1/2dl.

d
The range of applicability of this approximation is demon-
strated in Sec. III.

APPENDIX C: LARGE FORCE LIMIT

We can derive a simple analytic expression for the force-
displacement relationship valid for large forces (in the con-
text of surface force measurements) when the dynamic inter-
action is repulsive between a solid particle and a drop. For a
sessile drop subjected to an applied pressure distribution (p

Phys. Fluids 20, 032101 (2008)

+11) localized axisymmetrically about the apex as depicted
in Fig. 2, the drop height z(r,7) obeys the modified Young—
Laplace equation

o d r(dz/dr) B 20
ro"r{[l+(&z/&r)2]1/2}_(p+n)_ R’ €1

On a radial scale that is small compared to the drop radius,
the denominator may be replaced by unity and the resulting
equation can be integrated to obtain the large r (on the scale
of the radial extent of the film) limiting form of this inner
solution

2
2" £) = 2(0,1) 2r_R - H+ G log(r), (C2)

where z(0,1) is the perturbed drop height at r=0,
1 00
H()=— f [p(r,t) + T(r,0) ]r log(r)dr (C3)
oJo

and G is given by Eq. (3). The requirement for the small r
limit of the outer solution, Eq. (7), to match with the large r
limit of the inner solution, Eq. (C2), gives an expression for
the deformation of the drop apex

1
-z200,)=-H-G log< ) +B(6) |. (C4)
2R,
We can integrate the equation for the film thickness, i given
by Eq. (2a) to give (R;IER‘1+R;1),

oh 1

- Ir'dr'. Cs
aer(JO(w)rr (C5)

When (p+11) is repulsive, a dynamic film of constant thick-
ness hy forms between the drop and the solid particle. The
value of /i, can be estimated by setting the right-hand side of
Eq. (2) to 0. The drop is flattened against the solid particle,
oh/dr~0 on the scale of the drop radius and we can define
the film radius, r; to be the value of r at which dh/dr starts to
increase on the scale of the drop radius. From the right-hand
side of Eq. (C5) we can identify an approximate value of the
film radius, ry by the radial position when the slope of the
film profile begins to increase rapidly on the scale of the drop

R. [ 12
~ —IJ (p+1Drdr| = \/G_Rf (C6)
g Jy X

so the dynamic pressure distribution within this film can be
approximated by

(p+1I) = {(()ZU/RJI)’

0<r<rf,
(C7)
s r>rf.

Using this approximation in Eq. (C4) gives an approximate
expression for the drop deformation in terms of the force, F,

F {log< FRq >+2B(0)—1} (C8)
To 8moR;

where to leading order in (G/R,;) we have made the approxi-
mation R;'=R'+R;'=R;'+R'=R;".

z0—2(0,1) = -
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From the definition of the displacement function AX(7)
in Eq. (12) we now have the desired results between the two
measurable experimental quantities: the displacement, AX(r)
and the force, F,

F FRy
AX=h+ log 3
4mo 8moR;

+2B(0) - 1} one drop (SFA). (C9a)

The constant dynamic film thickness 1 has been added to the
right-hand side as an approximate attempt to account for the
fact that the force will start to be significant when the sur-
faces are at hy apart, where AX=h,, rather than at AX=0,
when the surfaces would have come into contact without
deformation.

The one drop SFA result corresponds to the limit of the
particle radius, R,— o, or Ry— R, the undeformed radius of
the drop. With the appropriate expression for B(6) from Egq.
(8), the result in Eq. (C9a) is valid for both the pinned or free
to slip three phase contact line condition and for acute or
obtuse contact angles, 6.

A similar derivation gives the corresponding result for
the force-displacement relation for two drops in the AFM for
which we have to account for the deflection of the cantilever
with spring constant K (see Fig. 1),

g
AX=h;+— log<

- J <500

8o VR R,

2
+B(6,) -1~ %r two drops (AEM).  (COb)

In practice the deflection of the cantilever is often taken into
account before the data are analyzed for force-displacement
effects.
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