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Appendix I   

Stefan-Reynolds Flat Disk Model – Stokes flow with at least one interface is no-slip 

 

In the Stefan-Reynolds flat disk modelA1,A2 the approach of the bubble towards the meniscus is modeled 

as a flat disk of radius a approaching an infinitely large flat surface in a parallel orientation. The 

separation, h(t), between the disk and the flat surface varies with time, t. This model is applicable is the 

tangentially immobile or no-slip hydrodynamic boundary condition holds on at least one of the surfaces. 

 

We define a coordinate system with the unit vector,  𝑧, of the z-axis to point out of the flat surface 

towards the disk. If the disk moves with speed dh/dt, the hydrodynamic force arising from drainage of 

the intervening fluid between the disk and the flat surface is 

𝐹!! = −
3𝜋𝜇𝑎!

2𝛽  ℎ!
𝑑ℎ
𝑑𝑡     𝑧 

where the constant, β takes on value depending on the hydrodynamic boundary conditions on the disk 

and on flat surface. We have 

β = 1 no-slip on both surfaces,  

    β = 4 no-slip on one surface & slip on the other 

To obtain an upper limit of the drainage time, we can take β = 1. 

 

The van der Waals force between the disk and the flat surface has the form 

𝐹!"# = −𝜋𝑎!
𝐴

6𝜋  ℎ!     𝑧 

The Hamaker constant A > 0 for an attractive interaction that will cause film rupture or coalescence. 

 

The constant buoyancy force on the rising bubble has the form 

𝐹!"#$ = −
4𝜋
3 𝜌𝑔𝑅!    𝑧 ≡ −𝐹!    𝑧 

,where Fg >0 as defined. 

 

Applying the force balance condition Fhy + Fvdw + Fbuoy = 0, we obtain 

(A1) 

(A2) 

(A4) 
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−
3𝜋𝜇𝑎!

2𝛽  ℎ!
𝑑ℎ
𝑑𝑡 − 𝜋𝑎

! 𝐴
6𝜋  ℎ! − 𝐹! = 0 

 

This equation can be readily integrated to give, in dimensionless form 

𝑇 =
1
6𝛼! 𝑙𝑜𝑔

1+ 𝛼
𝐻 + 𝛼

! 𝐻! + 𝛼!

1+ 𝛼! + 2 3 𝑎𝑟𝑐𝑡𝑎𝑛
2− 𝛼
3  𝛼

− 𝑎𝑟𝑐𝑡𝑎𝑛
2𝐻 − 𝛼
3  𝛼

 

 

where the scaled parameters with initial separation ho = h(t =0) are  

𝐹! ≡
4𝜋
3 𝜌𝑔𝑅! 

 

𝛼! ≡
𝑎!𝐴
6ℎ!!𝐹!

 

 

𝜏 ≡
3𝜋𝜇𝑎!

2𝛽ℎ!!𝐹!
 

 

𝐻 ≡
ℎ(𝑡)
ℎ!

 

 

𝑇 ≡
𝑡
𝜏 

For an attractive van der Waals interaction with Hamaker constant, A > 0, we have α > 0.  

 

The dimensionless coalescence time, Tcoales is found by putting H(t) = h(t)/ho = 0 

 

𝑇!"#$%& =
1
6𝛼! 𝑙𝑜𝑔

(1+ 𝛼)!

1+ 𝛼! + 2 3 𝑎𝑟𝑐𝑡𝑎𝑛
2− 𝛼
3  𝛼

+ 𝑎𝑟𝑐𝑡𝑎𝑛
1
3  

 

 

 

  

(A5) 

(A6) 

(A7) 
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Appendix II  
 

Potential flow with BOTH interfaces obey the slip boundary condition 

 

In this case, we can no longer use Stokes flow model that assumes viscosity effect dominates film 

drainage. With the slip boundary conditions on both surfaces, drainage is determined by inertia. Using 

the model developed for the equation of motion of a non-deforming spherical bubble of radius, R, 

approaching a flat surface or two non-deforming spherical bubbles approaching each otherA3,A4 

𝑑
𝑑𝑡 𝑀

𝑑ℎ
𝑑𝑡 −

1
2𝑀

𝑑ℎ
𝑑𝑡

!

= −
4𝜋
3 𝜌𝑔𝑅! 

 

where M is the position dependent effective mass of the bubble given by 

𝑀 = 𝐶(ℎ)
4𝜋
3 𝜌𝑔𝑅! 

and C(h) is the effective mass coefficient the decreases from 0.8 at h = 0 to 0.5 at h = ∞, and dC/dh is 

finite. C(h) does not depend on the radius.  

Since 

 

𝑑𝑀
𝑑𝑡 =

𝑑𝑀
𝑑ℎ

𝑑ℎ
𝑑𝑡  

 

the equation of motion becomes 

 

𝑀
𝑑!ℎ
𝑑𝑡! +

1
2
𝑑𝑀
𝑑ℎ

𝑑ℎ
𝑑𝑡

!

= −
4𝜋
3 𝜌𝑔𝑅! 

 

and after substituting for the effective mass M 

 

𝐶
𝑑!ℎ
𝑑𝑡! +

1
2
𝑑𝐶
𝑑ℎ

𝑑ℎ
𝑑𝑡

!

= −𝑔 

 

Thus the coalescence time is independent of the bubble radius and scales as  

(A8) 

(A9) 

(A10) 

(A11) 

(A12) 
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𝑇!"#$%&~
ℎ!
𝑔  

 

The small magnitude is comparable to the observed cases in which the coalescence time is independent 

of the bubble radius. 

 

  

(A13) 
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Appendix III 
 

Disjoining pressure between two deformable interfaces 

 

 

 

 

 

 

 

 

Figure A1 (a) Pressure values in the Bulk liquid, PBulk, in the Upper liquid, PUpper, and in the bubble, 

P(∞),  when the bubble is far from the meniscus.  (b) Pressure values when the bubble is separated from 

the meniscus by a film of thickness, h and its Laplace pressure is P(h) as a result of deformations.  

 

 When the bubble is far from the meniscus as depicted in Fig. A1 (a), the mean radius of 

curvature of the bubble is R(∞) and that of the meniscus is Rm(∞).  Consideration of the Young-Laplace 

equation across the bubble interface gives 

  𝑃 ∞ = 𝑃!"#$ +
!!!
!(!)

         (A14) 

and across the meniscus gives 

  𝑃!""#$ = 𝑃!"#$ −
!!!

!!(!)
        (A15) 

 When the bubble is close to the meniscus, a film of bulk liquid of thickness, h, forms between 

the meniscus and the bubble as depicted in Fig. A1 (b). The mean radius of curvature of the bubble is 

R(h) and that of the meniscus is Rm(h).  Now consideration of the Young-Laplace equation across the 

bubble interface gives 

  𝑃 ℎ = 𝑃!"#$ + Π(ℎ)+
!!!
!(!)

        (A16)

  

γm 

γb 

γb 

γm 

(a) 
(b) 
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and across the meniscus gives 

  𝑃!""#$ = 𝑃!"#$ + Π(ℎ)−
!!!
!!(!)

       (A17) 

From eqn (A15) and (A17) we deduce that  

 Π ℎ = 2𝛾!
!

!!(!)
− !

!!(!)
        (A18) 

so that for a repulsive disjoining pressure Π(h) > 0, the bubble will deform the meniscus resulting in a 

smaller mean radius of curvature of the meniscus: Rm(h) < Rm(∞).  Similarly from eqn (A14) and (A16), 

and assuming P(h) and P(∞) are not too different, we get 

 Π ℎ = 2𝛾!
!

!(!)
− !

!(!)
        (A19) 

so that a repulsive disjoining pressure Π(h) > 0 means the bubble will have a larger mean radius of 

curvature at the top pole: R(h) > R(∞). 

 The size of the film at equilibrium will be given by balancing the buoyancy force against 

integrals of pressures acting over the surface of the bubble, Abubble. This can be represented 

approximately by  

  𝑃!"#$ + Π(ℎ) 𝐴!"#$ − 𝑃!"#$ 𝐴!"!!#$ − 𝐴!"#$ = !!
!
𝜌!𝑅(∞)!𝑔   (A20) 

where the first term on the LHS is the total downward force exerted on the bubble by the total pressure 

in the film of area, Afilm, the second term on the LHS is the total upward force exerted on the bulk fluid 

pressure along the bottom surface of the bubble. The RHS is the buoyancy force on the bubble in the 

bulk liquid of density ρb. 

 A complete solution of the stability of this problem then requires explicit forms of the disjoining 

pressure, Π(h), and expressions for the radii of curvature in differential form and then solving the 

coupled differential equations. 
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