
A robust and non-singular formulation of the boundary integral
method for the potential problem

Qiang Sun a, Evert Klaseboer b, Boo Cheong Khoo a, Derek Y.C. Chan a,b,c,d,n

a Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore, Singapore
b Institute of High Performance Computing, 1 Fusionopolis Way, 138632 Singapore, Singapore
c Department of Mathematics and Statistics, The University of Melbourne, Parkville, 3010 VIC, Australia
d Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, 3122 VIC, Australia

a r t i c l e i n f o

Article history:
Received 12 December 2013
Accepted 20 March 2014

Keywords:
Boundary integral method
Regularisation
De-singularisation
Axisymmetric problem
Potential problem
Corner problem

a b s t r a c t

A non-singular formulation of the boundary integral method (BIM) is presented for the Laplace equation
whereby the well-known singularities that arise from the fundamental solution are eliminated
analytically. A key advantage of this approach is that numerical errors that arise due to the proximity
of nodes located on osculating boundaries are suppressed. This is particularly relevant in multi-scale
problems where high accuracy is required without undue increase in computational cost when the
spacing between boundaries become much smaller than their characteristic dimensions. The elimination
of the singularities means that standard quadrature can be used to evaluate the surface integrals and this
results in about 60% savings in coding effort. The new formulation also affords a numerically robust
way to calculate the potential close to the boundaries. Detailed implementations of this approach are
illustrated with problems involving osculating boundaries, 2D domains with corners and a wave drag
problem in a 3D semi-infinite domain. The explicit formulation of problems with axial symmetry is
also given.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Solution of the Laplace equation for the potential problem
underpins many applications in electrostatics and heat conduction.
It is also central to modelling moving or deformable boundaries in
the high Reynolds number regime in fluid mechanics. There, viscous
and boundary layer effects are not dominant whereby a description
based on potential flow can therefore be used as a first approxima-
tion or as a base case for further refinement. Numerous examples
can be found in hydrofoil dynamics [1,2], the description of waves
[3,4], cavitation or supercavitation phenomena [5,6], in civil, marine
and ocean engineering and oscillating bubble dynamics in sono-
physics and sonochemistry [7].

Many of the above applications in multiphase fluid mechanics
require the accurate tracking of moving interfaces that can be
cumbersome and expensive to implement using grid based methods,
especially in 3D. Consequently the use of the boundary element
method (BEM) is advantageous because computational effort can focus
onmodelling all the important interfaceswith the additional benefit of
reducing thedimensionof theproblembyone, thus obviating theneed
to compute solutions in the whole flow domain. To track moving and

deforming interfaces with precision, the Laplace equation is solved at
each time step and the boundaries evolve according to the unsteady
Bernoulli equation. This approach can readily be adapted to handle
large or infinite domains or boundaries. The BEM is especially appeal-
ing for infinite fluid domains since the behaviour at infinity can be
accounted for analytically. Although the BEM generates dense matrix
equations, the Fast Multipole Boundary Element Method [8] can be
used to reduce both CPU time andmemory requirement fromOðN2Þ to
OðN log NÞ. Thus in spite of being a simplification of the full Navier–
Stokes description, the theory of potential flow together with the
Bernoulli equation to describe unsteady problems occupies an impor-
tant role in multiphase fluid dynamics.

The inherent use of the fundamental solution in the formulation
of the BEM means that the integral equation contains singular
kernels. This characteristic feature has been described as “a math-
ematical monster that leaps out of every page” due to “very
unfamiliar and complex mathematics” [9]. Since the physical
problem itself is perfectly well behaved on the boundaries, such
singularities are numerical inconveniences generated by the math-
ematical formulation [10]. Traditionally, the singular behaviour is
dealt with by a local change of variables in the evaluation of the
surface integrals [11] that comes at the expense of additional coding
effort. Previous attempts to remove such singularities analytically
required the introduction of additional unknowns such as deriva-
tives tangential to the surface that have to be found by developing
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and solving extra integral equations [10,12]. Another method to
remove the singularities requires finding additional parameters that
have to be determined on a fictitious “nearby” boundary [13–15].

Moreover, when two different boundaries or two parts of
the same boundary become close to each other, the traditional
implementation of the BIM does not prevent the deleterious
influence of singularities that originate from nodes of one bound-
ary on the other. In particular, for moving boundary potential
problems, it is highly desirable to eliminate all singular terms that
arise in traditional formulations of the BEM as this avoids the need
to track the spatial separation of different parts of the boundary
and to determine when remedial action may be required.

Here we show that the well-known mathematical singularities
that arise in the BEM for solving the Laplace equation can be
removed analytically without generating additional unknowns or
equations to be solved. The desingularised formulation is given for
both general 3D and axisymmetric cases. The approach can also be
applied to evaluate the potential at points near boundaries in a
numerically robust way. The implementation and the resulting
improvement in accuracy are illustrated with a number of exam-
ples: a problem with osculating boundaries, a 3D problem with a
semi-infinite domain that arises in the study of wave drag near a
deformable surface (with movies in the electronic supplement)
and problems involving domains with corners in 2D.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.enganabound.2014.03.010.

2. Non-singular formulation of the boundary integral method

To develop a non-singular formulation of the boundary integral
method, consider the internal problem in a 3D domain that is
bounded by the closed surface S, as shown in Fig. 1. The potential,
ϕ, is governed by the Laplace equation

∇2ϕ¼ 0: ð1Þ
By using the 3D free space Green's function Gðx; x0Þ ¼ 1=jx�x0j
and with the help of Green's second identity, the solution of Eq. (1)
can be found by solving the conventional boundary integral
equation

c0ϕðx0Þþ
Z
S
ϕðxÞ∂G

∂n
dSðxÞ ¼

Z
S

∂ϕ
∂n

Gðx; x0Þ dSðxÞ; ð2Þ

where c0 is the solid angle at the observation point x0 on S and the
surface element dSðxÞ is at x. The normal derivatives are defined by
∂ϕ=∂n�∇ϕðxÞUnðxÞ and ∂G=∂n�∇Gðx; x0ÞUnðxÞ, where n� nðxÞ is
the unit normal vector pointing out of the internal domain at x [9].
If either ϕ or ∂ϕ=∂n or a mixed boundary condition is given on
the whole boundary S, the corresponding ∂ϕ=∂n or/and ϕ can be
obtained from Eq. (2). Although numerical integration over the
singularities in Gðx; x0Þ and ∂G=∂n can be effected by established
methods [11], our aim is to remove such mathematical singula-
rities analytically at the outset.

Corresponding to a given point x0 on the boundary, we construct
a function ψ ðxÞ that also satisfies the Laplace equation and hence
Eq. (2), with the properties that as x-x0, ψ ðxÞ-ϕðx0Þ �ϕ0 and
∂ψ=∂n-ð∂ϕ=∂nÞ0 � ∇ϕðx0ÞUnðx0Þ, where n0 � nðx0Þ is the outward
unit normal vector at x0. We choose ψ ðxÞ to be of the form

ψ ðxÞ �ϕðx0Þþ
∂ϕ
∂n

� �
0
f ðxÞ ð3Þ

so the function f ðxÞ must satisfy

∇2f ðxÞ ¼ 0; f ðx0Þ ¼ 0; ∇f ðx0ÞUn0 ¼ 1: ð4Þ
Taking the difference between the conventional boundary integral
equations for ϕðxÞ and for ψ ðxÞ we obtain an integral equation
relating ϕðxÞ and ∂ϕ=∂n on S that replaces the conventional
boundary integral equation in Eq. (2):Z
S
ϕðxÞ�ϕðx0Þ�

∂ϕ
∂n

� �
0
f ðxÞ

� �
∂Gðx; x0Þ

∂n
dSðxÞ

¼
Z
S

∂ϕ
∂n

� ∂ϕ
∂n

� �
0
∇f ðxÞUn

� �
Gðx; x0Þ dSðxÞ: ð5Þ

The key point is that both integrands in Eq. (5) are now non-singular
and thus any convenient quadrature method can be used to evaluate
the integrals. Note also that the solid angle c0 no longer appears.
Implicit in the derivation of Eq. (5) is that the outward unit normal
nðx0Þ is uniquely defined at x0. The implementation of Eq. (5) at
nodes where the normal is not defined, e.g. at a corner, is considered
in Section 5. A detailed proof of this de-singularisation method using
the linear function: f ðxÞ ¼ n0 Uðx�x0Þ has been given elsewhere [16]
and establishes the theoretical basis of the numerical scheme
constructed earlier to regularise the system of linear equations that
arise from the standard implementation of the BEM [17]. This
approach has also been extended to de-singularise boundary integral
equations that arise in Stokes flow, in solving the Helmholtz equation
and the equations of linear elasticity using a linear function for
f ðxÞ [16].

However, for potential problems involving domains of infinite
extent (external problems), a different choice of f ðxÞ is required
since the linear function is unbounded at infinity. One possible
choice for f ðxÞ is

ψ ðxÞ �ϕðx0Þþ
∂ϕ
∂n

� �
0
f ðxÞ

¼ϕðx0Þþ
∂ϕ
∂n

� �
0

jx0�xDj2
n0 Uðx0�xDÞ

1�jx0�xDj
jx�xDj

� �
: ð6Þ

The constant vector xD is the position of any convenient point that
is located outside the solution domain and satisfies n0 U ðx0�
xDÞa0. In the next section, we will use this form of ψ ðxÞ to
formulate a non-singular BEM for axisymmetric problems and in
Section 6, we demonstrate how Eq. (6) can be used to formulate a
non-singular boundary integral problem in a semi-infinite domain
to solve a 3D time-dependent potential flow problem. Before
proceeding, we note that we are not restricted to using a linear
function or the form given by Eq. (6) for f ðxÞ to construct non-
singular versions of the boundary integral equation. In fact, any
form of f ðxÞ that satisfies the conditions given by Eq. (4) can be
considered for use in Eq. (5) to remove the singular behaviour due
to the presence of G and ∂G=∂n at x¼ x0.

3. Non-singular axisymmetric boundary integral equation

For problems that possess axial symmetry whereby in the cylind-
rical variables r, θ and z, we have ϕðxÞ ¼ϕðr; zÞ and ∂ϕðxÞ=∂n¼
∂ϕðr; zÞ=∂n, the integration over the azimuthal angle, θ, can be
evaluated analytically [9]. Since a point (r, z) on the axisymmetric
boundary surface is specified by some given equation Sðr; zÞ ¼ 0, the

Fig. 1. The 3D internal domain defined by the closed surface S with the observation
point x0 with outward normal n0, the integration point x with outward normal n
and a sample location of xD .
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surface integrals for the axisymmetric case can be reduced to 1D
integrals.

The ψ ðxÞ given by Eq. (6) will be an axisymmetric function if we
choose (in Cartesian coordinates) xD ¼ ð0;0; zDÞ to lie on the z-axis
of symmetry with zD located outside the solution domain. We
measure the azimuthal angle, θ, relative to x0 ¼ ðr0;0; z0Þ so that
x¼ ðr cos θ; r sin θ; zÞ and the surface normals are given by
n0 ¼ ðnr0;0;nz0Þ and n¼ ðnr cos θ;nr sin θ;nzÞ. With these defini-
tions, the axisymmetric function ψ ðxÞ in Eq. (6) and its normal
derivative are given explicitly by

ψ ðr; zÞ ¼ϕðr0; z0Þþ
∂ϕ
∂n

� �
0

ρ�ρ0

ρ

� �
ρ2
0
s0

ð7Þ

∂ψ ðr; zÞ
∂n

¼ ∂ϕ
∂n

� �
0

ρ0

ρ

� �3 s
s0

� �
ð8Þ

where ρ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðz�zDÞ2

q
, ρ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20þðz0�zDÞ2

q
, s� rnrþðz�zDÞnz

and s0 � r0nr0þðz0�zDÞnz0.
The axisymmetric version of the non-singular boundary inte-

gral equation obtained after performing the θ-integration in
Eq. (5) using Eq. (6) is (see also [9])Z
χðr; zÞrEðmÞ
ð1�mÞR3 ðr�r0Þnrþðz�z0Þnz�2r0nrð1�mÞ=m� �

dΓ

¼
Z

2rr0nrχðr; zÞKðmÞ
mR

3 dΓþ
Z

∂χðr; zÞ
∂n

rKðmÞ
R

dΓ ð9Þ

where χðr; zÞ �ϕðr; zÞ�ψ ðr; zÞ. The arc length element dΓ may be

expressed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðdr=dzÞ2

q
dz using the equation Sðr; zÞ ¼ 0 that

defines the axisymmetric surface. The quantities K(m) and E(m)
are the complete elliptic integrals of the first and the second kind
of the parameter, m (see [9,18]), with

m� 4rro
ðrþr0Þ2þðz�z0Þ2

� 4rro

R
2 ; 0rmr1: ð10Þ

The axisymmetric boundary integral equation given by Eq. (9) is
non-singular because the log ð1�mÞ divergence in K(m) asm-1 in
the limit x-x0 is now suppressed by the terms containing the
difference between ϕ and ψ and between ∂ϕ=∂n and ∂ψ=∂n that
vanish as ð1�mÞ as x-x0. Thus the line integral in Eq. (9) can be
evaluated using any quadrature method. This is a consequence of
using an axisymmetric form of ψ ðr; zÞ given by Eq. (6) that is
simplified to Eqs. (7) and (8).

An additional bonus of the non-singular axisymmetric formu-
lation in Eq. (9) is that no special effort is required to handle node
points that are located on the axis of symmetry that has been a
technical inconvenience of the conventional axisymmetric form of
the boundary integral equation [9].

4. Robust method to calculate the potential near a boundary

The method of de-singularising the boundary integral equation
by subtracting out the singular behaviour can also be used to give
a numerically robust method to calculate the value of the potential
at points near boundaries. To find the potential, ϕðxpÞ, at an
observation point xp that is located inside the domain but
may be close to the boundary, we begin with the conventional
boundary equation, Eq. (2), for the function ½ϕðxpÞ�ψ ðxpÞ�, with
ψ ðxÞ given by Eq. (3) and c0 ¼ 4π for points inside the domain

4π ϕðxpÞ� ϕðx0Þþ
∂ϕ
∂n

� �
0
f ðxpÞ

� �	 


þ
Z

ϕðxÞ� ϕðx0Þþ
∂ϕ
∂n

� �
0
f ðxÞ

� �	 

∂Gðx; xpÞ

∂n
dSðxÞ

¼
Z

∂ϕ
∂n

� ∂ϕ
∂n

� �
0
∇f ðxÞUnðxÞ

	 

Gðx; xpÞ dSðxÞ: ð11Þ

The point x0 is located on the boundary and its relation to xp is
specified below. The nearly singular behaviour of the integrands
when xp is close to the boundary can be eliminated by subtracting
Eq. (5) from Eq. (11) to give

ϕðxpÞ ¼ϕðx0Þþ
∂ϕ
∂n

� �
0
f ðxpÞ

� 1
4π

Z
ϕðxÞ� ϕðx0Þþ

∂ϕ
∂n

� �
0
f ðxÞ

� �	 

∂Gðx; xpÞ

∂n
�∂Gðx; x0Þ

∂n

	 

dSðxÞ

þ 1
4π

Z
∂ϕ
∂n

� ∂ϕ
∂n

� �
0
∇f ðxÞUnðxÞ

	 

Gðx; xpÞ�Gðx; x0Þ
� �

dSðxÞ: ð12Þ

When the observation point xp is near the boundary, a suitable
choice for the boundary point, x0, is to project xp onto the
boundary using the relation xp ¼ x0�εn0, with ε40.

Another important benefit arising from the numerical robust-
ness of the present de-singularised formulation of the BIM occurs
when different parts of the domain boundary become close
together as often happens in multi-scale moving boundary pro-
blems. A simple example of this is when the boundary comprises
two nearly touching spheres and the point x0 is located near
where the spherical boundaries are close together. The present
formulation eliminates the near singular behaviour of the kernel at
nodes that are on a different part of boundary that is close
spatially to the observation point x0. A numerical demonstration
of this is given in Section 6.

5. Corner nodes in 2D

The above formulation of the non-singular form of the BEM for
the potential problem assumes that the unit normal n0 � nðx0Þ
is uniquely defined at x0. When x0 is a corner node on a 2D
boundary, we choose ψ ðxÞ to have the form

ψ ðxÞ ¼ϕðx0Þþ
∂ϕ
∂n

� �L

0
f LðxÞþ ∂ϕ

∂n

� �R

0
f RðxÞ ð13Þ

where ϕ0 �ϕðx0Þ is the potential at x0, and the constants ð∂ϕ=∂nÞL0
and ð∂ϕ=∂nÞR0 are the values of normal derivatives as one
approaches x0 from the “left” (L) and from the “right” (R). The

functions f LðxÞ and f RðxÞ satisfy the following conditions:

∇2f LðxÞ ¼ 0; f Lðx0Þ ¼ 0; ∇f Lðx0ÞUnL
0 ¼ 1; ∇f Lðx0ÞUnR

0 ¼ 0; ð14Þ

∇2f RðxÞ ¼ 0; f Rðx0Þ ¼ 0; ∇f Rðx0ÞUnR
0 ¼ 1; ∇f Rðx0ÞUnL

0 ¼ 0: ð15Þ

The value of ∇ϕðx0Þ at the corner x0 can be expressed in two
equivalent forms

∇ϕðx0Þ ¼
∂ϕ
∂n

� �L

0
nL
0þ

∂ϕ
∂t

� �L

0
tL0;

∇ϕðx0Þ ¼
∂ϕ
∂n

� �R

0
nR
0þ

∂ϕ
∂t

� �R

0
tR0;

8>>>><
>>>>:

ð16Þ

in which ð∂ϕ=∂tÞL0 and ð∂ϕ=∂tÞR0 are the two tangential derivatives
of the potential on side L and R at x0, respectively, and tL0 and tR0 are
the unit tangential vectors along side L and R at x0, respectively.
This compatibility condition in Eq. (16) provides an additional
relation between ð∂ϕ=∂nÞL0 and ð∂ϕ=∂nÞR0 [19] in the formulation of
the BIM whereas the tangential derivatives can be constructed
from the values of ϕ at neighbouring nodes.

A choice for f LðxÞ and f RðxÞ for a 2D corner problem can be
constructed in terms of the surface normals nL

0 and nR
0 on either
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side of the corner at x0:

f LðxÞ ¼ �ðnL
0 Un

R
0ÞnR

0þnL
0

1�ðnL
0 Un

R
0Þ2

Uðx�x0Þ; ð17Þ

and

f RðxÞ ¼ �ðnR
0 Un

L
0ÞnL

0þnR
0

1�ðnR
0 Un

L
0Þ2

U ðx�x0Þ: ð18Þ

6. Numerical demonstrations and examples

6.1. Two nearly touching spheres

To demonstrate the utility and the robustness of our non-
singular boundary integral method for problems with near oscu-
lating boundaries, we consider the potential problem associated
with two nearly touching spheres translating along their line of
centre at identical constant speed. The spheres have radii R and
3R=2 and are at a separation of 10�4R at the point of closest
approach (Fig. 2a). We compare the velocity potential obtained
using the standard axisymmetric boundary integral method [20],
with our non-singular version given by Eq. (9) with xD set to the
centre of each sphere. In Fig. 2b, we see that the error in the
standard axisymmetric boundary integral method is very large in
the region where the spheres are close together. The standard 3D
boundary integral method gives errors similar to the standard
axisymmetric method whereas the non-singular 3D version given
by Eq. (5) has the same accuracy as the axisymmetric version. This
large error arises in the standard version of the boundary integral
method because of the influence of the observation point on one
sphere from the singular kernel centred at nearby nodes located
on the other sphere. As we have shown in Section 4, with our non-
singular formulation, such effects do not arise.

6.2. Corner problem in 2D

To illustrate the implementation of our non-singular formula-
tion of the BIM, we consider three different interior potential
problems in rectangular domains of different shapes, as shown in
Fig. 3. The lengths of all four edges are set to be 1 unit. Uniform

linear elements are employed on the boundary of the parallelo-
gram specified by the angle, β. At the corner nodes, the function
ψ ðxÞ given by Eq. (13) used in the non-singular boundary integral
equation (5) and the double node technique [19] has been applied.
The tangential derivatives of the potential in the compatibility
condition in Eq. (16) are obtained by a fourth order finite difference
scheme using values of ϕ along the boundaries. For the remaining
nodes on the edges, the form of ψ ðxÞ in Eq. (3) with f ðxÞ ¼
n0 Uðx�x0Þ is used in Eq. (5).

We tested three cases corresponding to analytical solutions:

ϕ¼ 1�x Case I; ð19Þ

ϕ¼ 1�xy Case II; ð20Þ

ϕ¼ sinhðπyÞ
sinhðπÞ sin ðπxÞþ1 Case III: ð21Þ

We solved the above corner problems with Dirichlet boundary
conditions. The comparisons between the results for the normal
derivatives obtained by our non-singular BIM with 21 nodes on
each edge and the analytical solutions are shown in Fig. 4 when
β¼451 and β¼901. The absolute errors for these cases can be
found in Table 1.

Fig. 2. Variation of the velocity potential along the meridian for two nearly osculating spheres translating along their line of centre at equal constant speed in potential flow.
(a) Nodes 1–101 are on the sphere of radius R and nodes 102–202 are on the sphere of radius 3R=2. The gap between the spheres is 10�4R. (b) Erroneous results of the
potential obtained from the standard axisymmetric boundary integral method (symbols) when compared to our non-singular method given by Eq. (9) (line) are circled.

Fig. 3. Rectangular domain for an interior 2D potential problems.
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Other pairs of f LðxÞ and f RðxÞ that satisfy Eqs. (14) and (15) can
also be used, for example

f LðxÞ ¼ jx0�xLDj2
nL
0 U ðx0�xLDÞ

ln
jx�xLDj
jx0�xLDj

 !
ð22Þ

f RðxÞ ¼ jx0�xRDj2
nR
0 Uðx0�xRDÞ

ln
jx�xRDj
jx0�xRDj

 !
ð23Þ

where xLD and xRD are located outside the calculation domain, and

nL
0 Uðx0�xLDÞa0; nR

0 U ðx0�xLDÞ ¼ 0;
nR
0 Uðx0�xRDÞa0; nL

0 U ðx0�xRDÞ ¼ 0:

(
ð24Þ

This pair of f LðxÞ and f RðxÞ are also used to solve the above three
cases with Dirichlet boundary conditions when β¼901. Once
again, 21 nodes are employed on each edge. The absolute errors
between the results for the normal derivatives obtained by our
non-singular BIM and the analytical solutions for these cases are
the same as Table 1.

This method of treating corner nodes can be extended to handle
edges and vertices in 3D domains, but will not be considered here.

6.3. Wave drag at a semi-infinite deformable boundary

To illustrate the generality of our non-singular formulation of
the BEM, we examine the following wave drag problem that has
sufficient complexity to be interesting [21]. Consider two identical
spheres of radius, R, separated by a constant distance D between
their centres and moving with constant speed u0 ¼U0i at the same
depth H below an infinite deformable free surface in a gravity field,
as shown in Fig. 5. The origin of the global reference frame is set to
coincide with the initially undisturbed free surface (at z¼0) with
the surface elevation z pointing upwards (Fig. 5). For simplicity,
the upper phase (air) is assumed to have negligible mass density
and interfacial tension effects have been omitted, although it
is easy to dispense with such simplifications at the expense of
introducing more physical parameters. This is a time-dependent

potential flow problem as surface waves will be generated on the
deformable free surface while the pair of spheres travelling
beneath it.

The potential flow velocity field, u¼ ∇ϕ, generated by the
moving spheres is found by solving the Laplace equation for the
velocity potential, ϕ, at each time step. On the spheres, the velocity
is given and the potential is calculated. Initially, ϕ¼ 0 on
the undisturbed free surface. Solving the mixed boundary value
problem defined by the free surface and the two spheres provides
values of the normal velocity ∂ϕ=∂n at the free surface that is then
used to predict its shape at the next time step. The value ofϕ on the
free surface at the next time step is found from the unsteady
Bernoulli equation evaluated on the surface: ρDϕ=Dt ¼ ρu2=2�ρgz
where D=Dt ¼ ∂=∂tþu � ∇ is the material derivative, ρ the fluid
density and g the gravitational acceleration. Such time-stepping
then gives the spatio-temporal evolution of the surface waves. The
wave drag force experienced by the two spheres that are moved at
constant velocity in this 3D problem is calculated by integrating the
pressure p on the sphere surfaces.

The deformable interface extends to infinity in the xy-direction
where it asymptotes to a flat surface. Therefore far from the
spheres, the potential and its derivative vanish asymptotically like
1=jxj and 1=jxj2 as jxj-1. We therefore assume that beyond a
radius of 40R from the spheres, we can take the interface to be flat
and the potential and its derivative also take on their asymptotic
forms so that we can evaluate analytically the contribution to the
surface integrals from the far field, see for example [22,23]. Since
Eq. (5) is non-singular, there is no need to map the far field
elements to two triangular elements or introduce any artificial
points at infinity as was done in [23]. Finally, the integral over the
half spherical surface at infinity will contribute two terms 2πϕðx0Þ
and 2πð∂ϕ=∂nÞ0jx0�xDj2=½n0 U ðx0�xDÞ� to the left-hand side
of Eq. (5).

Fig. 4. Variation in the normal derivative along two different domain boundaries corresponding to Fig. 3 as β¼451 (a) and β¼901 (b), between the exact solutions given by
Eqs. (19)–(21) (lines) and the results obtained by our non-singular BIM (symbols). For clarity, only a subset of the results on the 21 nodes on each side of the parallelogram is
shown for Case I: black squares, Case II: blue circles and Case III: green triangles. (For interpretation of the references to colour in this figure caption, the reader is referred to
the web version of this paper.)

Table 1
Absolute error of the 2D non-singular boundary integral method for solving Cases I,
II and III given by Eqs. (19), (20), and (21) respectively for the domain in Fig. 3 for
different corner angle β.

Domain angle Case I (%) Case II (%) Case III (%)

β¼451 0.0046 0.29 0.87
β¼901 0.012 0.019 0.77

Fig. 5. The geometry of two spheres translating near a deformable free interface.
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On each sphere, 1280 linear triangular elements with 642
nodes are employed. On the free surface, 15 000 elements with
7651 nodes are used. When x0 is on a sphere, xD in Eq. (6) is taken
to be the centre of the sphere. When x0 is on the free surface, we
choose the Cartesian components of xD ¼ ðxD; yD; zDÞ to be zD ¼ 3R
and any convenient xD and yD that ensure n0 U ðx0�xDÞa0.

With a constant time step of 0:02R=U0, the position of each
surface node is updated with Dx=Dt ¼ u�∇ϕðxÞ and the spheres

are translated using u0. The calculation continues until the spheres
have travelled a distance of 30R. The elastic mesh technique [25] is
applied on the free surface to ensure a uniform mesh even after
many time-steps.

The drag force acting on each sphere is calculated by F ¼R
Spn dS where S is the surface of the sphere. In Fig. 6a we present
the time variation of the force F ¼ Fxi on each of the two
spheres travelling with constant velocity u0 ¼ U0i. The three

t / (R/U0 )
0 10 20 30

-0.4

-0.2

0

0.2

0.4

Single sphere H/R = 

H/R = 2

Leading sphere

Trailing sphere H/R = 

H/R = 

H/R = 2

H/R = 2

F x /
 ( 

  
 R

2  U
02
)

1 2|

D / (2R) - 1
10-4 10-3 10-2 10-1 100 101
0

0.1

0.2

0.3

0.4

0.5

F x /
 ( 

  
 R

2  U
02 )

1 2-

Fig. 6. (a) The time dependent force, F ¼ Fxi, experienced by a pair spheres of radius R at separation, D¼ 2:4R, moving at constant velocity, u0 ¼U0i, from rest along the line
of centres at different depths, H, parallel to a deformable free surface in a gravity field at Froude number, Fr¼U0=

ffiffiffiffiffiffiffi
gH

p
¼ 1. Corresponding results for a single sphere are

given for comparison. (b) Variations of the force on the trailing sphere with separation, D, in the absence of the interface ðH=R¼1Þ obtained from a 3D calculation using the
present non-singular BEM (points) and from the analytic result of [24] (line). The forces are scaled to give the usual drag coefficient, Cd.

Fig. 7. Variation of the surface wave amplitude generated by two submerged spheres initially at positions indicated by the open triangles, as they travel along the
x-direction. The positions of the spheres at times (a) t ¼ 13:20R=U0 and (b) t ¼ 30:00R=U0 are indicated by solid triangles. The corresponding 3D representations of the surface waves
are shown in (c) and (d). The parameter values are the same as for Fig. 6a. Animations corresponding to these figures are available as online Supplementary Material.
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non-dimensional parameters that govern this problem are H/R, D/
R and the Froude number, Fr¼ U0=

ffiffiffiffiffiffiffi
gH

p
(Fig. 5). For our illustrative

example, we chose a sphere separation of D/R¼2.4, a submerged
depth of H/R¼2, and Fr¼1. Also shown are results for H=R¼1
that corresponds to the absence of the deformable interface and
the force on an isolated single sphere that corresponds to
D=R¼1. The leading sphere experiences a retarding force in the
x-direction whereas the trailing sphere experiences a force in the
direction of travel. At H=R¼1, these two forces are equal and
opposite as expected from the d'Alembert Paradox of potential
flow. The proximity of the moving spheres to the deformable
interface provides a net non-zero wave drag on the pair of moving
spheres [21]. We point out that the treatment of the initial
condition of this problem has been simplified by omitting the
detailed effects of acceleration from rest that will give rise to an
added mass term. The inclusion of this effect complicates the
equation of motion, but does not affect the demonstration of the
utility of the present non-singular formulation of the BIM.

In Fig. 6b we show the variation of the drag force on the trailing
sphere as a function of the sphere separation, D, at H=D¼1. There
is excellent agreement between our non-singular boundary inte-
gral method and the analytic result of [24].

Snapshots of the spatio-temporal variations of the surface
waves generated by the pair of moving submerged spheres are
shown in Fig. 7. Variations of the surface wave amplitude along the
direction of travel at two different times are shown in Fig. 7(a) and
(b). Three dimensional representations of the corresponding sur-
face waves in Fig. 7(c) and (d) show the lateral extent of surface
disturbance that obviously depends on the sphere spacing and the
depth of immersion. Movies of the wave amplitude and the
surface wave corresponding to these figures are available as online
Supplementary Material. Although potential flow is conservative
with no energy dissipation or damping mechanism, the drag
waves on the free surface appear damped because of kinetic
energy of the moving sphere being distributed into the infinite
fluid domain [21].

7. Conclusions

In this paper, we have provided a fully non-singular formula-
tion of the boundary integral method for potential problems. The
usual singularities in the kernels that arise from the fundamental
solutions are removed analytically without introducing additional
unknowns or extra equations to be solved. Apart from excising the
“mathematical monsters” in the conventional boundary integral
formulation [9], the amount of computer code needed to imple-
ment the non-singular boundary integral equation has been
reduced by about 60%. For the special case of axisymmetric
problems, our formulation also removed the technical inconve-
nience associated with nodes on the axis of symmetry [9]. The
robustness and generality of our approach has been demonstrated
with examples involving osculating boundaries, domains with
corners and a wave drag due to an infinite deformable boundary.
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