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Dynamic deformations and forces in soft matter
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The ability of soft matter such as drops and bubbles to change shape

dynamically during interaction can give rise to counter-intuitive

behaviour that may be expected of rigid materials. Here we show

that dimple formation on approach and the possibility of coalescence

on separation of proximal drops in relative motion are examples of

this general dynamic behaviour of soft matter that arises from the

coupling between hydrodynamic forces and geometric deformations.

The film capillary number Caf h (mVo/s)(R/Ho)2 is the key

parameter that determines different behavior and depends on

viscosity m, interfacial tension s, the Laplace radius R, character-

istic film thickness Ho and velocity Vo.
Dynamic interactions involving deformable bodies such as drops,

bubbles or elastic particles that are in close proximity to each other, or

to interfaces and boundaries, is a central problem in soft matter

physics. Such interactions involve time-dependent flows and

geometric deformations that occur simultaneously across very

different length scales where nm-thick films with mm lateral dimen-

sions separate drops or particles ranging from tens of mm to mm in

size.

Recent studies of dynamic interactions include the use of: the

surface force apparatus to measure the time-dependent profiles of

thinning films between a deformable mercury drop in aqueous

solution against a mica plate;1,2 optical interference to visualize the

dynamic stability of glycerol or water in silicone oil systems;3 an

atomic force microscope to measure dynamic forces between oil

emulsion drops moving at typical Brownian speeds in an aqueous

electrolyte4–6 and forces between bubbles and a solid substrate;7 and

the four-roll mill to manipulate interacting drops.8

The above suite of experiments has been modelled numerically

using the Stokes–Reynolds lubrication film theory plus the Young–

Laplace equation for drop deformations. Key characteristics of thin

films such as dimple formation,9–11 wimple excitation,12 and dynamic

force measurements4–7 have been predicted with good quantitative

agreement. However, a recent drop coalescence study using a micro-

fluidic cell revealed ‘‘a counter-intuitive phenomenon: coalescence

occurs during the separation phase and not during the impact’’ and

‘‘there is no model that describes this phenomenon’’.13
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In this communication we present a simple and physically

perspicuous analysis of the Stokes–Reynolds Young–Laplace

model that explains the general underlying physics of dynamic

coalescence including the above counter-intuitive coalescence on

separation as well as the onset of dimple deformations between

approaching drops—a phenomenon that has been observed in

experiments and numerical solutions. The key result can also be

applied to deduce geometric deformations of interacting drops

from measured forces.

Our approach is to use a perturbation analysis with matched

asymptotic expansion of the Stokes–Reynolds Young–Laplace

equations to derive a simple approximate solution which captures

fully the essential physics and gives quantitative accuracy when

compared to the full numerical solution of the governing equations.

Consider two identical deformable drops separated by an axisym-

metric film of the continuous phase. The radial, r, and time, t,

evolution of the film thickness h(r,t) and pressure p(r,t) is, according

to the Stokes–Reynolds lubrication model,
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Implicit in eqn (1) is the assumption that the tangentially immobile

(‘no-slip’) hydrodynamic boundary condition holds at the surface of

the drops. This boundary condition has been shown to be consistent

with a large number of experiments on the micro to nano scale.1–7,9,10,12

Deformation of the drops is governed by the Young–Laplace equation

in the inner film region where non-linear terms in the curvature may be

omitted
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The Laplace pressure (2s/R) defines the Laplace radius R.

We seek a formal solution of the form (see inset of Fig. 1)

h(r,t) h ho(r,t) + h1(r,t); p(r,t) h po(r,t) + p1(r,t) (3)

and by choosing ho(r,t) h H(t) + r2/R as the reference parabolic

profile, eqn (2) becomes
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Integration of eqn (4) gives the exact r / N asymptotic form:

h1(r,t) /�(F/ps) log(r), where F¼ 2p
Ð

N
0 rp dr is the hydrodynamic

force between the two drops (F >0, if repulsive). This logarithmic

behaviour reflects the fact that eqn (2) is an inner equation for the film

shape. The apparent divergence at large r is to be matched to the

outer solution that describes the drop shape outside the interaction

zone of the film.14,15 The appearance of the force F in the pre-factor of
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Fig. 1 Approaching drops (no ¼ �1): Time variations of the central film

thickness, h(0,t) of an axisymmetric film obtained from numerical solu-

tion ( ) of the film evolution eqns (1), (2) and (5) compared to that of the

reference parabolic shape: ho(0,t)¼H(t)¼Ho� (t� 1 + e�t/t) ( ) and the

analytical solution: ho(0,t) + h1(0,t) in eqn (7) ( ). All quantities are

dimensionless according to eqn (8).
the logarithm has been exploited recently to extract the total force

exerted on a drop from the measured outer shape of its deforma-

tion.16

The outer boundary condition required for the complete solution

of eqns (1) and (2) or equivalently eqns (1) and (4), can be derived by

imposing a constant volume constraint on the drop.4 If one drop rests

on a flat substrate where it subtends a contact angle q and the

substrate is moved relative to the other drop with a specified drive

velocity V(t) (V > 0, for separating drops), the outer boundary

condition takes the form:

VðtÞ ¼ vhðrm; tÞ
vt
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where rm is some large radial position at the edge of the film and B(q)

is a known function of the contact angle q.17

Theoretical predictions based on eqns (1), (2) and (5)4–7,9,10,12,16 gave

excellent agreement with different types of experimental studies of

drop dynamics but the coupled partial differential equations had to

be solved numerically.

We now derive a simple approximate analytical solution of eqns

(1), (2) and (5) that provides informative physical insight into drop

dynamics with quantitative precision.

The physical rationale in seeking a solution of the form of eqn (3) is

to express the film thickness h(r,t) formally as a non-deforming

parabolic shape ho(r,t) whose location varies in time via H(t).

Deformations are described by h1(r,t) for which we derive a solution

by perturbation. By setting h(r,t) z ho(r,t) in eqn (1) we find

poðr; tÞ ¼ �
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2ðH þ r2=RÞ2

!
dH

dt
:

And using this result for p in eqn (4) gives h1(r,t)
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By integrating po(r,t), the force is

F ¼ 2p
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so from eqns (6a) and (6b) we see that h1(r,t) has the expected log-

arithmic form: h1(r,t) / – (F/ps) log(r), as r / N.

The functions H(t) and C(t) can be determined by applying eqn (5)

at the outer boundary rm. Since ho(r,t) is a non-deforming parabolic

shape at position H(t), we have vho(r,t)/vt¼ dH/dt¼ V(t) and H(t)¼
Ho +

Ð
t
0 V(t) dt, where Ho is the initial separation between the drops;

and C(t) can now be determined from eqns (5) and (6a). This then

gives the desired solution:
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This is the key result of this communication from which we can

infer the characteristic behaviour of approaching and separating

drops. As expected in matched expansion calculations, the result is

independent of the precise value of matching position rm, provided in

this case, r2
m/R [ H.

We make two important observations regarding the film defor-

mation h1(r,t) given by eqn (7):

(i) The magnitude of the film deformation h1(r,t) is characterized

by the film capillary number: Caf h (mVo/s)(R/Ho)2 h Ca (R/Ho)2,

where Vo is a characteristic velocity;

(ii) The term in braces in eqn (7) is negative so time variations of

the deformation h1(r,t) and the parabolic profile ho(r,t) have opposite

signs whether the drops are separating (V(t) > 0 and H(t) increasing)

or are approaching (V(t) < 0 and H(t) decreasing).

Dimple formation on approach. If the film capillary number Caf is

sufficiently large, the central portion of the film can thicken when

the drops approach (V(t) < 0) and this is the physical origin for

dimple formation between approaching drops. Numerical studies

of drops approaching at constant velocity10 identified a critical

central film thickness hdimple � aCa½R at which dimple formation

will occur, where the numerical constant a is between 0.4 and 0.7

for Ca between 10�10 and 10�4. While the perturbation solution, eqn

(7), predicts the same dependence on Ca½R, the pre-factor is too

large by an order of magnitude. This is not surprising since dimple

formation actually occurs at separations where non-deforming

drops would have overlapped.

Coalescence on separation. When the drops separate (V(t) > 0), the

perturbation h1(r,t) will initially contribute a decrease to the central

film thickness while H(t) increases. For sufficiently large film capillary

number Caf, the initial decrease in central film thickness can poten-

tially bring the separation down to the range where the de-stabilizing

influence of van der Waals attraction can take hold and initiate

coalescence as observed in recent microfluidic cell experiments,13 or in

four-roll mill experiments8 where ‘‘coalescence frequently occurs

during the part of the collision after the drops have already rotated to

a configuration where they are being pulled apart by the external

flow’’. A similar result has also been observed experimentally and

verified theoretically for a mercury drop being separated from a mica

surface.12 Eqn (7) delineates the approximate regime: Caf ¼ (mVo/s)-

(R/Ho)2

˜ 1 when coalescence on separation is expected to occur.
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Fig. 3 Approaching drops (vo ¼ �1): Time variations of the deforma-

tion, h1(0,t) at the centre of an axisymmetric film and (inset) a comparison

of spatial variations of the deformation h1(r,t) at the indicated times (a to

d) calculated by the analytical results in eqn (7) ( ) and by a numerical

solution ( ) of the film evolution equations (1), (2) and (5). All quantities

are dimensionless according to eqn (8).
We now compare the predictions of eqn (7) for the evolution of the

film with full numerical solutions of eqns (1), (2) and (5) using the

following scales4 to render these equations dimensionless and with all

terms having the similar magnitude:

h � Ca½R, r � Ca¼R, t � Ca�½mR/s, p � s/R. (8)

We use a dimensionless velocity ramp V(t) ¼ vo (1 � e�t/t) that

accelerates the drops smoothly from rest to unit velocity: vo ¼ 1

(separation) or �1 (approach). The dimensionless position of the

reference parabolic profile is H(t)¼Ho + vo (t� 1 + e�t/t). We choose

t ¼ 1 (in dimensionless units), but since we are interested in times

t [1, the precise value of t is not important. We choose the capillary

number Ca ¼ 10�7, typical for experiments of dynamic deforma-

tions1–3 and dynamic forces.4–7 For simplicity, we set the contact angle

q ¼ 90�, so B(q) ¼ 1.17

In Fig. 1, we compare the total central film thickness h(0,t) ¼
ho(0,t) + h1(0,t) predicted by eqn (7) to the full numerical solution for

two approaching drops (no¼ �1) from an initial dimensionless film

thickness Ho ¼ 10. Since for approaching drops H(t) is decreasing,

the analytic solution is only expected to hold well before the non-

deforming parabolic profiles come into contact at H(t)¼ 0. In spite of

this limitation, the perturbation solution of eqn (7) performs

remarkably well down to a dimensionless thickness ho(0,t) �5 at the

dimensionless time of 7. Beyond t >8, the magnitude of the defor-

mation is over predicted by the perturbation h1(0,t).

A demonstration of the onset of coalescence on separation is given

in Fig. 2 where we show variations of the dimensionless deformation

h1(r,t) for separating drops (vo ¼ 1) from an initial film thickness Ho

¼ 10. We see that the central deformation h1(0,t) becomes negative as

the drops begin to separate, so deformations make the film thinner

than that predicted by the parabolic profile ho(r,t). But as the sepa-

ration progresses, h1(0,t) returns to zero after attaining a sharp

minimum. If the magnitude of this minimum reduces the local film

thickness sufficiently, coalescence can be initiated. There is good

quantitative agreement between the analytical results in eqn (7) and

the full numerical solution. Also the spatial form of h1(r,t) at various
Fig. 2 Separating drops (no ¼ 1): Time variations of the deformation,

h1(0,t) at the centre of an axisymmetric film and (inset) a comparison of

spatial variations of the deformation h1(r,t) at the indicated times (a–d)

calculated by the analytical results in eqn (7) ( ) and by a numerical

solution ( ) of the film evolution equations (1), (2) and (5). All quantities

are dimensionless according to eqn (8).
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times marked on the h1(0,t) curve is reproduced rather accurately

by eqn (7). This is perhaps not too surprising since the perturbation

calculation is expected to be more accurate as the separation

progresses.

In Fig. 3, we exhibit the onset of dimple formation on approach by

showing variations of the dimensionless deformation h1(r,t) for

approaching drops (vo¼ �1) from an initial film thickness Ho ¼ 10.

In contrast to the case of separating drops, the central deformation

h1(0,t) is positive and increases monotonically so that deformations

make the film thicker than that predicted by the parabolic profile

ho(r,t) as the drops approach. The prediction of the spatial form of

h1(r,t) according to eqn (7) is satisfactory for times <6. Note that for

drops approaching at constant velocity, the reference parabolic

profiles of the two drops will eventually come into contact and the

perturbation method must then fail. For the case in Fig. 3, this occurs

at dimensionless time z11.

Deformations from measured force. If the force F between two

drops can be obtained, for example, from measurement with the

atomic force microscope, the film profile h(r,t) can be obtained by re-

casting eqns (6b) and (7), with V(t) ¼ dH(t)/dt, as

hðr; tÞ ¼
�
HðtÞ þ r2=R

	
� F

2ps

�
log

�
HðtÞ þ r2=R

4R

�
þ 2BðqÞ

�
(9)

where H(t) can be calculated from the way the drops are being driven

in the experiment. To illustrate this idea, we show in Fig. 4 the film

profile constructed with eqn (9) using the force obtained from our

numerical calculation for the case shown in Fig. 3. This example

illustrates the connection between the measured force F and dynamic

deformations of the film, and is complementary to an earlier

approach whereby forces between deformed drops were calculated

from drop geometry.16 The utility of this approach is clear from the

improvements in film profiles shown in Fig. 4 over those in Fig. 3 that

was deduced from eqn (7). If, on the other hand, the drops are driven

by a constant external force, Fext (Fext > 0, to pull the drops apart), the

function H(t) can be found from solving: Fext ¼ (3pmR2/2H)(dH/dt)
This journal is ª The Royal Society of Chemistry 2009



Fig. 4 Approaching drops (vo ¼ �1): Time variations of central film

thickness, h(0,t) and (inset) the film profile, h(r,t) of an axisymmetric film

obtained from numerical solution ( ) of the film equations given by

eqns(1), (2) and (5) compared to that of the analytical solution ( ) of eqn

(9) using the numerically computed force. System parameters are

the same as that in Fig. 3. All quantities are dimensionless according to

eqn (8).
which gives: H(t) ¼ Ho exp[(2Fext/3pmR2)t], a result that has been

obtained earlier.14

In this communication, we have derived a simple solution for the

space-time evolution of the thin film between two drops as they

approach or separate and elucidated the importance of coupling

hydrodynamic interactions and geometric deformations that gave rise

to the counter-intuitive phenomenon of coalescence on separation

and the familiar dimple formation on approach. Although we have

given results for the interaction between two identical drops, it is

straightforward to generalize to the case of interacting dissimilar

drops or to describe how drops interact with solids.17

The above results are valid provided the film thickness is small

compared to the characteristic radius of curvature so that the Stokes–

Reynolds lubrication theory holds and the tangentially immobile

(‘no-slip’) hydrodynamic boundary condition applies at the

drop surface. As mentioned earlier, this boundary condition is consis-

tent with a large number of experiments on the micro to nano

scale.1–7,9,10,12 For the case where the drop interface is mobile, internal

flow in the drop will have to be taken into account by solving an

integral equation relating the surface velocity to the surface stress.18,19

In aqueous systems, inevitable surface impurities tend to arrest

interfacial mobility and the mobile interface is not commonly

encountered for drops or bubbles in the mm size range.20
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The concept of coupling between applied forces and geometric

deformations giving rise to novel behaviour developed here can be

generalized to soft matter bodies that deform because of elasticity or

rearrangement of internal structures and interact via forces due to

fluid flow, chemical or temperature gradients or due to applied

magnetic or electrical fields together with differing material

properties such as surface charge, magnetic susceptibility or dielectric

permittivity.
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