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A theoretical model has been developed to analyse bubble rise in water and subsequent
impact and bounce against a horizontal glass plate. The multiscale nature of the problem,
where the bubble size is on the millimetre range and the film drainage process happens on
the micrometre to nanometre scale requires the combined use of different modelling tech-
niques. On the macro scale we solve the full Navier–Stokes equations in cylindrical coordi-
nates to model bubble rise whereas modelling film drainage on the micro scale is based on
lubrication theory because the film Reynolds number becomes much smaller than unity.
Quantitative predictions of this model are compared with experimental data obtained
using synchronised high-speed cameras. Video recording of bubble rise and bounce trajec-
tories are combined with interferometry data to deduce the position and time-dependent
thickness of the thin water film trapped between the deformed bubble and the glass plate.
Bubble rise velocity indicated that the boundary condition at the bubble surface was tan-
gentially immobile. Quantitative comparisons are presented for bubbles of different size to
quantify similarities and differences.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Interactions of soft materials such as drops and bubbles with solid surfaces occur in a wide variety of fields ranging from
the manufacture of pharmaceuticals and detergents to water purification and mineral extraction. Modelling and numerical
simulations of such systems present challenges because particle motions, interfacial interactions and deformations occur on
different length scales. Identifying the bubble interface and its deformation and movement can be done using numerical
techniques such as the volume of fluid (VOF) or level-set methods. When a bubble is very close to a solid surface or when
two bubbles are very close to each other such techniques require very fine grids and the computational time can become
unreasonably large. On the other hand, the use of lubrication theory to model the last stages of thin film drainage can be
used if the local Reynolds number of the system is smaller than unity. However, such descriptions must be consistent with
the large scale description of the centre of mass motion.
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Nomenclature

Cd drag coefficient
d diameter of the bubble (m)
Fbuoy buoyancy force (N)
Fdrag drag force (N)
g gravitational acceleration (m/s2)
H initial separation (m)
Ho typical vertical length scale (m)
ho(t) film thickness at the centre of interaction (m)
hm(t) minimum film thickness (m)
h(r, t) film thickness (m)
n refractive index of water
p pressure (Pa)
r radial coordinate (m)
rmax length of computational domain (m)
R radius of the bubble (m)
RL Laplace radius (m)
Re global Reynolds number
Ref film Reynolds number
t time (s)
u velocity vector (m/s)
u radial velocity (m/s)
v vertical velocity (m/s)
U(t) maximum velocity of the water in the film (m/s)
VCM(t) velocity of centre of mass of the bubble (m/s)
V(r,t) velocity of the bubble surface (m/s)
VT approach velocity (m/s)
Vo typical vertical velocity scale (m/s)
z vertical coordinate (m)

Greek symbols
r interfacial tension (N/m)
q water density (kg/m3)
l water viscosity (Pa s)
k wavelength of the laser (m)
P disjoining pressure (Pa)
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The behaviour of bubbles rising in water under buoyancy has been an active area of research. Terminal velocity data for
bubbles of various sizes from different sources have been collated by Clift et al. [1]. Bubbles rising in ultra clean water attain
larger velocities that correspond to a mobile (stress free) boundary condition at the bubble surface whereas the presence of
contaminants renders the interface to be immobile, obeying the same no-slip boundary condition as that at a solid surface,
and results in lower terminal velocities. Bubbles that are partially covered by surfactants or contaminants have intermediate
terminal velocities. Exposure of the water to the atmosphere is enough for environmental impurities to contaminate the
water over time and change the boundary condition at the bubble surface [2].

Studies on the effect of different surfactants at relatively low concentrations in water found a decrease in terminal veloc-
ity of a rising bubble as the surfactant concentration was increased until the velocity reached a constant value [3,4]. Works
by Levich [5] and Cuenot et al. [6] indicate that at sufficiently low surfactant concentrations, bubble motion can cause a non-
uniform surface distribution of surfactants, where the top or leading portion of a rising bubble remains clean while the sur-
factants are convected to the bottom, trailing part of the bubble surface. A simple model known as the ‘‘stagnant cap model’’
in which the surfactant-covered boundary is represented as an immobile boundary and surfactant-free surface is modelled
as a mobile or stress free boundary can be used to calculate the bubble terminal velocity for different coverage ratios. This
model has been solved analytically in the Stokes flow regime [7]. To test the boundary condition that should be applied at the
bubble surface we employ ANSYS Fluent to compute terminal velocities under mobile and immobile boundary conditions
assuming the bubble to remain spherical, as observed experimentally.

When a bubble collides with a surface, a multiscale problem arises as the separation between the bubble and the surface
becomes much smaller than the bubble radius. Observing the small scale microhydrodynamics phenomena of film drainage
between the bubble and the surface required different experimental techniques. Most experimental investigations of rising
bubbles that collide with a horizontal planar surface were restricted to side view recordings that report deformations in the
shape of the bubble and possible bounce trajectories [8–11], but corresponding information about the drainage of the thin
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film were seldom reported for the same experiments. Interferometry had been used to observe film deformation and drain-
age, but experimental results were restricted to small deformations and low velocities [12–15]. Those results were modelled
using lubrication theory. Improvements of high-speed cameras now allow the study of much faster bubble-surface collisions
by capturing the evolution of interference fringes [16,17]. The use of synchronized high-speed cameras to observe phenom-
ena in different length scales has gained popularity, especially for studying drops impacting on flat surfaces in air [18–20]
and for quantifying the effects of the Leidenfrost vapour on the splash behaviour of a drop on a hot surface [21,22]. These
experiments complement data on the bounce of soap bubbles falling against a water surface [23].

In this work we use modelling and numerical simulations to analyse the experimental data of Hendrix et al. [16] on the
interaction and bounce of millimetre-size bubbles rising in water under gravity against a flat horizontal glass surface. The
deionised water we used contained trace amounts of impurities and the bubble behaved as immobile interface during rise
and interaction with the glass surface.

The manuscript is organised as follows. Description of the problem and the general theory are presented in Section 2. The
bubble rise stage (macro scale) is discussed in Section 3. The micro scale, where lubrication theory is derived based on scal-
ing of the problem, is presented in Section 4. Numerical simulations that combined the centre of mass motion with lubrica-
tion theory to describe the drainage process all the way to bubble adhesion are compared to the experimental data in
Section 5. Finally, the main findings of this work as well as discussions are summarised in Section 6.

2. Theory of rising and bouncing bubbles

In this work we model the experimental data of Hendrix et al. [16]. Details on the experiment and experimental results
can be found in that reference. Here we focus on the modelling and comparisons with those experiments. Comparisons will
be shown for two typical bubbles of different radii (R = 385 lm and R = 630 lm) among 10 bubbles that were analysed. The
small sizes of these bubbles ensure straight vertical rise of the bubbles and axisymmetric deformation resulting from inter-
action with the glass plate.

A schematic of the experimental system is shown in Fig. 1. A bubble of radius R rises under buoyancy before impacting a
glass surface. Two synchronized high speed cameras capture the bubble rise and impact (macro scale) and simultaneously a
second camera captures the interference fringes during thin film drainage (micro scale). The fringes can be converted to sep-
arations, h using Bragg’s equation. For a fringe of order m: h = m k/(2n), where k = 532 nm is the wavelength of the laser and
n = 1.33 is the refractive index of water. Parameters of our system are: air/water interfacial tension, r = 72 mN/m, viscosity of
water, l = 1 mPa s and density of water, q = 1000 kg/m3.

Assuming that the continuous phase is a Newtonian fluid, the rise and impact of the bubble can be modelled by the con-
tinuity and Navier–Stokes equations written as:
Fig. 1.
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A bubble of radius R rises with centre of mass velocity VCM(t) against a glass plate in water. The bubble deformation is axisymmetric and is described
s of the film thickness between the bubble and the plate, h(r, t) with the radial coordinate in the range r = 0 to r = rmax, with rmax < R. A high-speed
captures the movement and shape of the rising bubble (bottom right image) and a synchronised second camera records the evolution of the

ence fringe pattern formed by the water film trapped between the bubble and the glass surface (top right image).
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where u = (u,v) is the velocity field and p the pressure. Since our problem is axisymmetric we write the continuity and
Navier–Stokes equations in cylindrical form
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For our modelling, we determine the boundary conditions at the air–water interface by examining the variation of exper-
imental terminal velocities, VT of bubbles with radius R between 0.35 mm and 0.75 mm.

3. Macro scale modelling

The terminal velocity VT of a rising bubble can be used as an indicator of the boundary condition – tangentially immobile
(no slip) or tangentially mobile (zero shear stress), that holds on the bubble interface. In the experimental data of Hendrix
et al. [16], the global Reynolds numbers based on the terminal velocity, Re = 2R qVT/l are in the range 60–230 whereby the
flow field is steady, laminar and axisymmetric and the bubble shape remain spherical. We performed CFD simulations using
ANSYS Fluent to calculate terminal velocity of spherical bubbles for both immobile (no-slip) and mobile (zero stress) bound-
ary conditions at the bubble interface. The bubble is taken to be stationary and the velocity in the far field is taken to be
uniform. The terminal velocity for a given bubble size is determined by varying the flow velocity until the drag force becomes
equal to the buoyancy force.

The simulations were performed following the guidelines outlined in Magnaudet et al. [24] using a cylindrical computa-
tional domain as shown in Fig. 2. A uniform velocity was specified at the inlet whereas an outflow boundary condition that
specifies zero diffusion flux for all flow variables was applied at the outlet. The far field boundary is treated as a stress-free
wall, i.e. zero radial velocity and zero gradient of axial velocity. The computational mesh was sufficiently refined near the
bubble interface (first element near the wall was 0.0018R) and the mesh size increased on moving away from the bubble.
The bubble interface had 50 elements on its semi-circular circumference. A grid refinement study was conducted to ensure
that the results were independent of the mesh size and the final mesh used for the simulations consisted of 50,000 elements.

The highest Reynolds number in our CFD simulations for the tangentially immobile (no-slip) boundary was 205. Nakam-
ura [25] and Jones and Clarke [26] have shown that the flow remains axisymmetric and steady up to Reynolds numbers of
210 and 270, respectively. Therefore, the assumption of steady and axisymmetric flow in our CFD simulations is deemed
valid. For the case of a stress-free bubble interface, the highest value of the Reynolds number presented here is 316 and
the flow was always observed to remain attached to the bubble interface.

By treating the bubbles as a sphere of radius R, the buoyancy force (neglecting the density of gas)
Fbuoy ¼
4p
3

qR3 g ð6Þ
is balanced by the steady state hydrodynamic drag force
Fdrag ¼
1
2
qV2

T ðpR2ÞCd; ð7Þ
Fig. 2. A schematic of the axisymmetric computational domain in which the dimensions are given in terms of the bubble diameter, d = 2R.
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where the drag coefficient Cd is a function of the Reynolds number, Re, and g is the acceleration due to gravity. For the immo-
bile (no-slip) boundary condition at the bubble interface, we also compare our results with the empirical Schiller–Naumann
formula [1] for Cd that is valid for Re < 800:
Fig. 3.
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Thus the terminal velocity can also be determined empirically as a function of bubble radius from Eqs. (6)–(8).
In Fig. 3 we show the terminal velocities measured in the experiments of Hendrix et al. [16] (open squares) and compare

them with those obtained from the Schiller–Naumann formula, Eqs. (6)–(8), (solid line) and CFD simulations (filled triangles)
using the immobile boundary condition at the bubble interface. The excellent agreement of the experimentally obtained ter-
minal velocities with the Schiller–Naumann formula as well as no-slip CFD simulations indicates that the immobile bound-
ary condition should be appropriate.

Terminal velocities measured by Duineveld [27] for deformable bubbles in ultra pure water, where the stress-free bound-
ary condition holds, are plotted together with those obtained from numerical simulations using the boundary element
method (BEM) that allowed for bubble deformation [28] (dashed line) and CFD simulations for non-deforming spheres (open
triangles). Analytical results of Moore [29] for a spherical bubble (dotted line) as well as ellipsoidal bubble (dash-dot line)
[30] derived for stress-free bubble interface are also plotted. The terminal velocities obtained from the CFD simulations
for spherical bubbles agree well with the analytical results of Moore for spherical bubbles, but are not in agreement with
the experimental data of [16]. On the other hand, the analytical results for elliptical bubbles [30] are in close agreement with
the experiment of Duineveld [27].

Streamlines obtained from CFD simulations for stress free (Fig. 3(b)) and immobile boundary condition (Fig. 3(c)) at
Re = 100 are given for comparison. For the stress-free boundary condition, the flow remains attached to the bubble whereas
in the case of the tangentially immobile boundary condition, the flow separates from the bubble boundary at about 120�
from the upstream stagnation point and a vortex develops on the downstream side of the bubble. As there is significant shear
stress on the bubble in the case of the immobile boundary condition, the total drag – a combination of form and skin friction
drag – increases and the bubble rises with a lower terminal velocity.

4. Micro scale modelling

Our system is characterised by two different length scales: the macro scale of the bubble and the micro scale of thin film
drainage of water trapped between the rising bubble and the glass plate. In Fig. 4 we present a schematic of the micro scale,
where the variables for the calculations are defined.

In our system the film Reynolds number, Ref (=qHoVo/l) becomes small when the bubble is close to the glass plate due to
small separation Ho (�10 lm) and low velocity of the bubble surface, Vo (�1 mm/s) and therefore, inertial effects can be
neglected in the film. The axisymmetric Navier–Stokes and continuity equations (3)–(5) can be simplified into the lubrica-
tion form (see Appendix A for full derivation)
(a) Terminal velocities for CFD simulations of axisymmetric flow around a spherical bubble with no-slip boundary condition (filled triangles)
ed to that predicted using the Schiller–Naumann formula (solid line) and to experiments (squares) [16]. Results for the stress-free boundary
n obtained from the boundary element method (BEM) that allows for bubble deformation [28] (dashed line) and CFD calculations for non-

ing spherical bubbles (open triangles) are compared to analytical results for spherical bubbles [29] (dotted line), ellipsoidal bubbles [30] (dash-dot
d also to experiment for bubbles in clean water [27] (open diamonds). The data points marked ‘‘A’’ and ‘‘B’’ correspond to radii 385 lm and 630 lm,
ively and will be analysed further in the next section. Streamlines of CFD numerical simulations for (b) mobile and (c) immobile boundary conditions
100.



Fig. 4. Schematic of the micro scale where a nearly flat thin film of water of thickness h(r, t) is trapped between the rising bubble and the glass plate. A
dimple region is indicated. The velocity profile in this thin film is parabolic.
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where u and v are the velocity components in the r and z directions (see Fig. 4).
At the glass plate, the no-slip boundary conditions implies u = v = 0 at z = 0. Assuming that the immobile boundary con-

dition holds at the bubble interface, the tangential component of velocity must be zero, that means, u = 0 at z = h(r, t). This
assumption is based on experimental observations presented earlier [16]. The classical condition for clean water systems
assumes the mobile boundary condition at the bubble surface. The bubble approaches the glass surface with velocity
V(r, t). Therefore, v = �V(r, t) = oh/ot at z = h(r, t). As the pressure p does not depend on z according to Eq. (10), Eq. (9) can
be integrated twice with respect to z, and applying boundary conditions for u gives
u ¼ 1
2l
ðz2 � hzÞ @p

@r
: ð12Þ
The maximum radial velocity of the film is at z = h/2, midway between the glass and the bubble surface, with the value
Uðr; tÞ ¼ �hðr; tÞ2
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The viscous shear stress at the glass surface (z = 0) and at the bubble (z = h) can be calculated from [31]
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Substituting u from Eq. (12) into the continuity equation (Eq. (11)) and integrating from z = 0 to h we obtain the equation
for the evolution of the thickness of the water film between the bubble and the glass surface [32]
@h
@t
¼ c

12lr
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r h3 @p

@r

� �
; ð15Þ
where c = 1 for an immobile boundary condition at the bubble surface: u = 0 at z = h, used in this work. The mobile boundary
condition: s = 0 at the bubble surface z = h would give c = 4.

The characteristic deformation time of the air/water interface in our experiment is small compared to the typical exper-
imental time. Therefore it is justified to assume that the deformation of the bubble in the thin film takes place under quasi-
equilibrium conditions and is governed by the familiar Young–Laplace equation that relates the mean curvature of a fluid
interface to the pressure difference across the interface. In addition to the Laplace pressure (2r/RL) between the two sides
of the curved interface, there are two additional contributions to the pressure difference, namely, the disjoining pressure
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P on the interface and the hydrodynamic pressure p, due to the drainage of the aqueous film trapped between the bubble
and the surface. Thus if the bubble deformations are axially symmetric as observed experimentally, the pressure p obeys the
augmented Young–Laplace equation of the form [33]
rðj1 þ j2Þ �
r
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where (hr � oh/or), RL is the Laplace radius (RL � R) and r is the interfacial tension. Furthermore, when the film is flat we have
oh/or� 1so that
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Note that P(h) is only important when the separation becomes small (<0.1 lm) just before bubble adhesion and therefore
can be neglected in this work.

The initial condition must be consistent with Eq. (17) so that it produces a zero film pressure. This requirement is satisfied
by a parabolic surface for the bubble, which is the local approximation to a sphere with radius R, as the initial condition
hðr;0Þ ¼ H þ r2

2R
; ð18Þ
where H is the initial separation and time t = 0 is taken at a position where the bubble is still rising at constant velocity and
the deformation due to the presence of the glass surface is negligible.

We also need four boundary conditions. Due to symmetry:
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For the far-field boundary condition the pressure decays as 1/r4 [34] so that
r
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The last boundary condition assumes
@h
@t
¼ �Vðrmax; tÞ at r ¼ rmax ð17Þ
the same condition used in [31]. In our simulations V(rmax, t) is taken to be the velocity of the bubble at rmax = 0.7R from the
experimental data. This velocity is close to the velocity of the centre of mass of the bubble (see Fig. 4(b)). Another possibility
is to calculate the velocity of the centre of mass through a balance of forces [35,36].

Numerical simulations are performed using ODE solver ode15s in Matlab. The system of equations is solved from r = 0 to
r = rmax = 0.7R (see Figs. 1 and 4) with a grid spacing of 2 lm.

5. Bubble impact with the glass surface

In Fig. 5(a) we present the experimental velocity of the centre of mass for two bubbles with different radii (R = 385 lm
and R = 630 lm). As the bubble approaches and interacts with the surface, the velocity decreases, and eventually becomes
negative when the bubble bounces and the centre of mass starts to move away from the glass surface. The bubble velocity
then oscillates before stopping after about 50 ms trapping a film of water between the bubble and the glass surface. This film
drains for about 200 ms before the film breaks and the bubble adheres to the glass surface.

In Fig. 5(b) we compare experimental measurement of the velocity of the centre of mass as well as at r = 0.7R which is
used as a boundary condition in our simulations. The velocities are obtained by tracking the position of the entire bubble
surface in the video using Matlab. Although there is good concordance between the two velocities, using the velocity at rmax

in the boundary condition provides better agreement between model and experiment in the film drainage stage.
In what follows, we present comparisons between experiments and numerical simulations using lubrication theory for

these two bubbles sizes. The shape of the interference fringe patterns of bubble and the glass surface indicate that the inter-
action remains axisymmetric. Moreover, these bubbles never fully detach from the glass after the first contact so this allows
absolute determination of the film thickness based on the point of film rupture.

In Fig. 6 we show the comparison between thickness of the film between bubble and glass surface as obtained from lubri-
cation theory (solid lines) and experiments (symbols) during the first encounter between the bubble and the glass surface.
The agreement is excellent in both the timing and spatial position without any adjustable parameters in the model. As the
bubble approaches the glass surface, the pressure in the film rises (see Fig. 8) and when it becomes larger than the internal
pressure (2r/R) of the bubble, it causes inversion of the bubble curvature to form the so-called dimple. Note that this process
lasts for only a few milliseconds.



Fig. 5. (a) Experimental velocity of the centre of mass as a function of time for two bubbles of different radii: R = 385 lm (dashed line) and R = 630 lm
(solid line). Diamonds correspond to the time instants for which the bubble profiles are compared in Fig. 6. (b) Velocity at the centre of mass and at
r = 0.7R = rmax for R = 630 lm.

Fig. 6. Comparison between lubrication theory (solid lines) and experimental data (symbols) for the spatiotemporal evolution of the bubble shape during
the first encounter with the glass corresponding to selected time instants in Fig. 5(a): (a) R = 385 lm, (b) R = 630 lm. The domain size was taken to be
rmax = 270 lm for the bubble with radius R = 385 lm and rmax = 450 lm for the bubble with radius R = 630 lm.
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From the results obtained using lubrication theory, we see that even as the outside of the bubble retreats, the inner part of
film is still thinning and the local interface approaches the glass surface until the bubble eventually bounces. This ‘‘suction
effect’’ is similar to the one attributed to have caused the coalescence of two bubbles in the Atomic Force Microscope (AFM)
experiments of Vakarelski et al. [37] while being separated from each other.

Results for thin film drainage using lubrication theory for the position at the centre ho(t) (solid line) as well as the position
where the film is the thinnest hm(t) (dashed line) are presented in Fig. 7. The excellent agreement between experiments
(symbols) and lubrication theory all the way to bubble attachment indicates that lubrication is the main contribution during
the interaction process once the film becomes thin enough. Dimple formation (when ho(t) becomes greater than hm(t)) hap-
pens at a larger thickness (�19 lm) for the larger bubble compared to the small one (�6 lm). Notice that the first impact
and dimple formation happens in about 5 ms while the slow drainage process takes more than 200 ms. Any attempt to
describe this process using a full CFD simulation instead of a lubrication model has to be able to capture the details of
the complex drainage phenomenon.

The pressure profiles are plotted in Fig. 8 for the same time instants as those of Fig. 6. The curvature inversion, a result of
the pressure in the film exceeding the internal pressure, also called the Laplace pressure, (2r/R) of the bubble, occurs when
p > 374 Pa and 228 Pa for R = 385 lm and 630 lm, respectively. During bubble approach the pressure is positive and is
responsible for the deformation of the bubble. When the bubble starts to retreat, the pressure at the rim region becomes
negative while the pressure at the centre is still positive.

In Fig. 9 we present the maximum radial water velocity as a function of radial position for the same time steps of Fig. 6.
The maximum outward velocity is reached before the first shown profile appears; the velocity decreases as the film becomes



Fig. 7. Evolution of the position at the centre ho(t) and at the rim hm(t) of the dimple during first contact and subsequent film drainage for bubble having
radius (a) 385 lm and (b) 630 lm. Symbols correspond to the experimental data while lubrication theory is plotted for ho(t) (dashed line) and for hm(t)
(solid line).

Fig. 8. Pressure profiles corresponding to the same time instants as in Fig. 6: (a) R = 385 lm and (b) R = 630 lm.
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thinner. When the back of the bubble reverses from approach to retract the water has to occupy that space so that the
velocity reverses from an outflow (positive) to an inflow (negative). On the other hand, the central part of the bubble
continues to thin during this time.

In Fig. 10 we present shear stress calculated on the bubble surface (see Eq. (14)) for the same time instants shown in
Fig. 6. It is interesting to note that the maximum shear stress occurs at the rim of the dimple and it changes sign when
the bubble surface starts to separate from the glass plate. The magnitude of the shear stress is relatively small compared
to that expected for a non-deforming sphere approaching the glass plate at the terminal velocity, VT. The ability of the bubble
interface to deform as it approaches the glass plate means that the rate of change of film thickness, dh/dt can become much
smaller than VT, and this then lowers the magnitude of the shear stress.

For comparison, we also show the variation of shear stress around the leading surface of a spherical bubble rising at the
terminal velocity according to the CFD calculation using ANSYS Fluent (dashed line in Fig. 10(a)). We note that the shear
stress on the deformed bubble surface as it interacts with the glass surface exceeds that at the leading part of a spherical
bubble travelling at the terminal velocity with the tangentially immobile boundary condition.

In Fig. 11 we compare the maximum outward and inward radial water velocity as well as shear stresses as a function of
time for the two cases analysed. Initially, during bubble approach, the water flows radially out of the film but eventually part
of the flow will be radially inwards as the bubble starts to retreat from the glass surface. This means there is a circular
position in the film where the velocity of the liquid is zero. The water velocity for the larger bubble is higher than that of
the smaller one. On the other hand the shear stress is similar for both cases. Eventually the velocity and shear stress decrease
as the bubble settles near the glass surface. The reason for the sudden change at around t = 20 ms comes from the fact the
maximum shear stress changes position on the bubble surface.



Fig. 9. Maximum radial velocity of the water inside the film calculated from Eq. (13) in the intervals corresponding to Fig. 6.

Fig. 10. Shear stress curves for the same time instants as those of Fig. 6 for bubbles of radius (a) 385 lm, (b) 630 lm. The dashed line in (a) corresponds to
shear stress calculated from CFD simulations during bubble rise. Letters are added to the plot to guide the eye.

Fig. 11. (a) Maximum water velocity in the film as a function of time extracted from Fig. 9. Positive velocity means outward flow while negative velocity
indicates that the water moves towards the centre. (b) Maximum (positive) and minimum (negative) shear stress at the bubble surface extracted from
Fig. 10.
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6. Discussion and conclusions

The technique applied in this work can be extended to other systems where different length scales appear, for example
droplets falling on surfaces, coalescence of bubbles and drops. The combination of macro and micro scale modelling pre-
sented in this work allowed us to readily estimate quantities such as pressure profiles, fluid drainage velocities and shear
stresses that are not yet captured experimentally. In these experiments, the bubble rise follows a linear trajectory and both
deformation and film drainage happen with axial symmetry. Experiments for larger bubbles present helical or zigzag path
during rise [38,39] and require more detailed modelling and numerical simulations to understand the intriguing physics
involved.

Our direct observations show that the collision of a rising bubble with a flat solid surface involves phenomenon on rather
different length scales. The velocity field due to the rising bubble varies on the scale of the bubble size (mm scale in the pres-
ent experiments). However, the radial extent of the deformation of the bubble during collusion with the glass surface
extends over �100–200 lm. The thickness of the water film deforms and thins on the scale of 1–10 lm until the film rup-
tures. Therefore in order to be able to have accurate resolution of all physical phenomena that spans such different lengths
scales presents considerable challenge in a direct CFD simulation especially when bubble deformation is taken into account
[40–42]. The need to resolve the shape of the bubble surface and the thin water film between the bubble and the solid sur-
face would require highly refined grids that would increase considerably the computational time. Similar challenges are also
found in the flow of Taylor bubbles [43,44] or drops [45] in channels, where the film separating the disperse phase from the
tube wall can become thin.

The approach we have taken exploits the fact that the film deformation and drainage phenomena are characterised by the
film Reynolds number, Ref that remains small compared to unity. This permits the use of a low Reynolds number lubrication
model to describe the dynamics of the water film trapped between the bubble and the solid surface together with (high Rey-
nolds number) experimental velocity data that characterises bubble motion outside the film. This hybrid model captured the
physics of the problem and provided accurate quantitative agreement with experiments.

Furthermore, our model predictions show that even as the bubble is retreating from the glass surface, the film is still
draining and the local interface is approaching the glass surface until it eventually bounces, a result observed experimentally.
This complex phenomenon was attributed to cause coalescence of drops when they were being separated in microfluidic
channels [46,47] and also during the coalescence of two drops in a 4-roll mill experiment [48–50]. This phenomenon has
also been observed in the coalescence of water bubbles [51] and drops [52] and also for mercury drops being separated from
a surface [53]. Analytical attempts have been made to explain the experimental results [54] and also using the Hele-Shaw
cell [55,56].

The tangentially immobile boundary condition that holds at the bubble surface is attributed to the presence of low con-
centration of surface-active impurities in the water that are capable of sustaining a small shear stress in the film. Earlier
studies on the rise of bubbles in pure water [32] obtained terminal velocities of over 35 cm/s and those results were also
confirmed by numerical solutions using mobile interfaces [33]. In our current experimental results, the bubbles attained
velocities, which are less than half that value of about 15 cm/s for bubbles of the same size and compare well to experimental
observations with small amount of known surfactant [4]. Recent work on the rise and film drainage show the possibility of
mobile film drainage even when the bubble rise is immobile [17].

Appendix A. Derivation of the lubrication equations

The shape of the bubble close to the surface can be approximated as
hðr; ToÞ ¼ Ho þ
r2

2R
¼ Ho 1þ r2

2HoR

� �
; ðA1Þ
where Ho is a typical length scale, To � Ho/Vo is a typical time scale and Vo is a typical vertical velocity scale. So the natural
length scale for the radial coordinate r is

ffiffiffiffiffiffiffiffiffiffiffi
Ho R
p

. In fact, using R as the radial length scale yields the same conclusions. We
define the following scaled variables
u ¼ Uo ~u;
v ¼ Vo ~v;
t ¼ To ~t;

r ¼
ffiffiffiffiffiffiffiffiffi
HoR

p
~r;

z ¼ Ho ~z;

p ¼ Po~p;

ðA2Þ
where Uo is a typical radial velocity scale and Po � lRVo=H2
o Introducing these scales into the continuity equation yields
Uoffiffiffiffiffiffiffiffiffi
HoR
p 1

~r
@

@ ~r
ð~r~uÞ þ Vo

Ho

@~v
@~z
¼ 0; ðA3Þ
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which implies
Uo �

ffiffiffiffiffiffi
R

Ho

s
Vo: ðA4Þ
Introducing these scales in the Navier–Stokes equations (4) and (5) we obtain
q
Vo

To
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R

Ho

s
@ ~u
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þ qV2

o
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R
p
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@~u
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R
p
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and the film Reynolds number Ref can be defined as
Ref ¼
qHoVo

l
: ðA7Þ
Introducing Ref back into the NS equations yield
Ref
@~u
@~t
þ ~u

@~u
@~r
þ ~v @

~u
@~z

� �
¼ � PoH2
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lVoR
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R
1
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R
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By discarding terms that are negligible, the lubrication equations (9)–(11) are obtained.
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