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The electrostatic interaction between similar and dissimilar double layers under regulated approach 
is considered. During the interaction the surface potentials and charges are regulated by the 
association and dissociation of ionizable groups at each surface. A new method, similar to the 
method of isodynamic curves, is developed to study this problem. This method can provide a 
qualitative description of the salient features of the surface charge, the surface potential and the 
pressure between the surfaces as a function of separation without first having to obtain an exact 
solution of the problem. This qualitative and the accompanying exact solution are presented in 
terms of the Gouy-Chapman approximation as an illustration of the role of surface regulation 
during interaction. 

- 
1. INTRODUCTION 

In a variety of situations that involve particles of colloidal dimensions, for 
instance, in fibrous bed filtration of emulsions mineral f l~ t a t ion ,~  it is necessary 
to understand the interaction between dissimilarly charged particles. 

In the classical Gouy-Chapman theory of electrical double layers, it has been 
usual to assume, as boundary conditions for the electrostatic problem, that constant 
charge or constant potential is maintained on either or both surfaces throughout the 
interaction. For certain surfaces, where the charge is due, for example, to strong 
acid sites, the constant charge assumption may indeed be correct at pH % pK,. 
However, there are as yet no criteria for determining the extent to which such an 
assumption is valid, nor are there criteria for selecting a priori whether interaction 
under constant charge or constant potential is more appropriate for many other 
important colloidal systems. The problem of interacting dissimilar double layers 
has been considered by a number of a u t h o r ~ . ~ - l ~  In all instances, the constant charge 
or constant potential boundary condition was employed. It has been recognised 
for some time that these boundary conditions lead to infinitely large surface potential 
or surface charge, as the case may be, at small interparticle separations. This 
difficulty can, of course, be avoided by invoking some minimum cut-off in the 
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separation," or, perhaps more satisfactorily, by a proper consideration of the 
chemical potential of adsorbed ionic species at the surface.' 8-20 

In a previous paper,24 (I), we have considered in detail the electrical double layer 
interaction between two identically charged planar surfaces where the surface 
potential is regulated by those equilibria at the surface that are responsible for the 
development of the surface ~ h a r g e . ~  At each interparticle separation, the surface 
charge density which determines the potential distribution in the diffuse layer is itself 
given as a self-consistent function of the surface potential. 

Using the notions developed in (I), we consider the double layer interaction be- 
tween two dissimilar amphoteric planar surfaces. Although we are dealing specifically 
with amphoteric surfaces, the analysis which follows also applies to surfaces which 
bear only acidic or basic groups. In the next section, by a consideration of the dis- 
sociation of surface groups, we shall briefly recapitulate the relation which governs 
the regulation of surface charge and potential. The formulation of the potential 
distribution, assumed to be given by the Poisson-Boltzmann (PB) equation, and also 
the pressure, as a function of distance will be derived. From the first integral of 
the PB equation and the boundary conditions, we can predict qualitatively the 
behaviour of the repulsive pressure, surface potential and surface charge as a function 
of the separation. Our analysis is analogous to the method of isodynamic curves 
due to Deryag~in .~  The interaction between surfaces having like signs at infinity 
(but different magnitudes in charge and potential) is described in Section 3 ;  that 
between unlike surfaces in Section 4. The method of quantitative solution of the 
interaction for all cases is considered in Section 5. 

2. FORMULATION 

As in (I), we adopt the concept that each surface develops a surface charge via 
dissociation equilibria of amphoteric surface groups. The reactions may be written 
as : 

AH; +AH+H+ (2.1) 
AH + A-+H+. (2.2) 

Although the discussion is independent of the type of PDI, we shall assume they are 
hydrogen ions as, for example, in hydrous metal oxides, and that for each reaction, 
the ratios of the concentration of surface species are given by surface dissociation 
constants, viz., 

The dissociation constants K+,K- are assumed to be functions only of temperature 
and pressure. The validity of eqn (2.3) and (2.4) has been discussed in detail in (I). 

For N, surface groups per unit area, the net surface charge density is (e - protonic 
charge) 

= eNsa. [AH,+] - [A-I 
= eNs [AH] + [AH,+] + [A-] 

The fraction, a, defined by eqn (2.5), can assume any value between plus and minus 
one. 

1-90 
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In the Gouy-Chapman approximation, which we shall adopt, the concentration 
of ionic species at any point is related to the bulk value by the Boltzmann factor 
exp( - e$/kT). The electrostatic potential $ is measured with respect to the value 
at the reservoir (taken to be zero). In particular, the surface concentration of PDI is : 

[H+], = H exp( - elC/JkT) (2.6) 

where H is the bulk concentration of PDI and $s is the surface potential. Combining 
eqn (2.3), (2.4) and (2.6) the surface charge can be written as : 

(2.7) 

Given the dissociation constants, K+ and K-, which characterize the surface, and 
the bulk concentration of PDI, eqn (2.7) represents a canonical relationship between 
the values of the surface charge and the surface potential. It is used in place of the 
constant charge or potential boundary condition for solving the Poisson-Boltzmann 
(PB) equation that governs the distribution of the diffuse layer. If during the inter- 
action the surface potential changes from $, to &, the surface charge will change 
from d, where ($s,a) and ($:,a') must satisfy eqn (2.7) which is thus an " equation 
of state " of the surface. It specifies all possible values of the '' coordinate " ($s,a). 

It is instructive to rewrite eqn (2.7) in the form : 

where 
6 = 2 x 10-ApK'2 = 2[K-/K+]$ 

and 
ApK = pK--pK+. (2.10) 

We shall call the potential : 

(2.1 1 )  

the Nernst potential since it is related to the point-of-zero-charge (pzc) 

by the Nernst eqn (2.11). We note from eqn (2.8) that a >< 0 if @, 5 $N and 0 = 0 
when $, = $N. When the surface potential is far away from the Nernst value, the 
surface charge attains the saturation values keN,. In view of eqn (2.10) to (2.12), 
the surface equation of state can be completely specified by the pzc (pH,) and ApK 
together with the bulk pH, or equivalently the Nernst potential. A detailed study of 
the non-Nernstian behaviour of amphoteric oxides, based on eqn (2.8), is given else- 
where.26 We can now proceed to study the potential distribution and the pressure 
between two amphoteric surfaces. 

Consider the general Poisson-Boltzmann (PB) equation that governs the electro- 
static potential $ in an electrolyte : 

PHo = $(PK++PK-) (2.12) 

4ne V2$ = - - nivi exp (- ev,$/kT). 
E i  

(2.13) 

In eqn (2.13) n, is the bulk number density of ion types having valence vi and E is 
the dielectric constant of the solvent. For the onc-dimensional problem of two 
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charged flat surfaces at z = 0 (hereafter referred to as surface 1) and at z = L (surface 
2) interacting across the electrolyte, eqn (2.13) can be written as : 

d2$ 4ne - -  - - - nivi exp (- evi$/kT). 
dz2 E i  

This has to be solved with the usual boundary conditions 

(2.14) 

(2.15) 

(2.16) 

According to eqn (2.7) the surface charges ol, o2 are functions of the surface potentials 
11/1, $2 when we have dissociation equilibrium at the surface. The exact forms of 
the functions are determined by the dissociation constants of each surface and the 
bulk concentration of PDI. 

A first integral of (2.14) yields : 
8nkT C ni [exp (- ev,$/kT) + C ] .  (2.17) 

Applying the boundary conditions, we get two equations for the surface potentials 
11/2 and the constant of integration C : 

(2.18) 

(2.19) 

We observe that if electrical neutrality were to be preserved in the limit of small 
separations we must either have o1 = -cZ or o1 = 0 = o2 as L-0. In either case, 
both surface potentials must become the same in this limit. Further if both o1 02+0 
as L-+O both surface potentials must approach their own Nernst values [eqn (2.8)], 
and this is only possible when both surfaces have the same pzc (pH,) but different 
ApK's (to remain as dissimilar surfaces at infinity). 

The repulsive pressure between the plates (P > 0 implies repulsion) can be written 
in the physically perspicuous form : 

z 

We can now use eqn (2.17) giving : 

where 
P = -2nkT(C+ 1) 

n = 5 C ni. 
1 

(2.20) 

(2.2 1) 

(2.22) 

It is well known* that the second integration of the PB equation requires a know- 

(i) C < - 1 (i.e., P > 0 repulsive) (2.23) 
(ii) ICl < 1 (i.e., P < 0 attractive) (2.24) 

or (iii) C > 1 (i.e., P < 0 attractive) (2.25) 
'* see for example ref. (4), (9, (lo), (12) and (15). 

ledge of whether 
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because the integration procedure is different for each case. Therefore, a third 
relation between $2 and C can be obtained. This, together with eqn (2.18) and 
(2.19) would enable us to obtain a complete solution of the problem. 

Before proceeding further, we shall make one simplifying assumption by con- 
sidering only the case of a 1 : 1 electrolyte. The PB eqn (2.14) now takes on the 
simpler form : 

8nne 3- - sinh (et+blkT). 
dz2 E 

(2.26) 

A moment’s reflection will reveal that only the three types of solution illustrated in 
table 1 are allowed. These results will be useful in later discussions. 

TABLE  EXAMPLES SHOWING THE THREE TYPES OF SOLUTIONS ALLOWED BY THE POISSON- 
BOLTZMANN EQUATION TOGETHER WITH SOME GENERAL RELATIONS BETWEEN d AND $ 

I. Like charges and like potentials 

11. Unlike charges and like potentials 

111. Unlike charges and unlike potentials 

d2$ At $ = -2 = 0. 
dx 

For notational convenience, we introduce the reduced potential 
y = e$/kT 

the Debye screening parameter 

= ( ! ! T  
the dimensionless constant 

i =  1,2 K N s i  yi = - 
4n ’ 

(2.27) 

(2.28) 

(2.29) 
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with 

NI 
1000 

n = -  

where I is the ionic strength in mol dm-l and Nis Avogadro’s number. The subscripts 
1,2 will refer, as before, to surface 1 and 2. Eqn (2.18) and (2.19) can now be written 
in the form : 

ql(yl)= -+(C+ 1) = t(cosh y1 - l)-yia;(yi) = sinh2(y1/2)-y~cc~(y,) (2.30) 
q2(y2) = - +(C+ 1) = sinh2(y2/2) -y2a$(y2) (2.3 1) 

where [cf. eqn (2.5) and (2.8)] 

(2.32) 

Since the pressure must be the same on both surfaces, the relation 
Yl(Yl> = qz(y2) (2.33) 

must hold for the functions yl, y2 defined by the above equations. 
The key to solving the problem of interacting dissimilar amphoteric surfaces lies 

in understanding the interplay between the curve sinh2(y/2) and the charge curves 
y2a2(y), of each surface. Therefore, it is important that we systematically characterize 
the manner in which these curves intersect each other. To begin with, let us plot 
sinh2(y/2) and y2a2(y) as a function of the surface potential y. [Subscripts 1 and 2 
will be suppressed when we are considering a general surface. The surface potential y 
under consideration should not be confused with the potential at some general 
position y = y(z).]  This is shown schematically in fig. 1. We have shown, without 

FIG. 1.-A schematic plot of the functions sinh2(y/2) (broken curve) and y2a2(y) (solid curve) 
showing the points of interaction between these curves, and the regions where the function ~ ( y )  and 

the surface charge CT is positive or negative. 

loss of generality, values of the concentration of PDI such that the Nernst potential, 
yN, is positive and we observe that the quantity ApK [eqn (2.10)] is a measure of the 
width of the charge curve. For ease of later discussions, it is useful to adopt the 
following nomenclature. Since q(y) and hence the pressure is the (vertical) difference 
between the two curves, we can delineate regions where y > 0,O > y > - 1, y < - 1 
corresponding to cases (i), (ii) and (iii) in eqn (2.33) to (2.25). We label the points 
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of intersection between the two curves (where q = 0) as a, b, c and d with the 
corresponding potentials ya, y b ,  yc and yd. The point a is defined as the intersection 
where ya falls between the origin and the Nernst potential yN. Points b and c are 
the intersections where Yb and y ,  have the same sign as yN. Under some circum- 
stances there may be no intersections b and c or the points b and c may coincide. 
The point of intersection on the opposite side of the origin to yN is labelled d. 

For a single surface in equilibrium with a bulk solution containing a given 
concentration of PDI, there is no net force exerted on the surface. Therefore the 
pressure P is identically zero, that is, q = -$(C+ 1) = 0. Of the four points where 
q = 0, only point a, where the surface charge and the surface potential have the same 
sign, satisfies the PB equation. [This multiplicity of solution does not arise if we 
realize that since (C+ 1) = 0, we can take the appropriate square root of eqn (2.30), 
say, and the resultant expression then only has one root.] Thus we obtain the general 
result that the surface potential of an isolated amphoteric surface always lies between 
zero and the Nernst potential. The only occasion when ya equals zero is when the 
Nernst potential is zero. That is, the concentration of PDI is at the point-of-zero- 
charge, pH = pHo and a = 0. 

To study the electrostatic interaction between two dissimilar amphoteric surfaces, 
we need to examine the functions ql(yl) and q2(y2) given in eqn (2.30) and (2.31). 
This is best accomplished by plotting (schematically) the two charge curves r;al(y), 
yiaz(y) and the function sinh2(y/2) on the same graph. See for example fig. 2 (a) and (b). 
We define y* to be the potential corresponding to that point of intersection of the 
two charge curves which falls in between the Nernst potentials y,, and yN2. 

FIG. 2.-Typical arrangements of charge curves for like (a) and unlike (b) surfaces. 

The state of surface i ( i  = 1,2) can be identified with the coordinate (yi, a,). 
However, the values of the surface potential t,hi = kTyi/e and the surface charge ai 
cannot vary independently as they are related by eqn (1.7) or (1.8). In other words, 
the state of each surface must correspond to some point (y, a) on its own charge 
curve y2a2(y). As the surfaces approach each other, changes in the charge and 
potential at each surface due to the interaction can be envisaged as movements of 
these points along their own charge curves. Since the surfaces are interacting, the 
loci of these two points must be correlated. Firstly, the movement of these points 
must ensure that eqn (2.33) [cf. eqn (2.30) and (2.31)] is satisfied. Secondly, the 
values of y ,  and y 2  must satisfy the PB equation. That is, the relationship between 
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the charge and potential at each surface and between surfaces must fall within one 
of the three types listed in table 1.  Thus it is possible to obtain a description of the 
behaviour of the repulsive pressure, surface potential and charges as a function of 
separation by considering the charge curves y;al(y), $a;(y) and the function sinh2(y/2). 
Most of the results we are about to describe can be deduced from the fact that 
sinh2(y/2) increases monotonically as I y I increases and that the charge curves y2a2(y) 
have an absolute minimum at y = yN. 

Before proceeding to an analysis of the interaction between like and unlike 
surfaces it is important to note that the preceding formulation makes no comment on 
the rate at which surfaces can regulate when H+ and OH- or any other ions are 
involved in surface equilibria. It is, however, directly applicable to increasing 
numbers of direct measurements of interaction where the surfaces are brought together 
very slowly and/or where assemblages of particles are forced together slowly in 
compression experiments. As to whether H+/OH- equilibria can readjust in the 
time of Brownian collision awaits more experimental testing. 

3 .  THE INTERACTION BETWEEN LIKE SURFACES 

We have already shown in Section 2 that the surface potential of a single surface 
in isolation falls between zero and the Nernst value. Here we consider only those 
values of the bulk concentration of PDI where the Nernst potentials of each surface 
have the same signs. That is, both surfaces have the same sign of the charge at 
infinite separation. For the purpose of this analysis, we can assume without loss 
of generality that the surfaces are both positive and that surface 1 has a lower Nernst 
potential, i.e., yNi < yN2. (In fact, by reversing the sign of the Nernst potentials, 
negative surfaces can be " transformed " into positive ones and the following analysis 
will be applicable.) 

For the interaction of surfaces having like signs of infinity, there are three distinct 
cases classified by the number of times that the repulsive pressure curve changes sign. 
Each is in turn determined by the position of y* as follows (with L designating like 
surfaces) : 

case L1 : y* < Ybl 

case L2 : Ybl  < y* < yc ,  

case L3 : ycl < y*. 

We shall consider each of these separately. 

3a. CASE L1 

ch 
to 
is 

The appropriate charge curves for this case are given in fig. 3 (a) and (b).  The 
.aracteristic feature of these sets of curves is that y* (the potential corresponding 
the intersection of the two charge curves that falls in between the Nernst potentials) 
< Ybl. This case also includes the situation where surface 1 (defined to be 

the one with the lower Nernst potential) does not have the intersection points bl and 
C1. 

Since the arguments involved in deducing the behaviour of the surfaces are rather 
tedious, we shall first summarize the results. The (schematic) variations with 
separation for the repulsive pressure P, surface charge and potential of each surface 
are given in fig. 4 (a) and (b). 

(i) In case L1, the interaction is always repulsive, P > 0. 
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FIG. 3.--(u), (b) Arrangements of charge curves between like surfaces [surface 1-solid curve, surface 
2-dotted curve, and sinh2 (y/2)-dashed curve] that correspond to Case L1. 

(ii) If the function I(yl) has a maximum in the range yal < y1 < y*, then the pressure 
has a maximum (Pmax) at y1 = j1 say, where J1 2 yNI [fig. 4 (a)] ; otherwise the 
pressure increases monotonically from zero at infinite separation to the final 
value P* at zero separation [fig. 4 (b)]. 

(iii) At zero separation, the surface potentials are equal and the surface charges are 
equal in magnitude but opposite in sign (cf. discussion in Section 2). 

The results summarized in fig. 4 can be deduced from fig. 3 if we bear in mind 
the discussion in Section 2 regarding the charge curves. We shall briefly summarize 
the main points : 
(A) The surface charge and potential of each surface is related to each other by eqn 

(2.7) or (2.8). A state of the surface, i.e., (y, a), can be represented by a point 
on the charge curve y2a2(y). 

(B) Changes in the surface charge and potential due to interaction are described by 
the movement of this point along the charge curve. 

( C )  The loci of the points for each surface must together satisfy eqn (2.33) and the 
PB equation (cf. table 1). 

(D) The function sinh2(y/2) increases monotonically as I y I increases and similarly 
y2a2(y) is a monotonic increasing function of 1 yN -7 I. 

Using (A)-(D) above we now demonstrate how the results from fig. 4 (a) can be 
deduced from fig. 3 (a) and (b). When the surfaces are far apart, we have already shown 
in Section 2 the potentials of surface 1 and 2 are yal and ya2 respectively. Referring 
to the charge curves, we say surface 1 is at the point a, and surface 2 is at a2. We 
first consider the case shown in fig. 3 (a) where yaz > yal. We define 

and observe that the surface charges at infinite separation cl(yal), 02(ya2), obey the 
relations 

but ol(ya,) can be > or <a*. 
As the surfaces approach each other and just begin to interact, we know, by the 

overlap approximation that the surface potentials must increase and the interaction 

a" = o,(y*) = -o,(y*) (3.1) 

o Z ( ~ a 2 )  > a", o l ( Y a J  (3.2) 
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is repulsive. That is P > 0, yl(yl) = q2(y,) > 0 [cf. eqn (2.21), (2.30)-(2.33)]. 
Therefore, each surface would move along its own charge curve towards its respective 
Nernst potential. While the surface potentials increase, the surface charges decrease. 
This minimizes the interaction energy. As the surfaces approach the rate of change 
of the charge and potential of each surface with separation (i-e., the velocities along 
the charge curves) must of necessity be different since the equality yl(yl) = y2(y2) 
must be maintained at all times. 

v) 

E 
n E! n 

P 

Y -  Y -  
N2 f\ N2 

0 0 

(u)  (b) 
FIG. 4.-(u), (b) Schematic results showing the different possible variations of the repulsive pressure, 
surface potentials and surface charges with plate separation for Case L1 (surface 1-solid curves, 

surface 2-dashed curves). 

We assume that the function ql(yl) has a maximum between y,, and y*(ya, < 
y ,  < y*) ; at J I  say. It is clear from point (D) above that jjl is between yN1 and y* 
(yNI < j? < y*).  Now, as the separation between the surfaces decreases, both sur- 
faces would move closer to their Nernst potentials. When surface 1, which has the 
lower Nernst potential, reaches yN1 where its charge has decreased to zero, surface 
2 is still below its Nernst value with a finite and positive surface charge. 

As the separation further decreases, the potential of surface 1 continues to increase 
beyond yNl, but with a surface charge of opposite sign to that at infinity (cf. fig. 1). 
When surface 1 reaches jjl where ql(yl) has a maximum, surface 2 is at jj2 where 
yl(jjl) = y2(jj2). Again from point (D) we can deduce that 

y* 7 2  y N 2 -  
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As surface 1 proceeds beyond J1 towards y*, ql(yl) can only decrease. Hence 
surface 2 must retrace its path along the charge curve from j 2  and approach y* from 
above. Therefore surface 2, which has the higher Nernst potential, never reaches 
yN2 and so its surface charge always retain the same sign as that at infinite separation. 

Now both surfaces must reach y* at the same time because ql(y*) = qz(y*). 
Here we have rfa?(y*) = yga$(y*) and the potentials are equal but the charges are 
equal and opposite. The surfaces cannot proceed beyond y* as this would violate 
the PB equation (cf. type 11, table 1). Clearly, the boundary conditions y1 = y2 ,  
o1 = -02 can only be attained when the separation between the surfaces is zero. 

The above results are summarized in fig. 4 (a). The variations with separation 
of the charge and potential of surface 1 are given in solid lines, and those of surface 2 
in dashed lines. 

(iv) for interactions between surfaces having like signs at infinity, the surface with 
the lower Nernst potential would always reach its Nernst potential and reverses 
the sign of its surface charge while the other surface never changes sign. 

Obviously, this excludes the degenerate case where both surfaces have the same 
Nernst potential. In this instance, neither surface charge changes sign. 

Now it is possible for surface 2, which by definition has the higher Nernst potential, 
to have a lower surface potential than surface 1 when they are far apart [see fig. 3 (b)].  
It is clear from the figure that the surface charges at infinity obey the inequalities 

It will be shown that : 

ol (Ya,>  > a,(ya2) > 
If ql(yl) has a maximum in y,, < y1 < y*, the results for surface 2 are given in dotted 
lines in fig. 4 (a). These can be derived using the arguments given above. The only 
noticeable differences between this case (yaz < y,,) and the previous case (ya2 > yal) 
are the cross-over points between the charge and potential curves. These must occur 
when both o1 and 0, are greater than o*. The behaviour of the repulsive pressure 
and the properties of surface 1 remain essentially the same for both cases. 

If ql(yl) does not have a maximum in the range yal < y1 < y*, the interaction is 
still repulsive but there are no turning points in the pressure, potential and charge 
curve [fig. 4 (b)]. The arguments needed to deduce these results follow along the line 
of those given above. The results pertaining to surface 1 are given in solid curves. 

If y,, > y,, (yNI > yNi) the charges at infinite separation satisfy 

02(yaJ > u*, ol(yaJ 
but al(y,,) can be greater or less than o*. The charge and potential for surface 2 for 
this case are given in dashed lines. 

Here 
~l(ya,) > 0 2 ( ~ , , )  > o* and the cross-over points in the potential and charge must 
occur when the charges of surfaces 1 and 2 are > cr*. 

When the Nernst potentials are very far apart [fig. 3 (a)], the pressure may exhibit 
a local minimum after the maximum. However, the pressure still remains positive 
for all separation. The charges and potentials will have corresponding maxima and 
minima. 

In the degenerate case where the surfaces have the same Nernst potential (i.e., 
the same pzc), e.g., identical surfaces, then y* = yN, = yN2 and neither surface changes 
sign. The surface potentials start off at y,, and y,,, and increases monotonically 
towards their Nernst values. The surface charges decrease monotonically to zero. 
At zero separation, both potentials are equal and surface charges are reduced to zero. 

If JJa, < yal (yNz < yN1) the results for surface 2 are given in dotted lines. 
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It 
when 
Th 

is important to note that significant changes in the pressure etc. only occur 
the separation is within the Debye screening length l / ~ .  
is completes the discussion on the various possible types of behaviour under 

case L1. 

3b. CASE L2 
The appropriate charge curves for this case are shown in fig. 5 (a). The character- 

istic feature of this set of curves is that : 

Ybi Y* < YCI. 
The variations with separation of the repulsive pressure P, surface potentials and 
charge of each surface are given in fig. 5 (b), (c). 

I 

o r  0- 

(b) (c) 

FIG. 5-(a) The arrangement of the charge curves for like surfaces Case L2 (surface 1-solid curve, 
surface 2-dotted curve, sinh2(y/2)--dashed curve) ; (b), (c) schematic results showing the possible 
ways which the repulsive pressure, surface potentials and charges can vary with separation (surface 1- 

solid curves, surface 2 4 a s h e d  curves). 
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In case L2 the interaction is initially repulsive (P > 0) but becomes attractive 
(P < 0) at smaller separations. If rl(yl) has a minimum between y b l  and y* then 
the pressure has a local minimum Pin < 0 at y1 = F1 and y 2  = F2 say, where 

Let us now deduce the results from the charge curves in fig. 5. As with case L1, 
surfaces 1 and 2 start at a, and a2 respectively, and move along their charge curves 
towards their Nernst potentials as the surfaces approach. Clearly ql(yl) has a 
maximum at some yl where yNI < J 1  < ybr '  This maximum corresponds to the 
maximum in the repulsive pressure. Thus as the potential of surface 1 increases 
from yal to yN1 and then onto jjl, its surface charge decreases to zero at yI = yN1 and 
changes sign between yN1 and pl. Meanwhile the potential of surface 2 increases 
steadily from ya2 to 7, where q2(jj2) = ql(jjl) while the charge decreases from a2(ya2) 

to 0,(jj2). Since jj2 < yN2, the sign of the charge on surface 2 does not change. 
As surface 1 now moves from j j ,  to y b l ,  rl(yl) can only decrease; therefore 

surface 2 must return along its charge curve towards ya, increasing the charge and 
decreasing the potential. When surface 1 reaches the point b,, surface 2 reaches a2 
whereby rl(Ybl)  = 0 = q2(yar) and the pressure is zero at this point. 

Between Yb,  and y*, q1 = q2 is negative which corresponds to attraction. Now 

- 
Y z  Y*. 

I 

VI 
separation 

FIG. 6.-(a) The arrangement of the charge curves for surfaces having like signs at infinity, Case L3 
(surface 1-solid curve, surface 2-dotted curve, sinh2(y/2)--dashed curve) ; (6) schematic results 
of the variation of pressure surface potentials and charges with separation (surface 1-solid curves, 

surface 2-dashed curves). 
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ql(yl) may have a minimum (i.e., Iql(yl)l a maximum) for yb, < y1 < y*. If this is 
indeed the case, the pressure will have a minimum turning point [see fig. 5 (b)]. 
Corresponding to this, the potential of surface 2 will decrease below y* and finally 
approaches y* from below. There will be a similar turning point for the charge on 
surface 2. 

If ql(yl) does not have a minimum in Ybl < y 1  < y* the pressure just decreases 
monotonically after turning attractive [see fig. 5 (c)]. Similarly the extra turning 
points in y2 and cr2 would not occur. 

From fig. 5 we obtain the following inequalities which hold for all separations : 

Y2 > Y19 0 2  > 61 

and when the surfaces are far apart : 

Ya2 > Y* > Y a l  

g* > o z ( ~ a 2 )  > 01(~al)* 

3C. CASE L3 
The charge curves pertaining to this case are given in fig. 6.  They are characterized 

by the inequality y* > ycl. The variations with separation of the repulsive pressure, 
surface potential and charge of each surface are given the same in fig. 6 (b). These 
results can be derived from the charge curves by a similar consideration to that given 
in the previous two cases. 

In case L3 the interaction is initially repulsive (P > 0), then it turns attractive 
(P < 0) and finally becomes repulsive again as the separation decreases from infinity 
to zero. 

We note that if Pax < P* then the potential (charge) curve of surface 2 would 
not extend above (below) y* (o*) at the corresponding turning point. 

4. THE INTERACTION BETWEEN UNLIKE SURFACES 
In this section we consider those values of the bulk concentration of PDI where 

the signs of the Nernst potentials are different. This means that when the surfaces 
are far apart, the surfaces have different signs. Given two unlike surfaces, we can 
always make a transformation (e.g., reversing the signs of the potentials) so that 
surface 1 (yal) is initially negative, surface 2 (Ya2) is positive and that y* is also positive 
as well. [See for example fig. 2 (b)].  

First let us define the nomenclature useful in describing how the charge curve 
of surface 1 (the negative surface) intersects with the curve of sinh2(y/2). This is 
done in fig. 7. Depending on the value of yN1 and ApK of surface 1 it is possible 
that onIy one of the points dl, el and fl  exists. In this case we label this one point 
as dl. 

In general there are four distinct cases where the interactions are different. Again 
these are classified by the number of times the repulsive pressure changes sign when 
the separation varies from zero to infinity. These cases are determined by the position 
of y* and hence by the relative position and shape of the charge curve of surface 2 
(the positive surface). Each case is defined as follows (with U designating unlike 
surfaces) : 

Case U1. 0 < y* < Ydt 

Case U2. yd, d y* < yel 
Case U3. yel < y* < yfl 
Case U4. yfl d y*. 
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Y q  Ydl 

FIG. 7.-Showing the relative positions between the functions sinhZ (y/2)-dashed curve, the charge 
curve of surface 1-solid curve, and of surface 2 4 o t t e d  curves, for surfaces having different signs 

at infinite separation. The Cases U1 to U4 are indicated. 

I 

.."\&,/--'-- 

-a* 

5 '* \pmaxi separation i&=- 

FIG. 8.-(a)-(d) Schematic results for the variation of the pressure, surface potentials and charges for 
curves U1 to U4 respectively (surface 1-solid curves, surface 2-dashed curves). 
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We shall only outline how the given results can be deduced from the charge curve 

for cases U1 and U2. The results of the other cases should be self-evident. 

4Q. CASE u1 
In case U1, where 0 < y* < y d l ,  the interaction is always attractive (P < 0). 
The behaviour of the repulsive pressure, the surface potential and charge are 

summarized in fig. 8 (a). The results for surface 1 are given in solid lines, and for 
surface 2 in dashed and dotted lines. Referring to the curves for case Ul  in fig, 7 
we can deduce these results. 

When the surfaces are far apart, surface 1 is at a l  and surface 2 is at a2. As 
they approach each other, we know (e.g., by the overlap approximation) that the 
interaction is attractive, i.e., P < 0, ql = q2 < 0, and the surface potentials must 
decrease in magnitude. These conditions can be satisfied if both surfaces move 
along their charge curves towards y = 0. This way the interaction energy is mini- 
mized (i.e., maximize attraction) by making the positive surface (2) more positive 
and the negative surface (1) more negative. 

We observe that if ql(yl) has a minimum (Iql(yl)l a maximum) for some y1 
(0 < J1 < y*) then there would be a minimum in the pressure and corresponding 
turning points in the potential and charge of surface 2-see dashed lines in fig. 8 (a). 
Otherwise, all quantities are monotonic in the separation (dotted lines). 

We note that since j j 2 ,  where ql(yl) = q2(jj2), is always positive, the potential 
of surface 2 never changes sign. (This is in fact true in all cases of interaction 
between unlike surfaces.) On the other hand, the potential of surface 1 always 
changes sign. It is worthwhile noting here for cases U2-U4 that y 2  cannot rise 
above yN2 ; therefore, the charge of surface 2 also retains the same sign (positive). 

At zero separation, the potentials are equal 

Y1 = Y* = Y2 

and the charges are equal and opposite 

6 2  = 6" = - 6 1  > 0. 

4b. CASE U2 
In case u 2  (ydi < y* < yel) the interaction is initially attractive (P c 0) but would 

eventually turn repulsive. 
Initially the surfaces start at yal and y,, and move towards y = 0 (cJ: case Ul) 

and the interaction is attractive. Since ql(yl) has a minimum for 0 < y 1  < ydt there 
will be a minimum in the pressure and a corresponding turning in the potential of 
surface 2. When surface 1 changes sign and reaches ydl from below, yz returns to 
y,,. Here the pressure is zero [ql(ydl) = 0 = q2(ya2)]. 

When surface 1 now moves from ydl  to y* the interaction becomes repulsive. 
If ql(yl) has a maximum between y d l  and y* the potential of surface 2 will increase 
past y" and then return to approach y* from above. There will also be a similar 
maximum in the pressure curve (see dashed curves). If ql(yl) does not have this 
maximum there would not be a final turning point for y 2  and P (see dotted curves). 

The results are summarized in fig. 8 (b). 

Again at zero separation 

Y2 ' 0 y1 = y* = 

6 2  = Q* = -61 > 0. 
and 
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4C. CASE u3 
In case U3 (yel < y* < yf,), the interaction is at first attractive, then turns 

repulsive and finally becomes attractive again. 
The variations with separation of the potential and charge of surface 1 are given 

in solid lines in fig. 8 (c). If q1(y1) has a minimum (Iql(yl)l a maximum) for y1 
between yel and y* the behaviour of the pressure and the surface potential and charge 
of surface 2 are given the dashed lines; otherwise the results in the dotted portions 
would hold. 

We note that if Pmin is less than P* then the potential (charge) of surface 2 would 
extend below (above) y* (a*) at the corresponding turning point. 

4d. CASE U4 
Case U4 is characterized by the condition that yfi < y*. 
The behaviour of the pressure, surface charges and potentials are illustrated in 

fig. 8 (d)-solid lines for surface 1, dashed lines for surface 2. 
~~ ~ ~~ 

case like charge & potentio I unlike charge&potentiol 
I I 

I I I 
I 

2 

repulsive- 
attractive 

P 

att roc tive - 
repulsive 

repulsive attractive 

In the degenerate 

FIG. 9.-A summary of the possible variations of the pressure with separation under the different 
possible cases considered. 
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case where points el and fl do not exist, the portions of the curves indicated by dotted 
lines should hold for the various quantities. 

If Pax > P* the corresponding turning points for y 2  and o2 will extend beyond 
y* and Q*. 

This completes the discussion of all possible types of double layer interactions 
between dissimilar amphoteric surfaces under regulated interaction. Although the 
above discussion cannot yet give the actual values of the pressure and potentials, etc., 
relative magnitudes of the surface potentials and charges and all the interesting 
features of the pressure curve can be elucidated. 

Before we proceed, it is worthwhile to summarize the results discussed so far. 
This is accomplished in fig. 9 where all possible variations of the pressure as a function 
separation is given schematically for the various cases of like and unlike surfaces at 
infinity. Here positive pressure represents repulsion. 

To obtain numerical results, we need to solve the PB equation. We show how 
this can be done in the next section. It is important to stress, however, that the 
graphical techniques that we have summarized give directly the form of the pressure- 
distance curve and key points on the curve (e.g., zero, minimum or maximum pressure 
points) can also be located directly. 

5 .  METHOD OF SOLUTION 

For a 1 : 1 electrolyte, the first integral of the PB eqn (2.17) has the form '("'r 2 dz = rc2(cosh y + C). 

To obtain a second integral, we need to know the value of the constant of integration 
C. The solutions, in terms of Jacobi elliptic functions or elliptical  integral^,^'^ 28 are 
different, depending on whether 
(i) C < - 1, (ii) 1 Cl < 1, or (iii) C > 1. These solutions are well known and they 
can be written in terms of the reduced variable 

where 4, = 4(zo)  and at z = zo 

Here zo can be inside or outside the range z = 0 to L. 

(ii) [Cl < 1 Attractive 

1-+"4 - (';">" sd ( K I Z - Z &  (1;c)+) - , 1+) - 
where at z = zo, the potential $(zo) = 0, that is &, = (z,) = 1 .  
(iii) C > 1 Attractive 

(5 .5)  
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Here K(k)  is the complete elliptic integral of the first kind of modulus k.  The constant 
C is given by 

c = +(#);+402) (5.7) 
and at z = zo, $(z0) = 0. 
0 to L, it is convenient to write the solution in the form 

Eqn (5.7) is suitable for 0 < zo < L. For zQ outside 

where 41 = #)(z = 0). In eqn (5.3), (5 .9,  (5.6), (5.8) and (5.9) cd(x;k), sd(x;k) 
and sc(x;k) are Jacobi elliptic functions of argument x and modulus k,  sc-l is the 
inverse function of sc with the same modulus. These solutions match up at the 
transition points C = f 1, as expected. 

From eqn (2.30)-(2.32) we can solve for values of the surface potentials at C = - 1, 
I ,  i.e., at y 1  = y12 = 0, - 1. Putting the appropriate values of the reduced potentials 

and $2 at C = - 1 (ql = y2 = 0) into eqn (5.3) we can eliminate zo to give 

(5.10) 

The length (I,),= - is the value of the separation where the transition from C c - 1 
to ICl < 1 takes place, that is, where the pressure changes from positive to negative 
or vice versa. 

Further from eqn (2.30)-(2.32) we can obtain the potential of surfaces 1 and 2 
at C = 1 that is where q1 = -1 = y2. Using these values in eqn (5.5) and setting 
C = 1 ,  we can eliminate zo to get 

(5.1 1) F2 = f [( I - F:)+ sin(lcL) p1 COS(KL)] for L 5 z,  
where 

(5.12) 

This gives us the separation where the transition from ICl < 1 to C > 1 occurs. 
Hence, given the dissociation constants for each surface, the bulk concentration 

of PDI and the ionic strength, we know which of the types of solutions (i), (ii) or (iii) 
to use for a given value of the separation L. This then gives us a complete solution 
of the problem. The qualitative descriptions given in the previous sections will 
enable us to keep track of the signs and relative magnitudes of the potentials and 
charges. Further it also helps in determining the position of zo, that is, whether 
zo < 0, 0 < zo < L or zo > L, and choose the appropriate solutions for the cases 
ICl < 1 and C > 1. 

6 .  DISCUSSION 
In practical situations, the dissociation constants of the surfaces arc fixed, only 

the concentration of PDI can be varied (provided the particles do not dissolve at 
extreme concentrations of PDI!). In terms of the charge curves, this means that the 
relative positions of the two Nernst potentials are fixed. Any variations in the 
concentration of PDT merely shift both charge curves relative to sinh2(y/2) by the 
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From the definition of the Nernst potential (assuming H+ are the same amount. 
PDI) 

YN = 2.303 ('Ho-pH) = 2.303 ApH, (6.1) 
we see that yN is proportional to the change in pH. Therefore, for like (positive, say) 
surfaces the effect of decreasing pH can be described by the curves in fig. 10 (a), (b).  

PH2 case L2 

repulsion 

case L1 PH1 case L1 

(c)  (4 
FIG. 10.-Showing the effects of bulk pH on determining the case which interaction should take place 
for two arrangements of the charge curves (surface 1-solid curve, surface 2-dotted curve). The 
effects of changes in pH is indicated as a relative displacement of the curve sinh2(y/2) (dashed curves) 

with respect to the two charge curves. (See text). 

In fig. 10 (a), y,, and yN2 are close together. As pH increases we pass from case LZ 
(pH,) to case L2 (pH,). However, wheny,, and y,, are sufficiently far apart, fig. 10 (b), 
we pass from case L1 (pH,) to case L3 (pH,) to case L2 (pH,) as pH increases. 
Clearly we can only consider pH values smaller than the pzc of surface 1 (the 
surface with the lower pzc) otherwise we would not have like positive surfaces ! Thus 
on a plot of pH against separation, we can construct regions where the interaction is 
attractive or repulsive. In fig. 10 (c), (d)  we have constructed such diagrams COT- 
responding to the situation in fig. 10 (a), (b). The lines delineating the attractive and 
repulsive regions can be obtained from eqn (5.10) for various pH values. Notice 
that when we are at the pzc of surface 1,  the interaction is always attractive. 

We have developed a method whereby we can analyse the main features of the 
force curve due to double layer interaction between two dissimilar amphoteric 
surfaces under dissociation equilibrium. The resultant free energy of interaction 
must of necessity be the lowest possible, since equilibrium is assumed to be maintained 
throughout the approach of the particles. Depending on the characteristics of each 
surface, it is possible to obtain force barriers and minima in the repulsive pressure 
from just the electrostatics alone. When combined with the contributions from van 
der Waals interactions (which in itself may be repulsive and/or attractive) to form the 
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total force curve needed in DVLO theory of colloid stability, very interesting interplay 
between these two contributions may be observed. 

We have only used the Gouy-Chapman model for the double layer so we do not 
expect the present theory to be a good description of real systems. Several successful 
models have been proposed to describe the inner region of the double layer at ampho- 
teric  surface^.^^'^^ These models also use the concepts of surface dissociation 
giving rise to the surface charge. In addition, new effects such as the binding of inert 
ions or the existence of a gel layer have been included. These new features are in 
themselves charge and potential regulating. Thus by using the Gouy-Chapman 
model, we have embraced all the basic physical principles behind regulated interaction. 
The main features predicted here are essentially correct. 

When the collision time is too fast for the surfaces to regulate, the constant charge 
approximation then becomes valid. Here the charge curves are horizontal (constant 
charge for all potentials). At constant charge, we expect the interaction between 
surfaces with 
(i) like charges to be always repulsive 
(ii) unlike charges to be attractive at large separations and repulsive at small 

separations-except when the surfaces have equal and opposite charges where 
the interaction is then always attractive. 

The pressure will always diverge at small separations except for the “equal and 
opposite situation ” where it remains finite. 

When the regulation of potential is perfect, i.e., constant potential, the charge 
curve is essentially an infinitely narrow “ V ’’ centred at the Nernst potential. There 
are no saturation plateaux when the potential is far from the Nernst value. Under 
constant potential interaction, surfaces (at infinity) with 
(i) unlike potentials will always attract 
(ii) like (but not identical) potentials will repel at large separations and attract at 

small separations. Identical surfaces however will always repel. 

Of the various cases given for interaction between like and unlike surfaces under 
regulation, case L3 for like surfaces and cases U3 and U4 for unlike surfaces [fig. 6, 
8 (c), (d)] cannot be predicted by the constant potential of constant charge approxima- 
tion. If the equilibrium interaction is possible these cases may be observable. 
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