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Over the past decade, direct force measurements using the Atomic Force Microscope (AFM) have been
extended to study non-equilibrium interactions. Perhaps the more scientifically interesting and technically
challenging of such studies involved deformable drops and bubbles in relativemotion. The scientific interest
stems from the rich complexity that arises from the combination of separation dependent surface forces
such as Van der Waals, electrical double layer and steric interactions with velocity dependent forces from
hydrodynamic interactions. Moreover the effects of these forces also depend on the deformations of the
surfaces of the drops and bubbles that alter local conditions on the nanometer scale, with deformations that
can extend over micrometers. Because of incompressibility, effects of such deformations are strongly
influenced by small changes of the sizes of the drops and bubbles that may be in the millimeter range. Our
focus is on interactions between emulsion drops and bubbles at around 100 μm size range. At the typical
velocities in dynamic forcemeasurementswith the AFMwhich span the range of Brownian velocities of such
emulsions, the ratio of hydrodynamic force to surface tension force, as characterized by the capillary
number, is ~10−6 or smaller, which poses challenges to modeling using direct numerical simulations.
However, the qualitative and quantitative features of the dynamic forces between interacting drops and
bubbles are sensitive to the detailed space and time-dependent deformations. It is this dynamic coupling
between forces and deformations that requires a detailed quantitative theoretical framework to help
interpret experimental measurements. Theories that do not treat forces and deformations in a consistent
way simply will not have much predictive power. The technical challenges of undertaking force
measurements are substantial. These range from generating drop and bubble of the appropriate size
range to controlling the physicochemical environment to finding the optimal and quantifiable way to place
and secure the drops and bubbles in the AFM to make reproducible measurements. It is perhaps no surprise
that it is only recently that direct measurements of non-equilibrium forces between two drops or two
bubbles colliding in a controlled manner have been possible. This review covers the development of a
consistent theory to describe non-equilibrium force measurements involving deformable drops and
bubbles. Predictions of this model are also tested on dynamic film drainage experiments involving
deformable drops and bubbles that use very different techniques to the AFM to demonstrate that it is capable
of providing accurate quantitative predictions of both dynamic forces and dynamic deformations. In the low
capillary number regime of interest, we observe that the dynamic behavior of all experimental results
reviewed here are consistent with the tangentially immobile hydrodynamic boundary condition at liquid–
liquid or liquid–gas interfaces. The most likely explanation for this observation is the presence of trace
amounts of surface-active species that are responsible for arresting interfacial flow.
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1. Introduction

1.1. Background and motivations

Studies of non-equilibrium interactions involving deformable
drops and bubbles predated the formulation of the Derjaguin–
Landau–Verwey–Overbeek theory of colloidal stability [1,2] with the
studies of Derjaguin and Kussakov [3] on time-dependent behavior of
a rising bubble towards a flat plate under buoyancy force. Subsequent
non-equilibrium studies concentrated on the drainage phenomena of
the liquid film between deformable menisci [4].

Early direct measurements of non-equilibrium forces were based
on the Surface Forces Apparatus to measure the time-dependent
approach between two cross-cylinders of mica down to nanometer
separations in aqueous [5] and non-aqueous liquids [6]. Forces under
conditions of steady state oscillations of the mica surfaces were also
studied in the context of examining the possible variations in fluid
viscosities of nanometer thick confined liquid films [7] and the
lubricating properties of adsorbed polymers [8].

With the advent of the atomic forcemicroscope, interest continued
in the hydrodynamic interaction involving solid spheres in the tens of

micrometer size range. Although much interest was generated by
reports of hydrodynamic boundary slip at the solid–liquid interface
[9], particularly in the context of microfluidic applications [10], recent
repeated measurements suggest that instrumental artifacts are likely
to be responsible for such observations at smooth well defined
surfaces [11–13].

In the first applications of the atomic force microscope to measure
equilibrium forces involving deformable bubbles, the deformational
response of the bubble was treated as a Hookean spring [14,15]. In
subsequent equilibrium studies involving drops, the Young–Laplace
equation was used to account for the drop deformational behavior
[16,17].

In considering non-equilibrium interactions, the time-dependent
force between, for instance, two approaching deformable drops at any
instant, does not only depend on the instantaneous shapes and
separation between the drops, but also on initial conditions that
determine the drop shape and interfacial velocities. In addition, flow
of the continuous fluid phase also contributes to the hydrodynamic
interaction. Therefore appropriate experimental data needs to be
recorded to provide initial and boundary conditions for theoretical
analysis.
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Another challenge in dealingwith deformable bodies is the issue of
having multiple length scales of very different magnitudes. For non-
deforming bodies, only the geometry around the interaction zone
between surfaces in close proximity needs to be specified in order to
determine the interaction force, using say, the Derjaguin approxima-
tion [18,19]. For deformable bodies, on the other hand, a mechanical
equation of state connects local variations of the interaction force and
the local geometry [20]. If the deformable material is incompressible,
this coupling between forces and geometries can extend over length
scales of many orders of magnitude. For example, the interaction
between millimeter size drops or bubbles across films of nanometer
thickness can cause deformations extending over tens to hundreds of
micrometers. Furthermore, the incompressibility of drops and to a
good approximation, bubbles, means that small changes on the scale
of the size of drops or bubbles can have significant effects on the scale
of thin films. As a consequence, approaches based on direct numerical
simulations are unlikely to have sufficient resolution and precision to
span such a large range of length scales.

The intuition we obtain in studying drops and bubbles where their
deformational response to applied forces can be well characterized is
also valuable in analyzing interactions involving other types of soft
deformable bodies that may have elastic or viscoelastic responses.

1.2. Perspective and scope

There are three key elements that must be included in modeling
time-dependent interactions involving deformable drops and
bubbles:

(a) A description of how drops/bubbles deform under the influence
of stresses arising from hydrodynamic flow and disjoining
pressure from surface forces,

(b) A description of the flow of the intervening fluidwithin the thin
film confined by the deformable surfaces of drops or bubbles,
and

(c) A consideration of surface or colloidal forces that will vary with
local deformations of the interfaces in close proximity.

All such factors determine collision stability or coalescence and
must of course be treated in a self-consistent way. For instance, the
deformed interfaces of the drops or bubbles determine the boundaries
of the thin film where the intervening fluid must flow during
interaction. However, such flowwill generate pressure profiles within
the film that will in turn determine the shape of the interfaces. For
instance, the application of the Stefan–Reynolds Flat Film Model
[21,22] to model film drainage in which the drop interfaces are
assumed to be plane parallel, immediately gives rise to internal
inconsistencies that require subsequent correction. Indeed the use of
this model, in spite of its inability to give quantitative agreement with
even the simplest experiments, has in our view distorted our
understanding of non-equilibrium interactions between deformable
drops and bubbles.

At the typical velocities in dynamic force measurement with the
AFM which also span the range of Brownian velocities of such
emulsions (~100 μm size) or at velocities used to study dynamic film
drainage in mm size drops and bubbles the ratio of hydrodynamic
force to surface tension force, as characterized by the capillary
number, Ca≡μV/σ is ~10−6 or smaller. Here μ is the viscosity of the
continuous phase, V a characteristic velocity and σ the interfacial
tension.

Under such conditions the theory in this review treats hydrody-
namic interactions in the low Reynolds number or Stokes flow regime
relevant to many measurements of non-equilibrium forces using the
atomic force microscope as well as direct observations of time-
dependent deformations of drops and bubbles that are undergoing
interactions. Flow in the thin film trapped by the deforming drops (or
bubbles) is considered in the lubrication approximation because the

film thickness is small compared to the lateral dimension of the film.
Deformations of the interfaces of the drops or bubbles are determined
by the combination of capillary forces, hydrodynamic and disjoining
pressure. Spatial and temporal evolution of the deformations of the
interfaces of the drops or bubbles as a result of interaction are
modeled in detail whereas deformations of the rest of the drops or
bubbles are treated analytically to provide boundary conditions that
reflect how the interacting drops or bubbles are driven together.

An alternate approach to treat hydrodynamic interactions is to
solve the complete Stokes flow equations using direct numerical
simulations [23–26]. Such methods have been used to study drop
coalescence for capillary numbers in the range: Ca ~0.001–0.1, where
the computational time for a collision encounter can take over 100 h
of CPU time. However, for capillary numbers of interest in film
deformation and force measurement experiments considered here
where Ca ~10−6, a direct numerical approach has yet to be attempted.
In contrast, the model we outline here takes advantage of the
simplifications afforded by the special characteristics of film drainage
and AFM force measurement experiments whereby we can undertake
calculation of a typical drainage or force run in around 1 min on a
notebook computer.

In order to focus on the key physical principles, we shall only
consider non-equilibrium interaction between deformable drops and
bubbles for which there is axial symmetry. As we shall see in Section 5,
this is relevant to a number of different experiments that measure
non-equilibrium forces and deformations of drops and bubbles.

The equations that govern the deformation of drops and bubbles
will be developed in Section 2. In particular, details of how to obtain
boundary conditions using the asymptotic analytic solutions for the
drop shape outside the film will be given. Different models for
hydrodynamic interactions, including the familiar Stefan–Reynolds
Flat Film Model, will be discussed in Section 3. The Stokes–Reynolds–
Young–Laplace model for describing non-equilibrium interactions
between deformable drops and bubbles, incorporating the develop-
ment in Sections 2 and 3 will be studied using perturbation analysis in
Section 4 and detailed implementation of robust numerical solutions
of the equations will also be given. In Section 5, predictions of the
Stokes–Reynolds–Young–Laplace model are compared with experi-
ments that measure dynamic deformations and dynamic forces to
illustrate the utility of the model.

This review is therefore aimed at readers who are familiar with
established theories of surface forces and disjoining pressures at the
level of the Derjaguin–Landau–Verwey–Overbeek (DLVO) model. In
addition, the reader should have some familiarity with the basic
operations and limitations of the atomic force microscope when it is
used to measure forces between rigid surfaces.

2. Drop and bubble deformations

In this section, we develop the equations that govern the
deformation of a drop or bubble as a result of external forces arising
from the interactionwith another particle or drop. Since inmost cases,
the behavior of drops and bubbles is very similar, we will henceforth
use the term “drops” to denote both drops and bubbles unless
specified otherwise explicitly.

About 200 years ago in 1805, the British physician Thomas Young
[27] gave an analysis of the shape of a deformable fluid interface
under the action of capillary forces without using any equations. The
French astronomer Pierre-Simon Laplace [28] considered the same
problem using a force balance method in the normal and tangential
direction to the fluid interface. Carl Friedrich Gauss [29] gave an
analysis of the problem in terms of the principle of minimization of
interfacial area under the action of interfacial tension or energy.
Strictly speaking such an approach is not applicable under non-
equilibrium conditions. In the presence of hydrodynamic interaction
that is of interest here, we can estimate the time scale required for a
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drop, under capillary forces, to adjust its shape in response to external
perturbations. Capillary waves of velocity c and wavelength λ on a
spherical drop with interfacial tension σo obey the dispersion
relation [30]: c2=2πσo / [λ (ρd+ρe)], with ρd and ρe being the
densities of the dispersed and continuous phases. Taking λ ~100 μm
which is an upper limit of the size of the deformation zone of small
drops, gives c ~1 m/s, which is much faster than the characteristic
approach velocities of drops considered here. In other words, in the
presence of hydrodynamic interactions, we make the reasonable
assumption that a drop can adjust its shape instantaneously to
accommodate changes in the hydrodynamic pressure. Thus we can
add the effects of the hydrodynamic pressure, p to effects due to
equilibrium disjoining pressure arising from surface forces.

2.1. Augmented Young–Laplace equation

Consider a sessile drop on a substrate, immersed in a continuous
medium as shown in Fig. 1. It is deformed by interactions due to
surface forces between itself and a solid particle located at a distance D
from the substrate. If the range of the surface forces is small compared
to the dimensions of the drop and the particle, the deformation will be
confined to a small interaction zone of radius a around the apex of the
drop. Within the Derjaguin approximation the drop–particle interac-
tion is given in terms of an interaction free energy per unit area, E(h) or
the disjoining pressure Π(h)≡−dE(h)/dh. These quantities are
assumed to be known functions of the film thickness h(r,t) around
the axisymmetric drop which may change slowly with time, t. We
assume the drop has constant interfacial tension or surface energy per
unit area, σo.

The equilibrium deformation of a drop can be obtained by
minimizing the Helmholtz surface energy of the system that can be
written in terms of the drop height z(r,t) [29]. This method has been

used to derive the equation for an equilibrium drop under external
forces [31–35]. The surface energy minimization also gives the
Young–Dupré condition: σo cos θ+σL=σS for the equilibrium contact
angle θ at the base of the drop that is far from the interaction zone at
the apex of the drop (see Fig. 1).

However, to describe dynamic deformations for which the
principle of energy minimization would not strictly apply, we can
adopt a quasi-static force balance approach that is a generalization of
the method due to Laplace.

Consider an area element of the interface of an axisymmetric drop
(Fig. 1) where surface tension forces act on the perimeter of the
element along the interface and the pressure difference across the
interface acts in the direction of the surface normal. In the polar
direction, the surface tension forces along a longitude on two
opposing sides of the area element of length r(φ) dα and r(φ+dφ)
dα are:

Fσ
polar = −σo r φð Þdα½ �t φð Þ + σo r φ + dφð Þdα½ �t φ + dφð Þ ð2:1:1Þ

where σo is the interfacial tension, n and t are the outward unit
normal vector and unit tangent vector respectively, and the angles α
andφ are defined in Fig. 1. Using the explicit expressions for these unit
vectors: n = sinφ r̂ + cosφ ẑ and t = cosφ r̂− sinφ ẑ, we expand
Eq. (2.1.1) to first order in dα and dφ to give

Fσ
polar = σo

dr
dφ

dφ dα t−σo r dφdα n ð2:1:2Þ

Similarly, in the azimuthal direction, we have the unit vectors:
α̂ = − sinα x̂ + cosα ŷ, r̂ = cosα x̂ + sinα ŷ = sinφ n + cosφ t, with
dα̂ = dα = − r̂, (Fig. 1) so the surface tension forces along a latitude on
two opposing sides of the area element of length ds are to linear order in
the change in azimuthal angle dα:

Fσ
azimuth = −σo α̂ + σo α̂ α + dαð Þf gds

= −σo r̂ dα ds

= −σo sinφ dα ds n−σo cosφ dα ds t

ð2:1:3Þ

The normal force due to the pressure difference across the
interface is:

Fnormal = pin− pout + p + Πð Þf gds rdα n ð2:1:4Þ

where pin is the internal pressure of the drop, pout is the ambient
pressure outside the drop, p is the hydrodynamic pressure and Π is
the disjoining pressure. The sign convention is that p and Π are
positive if they act in the direction opposite to the outward surface
unit normal vector, n.

We obtain the augmented Young–Laplace equation by equating
the normal components of the forces in Eqs. (2.1.2)–(2.1.4), and using
dφ/ds=(dr/ds)(dφ/dr)=cosφ (dφ/dr)

pin− pout + p + Πð Þ = σo
dφ
ds

+
sinφ
r

� �
ð2:1:5aÞ

2σo

RL
− p + Πð Þ = σo cosφ

dφ
dr

+
sinφ
r

� �
ð2:1:5bÞ

=
σo

r
d
dr

r sinφð Þ ð2:1:5cÞ

= −σo

r
∂
∂r

r zr
1 + z2r
� �1=2
 !

ð2:1:5dÞ
Fig. 1. Upper: Schematic of an axisymmetric sessile drop in a continuous phase,
deformed around its apex within a small interaction zone of radius, a due to interaction
with a solid particle with radius, Rs. Lower: An illustration of forces acting on a surface
element of the axisymmetric sessile drop along the polar and azimuthal directions.
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where zr≡∂z/∂r≡–tanφ, see Fig. 1. For later analysis, it is convenient
to define the Laplace radius, RL by

pin−pout ≡
2σo

RL
ð2:1:6Þ

Equating the tangential components of Eqs. (2.1.2) and (2.1.3)
simply gives the identity dr=cosφ ds (see Fig. 1).

It is ironic that key equations in the theory of capillarity have been
named after Thomas Young because in his writing, he managed to
avoid the use of mathematical notations and equations altogether.

2.2. Special film shapes: Dimple, pimple, wimple and ripple

We can deduce a number of general results concerning drop
deformation by taking the first integral of Eq. (2.1.5c) with respect to r
to give

σo rsinφ =
σo r

2

RL
− 1

2π
Φ r; tð Þ ð2:2:1aÞ

Φ r; tð Þ≡ 2π ∫
r

0

p r′; t
� �

+ Π r′; t
� �� �

r′ dr′ ð2:2:1bÞ

where the function Φ(r,t) is related to the total force, F(t)

F tð Þ = 2π ∫
∞

0

p r′; t
� �

+ Π r′; t
� �� �

r′ dr′ ≡Φ ∞; tð Þ ð2:2:2Þ

acting on the drop due to the hydrodynamic pressure, p, and the
disjoining pressure, Π. For r≫a, both p and Π are negligible and
Eq. (2.2.1a) for the drop shape outside the interaction zone can be
written as

r sinφ =
r2

RL
− F tð Þ

2πσo
; for r NN a: ð2:2:3Þ

The above result does not depend on the exact values of p andΠ in
the interaction zone, rba. Thus the drop shape outside the interaction
zone only depends on the total force F(t). A very similar result was
obtained some two centuries ago in Cartesian form [36,37].
Eq. (2.2.3) provides the necessary boundary condition for the
numerical problem of solving for time deformations of the film,
down to nanometer thickness in drainage and dynamic force
experiments (see Section 4.1). The term in brackets on the RHS of
Eq. (2.1.5a) is the sum of the local curvatures at the surface. Using
Eq. (2.2.3) we can identify these curvatures outside the interaction
zone to be

K1 ≡
dφ
ds

=
1
RL

+
1
r2

F tð Þ
2πσo

ð2:2:4aÞ

K2 ≡
sinφ
r

=
1
RL

− 1
r2

F tð Þ
2πσo

ð2:2:4bÞ

where the hydrodynamic pressure, p and the disjoining pressure, Π
are both negligible. We note that the sum of the curvatures (K1+K2)
is independent of the force as expected from Eq. (2.1.5a).

We can now understand the physical origin of various film shapes
observed and discussed in the literature. These shapes: the pimple
[38], the dimple [39], thewimple [40] and the ripple [41] simply reflect
the number of times the slope of the drop surface: ∂z/∂r≡–tanφ,
becomes zero or changes sign. From Eq. (2.2.1a) we see that the sign
of the slope is controlled by the quantity: [(2πσor

2/RL)−Φ(r,t)] ∝
sinφ ∝ ∂z/∂r, that is only determined by the behavior of the Young–
Laplace equation. This is the reason why dimple formation, for

instance, appears in theories that have very different models for film
drainage and surface mobility conditions [42–48].

2.3. Equation for thin film deformations

In this section we develop the governing equations for the
thickness of the film between a deformable drop and a spherical
particle and between two deformable drops in terms of the Young–
Laplace equation of the previous section. In AFM force measurement
experiments, drop deformation is localized in an interaction zone
around the apex of the drop. Both the size of this zone and the extent
of the deformation are small compared to the drop radius. This allows
us to focus on the properties of the thin film. How this film is related to
the rest of the drop outside the interaction zone will be considered in
Section 2.4.

2.3.1. Film between a drop and a spherical particle
As drop deformations are confined to a small interaction zone

within the radius r~a around the apex, we seek a description of the
shape of the film with thickness, h(r,t) in this region. This film
thickness is required to calculate the disjoining pressure,Π(h) and to
specify the film boundary in which hydrodynamic flow takes place.
The geometric relation between h(r,t) and the drop shape z(r,t)
follows from Fig. 1:

z r; tð Þ = D tð Þ + r2= 2Rsð Þ–h r; tð Þ: ð2:3:1Þ

In the absence of a strong attraction between the drop and the
particle, and certainly when the interaction is repulsive, we can
expect the variation in the drop shape would be small on the scale of
the drop size, that is, zr≡∂z/∂r≪1 within the interaction zone. In this
case, we only need to retain the linear term in zr in Eq. (2.1.5d). On
combining Eq. (2.3.1) with the linearized form of Eq. (2.1.5d) we have
the following result for the equation of the film thickness, h(r,t)
between a drop and a spherical particle of radius, Rs that is valid in the
interaction zone within the radius r~a

σo

r
∂
∂r r

∂h
∂r

� �
=

2σo

Rds
−Π−p; 0 b r e a Drop−sphere ð2:3:2aÞ

1
Rds

≡ 1
RL

+
1
Rs

ð2:3:2bÞ

In the presence of a strong attraction between the drop and the
particle, the drop shape, z(r,t) may exhibit a cusp with an associated
large gradient. However, in dynamic interactions involving deform-
able drops, this situation only occurs during the short time interval
just prior to the last stage of a coalescence event. Therefore as we shall
see in bubble–bubble coalescence experiments in Section 5.2.3, the
fact that ∂z/∂r≪1 may not be satisfied for the short time just prior to
coalescence does not affect the ability of the theory to predict the form
of the dynamic force leading up to coalescence and the actual
coalescence time with good accuracy.

In general, Eq. (2.3.2a) has to be solved numerically when the
disjoining pressure,Π and the hydrodynamic pressure, p are given. We
stress that Eq. (2.3.2a) for the film thickness is obtained from a
linearization of the augmented Young–Laplace equation, Eq. (2.1.3) and
the geometric condition Eq. (2.3.1). Although the first term on the right
hand side of Eq. (2.3.2a): (2σo/Rds) has the dimensions of pressure, it is
not the Laplace pressure of the drop. This is often a point of confusion in
less than rigorous derivations of this result [49].
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Eq. (2.3.2a) can be integrated twice to give

h r; tð Þ = h 0; tð Þ + r2

2Rds
− 1

2πσo
log

r
2Rdso

� �
Φ r; tð Þ

+
1

2πσo
Ξ r; tð Þ Drop−sphere

ð2:3:3aÞ

Ξ r; tð Þ≡ 2π ∫
r

0

p r′; t
� �

+ Π r′; t
� �� �

r′ log
r′

2Rdso

� �
dr′ ð2:3:3bÞ

where h(0,t), the film thickness at r=0, is a constant of integration
that is to be determined. The characteristic length scale of this drop–
sphere problem is Rdso≡(1/Ro+1/Rs)−1, and it is used to scale the
logarithmic terms in Eqs. (2.3.3a)–(2.3.3b). In the region rNa, the film
thickness, hwill become sufficiently large forΠ and p to be negligible
so that the value of r in the functionsΦ(r,t) andΞ(r,t) may be replaced
by infinity to yield the general outer asymptotic form of the film
thickness

h r; tð Þ→h 0; tð Þ + r2

2Rds
− F tð Þ

2πσo
log

r
2Rdso

� �
+ H Rdso; tð Þ; r N a Drop−sphere

ð2:3:4Þ

H R; tð Þ≡ 1
σo

∫
∞

0

p r′; t
� �

+ Π r′; t
� �� �

r′ log
r′
2R

� �
dr′ ð2:3:5Þ

Eq. (2.3.4) is the limiting form of the solution of the film shape
Eq. (2.3.2a) between a drop with constant interfacial tension and a
sphere. Although the constants h(0,t) and H(Rdso,t) are as yet
unknown at this stage, this solution can be matched to the solution
valid outside the interaction zone (see Section 2.4) and provide us
with the appropriate boundary conditions for the numerical solution
of Eq. (2.3.2a). A result that is similar to Eq. (2.3.4) has been obtained
by Yiantsios and Davis [23] who used a scaling analysis of the problem
of two deformable drops approaching under a constant buoyancy
force.

In Section 2.5, we will see that the logarithmic behavior for rNa in
Eq. (2.3.4) will match up with the inner asymptotic behavior of the
outer solution of the augmented Young–Laplace equation Eq. (2.2.3)
that will be developed in the next section. This result is analogous to
Hooke's Law for a linear spring where the force exerted on the spring
can be deduced from the extension. For a deformable drop, the total
force, F(t) acting on it is encoded in its geometric shape outside the
interaction zone. This logarithmic limiting form of the film thickness
has been observed experimentally [50].

Results for the special case of a drop interacting with a flat solid
surface can be obtained from Eqs. (2.3.3a), (2.3.3b)–(2.3.5) in the
limit of the sphere of infinite radius: Rs→∞.

2.3.2. Film between two drops
For two interacting drops denoted by i=1 or 2, with drop shape,

zi(r,t) and Laplace radii, RLi, located on substrates at the separation, D
apart (Fig. 2), the augmented Young–Laplace equation for each drop
is

−σoi

r
∂
∂r

r zir
1 + z2ir
� �1=2

 !
=

2σoi

RLi
−Π−p; i = 1 or 2 Drop−drop

ð2:3:6Þ

Within the interaction zone defined by r~a, in which the slopes:
∂zi/∂r=zir≪1, (i=1, 2), we can linearize Eq. (2.3.6) and use the
geometric relation (Fig. 2)

z1 r; tð Þ + z2 r; tð Þ = D tð Þ–h r; tð Þ ð2:3:7Þ

to derive the equation for the film thickness, h(r,t) between two drops

1
2
σ
r
∂
∂r r

∂h
∂r

� �
=

2σ
R

− Π + pð Þ; 0 b r e a Drop−drop ð2:3:8Þ

The constants R and σ are defined by

1
R
≡ 1

2
1
RL1

+
1
RL2

� �
and

1
σ

≡ 1
2

1
σo1

+
1

σo2

� �
ð2:3:9Þ

and are sometimes called the equivalent radius and equivalent
interfacial tension. A factor (1/2) on the left hand side of Eq. (2.3.8)
appears for this drop–drop case, when compared to Eq. (2.3.2a).

Eq. (2.3.8) can be integrated twice to give

h r; tð Þ→h 0; tð Þ + r2

R
−2

F tð Þ
2πσ

� �
log

r

2Ro

� �
+ 2H Ro; t

� �
; r N a Drop−drop

ð2:3:10Þ

again a scale factor Ro≡2/(1/Ro1+1/Ro2), defined in terms of the
unperturbed radii of the two drops is used. An extra factor of 2
appears in the logarithm term in Eq. (2.3.10) when compared to the
drop–particle result in Eq. (2.3.4).

Again the unknown quantities h(0,t) and H Ro; t
� �

in Eq. (2.3.10)
can be found by first solving Eq. (2.2.3) for the drop shape outside the
interaction zone in Section 2.4 and then matching these to the inner
solutions in Section 2.5.

2.4. Drop shape outside interaction zone

We study the shape of the drop outside the interaction zone, rNa,
by starting with the solution of the Young–Laplace equation
expressed in Eq. (2.2.3). To simplify the notation in this section, we
define the quantities

G tð Þ≡ F tð Þ
2πσo

and R≡ RL ð2:4:1Þ

r

D

z

h

o1

a

o2

1

2
2z

1

Fig. 2. Schematic diagram of the axisymmetric deformation within a small interaction
zone of radius, a around the apex of two dissimilar drops interacting in a continuous
phase.

75D.Y.C. Chan et al. / Advances in Colloid and Interface Science 165 (2011) 70–90



Author's personal copy

where G(t) has dimension of length and is a natural length scale for
the size of the interaction zone. Thus Eq. (2.2.3) can be expressed in
the simplified notation

r sinφ =
r2

R
−G tð Þ; for r NN a: ð2:4:2Þ

Approaching the apex of the drop from outside towards the
interaction zone, from Eq. (2.4.2) one observes that the tangent angle,
φ→0, when r→(GR)1/2. Thus we can identify a≡ [FR/(2πσo)]1/2 as the
radius of the interaction zone.

We can integrate the identity: dz/dr=−tanφ (Fig. 1), using the
result

r =
1
2
R sinφ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 φ + 4G=R

q� �
ð2:4:3Þ

obtained from solving Eq. (2.4.2), to give the height, z(r) of the drop
outside the interaction zone

z rð Þ = ∫
φ

θ

dz
dr

dr
dφ

dφ = −1
2
R∫

φ

θ

sinφ 1 +
sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 φ + 4G= R
q

0B@
1CA dφ

ð2:4:4Þ

This result can be expressed in terms of elliptic integrals
[32,36,37]. However, we will follow a different approach. Since we
are only interested in the result for small forces that can be expressed
as (G/R)=F/(2πσoR)≪1, the deviations of the contact angle: θ=θo+
δθ and the Laplace radius R=Ro+δR from their unperturbed values,
θo and Ro, will be small. Therefore, we expand the lower limit of
integration, θ and the integrand in Eq. (2.4.4) to linear order in δθ, δR
and G that results in

z rð Þ = −R∫
φ

θo

sinφ dφ + Ro sinθof g δθ + ∫
φ

θo

1
sinφ

dφ

8<:
9=;G

= R cosφ jφθo + Ro sinθof g δθ− 1
2

log 1 + cosφ
1− cos φ

� �jφ
θo

	 

G

ð2:4:5Þ

The shape of z(r) near the apex of the drop can be found by using
the approximations found from Eq. (2.4.2) and valid as φ→0:

sinφ≈φ + ::: =
r
R
−G

r
ð2:4:6aÞ

cosφ≈ 1−1
2
φ2 + ::: = 1− r2

2R2 +
G
R

+ O G2
� �

ð2:4:6bÞ

Substituting these results into Eq. (2.4.5) and retaining only linear
terms in δθ, δR and G gives

z rð Þ→Ro 1− cosθoð Þ− r2

2R
+ 1− cosθof g δR + Ro sinθof g δθ

+ log
r

2Ro

� �
+ 1 +

1
2

log
1 + cosθo
1− cosθo

� �	 

G

ð2:4:7Þ

This is the form of the drop shape z(r) as one approaches the
interaction zone from the outside: r→a≡(GR)1/2, φ→0. The last
terms that are independent of r represent changes to the drop height
originating from the influence of the externally applied force.

In general, the various perturbation terms δθ, δR and G do not vary
independently. For example, if the drop maintains constant volume as
it deforms there will be a condition that relates these terms. The

volume of the drop, Vd is (integrating the outer solution, neglecting
the small error of the interaction zone):

Vd = ∫
z 0ð Þ

0

π r2dz = ∫
0

θ

π r2
dz
dr

dr
dφ

dφ

=
πR3

8
∫
θ

0

sinφ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2φ + 4G=R

q� �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2φ + 4G= R

q sinφ dφ

ð2:4:8Þ

Again expanding this result to linear order in δθ, δR and G the
constant volume constraint can be expressed as

δVd =
∂Vd

∂θ

� �
o
δθ +

∂Vd

∂R

� �
o
δR +

∂Vd

∂G

� �
o
G

= πR3
o sin

3
θo

n o
δθ + πR2

o 1− cosθoð Þ2 2 + cosθoð Þ
n o

δR

+ πR2
o 1− cosθoð Þ

n o
G = 0 ð2:4:9Þ

This provides a first relation between δθ, δR and G. A second
relationship between these three variables must originate from the
way the drop responds to the external force. Two possibilities are that
either the contact line remains fixed (pinned contact line or
r1=constant while θo changes, see Fig. 1) or the contact angle
remains constant (θo=constant, while r1 changes). These two
possibilities will be explored in the next subsections.

2.4.1. A pinned contact line
For a contact line pinned at the radial position on the substrate

r1=Ro sinθo with φ=θ=θo+δθ, (Fig. 1) we have from Eq. (2.4.2)

r21−r1 R sin θo + δθð Þ−R G = 0 ð2:4:10Þ

and to linear order in δθ, δR≡R−Ro and G this provides a second
relation between δθ, δR and G

sin2θo
n o

δR + Ro sin θo cos θof g δθ + G = 0 ð2:4:11Þ

Thus the constant volume constraint, Eq. (2.4.9) and the pinned
contact line condition, Eq. (2.4.11) enable us to express δR and δθ in
terms of G

δR =
−1

1− cos θoð Þ G; δθ =
1

Ro sin θo
G: ð2:4:12Þ

The drop shape near the interaction zone: φ→0, r→a in
Eq. (2.4.7) can now be expressed entirely in terms of the force, F,
using Eq. (2.4.1):

z rð Þ = Ro 1− cos θoð Þ− r2

2RL
+

F tð Þ
2πσ

log
r

2Ro

� �
+ 1 +

1
2

log
1 + cos θo
1− cosθo

� �	 

ð2:4:13Þ

The first term on the RHS is the height of the undeformed drop, the
second term is a local quadratic correction and the last term expresses
the deformation due to the external force, F(t) under a constant volume
constraint and a pinned three phase contact line at the base of the drop.

2.4.2. A constant contact angle
For deformations at constant contact angle, θo, it is obvious that

δθ=0 in Eq. (2.4.9) and the resulting relation between δR and G is

δR =
−1

1− cosθoð Þ 2 + cosθoð Þ G ð2:4:14Þ
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so from Eqs. (2.4.7) and (2.4.1), the drop shape near the interaction
zone: φ→0, r→a for deformation under a constant contact angle is:

z rð Þ = Ro 1− cos θoð Þ− r2

2RL
+

F tð Þ
2πσ V log

r
2Ro

� �
+ 1

+
1
2

log 1 + cos θo
1− cos θo

� �
− 1

2 + cos θo
t

ð2:4:15Þ

This result differs from that in Eq. (2.4.13) in that the deformation
due to the external force, F(t) is under a constant volume constraint
and a fixed contact angle at the base of the drop.

In summary, the outer shape of a deformed drop, z(r,t) as one
approaches the interaction zone, r→a from above has the form

z r; tð Þ→Ro 1− cosθoð Þ− r2

2RL
+

F tð Þ
2πσo

log
r

2Ro

� �
+ B θoð Þ

	 

; r→a

ð2:4:16aÞ

where the function B(θ) depends on whether the drop deforms with a
pinned three phase contact line at position r1 or with a constant
contact angle θo

B θð Þ≡V1 +
1
2
log

1 + cos θ
1− cos θ

� �
pinned r1

1 +
1
2
log

1 + cos θ
1− cos θ

� �
− 1

2 + cos θ
constant θ0 ð2:4:16bÞ

Eqs. (2.4.10) to (2.4.16a), (2.4.16b) were derived previously by
Bardos [51] using a more complicated approach. The advantage of the
current approach is that it is more physically transparent and
compact, without the need to resort to the use of elliptic integrals.
Also, there is no need to treat acute and obtuse angles separately as
was done in Bardos' work.

Before we match this result to the outer limiting form of the film
thickness derived in Section 2.3, we examine the applicability of the
constant volume constraint for the case of a deforming bubble.

2.4.3. Bubble compressibility
Assume that the internal pressure, Pin of the bubble containing N

molecules in a volume, Vb obeys the ideal gas equation: PinVb=NkT,
where k is Boltzmann's constant. If the Young–Laplace equation:
Pin=Pout+2σo/Ro is valid, the volume is then:

Vb Roð Þ = NkT

Pout +
2σo
Ro

� � ð2:4:17Þ

The variation of the bubble volume with regard to the change in
the Laplace radius, δR, is

δVb =
∂Vb

∂R

� �
o
δR =

Vb Roð Þ
Ro

2σ = Ro

Pout + 2σ = Ro

	 

δR ð2:4:18Þ

If the terms that contain cosθo in Eq. (2.4.9) are of order unity, the
magnitude of the coefficient of δR in Eq. (2.4.9) will be comparable to
that of the coefficient of δR in Eq. (2.4.18) when (2σ/Ro)~Pout~1 Bar.
Thus for a bubble in water, bubble compressibility contributes about a
2% effect assuming a bubble radius of 70 μm.

2.5. Matching solutions for the force-displacement formula

We now match the limiting forms of the solutions of the film
equation just beyond the interaction zone derived in Section 2.3 to the
limiting form of the solution of the drop shape outside the interaction
zone as one approaches the film from the outside obtained in
Section 2.4.

2.5.1. Drop–sphere interaction
At the film boundary, r~a, we use the geometric condition in

Eq. (2.3.1) to match the film solution given by Eq. (2.3.4) for the drop–
sphere interaction with the drop shape solution given by Eqs.
(2.4.16a)–(2.4.16b). The constant [h(0,t)+H(Rdso,t)] in Eq. (2.3.4)
can be eliminated to give

h r; tð Þ ≅D tð Þ−Ro 1− cosθoð Þ + r2

2Rds
− F tð Þ

2πσo
log

r
2Ro

� �
+ B θoð Þ

	 

; r e a

ð2:5:1Þ

The film radius for the drop–sphere interaction, ads can be taken to
be the position where ∂h/∂r=0, and from Eq. (2.5.1), we find

ads ≅
F tð ÞRdso

2πσo

� �1=2
ð2:5:2Þ

where, cf Eq. (2.3.2b)

1
Rdso

≡ 1
Ro

+
1
Rs

ð2:5:3Þ

is defined in terms of the undeformed drop radius, Ro and the sphere
radius, Rs. On evaluating Eq. (2.5.1) at r=ads, we find

ΔD tð Þ≡D tð Þ−Ro 1− cos θoð Þ−h ads; tð Þ≅ F tð Þ
4πσo

log
F tð ÞRdso

8πσoR
2
o

� �
+ 2B θoð Þ−1

	 

ð2:5:4Þ

An important observation is that this non-linear force-displace-
ment relationship follows the Young–Laplace equation and implies
that a drop or bubble does not behave as a Hookean spring under
deformation as often assumed [14,52]. This result is also independent
of the details of the repulsive disjoining pressure which determines
the magnitude of the film thickness h(ads,t) that in practice is small
compared to the displacement D. Consequently, for repulsive
interactions, measuring the static or equilibrium force-displacement
relationship will provide information about the interfacial tension σo,
the drop radius Ro and the contact angle θo. However, the result will be
insensitive to the detailed form of the repulsive disjoining pressure.

For force measurements using the atomic force microscope,
Eq. (2.5.4) replaces the constant compliance condition as hard contact
is no longer a valid concept when deformable drops are involved.

2.5.2. Drop–drop interaction
Again at the film boundary, r~a, we use the geometric condition in

Eq. (2.3.7) to match the film solution given by Eq. (2.3.10) for the
drop–drop interaction with the drop shape given by Eqs. (2.4.16a)–
(2.4.16b). The constant [h(0,t)+2 H(Ro,t)] in Eq. (2.3.10) can be
eliminated to give

h r; tð Þ≅D tð Þ−Ro1 1− cos θo1ð Þ−Ro2 1− cos θo2ð Þ

+
r2

R
− F tð Þ

2πσo1
log

r
2Ro1

� �
+ B θo1ð Þ

	 

− F tð Þ

2πσo2
log

r
2Ro2

� �
+ B θo2ð Þ

	 

; r e a

ð2:5:5Þ

The film radius for the drop–drop interaction, add can be taken to
be the position where ∂h/∂r=0, thus from Eq. (2.5.5)

add ≅
F tð ÞRo

2πσ

 !1=2

ð2:5:6Þ
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where, cf Eq. (2.3.9)

1
Ro

≡ 1
2

1
Ro1

+
1
Ro2

� �
ð2:5:7Þ

is defined in terms of the undeformed drop radii, Ro1 and Ro2. On
evaluating Eq. (2.5.5) at r=add, we find

ΔD tð Þ≡D tð Þ−Ro1 1− cos θo1ð Þ−Ro2 1− cos θo2ð Þ−h add; tð Þ

≅ F tð Þ
4πσo1

log
F tð ÞRo

8πσR2
o1

 !
+ 2B θo1ð Þ

( )

+
F tð Þ
4πσo2

log
F tð ÞRo

8πσR2
o2

 !
+ 2B θo2ð Þ

( )
− F tð Þ

2πσ

ð2:5:8Þ

which is the force, F vs displacement, D relation (see Fig. 2) for
the interaction between two dissimilar deformable drops. The
interfacial tensions, σo1 and σo2, the contact angles, θo1 and θo2
and the undeformed drop radii, Ro1 and Ro2 can all be measured
independently.

To recapitulate, the theoretical formulation in this work is valid
when viscous forces are small compared to surface tension forces, that
is, in the regime of small capillary number, and the interaction force is
small as measured by the condition: F/(2πσoR)≪1. Under such
circumstances, the size of the interaction zone, a between the drops is
also small compared to the dimensions of the drop, R.

3. Hydrodynamic interactions

In non-equilibrium force measurement experiments, the relative
motion between the interacting drops or between the drop and
solid particle will generate hydrodynamic interactions that arise
from the flow of the continuous phase. In experiments using the
atomic force microscope (AFM) or the surface forces apparatus
(SFA), the separation between the interacting bodies (hb1 μm) is
small compared to the dimensions of the drops or particles
(R~100 μm), so flow in the thin film between interacting bodies
provides the dominant contribution to the measured non-equilib-
rium force. While the typical drive velocities used in AFM
experiments (V~1–50 μm/s) span the range of Brownian velocities
of the drops or particles, the Reynolds number, Re in water, is small
(Re=ρRV /μb10−2) so that a description based on Stokes flow is
appropriate. Also the typical capillary number, Ca, the ratio of
viscous forces to surface tension forces, is small (Ca=μV /σ~10−6)
and justifies the use of the augmented Young–Laplace model to
describe drop deformations.

A review of various treatments of hydrodynamic interactions will
be the focus of this section.

3.1. Stokes–Reynolds lubrication theory

The description of fluid flow between thin deformable films in the
low Reynolds number regime is as follows. Hydrodynamic flow in the
deformable thin film trapped by the drop can be described using the
lubrication theory [53,54]. Within this axisymmetric film comprised
of a Newtonian liquid with shear viscosity μ, the dominant velocity
component, u(r,z,t) is in the radial r-direction and the pressure, p only
varies in the r-direction. The velocity field is given by the radial
component of the Stokes equations

μ
∂2u r; z; tð Þ

∂z2
=

∂p r; tð Þ
∂r ð3:1:1Þ

Integration of the continuity equation from z=0 to h(r,t) together
with the kinematics condition on the film surface gives the general
evolution equation of the film thickness

∂h r; tð Þ
∂t = −1

r
∂
∂r r ∫

h r;tð Þ

0

u r; z; tð Þdz
0@ 1A ð3:1:2Þ

Eq. (3.1.1) can be integrated with respect to z twice to find u(r,z,t).
In order to do so, hydrodynamic boundary conditions at the film
surface (z=0 and z=h(r,t)) must be specified. Substituting this
solution into Eq. (3.1.2), gives an equation relating h(r,t) and p(r,t),
that together with Eqs. (2.3.2a) or (2.3.8) provides a complete
description of the evolution of the film (both spatial and temporal).

Different types of hydrodynamic boundary conditions at the
surfaces of solids, drops and bubbles have been proposed. The
appropriate choice will be guided by experimental conditions. For
completeness, we summarize the film evolution equations
corresponding to different boundary conditions.

The assumption at a solid–liquid interface is to require the
fluid velocity at the interface to be the same as the velocity of the
solid surface. This is referred to as the no-slip boundary condition.
The analogous condition at a fluid–fluid interface is the tangen-
tially immobile boundary condition in which the fluid velocity at
such interfaces is also specified even though the interfaces can
deform. This condition is regarded to be appropriate at interfaces
populated by surface-active molecules that can arrest interfacial
flow.

At ideal clean liquid–liquid or liquid–gas boundaries, the fully
mobile condition whereby one assumes the continuity of the
tangential components of the fluid velocity and of the tangential
shear stress is expected to hold. This means it becomes necessary to
match hydrodynamic flow inside and outside the drops. In lubrication
flow, this gives rise to an additional integral equation involving the
interfacial velocity that has to be solved (see Section 3.5).

The case of two interacting bubbles is of special interest because
of its ubiquitous relevance in many areas of application. Theoret-
ically, it is also a singular case in that if the fully mobile boundary
condition is applied at the bubble interfaces, the thin film
lubrication Eq. (3.1.1) will only admit a constant plug flow solution
that provides no information about the hydrodynamic pressure. This
led Chesters and Hofman [45] to include inertia effects in
formulating their lubrication model. Although their numerical
calculations also included the effects of bubble deformation, for
non-deforming bubbles this model actually yields an infinite force
between the bubbles (see Section 3.6). Such contradictory results
stems from the fact that the lubrication formulation is not valid
when inertial effects are dominant [54].

The effects of a non-uniform distribution of surface-active
molecules being present at an interface will provide a surface tension
gradient along the surface that can oppose the tangential hydrody-
namic stress [55]. However, in such a model, it becomes necessary to
consider convection and diffusion of such surface-active molecules
during interaction (see Section 3.7).

Finally, the Stefan–Reynolds Flat FilmModel [21,22] has been used
for a long time to describe drop deformation and associated film
drainage. In its original form it is attractive because simple analytic
solutions are available (see Section 3.8). However, the unknown
geometric parameters and inherent contradictory assumptions of the
model mean that it lacks predictive capability. This model has
spawned a number of modifications, which we call collectively Neo
Flat Filmmodels that involved additional assumptions and parameters
with increasing mathematical complexity (see Section 3.9). In spite of
such developments, the ability of this model in predicting experi-
mental results is limited.
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3.2. Non-deforming interfaces

The film thickness between two non-deforming solid spheres with
radii Ra and Rb, is given by

h r; tð Þ = ho tð Þ + r2

RH
;

1
RH

≡1
2

1
Ra

+
1
Rb

� �
ð3:2:1Þ

where the function ho(t) specifies how the spheres are moved relative
to each other. The solution of the Stokes Eq. (3.1.1) with the no-slip
boundary condition: u=0 at z=0 and z=h(r,t) is

u r; z; tð Þ = − 1
2μ

∂p
∂r z h−zð Þ: ð3:2:2Þ

Combining Eqs. (3.1.2), (3.2.1) and (3.2.2), gives the film thinning
equation

dho tð Þ
dt

=
1

12μ r
∂
∂r r h3

∂p
∂r

� �
ð3:2:3Þ

This can be integrated to give

p r; tð Þ = −6μ
dho tð Þ
dt

∫
∞

r

s ds
h s; tð Þ½ �3 = −3μRH

2
dho tð Þ
dt

1

ho tð Þ + r2 =RH

� �� �2
ð3:2:4Þ

The pressure is defined to be zero outside the film and from
Eq. (3.2.4) we see the pressure decays as 1/r4 as r→∞.

The hydrodynamic force, F(t) acting between the spheres, in terms
of the separation, ho(t) and the relative velocity, dho(t)/dt, is

F tð Þ = 2π∫
∞

0

r p r; tð Þdr = −6πμR2
H

ho tð Þ
dho tð Þ
dt

ð3:2:5Þ

It is positive for a repulsive force as the spheres approach with
dho(t)/dtb0 and it scales with the square of the drop radius, RH2 .

If the spheres are driven together under a constant external force,
Fext (N0 for the spheres being pushed together) against hydrodynamic
repulsion, the separation will decrease exponentially with time
according to

ho tð Þ = ho 0ð Þexp −t = τSSð Þ ð3:2:6Þ

with characteristic decay time for film drainage between the solid
spheres

τSS ≡ 6πμ R2
H = Fext ð3:2:7Þ

In this model, the spheres only come into contact as t→∞.
If an attractive non-retarded Van der Waals force with Hamaker

constant, A expressed in the Derjaguin approximation

FVdW hð Þ = − πRHð Þ A
12πh2

ð3:2:8Þ

pulls the spheres together against the hydrodynamic repulsive force,
the separation then varies with time according to

ho tð Þ = ho 0ð Þ 1−t=τVdWð Þ1=2 ð3:2:9Þ

where the coalescence time, defined by ho(τVdW)=0, is

τVdW ≡ 36πμ RH ho 0ð Þ½ �2 = A: ð3:2:10Þ

3.3. Tangentially immobile interfaces

For axisymmetric flow in the radial direction in a film with
tangentially immobile boundaries, the boundary conditions are: u=0
at z=0 and z=h(r,t) so the velocity has the same form as Eq. (3.2.2).
However, when this is used in Eq. (3.1.2) we now have Stokes–
Reynolds equation for the film thickness, h(r,t)

∂h
∂t =

1
12μ r

∂
∂r r h3

∂p
∂r

� �
ð3:3:1Þ

that has to be solved simultaneously with the Young–Laplace
equation in either Eq. (2.3.2a) or (2.3.8) to obtain the hydrodynamic
pressure, p(r,t). The time-dependent force, F(t) is then found using
Eq. (2.2.2).

The numerical algorithm of the solution of the Stokes–Reynolds–
Young–Laplace equations will be discussed in Section 4.

3.4. Navier slip interfaces

In the Navier slip model [56], the tangential component of the fluid
velocity at an interface is taken to be proportional to the shear stress
with a constant of proportionality called the slip length. It was
postulated that this condition is appropriate for hydrophobic surfaces
[57]. But the magnitude of the slip length required to match
experiments was unrealistically large—in excess of 1 μm. There were
also earlier reports of slip observed in dynamic force measurement
between a solid particle and a flat surface using the atomic force
microscope [58–60]. But subsequent refined measurements revealed
that the “slip phenomenon” depended on the type of the force sensing
cantilever used in the experiment [11–13,113].

For completeness, we give the film drainage equation between two
solid surfaces that obey the Navier slip boundary condition with the
possibility of different slip lengths bo at z=0 and bh at z=h. The
resulting Stokes–Reynolds equation then has the form

∂h
∂t =

1
12μr

∂
∂r r h3

∂p
∂r

� �
+

1
4μr

∂
∂r r

bo + bhð Þh3 + 4bo bh h
2

h + bo + bh

" #
∂p
∂r

 !
ð3:4:1Þ

It contains an additional term compared to the tangentially
immobile model of Eq. (3.3.1). A classical “no-slip” condition will be
obtained by setting both slip lengths to zero. If one surface (say ‘h’)
belongs to that of an ideal bubble—with zero viscosity, whose surface
cannot sustain any tangential shear stress, one can assume the limit
bh→∞. However, as we shall see in Section 3.6, we cannot obtain the
result for film drainage between the surfaces of two such ideal
bubbles from Eq. (3.4.1).

3.5. Two drops with mobile interfaces

If the interfaces of the interacting drops with internal viscosity μd,
cannot sustain tangential stress, the solution of Eq. (3.1.1) will require
the velocity U(r,t) of the interface to be non-zero. Based on the
continuity of the tangential stress across the interface, the following
set of coupled equations must be used instead of Eq. (3.3.1)
[23,61,62]:

∂h
∂t =

1
12μr

∂
∂r r h3

∂p
∂r

� �
−1

r
∂
∂r r h Uð Þ mobile drops ð3:5:1aÞ

U r; tð Þ = − 1
2μd

∫
∞

0

ϕ r;ρð Þ h ρ; tð Þ ∂p ρ; tð Þ
∂ρ dρ ð3:5:1bÞ
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ϕ r;ρð Þ = ρ
2π

∫
π

0

cosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + ρ2−2rρ cos θ

p dθ ð3:5:1cÞ

The dimensionless number: m≡(μ/μd)(R/h)1/2 [23,61] determines
the behavior of the solution of the above equations. For m≪1, the
interfaces tend towards tangential immobility, while for m≫1, the
drainage rates are much faster and the dynamics of the system are
mainly determined by the internal flow of the drops [63].

Other formulations for the drainage between drops with mobile
interfaces exist thatmay appear simpler [64,65], but unfortunately the
treatment of the flow field inside the drop is not correct. The correct
account of mobile interfaces requires the use of an integral equation to
couple the interfacial velocity to the shear stress [61].

3.6. Two bubbles: Chesters–Hofman model

If the interacting bubbles have fully mobile surfaces that cannot
sustain shear stress, the solution to Eq. (3.2.2) that is valid for low
Reynolds numbers, would be a constant plug flow velocity that
provides no information on the pressure distribution. This led
Chesters and Hofman [45] to consider the interaction between two
identical deformable bubbles with mobile surfaces at high Reynolds
numbers when viscosity effects of the fluid may be neglected. The
Reynolds lubrication treatment was kept, while only inertial effects
were included in their model. Eq. (3.1.1) was replaced by the
equation for the plug flow velocity U(r,t) in the radial direction of
the film:

∂U
∂t + U

∂U
∂r = −1

ρ
∂p
∂r ð3:6:1Þ

with ρ the liquid density. The continuity equation now becomes

∂h
∂t = −1

r
∂
∂r r h Uð Þ ð3:6:2Þ

Assuming an initial film profile of h(r,0)=ho(t=0)+r2/Ro with
initial bubble radii, Ro these equations were solved numerically
together with the Young–Laplace Eq. (2.3.8). The disjoining pressure
was set to zero (Π=0). The bubbles were assumed to approach with
constant velocity, V.

If the bubbles do not deform, we will have ho(t)=hinit−Vt, and
Eq. (3.6.2) can be integrated to give the plug flow velocity

U r; tð Þ = V r
2 ho tð Þ + r2 = Ro

� � ð3:6:3Þ

The pressure, p can then be found from Eq. (3.6.1)

p r; tð Þ = ρV2 R2
o

8

2ho tð Þ + r2 = Ro

h i
ho tð Þ + r2 =Ro

� �2 ð3:6:4Þ

However, the resultant force, F(t) between the bubbles, found by
integrating this pressure

F tð Þ = 2π ∫
∞

0

p r′; t
� �

r′ dr′ ð3:6:5Þ

is infinite because the pressure in Eq. (3.6.4) does not decay fast
enough as r→∞ for the integral in Eq. (3.6.5) to converge. The reason
is that the lubrication equation failed to match to the full Navier–
Stokes equation outside the thin film when only inertia effects are
considered [54].

Chesters and Hofman [45] considered deformable bubbles for
which only numerical solution of Eqs. (3.6.1) and (3.6.2) were given.

They concluded that film rupture always occurs at the coalescence
time

tCH ≅ ρV R2
o = σ: ð3:6:6Þ

without the need for any attractive surface forces. This time is
measured from the moment at which the bubbles would have
touched had deformation been absent. In contrast, the models
discussed Sections 3.2–3.5, all require the presence of attractive
surface forces [66] in order for film rupture to occur at a finite time.
For 50 μm bubbles traveling at 50 μm/s, the predicted coalescence
time of 10−9 s is much shorter than any experimental observations.
Without further investigation, it is not clear if the divergence problem
associated with the slow decay of the pressure field can be avoided by
surface deformability.

In experiments on rising bubbles, the zero shear stress condition
has been observed only when extreme care has been taken to de-
ionise and clean the water [67–72]. However, when the same bubbles
rise towards a solid surface such as a titania plate, their rate of
approach suggested that the boundary condition at the bubble surface
is again a tangentially immobile condition [73,74]. The precise
physical reason for this behavior has yet to be established although
trace impurities that originate from the titania plate or accumulated
during bubble rise may be implicated.

Direct measurements of bubble–bubble interactions using the
atomic force microscope suggest that trace surface-active impurities
in the system are sufficient to render the bubbles to exhibit
tangentially immobile interfaces even though extreme care has
been taken to avoid such impurities (see Section 5). Thus it may be
difficult in practice to achieve and maintain the level of cleanliness to
guarantee the zero shear stress condition at bubble surfaces.

3.7. Bubbles with surface-active species

The presence of mobile surface-active molecules or transport
processes associated with chemical reactions, material transport or
temperature gradients can give rise to surface tension gradients. The
corresponding boundary condition at such interfaces will be the
continuity of the tangential components of the fluid velocities and a
jump in the tangential shear stress across the interface balanced by
the surface tension gradient [55]. These follow from kinematic and
tangential force balance considerations. In addition, effects such as
interfacial viscosity and surface elasticity have been proposed as being
important when surfactants are present at interfaces. Theoretical
considerations of these effects involve the introduction of model
parameters that are difficult to determine independently. While such
treatments modified the Stokes–Reynolds drainage equation, the
corresponding effects on the derivation of the Young–Laplace
equation had not been considered [75]. Consequently, a balanced
approach is not available.

However as discussed in Section 3.6, there is experimental
evidence that the presence of trace amounts of surface-active species
would render an interface to be tangentially immobile so that the
complex effects of surface-active species that have been postulated
theoretically do not feature in dynamic force measurements.

3.8. Stefan–Reynolds Flat Film Model

The complexity of the Stokes–Reynolds–Young–Laplace model has
led to the development of a number of approximate theories aimed at
describing film drainage dynamics based on the Stefan–Reynolds Flat
Film Model [21,22]. However, all these models fail to predict
quantitative agreement when compared with experiments [76].

In spite of the inherent inconsistencies of the original model,
numerous extensions and modifications have been proposed with
new additional features. These extensions and modifications are not
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always well justified from a physics point of view [77] and are not
capable of producing the results solving the Stokes–Reynolds–Young–
Laplace equations. We review these key issues in this section.

Consider the Stefan–Reynolds Flat Film Model of a drop (or
bubble) approaching a flat solid surface. Instead of using the Young–
Laplace equation to account for the deformation of the drop, the
deformation is assumed to have the shape of a circular flat disk with
radius, a (see Fig. 3). However, the dimension of the disk radius, a is
not known a priori.

Assume that the drop approaches the surface due to an external
time-dependent force, Fext. The fluid in the film has a radial velocity,
u(r,z,t) (assuming axial symmetry and Stokes flow) and the film is
now of uniform thickness, h(t). At z=0 (the location of the solid
surface), the boundary condition u(r,0,t)=0 is set. If the surface of the
drop at z=h, is tangentially immobile, the condition u(r,h,t)=0
applies. If on the other hand the surface of the drop is assumed to have
zero shear stress, then the condition ∂u(r,z,t)/∂z=0 must be applied
at z=h.

The pressure profile can be obtained from Eqs. (3.1.1) and (3.1.2)
with the above boundary conditions as

p r; tð Þ = po−
3μ
βh3

dh
dt

� �
a2−r2
� �

; 0b r ba ð3:8:1Þ

The pressure in the continuous phase, rNa, is represented by po, and μ
is its viscosity. The constant β is taken to be β=1 if the flat surface of
the drop is tangentially immobile and β=4 if the flat surface of the
drop is fully mobile. This pressure profile gives rise to the
hydrodynamic force (positive for repulsion between the drop and
the flat surface)

Fhydro = 2π ∫
a

0

p−poð Þr dr = −3πμ a4

2βh3
dh
dt

� �
ð3:8:2Þ

The quadratic pressure profile in Eq. (3.8.1) has a maximum at
r=0 for an approaching dropwith dh/dtb0 and decays monotonically
to po at the outer film region (r=a). It presents us with an immediate
inconsistency. Since the deformed interface of the drop is assumed
to be a flat disk at the outset, then according to the Young–Laplace
equation, the pressure on either side of such a flat interface must
be equal. Therefore the quadratic pressure distribution given by

Eq. (3.8.1) within the flat film is inconsistent with the uniform
pressure inside the drop.

If we ignore this inconsistency for the time being and assume
there is a disjoining pressure,Π(h), acting on the film with area (πa2),
a quasi-static force balance on the drop in the z direction gives:

−Fext + Fhydro + πa2
� �

Π hð Þ = 0 ð3:8:3Þ

The external force Fext is taken to be positive if it acts to push the drop
towards the flat surface. This has been the starting point of modeling
the stability of draining films under the action of Van der Waals forces
[78].

A general prediction of the Stefan–Reynolds model is that a
repulsive disjoining pressure will slow down the rate of drainage,
dh/dt, according to Eq. (3.8.3). As we shall see in Section 5, this is
opposite to experimental observations and predictions of the full
solution of the Stokes–Reynolds–Young–Laplace equations.

3.9. Neo Flat Film models

Numerous experimental studies since the original experiment of
Derjaguin and Kussakov [3] have demonstrated that real films are not
flat. To accommodate such experimental evidence, there have been a
number of attempts to develop corrections to the Reynolds Flat Film
Model. All of these attempts involve simplifications of the Stokes–
Reynolds partial differential equation given in Eq. (3.3.1) by making a
set of assumptions that involve mathematical relations between the
actual film thickness, h(r,t) and the average film thickness, hav(t)
defined by

hav tð Þ≡ 2
a2

∫
a

0

h r; tð Þr dr ð3:9:1Þ

Here, the Reynolds film radius, a will also be time-dependent
according to Eq. (3.8.3) if the external force is not constant. The
following assumptions have been proposed:

(a) the “quasi-steady” assumption [75,79]:

∂h r; tð Þ
∂t ≈ dhav tð Þ

dt
∂h r; tð Þ
∂hav tð Þ ð3:9:2Þ

(b) the “homogeneous” assumption [79]:

∂h r; tð Þ
∂hav tð Þ ≈ h r; tð Þ

hav tð Þ ð3:9:3Þ

(c) the assumption of small deviations from the average film
thickness [79]:

h r; tð Þ−hav tð Þ½ �2bb hav tð Þ½ �2 ð3:9:4Þ

(d) the average thickness decays exponentially with time, t [79]

hav tð Þ = hav 0ð Þe−bt ð3:9:5Þ

where b and hav(0) are constants to be found by fitting to
experimental data.

The assumptions given in Eqs. (3.9.1)–(3.9.5) are then used to
reduce the Stokes–Reynolds–Young–Laplace coupled partial differen-
tial equations for the film thickness, h(r,t) and the hydrodynamic
pressure, p(r,t):

∂h
∂t =

1
12μ r

∂
∂r r h3

∂p
∂r

� �
ð3:9:6Þ

h
r

z

R

h u
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a

Fig. 3. Schematic diagram of the Stefan–Reynolds Flat Film Model for a drop or bubble
with radius R, approaching a flat solid surface. The radius of the flat film region is a.
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σ
2r

∂
∂r r

∂h
∂r

� �
=

2σ
RL

−Π hð Þ−p ð3:9:7Þ

for the case of two interacting identical drops with constant interfacial
tension, σ and Laplace radius, RL, to a single linear ordinary differential
equation [79]

σ
2
ΔΔh r; tð Þ + Π havð Þ

∂hav
Δh r; tð Þ + 12μV tð Þ

h4av tð Þ h r; tð Þ = 0 ð3:9:8aÞ

Δ≡ 1
r
∂
∂r r

∂
∂r

� �
; V tð Þ≡ dhav tð Þ

dt
ð3:9:8bÞ

A number of papers and reviews have been devoted to obtain
approximate solutionsor analyze thebehavior of this approximate linear
equation [49,80–82]. However, the assumptions in Eqs. (3.9.2)–(3.9.5)
have always been accepted without justification and certainly have not
been tested by quantitative comparison with numerical solutions of the
original Eqs. (3.9.6) and (3.9.7). For instance, the interpretation of the
derivative (∂h/∂hav) in Eq. (3.9.2) and the justification of Eq. (3.9.3) have
not been established, and Eq. (3.9.5) is certainly not correct if a stable
film can be formed. Thus in spite of numerous papers devoted to this
approach to analyze film drainage, stability and coalescence its domain
of validity is still verymuch an open question and appears to be a source
of confusion [77].

4. Stokes–Reynolds–Young–Laplace model

In this sectionwe summarize applications of the Stokes–Reynolds–
Young–Laplace (SRYL) model to direct force measurements involving
deformable drops. In particular, we give explicit forms of the
governing equations and boundary conditions that need to be solved.
We also outline perturbation solutions that can reveal the key physics
of the problem even though the results are only applicable for weak
interactions.

In a force measurement experiment with the atomic force
microscope (AFM), the force, F between two objects is obtained
from the deflection, S of a cantilever with calibrated spring constant,
K: F=KS, by varying the position X of the cantilever (Fig. 4). The
absolute separation, h between interacting rigid objects is inferred
from the so-called constant compliance region when the two object
are in hard contact when the condition:ΔS=ΔX holds. As a result, F vs
ΔX data can be converted to F vs h information.

For interactions involving deformable drops, the concept of hard
contact no longer exists as the drops can deform. However, we can
derive analytic formulae for interacting drop–sphere and drop–drop
configurations to replace the constant compliance condition for
interacting rigid objects. Details of implementations of numerical

solutions of the governing equations that will facilitate quantitative
comparisons between theory and experiments are also discussed.

4.1. Governing equations and boundary conditions

For the Stokes–Reynolds film drainage equation, we will consider
in detail only the case for which the tangentially immobile boundary
condition holds at the film boundaries. This is guided by the fact that
all experimental results that we have gathered in this review are
found to be consistent with this condition (see Section 5). In the
domain 0b rb rmax that contains all detailed information about
interactions involving the deformable film we solve the Stokes–
Reynolds equation (see Eq. (3.3.1)) that relates the rate of the change
of the film thickness, h(r,t) to the hydrodynamic pressure, p(r,t):

∂h
∂t =

1
12μ r

∂
∂r r h3

∂p
∂r

� �
ð4:1:1Þ

For numerical calculations, the choice of rmax will be discussed in
Section 4.5. For the axisymmetric interactions considered here, we
apply the symmetry conditions: ∂h/∂r=0=∂p/∂r at r=0. As r
approaches rmax, we see from Eqs. (2.3.4) and (2.3.10) that the film
thickness, h increases with a quadratic dependence in r which will
result in a pressure that decays like r−4, see Eq. (3.2.3). This
asymptotic pressure behavior can be implemented as the condition:
r(∂p/∂r)+4p=0 at r=rmax.

The time-dependent force can be calculated using Eq. (2.2.2). In a
numerical implementation, we use

F tð Þ≅ 2π ∫
rmax

0

p r′; t
� �

+ Π r′; t
� �� �

r′ dr′ + 2π ∫
rmax

∞
p r′; tð Þr′ dr′ ð4:1:2Þ

since the disjoining pressure Π is short-ranged and is negligible
for rN rmax, and the second integral can be evaluated analytically
using the r−4 dependence of the pressure expressed in the form:
p(r,t)≈p(rmax,t) (rmax /r)−4, for rNrmax.

The Young–Laplace equation provides a second equation between
the film thickness, h(r,t) and the pressure, p(r,t). As discussed in
Section 2, this equation takes on different forms for drop–sphere or
drop–drop interactions. To simplify the notation,we define a constant n

n = 1; Drop−Sphere
2; Drop−Drop

	
ð4:1:3Þ

We only consider drops with constant interfacial tensions for
which the Young–Laplace equation can be written as

1
n
σn

r
∂
∂r r

∂h
∂r

� �
=

2σn

Rn
−Π−p ð4:1:4Þ

with the equivalent surface tension and equivalent radius defined as:

σn =
σo; Drop−Sphere
2 1=σo1 + 1=σo2ð Þ−1

; Drop−Drop

	
ð4:1:5Þ

Rn = 1=Ro + 1=Rsð Þ−1
; Drop−Sphere

2 1=Ro1 + 1=Ro2ð Þ−1
; Drop−Drop

(
ð4:1:6Þ

where the drops have constant interfacial tensions: σo, σo1 and σo2,
undeformed radii:Ro,Ro1 andRo2, and the solid spherehas radius:Rs. The
interaction between a drop and a flat plate corresponds to the limit
Rs→∞. As long as the deformations of the drops are small compared to
the drop size, a condition that is well satisfied, we can approximate the
Laplace radii by the undeformed radii of the drops in Eq. (4.1.4).

X(t)h(r,t)

z  (r,t)

r

K
S

r1

drop,
sphere
or bubble

drop or 
     bubble

1

D(t)

z  (r,t)2

Fig. 4. The geometry of the atomic force microscope in which the distances D and X are
defined.
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The initial film thickness is taken to be that between unperturbed
drops and has the form:

h r;0ð Þ = hinit +
nr2

2Rn
ð4:1:7Þ

To solve the Stokes–Reynolds–Young–Laplace Eqs. (4.1.1) and
(4.1.4) we need one more boundary condition. In non-equilibrium
force measurements using the AFM, the displacement, X(t) of the end
of the force sensing cantilever (Fig. 4) determines the type of collision
that the drops will experience and provides the final boundary
condition at rmax.

The interaction force, F between a deformable drop and a sphere is
related to the cantilever deflection, S=F /K where K is the cantilever
spring constant. The final boundary condition can be found by
differentiating the outer asymptotic form of the film thickness,
Eq. (2.5.1), with respect to time, t and use the geometric relation
D=S+X (see Fig. 4) to give, at r=rmax

∂h r max; tð Þ
∂t =

dX tð Þ
dt

+
1
K

dF tð Þ
dt

− 1
2πσo

dF tð Þ
dt

log
r max

2Ro

� �
+ B θoð Þ

	 

Drop–Sphere

ð4:1:8Þ

The function B(θ) is defined by Eq. (2.4.16b).
We note that in previous work [48,62], only the first term on the

RHS of Eq. (4.1.8) is used in the so-called “constant velocity” boundary
condition. The second term on the RHS of Eq. (4.1.8) accounts for the
deformation of the drop outside the film as well as the effect of the
deflection of the AFM cantilever.

For the interaction between two drops we differentiate the
corresponding asymptotic formula in Eq. (2.5.5) to give the required
boundary condition at r=rmax

∂h rmax; tð Þ
∂t =

dX tð Þ
dt

+
1
K

dF tð Þ
dt

− 1
2πσo1

dF tð Þ
dt

log
rmax

2Ro1

� �
+ B θo1ð Þ

	 


− 1
2πσo2

dF tð Þ
dt

log
rmax

2Ro2

� �
+ B θo2ð Þ

	 

Drop–Drop ð4:1:9Þ

The last 3 terms on the RHS of Eq. (4.1.9) are contributions to the
boundary condition due to deflection of the cantilever and deforma-
tions of the drops outside the interaction zone.

We have now specified all the governing equations and appropri-
ate boundary conditions that are necessary to model non-equilibrium
force measurement using the AFM.

4.2. Scaled equations for computations

With appropriate scaling, the Stokes–Reynolds–Young–Laplace
equations have a general form from which general features of the
solution can be extracted. To illustrate the approach, we consider
interactions in a forcemeasurement experimentwith the atomic force
microscope where the displacement function, X(t) of the end of the
force-sensing cantilever is specified as a function of time and the force
will vary. We also consider interactions at constant force where the
relative velocity will vary with time.

4.2.1. Interaction under given displacement function
Let V be a characteristic value of the piezo drive velocity, dX(t)/dt of

the atomic force microscope. The ratio of viscous forces to surface
tension forces is characterized by the capillary number Ca≡μV /σn. For
the experimental systems considered here, Ca~10−6.

Non-dimensionalization of the SRYL equations leads to a universal
form of the system of equations with the following scaling parameters
[83]:

film thickness: h, z~Ca1/2Rn,
radial coordinate: r~Ca1/4Rn,
time: t~Ca1/2Rn/V,
pressure: p~σn/Rn and
force: F~Ca1/2 σn Rn.

The Stokes–Reynolds equation that describes film drainage
between two drops with immobile interfaces, Eq. (4.1.1), becomes
(using asterisks for dimensionless variables),

∂h�

∂t� =
1

12r�
∂
∂r� r� h�

3 ∂p�

∂r�
� �

ð4:2:1Þ

while the Young–Laplace Eq. (4.1.4) becomes

1
n
1
r�

∂
∂r� r�

∂h�

∂r�
� �

= 2−Π�−p� ð4:2:2Þ

with Π⁎≡(Rn/σn)Π. The initial condition in Eq. (4.1.7) becomes

h� r�;0
� �

= h�o +
n r�ð Þ2

2
: ð4:2:3Þ

Apart from the scaled disjoining pressure, these equations contain
no parameters. The boundary condition at r⁎max, given by Eqs. (4.1.8)
or (4.1.9), has only a weak logarithmic dependence on the capillary
number Ca

∂h� r max
�

; t�
� �
∂t� =

dX�
dt�

− 1
2π

dF�
dt� log

Ca1=4Rn r max
�

2 Ro

 !
+ B θoð Þ

( )
Drop–Sphere

ð4:2:4Þ

∂h� r max
�

; t�
� �
∂t� =

dX�
dt�−

σn

2π σo1

dF�
dt� log

Ca1=4 Rn r max
�

2 Ro1

 !
+ B θo1ð Þ

( )

− σn

2π σo2

dF�
dt� log

Ca1=4 Rn r max
�

2 Ro2

 !
+ B θo2ð Þ

( )
Drop–Drop

ð4:2:5Þ

where dX(t)/dt≡V dX⁎(t⁎) /dt⁎. For the case of two identical drops,
numerical solutions of these equations in the absence of a disjoining
pressure, Π=0, and for a constant approach velocity: dX(t)/dt=−V
[84] revealed that the film profile will first exhibit a dimple when the
central separation reaches the value

h r = 0; tð Þ = cRnCa
1=2 ≡ hdimple ð4:2:6Þ

In Eq. (4.2.6), c is a constant ranging from about 0.3 for Ca~10−10 to
about 0.5 for Ca~10−4. Erroneously, in Manica et al. [84] and Chan et
al. [85] the corresponding constant quoted for hdimple was for a drop
against a solid plate, namely, ~0.4 for Ca~10−10 and~0.7 for Ca~10−4.
The maximum shear stress for the above drop–drop case is about
τmax~0.5Ca1/4σn/Rn and occurs at the rim position, rrim~3 Ca1/4Rn. It
takes about t~50 Ca1/2Rn/V for the thickness at the rim to drain from
hdimple to half this value.

4.2.2. Interaction under constant force
The constant force case corresponds to dF /dt=0. This can be

modeled by choosing a convenient constant velocity dX(t)/dt=−V
and monitor the force, F(t) until it reaches the desired value, Fo, at
some time t= to, and then set dX(t)/dt=0 for tN to. Assuming the
disjoining pressure is negligible (Π~0), a ‘universal set of equations
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containing no parameters at all’ [83] appears again using the scaling
parameters:

film thickness: h, z~Fo/σn,
radial coordinate: r~(Fo Rn/σn)1/2,
time: t~μRn2/Fo and
pressure: p~σ/Rn

For this case, the dimple in the film will first appear at the
separation

h r = 0; tð Þ = 0:08 Fo = σnð Þ≡ hdimple ð4:2:7Þ

The maximum shear stress of τmax~0.25 (Fo σn/Rn3)1/2 is reached just
after the time of dimple formation and is located around the rim
region of the film. As film drainage proceeds, the shear stress
gradually diminishes. For tN200 μRn2/Fo, the rim radius reaches a
constant value rrim~0.375 (Fo Rn/σn)1/2. The rim reduces to ½ hdimple

around t~100 μRn2/Fo and to about 0.1 hdimple at t~1000 μRn2/Fo
exhibiting an asymptotic time dependence of t−2/3 [23].

4.3. Perturbation solutions

The Stokes–Reynolds–Young–Laplace (SRYL) Eqs., (4.1.1) and
(4.1.4) form a pair of coupled partial differential equations that can
only be solved numerically. Nonetheless, some of the key physics of
non-equilibrium interactions involving deformable drops can be
extracted by considering a perturbation solution of the SRYL
equations. Such solutions have been found for axisymmetric interac-
tions between drops driven together under constant force [23] and
also for drop–drop interactions in the Hele–Shaw microfluidic
channel geometry [91].

We remark that although the derivation of the different forms of
the augmented Young–Laplace equation, Eqs. (2.3.2a) and (2.3.8),
already involved a linearization in the drop shape, the resulting
equations are still non-linear functions of the film thickness, h because
of the presence of the hydrodynamic pressure, p and disjoining
pressure, Π(h). In addition, the Stokes–Reynolds equation that
describes film thinning, Eq. (3.3.1) is also non-linear in h.

4.3.1. Axisymmetric drops
First we summarize results for the case of two identical

axisymmetric drops with interfacial tension, σo and undeformed
radius, Ro. Both drops are assumed to rest on flat substrates with
contact angle, θ and the substrates are driven at relative velocity
V(t)N0 for separating drops. We seek solutions for the film thickness
and pressure of the form

h r; tð Þ≡ ho r; tð Þ + h1 r; tð Þ ð4:3:1Þ

p r; tð Þ≡ po r; tð Þ + p1 r; tð Þ ð4:3:2Þ

by choosing the parabolic profile ho(r,t)≡H(t)+ r2/Ro as the reference
shape. The perturbations h1(r,t) and p1(r,t) are found by substituting
Eqs. (4.3.1) and (4.3.2) into (4.1.1) and (4.1.4) and retaining only
linear terms in h1 and p1. The solution, in the absence of a disjoining
pressure is [85]

h r; tð Þ = H tð Þ + r2 = Ro +
3μR2

oV tð Þ
4σoH tð Þ

 !
log

H tð Þ + r2 = Ro

4Ro

 !
+ 2B θð Þ

( )
ð4:3:3Þ

with H(t)=Ho+∫0
t
V(τ) dτ. This perturbation solution is valid when

the film capillary number, Caf~(μVo/σo)(Ro/Ho)2≪1, with Vo being
the characteristic velocity. The term in braces in Eq. (4.3.3) is negative
so that the deformation h1(r,t) and the parabolic profile ho(r,t) have
opposite signs. This has two physical implications.

For approaching drops corresponding to V(t)b0, the perturbation
will cause the central separation to thicken and this is the physical
origin of dimple formation. The perturbation solution predicts a
critical central film thickness hdimple~α Ca1/2Ro at which dimple
formation will occur at constant velocity. However, when compared
to numerical solutions of the SRYL equations, the constant α is too
large by an order of magnitude. This is perhaps not surprising since
dimple formation actually occurs at separations where non-deform-
ing drops would have overlapped, a regime beyond the validity of the
first order perturbation result above.

For separating drops corresponding to V(t)N0 and the central
separation, H(t) increasing with time, the perturbation h1(r,t)
will initially be negative and decreases the central film thickness.
For sufficiently large film capillary number Caf, the initial decrease
in central film thickness can bring the separation down to the range
where the de-stabilizing influence of Van der Waals attraction can
take hold and initiate coalescence. Such coalescence on separation
phenomenon has been observed experimentally [25,86–90].

The deformation behavior under constant force conditions (e.g.
due to buoyancy) has also been studied by perturbation methods.
The result shows that the central separation evolves with an
exponential dependence on time under a constant external force,
Fext [23,85]:

H tð Þ = Hoexp 2Fext = 3πμR
2
o

� �
t

h i
ð4:3:4Þ

4.3.2. Drops in the microfluidic Hele–Shaw cell geometry
The film thickness, h(x,t) and the pressure, p(x,t) for two

interacting pancake-shaped drops in the Hele–Shaw cell geometry
are determined by the following coupled equations in the absence of a
disjoining pressure [91]

∂h
∂t =

1
3μ

∂
∂x h3

∂p
∂x

� �
ð4:3:5Þ

σo
∂2h
∂x2

=
σo

Ro
−p ð4:3:6Þ

in which the spatial coordinate x is transverse to the axis of
symmetry. Again, the tangentially immobile hydrodynamic boundary
condition has been assumed at the drop interface. The simpler form of
the SRYL equation in the Hele–Shaw geometry means that the
asymptotic analysis discussed in Section 2 can be carried out
relatively easily [92].

The natural perturbation parameter is the capillary number in
Hele–Shaw geometry: CaHS~(μVo/σo)(Ro/Ho)3/2 which differs from
that of the axisymmetric case by a 3/2-power dependence on the
aspect ratio (Ro/Ho). However, the effects of the perturbation term due
to deformations of approaching or separation drops are qualitatively
the same as in the axisymmetric case.

4.4. Force-displacement formula for AFM experiments

In AFM forcemeasurement experiments involving rigid bodies, the
absolute separation can be inferred from the constant compliance
regions of the force vs cantilever displacement response that occurs
when the two interacting bodies come into hard contact. For
interactions involving deformable drops, hard contact does not
occur as the drops can deform. In place of this limiting behavior, we
can use the geometric relation in the AFM for a drop–sphere
interaction (Fig. 4): D(t)=X(t)+S(t), where the cantilever deflection
S(t)=F(t)/K is related to the force, F and cantilever spring constant, K
by Hooke's law. Thus using the result in Eq. (2.5.4) we have the result
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that replaces the constant compliance condition for the drop–sphere
interaction

Δ X tð Þ ≅ F tð Þ
4πσo

log
F tð ÞRdso

8πσo R2
o

� �
+ 2B θoð Þ−1−4πσo

K

	 

Drop−Sphere

ð4:4:1Þ

The function B(θ) is defined earlier in Eq. (2.4.16b). At low driving
velocities, small dX/dt, this relation is valid for the entire force range.
At higher driving velocities, this relation is valid when the force is
sufficiently large. In Section 5, we will see an example of how this
result can be applied in practice.

Similarly for AFM force measurements between two dissimilar
deformable drops, we use the result in Eq. (2.5.8) to give

ΔX tð Þ ≅ F tð Þ
4πσo1

log
F tð ÞRo

8πσR2
o1

 !
+ 2B θo1ð Þ

( )
+

F tð Þ
4πσo2

log
F tð ÞRo

8πσR2
o2

 !
+ 2B θo2ð Þ

( )

− F tð Þ
2πσ

1 +
2πσ
K

	 

Drop−Drop ð4:4:2Þ

This is a generalization of a similar result given earlier for drops with
the same interfacial tension [93]. Unfortunately that result contained
a typographical error.

Both Eqs. (4.4.1) and (4.4.2) are very useful for checking the large
force limit of experimental force vs cantilever results as well as for
checking numerical solutions of the Stokes–Reynolds–Young–Laplace
equations. They are applicable in the regime when the interacting
drops have been pushed together at the separation below which they
would overlap if they had not deformed.

4.5. Numerical algorithm

In this section, we give details on how to solve the scaled non-
dimensional Stokes–Reynolds–Young–Laplace equations derived in
Section 4.2:

∂h�
∂t� =

1
12r�

∂
∂r� r� h�3 ∂p

�
∂r�

� �
ð4:5:1Þ

1
n
1
r�

∂
∂r� r�∂h

�
∂r�

� �
= 2−Π�−p� ð4:5:2Þ

with the initial condition,

h� r�;0� �
= ho

� +
n r�� �2

2
ð4:5:3Þ

boundary conditions at r⁎=0

∂h�
∂r� = 0 =

∂p�
∂r� ð4:5:4Þ

and at r⁎=r⁎max

r�∂p
�

∂r� + 4p� = 0 ð4:5:5Þ

∂h� r max
� ; t�� �
∂t� =

dX� t�ð Þ
dt�

+ Φn r max
�� �dF� t�� �

dt� ð4:5:6Þ

where Φn(r⁎max) the coefficient of dF⁎/dt in Eq. (4.2.4) for drop–
sphere (n=1) or Eq. (4.2.5) for drop–drop (n=2) interactions. The

scaled force is given by Eq. (4.1.2) after using the 1/r4 asymptotic form
for the pressure for r⁎N r⁎max:

F� t�
� �

≅ 2π ∫
rmax

0

�
p� r′; t�� �

+ Π� r′; t�� �� �
r′ dr′ + π r max

�� �2 p� r max
� ; t�� �

ð4:5:7Þ
The pressure p⁎ can be eliminated between Eqs. (4.5.1) and (4.5.2)

to obtain an equation for ∂h⁎/∂t⁎. The r-derivatives of the resulting
equation can be discretized using central differencing in [0, r⁎max] to
obtain a set of coupled differential equations for Hk(t⁎)≡h⁎(k Δr,t⁎),
k=0, .., N and Δr=r⁎max /N. The function F⁎(t⁎) is related to all the
Hk(t⁎) via Eq. (4.5.7)where the integral can be evaluated by Simpson's
rule and can be written as:

F� t�
� �

= ∑
k
wk g Hk t�

� �� � ð4:5:8Þ

The system of coupled first order equations for the time derivative
dHk(t⁎)/dt⁎≡ Ḣk t⁎

� �
then has the form

1 0 :: 0 0
0 1 0 :: 0

:
0 0 :: 1 Φn
0 0 :: 0 0

0BBBB@
1CCCCA

Ḣ0

Ḣ1
:

ḢN

Ḟ
�

0BBBBB@

1CCCCCA=

f0
f1
:

dX�
= dt�

F�−∑kwkg Hkð Þ

0BBBB@
1CCCCA ð4:5:9Þ

where fk represent the terms resulting from the discretization in r
corresponding to each equation for dHk(t⁎)/dt⁎. This system has a
singular mass matrix and is a differential-algebraic equation. It can be
solved using standard software routines such as ODE15S in Matlab.

Once the driving function dX/dt is specified, Eq. (4.5.9) can be
solved for tN0. In actual implementations, to obtain numerical
answers that are independent of domain size to 5 significant figures
we choose a domain size rmax⁎=10, with a step size Δr⁎=0.02 which
produces a system of 500 equations. A complete force curve can be
computed in about 1 min on a notebook computer.

5. Comparisons with experiments

We complete this review by showing how the Stokes–Reynolds–
Young–Laplace (SRYL) model can be applied to understand the
dynamic behavior in different types of non-equilibrium experiments.
We demonstrate in Section 5.1 that the SRYLmodel canmake accurate
quantitative predictions about the evolution of the shape of
deformable films trapped between drops or bubbles as they undergo
non-equilibrium interactions with solid surfaces or with other drops.
In Section 5.2, we compare non-equilibrium force measurements
involving drops and bubbles using the atomic forcemicroscope (AFM)
with predictions of the SRYL model. Once the SRYL model is shown to
be able to give an accurate account of time variations of the non-
equilibrium forces, we can confidently use the model to infer the
spatial and temporal evolutions of the shape of the film between
interacting drops and bubbles for interactions that result in film
stability or coalescence. The availability of a quantitative theory
overcomes one of the limitations of the experimental methods based
on the AFM, namely that at present, the film profile between
interacting drops cannot be observed directly.

In all systems that we have considered, the disjoining pressure
contains only contributions from Van der Waals and electrical double
layer interactions in the DLVO theory [1,2]. To calculate the Van der
Waals interaction where it is dominant in bubble–bubble coalescence
studies at high salt concentrations, we use the full Lifshitz theory [94]
with the most complete dielectric data available. In experiments
where the electrical double layer repulsion is dominant, we use the
full non-linear Poisson–Boltzmann theory to calculate the disjoining
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pressure. Values of the surface potentials and electrolyte concentra-
tions are taken from independent experimental measurements.

5.1. Dynamic deformations

In this section, we highlight examples of experiments that
measure the non-equilibrium shapes of drops and bubble during
drop–drop, bubble–solid and drop–solid interactions. We compare
predictions of the SRYL model with such non-equilibrium
experiments.

5.1.1. Opposing protuberant drops
In this experiment, the interaction is between opposing protuber-

ant half drops of glycerol that have emerged from the ends of two
sealed capillaries (3 mm diameter) in silicone oil 47V300. The drops
have an initial radius of Ro=1.52 mm, while the interfacial tension for
this system is σo=30 mN/m. The drops are attached to the capillaries
with a contact angle, θ=90º [48,84]. The drops were driven together
from rest at an initial large separation, by mechanically moving one
capillary towards the second with a constant velocity, V=6.7 μm/s.
Setting the time t=0 to the time when the two drops would have
touched if they would not have deformed, the approach was stopped
at tstop=27 s. The fringes obtained with a laser-induced interference
pattern were used to measure the film thickness profile, h(r,t) as a
function of position and time.

A comparison of the measured and predicted fringe pattern just at
the time when the drive stopped is shown in Fig. 5, together with
samples of the film thickness h(r,t) at earlier times. Note that a dimple
was observed to develop after 13 s. This system is ultimately unstable

in that the silicone oil film between the glycerol drops continues to
thin and eventually the drops coalesced. The time scale of the
approach towards coalescence is consistent with the tangentially
immobile hydrodynamic boundary condition at the glycerol-silicone
oil interface.

5.1.2. Bubble against quartz plate
The evolving shape of a water film trapped between an expanding

bubble that has been pressed against an optically flat hydrophilic
quartz plate has been measured by an optical method [76,95,96]. The
bubble, initially 40 μm from the quartz plate, with unperturbed radius
1.16 mm, was expanded from an orifice with diameter 2 mm in a
fraction of a second. The shape of the trapped water film that
subsequently drained was recorded. The final equilibrium film was
stabilized by electrical double layer repulsion between the quartz
surface and the bubble, and depending on the added electrolyte
concentration, the drainage process took up to 200 s.

In a drainage experiment, the film thickness at a fixed radial
position r is measured as a function of time with a resolution of about
30 μm. The film profile h(r,t) is then re-constructed from repeating
such measurements at different positions [76,95,96], proving implic-
itly the reproducibility of the experiments.

A comparison of the experimental and predicted profiles of the
non-equilibrium evolving water film is given in Fig. 6 [97]. Again the
time scale of the drainage process is consistent with a tangentially
immobile hydrodynamic boundary condition at the bubble surface
and a no-slip boundary condition at the quartz plate.

5.1.3. Mercury drop against mica plate
The time evolution of the shape of the aqueous electrolyte film

trapped between a mercury drop and an approaching or receding
molecularly smooth mica plate has been measured by tracking
interference fringes of equal chromatic order [98,99]. The surface
potential of the conducting mercury drop was controlled indepen-
dently to give repulsive or attractive electrical double layer disjoining
pressures that allowed the evolution of stable and coalescing films to
be investigated. We highlight the results of two experiments that
demonstrate how an initially stable film responds to electrical and
mechanical perturbations [87,100].

In Fig. 7, we show the collapse of an initially stable film formed
between themica plate and themercury drop that are both negatively
charged. The film was stabilized by electrical double layer repulsion.
At t=0, the sign of the potential of the mercury drop was changed to
positive so the electrical double layer interaction became attractive
and caused the film to collapse. For the most part, the collapse process
retained axial symmetry and the mercury drop jumped into contact
with the mica plate at the edge of the film where the electrolyte can
easily drain from the film. However, it is entirely possible that the
axial symmetry can be broken at the final moment of collapse, during
a time that is too short to be resolved by the experiment.

Fig. 5. The profile of the silicone oil film trapped between two glycerol drops that are
driven together until 27 s. A dimple develops at 13 s at a separation of 5.5 μm. Note the
very different horizontal and vertical scales. The symbols represent the experimental
data that were obtained from the interference patterns such as the one shown below for
27 s. The solid lines represent the numerical solution. The right side of the interference
pattern shows a numerical reconstruction based on the SRYL theory, the left hand side
is the observed experimental pattern.
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What is clear is that the collapse process is predicted with
qualitative accuracy by the SRYL model. There is no evidence of the
mechanism of thermal fluctuations that has been postulated as being
the key mechanism for initiating drop coalescence [101].

In another experiment, after the formation of an equilibriumwater
film between the mica plate and the mercury drop, stabilized by
electrical double layer repulsion, the mica plate was retracted very
rapidly from the mercury drop. The deformational response of the
mercury drop to such a perturbation, prior to jumping apart, is shown
in Fig. 8 together with predictions from the SRYL model.

Prior to the mica plate separating completely from the mercury
drop, portions of the aqueous film actually became thinner during the
transition period. This slightly counter-intuitive behavior arises
because the deformable mercury interface is able to respond to the
attractive hydrodynamic pressure generated in the film when the
mica plate was retracted rapidly. For the result in Fig. 8, if the
disjoining pressure is strongly attractive at below ~80 nm it is possible
that the retraction of the mica plate can induce collapse of the
aqueous film rather than being able to separate from the mercury

drop. Such coalescence on separation behavior has now been
observed directly using the atomic force microscope (see Section 5.2).

5.2. Dynamic force measurements

We highlight examples of non-equilibrium force measurements
involving deformable drops [102–107] and bubbles [90,108,109]
using the atomic force microscope (AFM). The observed features that
arise from dynamic deformations are compared with quantitative
predictions of the SRYL model.

5.2.1. Drop–sphere interaction
An example of the comparison between AFM experiment and

theory for non-equilibrium forces between a silica micro-sphere and a
tetradecane emulsion drop in water with 5 mM SDS is shown in Fig. 9
[102]. There is very good agreement between experiment and theory
particularly in relation to the details of the hysteretic loop between
the approach and retraction branch of the force-displacement curve in
relation to different drive velocities. For these results, the predictions
of the analytic force-formula, Eq. (4.4.1), are also in good quantitative
agreement with experiments when the force becomes repulsive.

5.2.2. Drop–drop interaction
Examples of the non-equilibrium force as a function of time

between two decane emulsion drops in 3 mM SDS and 1 mM NaNO3

are shown in Fig. 10 [106]. For displaying results of dynamic force
measurements it is preferable to show the explicit time dependence of
the measured force because the cantilever displacement, for example
in Fig. 9, does not contain direct information about time.

Again the SRYL model is capable of providing accurately the time
dependence and variations of the depth of the retraction minimum
with drive speed.

5.2.3. Bubble–bubble interaction
The simple experiment of driving two bubbles together or

separating them in a well controlled and characterized manner
while measuring directly the dynamic force between them has only
been attempted with quantitative success recently using the atomic
force microscope [90]. In the experiment, one bubble wasmounted on
the substrate and the other anchored at one end of a rectangular
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force-sensing cantilever. The other end of the cantilever was driven
towards the substrate at a nominal speed of~50 μm/s.

Three different collision modes were employed in order to study
bubble collision and coalescence phenomena:

(1) Approach only collision: In this case the cantilever is moved at
constant speed while the repulsive force between the bubbles
increased monotonically with time. For two bubbles with radii
62 μmand 86 μm and initial separation of 5.5 μm, themeasured
force is shown in Fig. 11a as a function of time. The bubbles
coalesced when the force reached about 150 nN.

(2) Approach-Stop collision: Here, the cantilever was driven
towards the substrate at the same nominal speed but was
then stopped while the interaction between the bubbles
evolved towards the final state. The force corresponding to
such a collision between bubbles with radii 67 μm and 85 μm
and initial separation of 1.65 μm, is also shown in Fig. 11a. Note
that after the cantilever stopped, the bubbles continued to
evolve under an almost constant force condition (~27 nN)
before coalescence eventually occurred.

(3) Approach-Retract collision: In the third mode of collision the
cantilever was driven towards the substrate at the same
nominal speed for a predetermined time interval and then
retracted at the same speed. The outcome of such a collision
depended rather sensitively on the initial separation for the
same maximum displacement of the cantilever. The key
determinant is the distance over which the two bubbles have
been pushed together beyond the point of contact if they did
not deform. For a pair of bubbles with the same radii (74 μm) at
an initial separation of 2.45 μm, the force (Fig. 11b) reached a
maximum of about 8 nN and then decreased during the
retraction phase, reached a minimum of about −6 nN in
magnitude before separating eventually. No coalescence
occurred for this case and the force curves are similar to
those observed in drop–particle and drop–drop experiments.
The experiment was repeated with the same bubbles and the
same cantilever displacement function, but starting at a smaller
initial separation of only 2.05 μm. The force reached a larger
maximum value around 18 nN (Fig. 11b). But instead of
reaching a minimum during the retraction phase as in the
previous Approach-Retract case, the bubbles coalesced instead
during the separation stage. This counter intuitive behavior is
similar to the results observed in Section 5.1.3 when the mica
plate was retracted rapidly from a proximal mercury drop
separated by a stable film.

Detailed forms of the non-equilibrium force curves for different
collision modes described above are predicted with quantitative
accuracy by the SRYL model. Furthermore, the same theory also
predicted correctly the coalescence time under all three different
collision scenarios [90].

6. Conclusion

In this review we have given a detailed development of the
Stokes–Reynolds–Young–Laplace (SRYL) equations that provided a
consistent account of non-equilibrium interactions between deform-
able drops and bubbles which included surface forces, hydrodynamic
effects and surface deformations in an internally consistent way.
Phenomena relevant on the scale of the drop size such as how the
drops are driven together are imposed as appropriate boundary
conditions for the SRYL equations that focus on describing deforma-
tions on the scale of the thin film between interacting drops. The
model is applicable in the parameter regime relevant to collision of
drops in the 100 μm size range and relative approach velocities that
span Brownian thermal velocities of such emulsion drops. It gives
accurate predictions of the dynamic force measured using the atomic
force microscope for controlled collusions involving deformable
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Fig. 10. The non-equilibrium force, measured on the AFM as a function of time for
different drive velocities between two decane drops in an aqueous solution that
contains 3 mM SDS and 1 mM NaNO3 solution. The time axis is scaled by the total time
of the collision, ttotal. Results from the SRYL model: ___, experiments (symbols).
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bubbles and drops. The model is equally capable of predicting space
and time deformations of draining films trapped by drops and
bubbles.

By comparing with results from a variety of experiments on non-
equilibrium deformations or forces, we found that the characteristic
time-dependence of such experiments in aqueous systems is
consistent with the tangentially immobile boundary conditions at
the liquid–liquid and liquid–gas interfaces. In particular, bubble–
bubble coalescence times in aqueous electrolyte are predicted with
quantitative accuracy by the SRYL model. Since the shear rate in
these experiments is low, with capillary number ~10−6, it appears
that trace amounts of surface-active materials at the interfaces,
particularly at aqueous interfaces, would be sufficient to arrest
interfacial flow and give rise to the tangentially immobile condi-
tion [108,109]. Although there are numerous studies of the
Marangoni effect due to the presence of interfacial surface-active
materials, the transition from the tangentially mobile boundary
condition for clean interfaces to the tangentially immobile behavior
due to surface-active species occurs over a relatively narrow range of
surface concentration or the associated change in interfacial tension.
Studies at the liquid–gas [110] and liquid–liquid [111] interfaces
suggest that a surface concentration that lowers the interfacial
tension by less than 1 mN/m, which is below the precision of many
surface tension measurement techniques, is sufficient to render such
interfaces immobile. This may be one reason why all the experi-
mental results we considered appear to be consistent with the
tangentially immobile condition. Furthermore, the deformability of
the interfaces means that the local shear rates will not attain high
values that might be expected to exist in the thin liquid layer
between rigid surface that are being driven together. For interacting
deformable drops and bubbles, when the sum of the hydrodynamic
and disjoining pressure exceeds the Laplace pressure, the interfaces
will flatten while maintaining an almost constant film thickness. This
mechanism then allows the local shear rate to remain small even
though the interaction force increases through increasing the
effective interaction area through deformation. For systems driven
at higher capillary numbers (≥10−2), there is experimental
evidence that both mobile and immobile interfacial conditions
have been observed [112], but a quantitative theoretical explanation
based on direct numerical simulations remains elusive. Such
calculations are also computationally expensive and can take up to
500 CPU hours on a workstation to compute a single collision event
[111].

For a long time, it has been accepted that coalescence required the
development of thermally driven fluctuating surface waves as a
triggering mechanism. Our comparisons with direct force measure-
ments and responses of stable films to mechanical and electrical
perturbations provided no evidence for the existence of this
postulated mechanism. This is also supported by available direct
numerical simulation results [111,112]

What is clear is that the modeling of non-equilibrium behavior
involving deformable drops and bubbles must treat forces and
deformations in a consistent way. Approaches based on the Reynolds
Flat Film model that make assumptions about the geometry of
interfacial deformations lack quantitative predictive capabilities.
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