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0 Introduction 
 
Model drop falling under gravity onto a horizontal solid surface. 
 
Detailed derivation of the governing equations 
 
Scope 
 
• Drop is an inviscid fluid under gravity moving towards solid surface 
 
• Only consider motion of air in the thin gap between the drop and surface by 

Stokes flow Reynolds lubrication but omit motion elsewhere 
 
• Drop has constant surface tension and deformation governed by the normal stress 

balance and normal pressure 
 
• Consider the initial phase of the collision e.g. splashing not modeled. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1. The shape of a drop impacting on a flat horizontal surface, where the 
theoretical parameters of the system are defined.  
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1 Normal stress balance - general 
 
For a drop in equilibrium or an inviscid fluid, the normal stress is just the pressure. 
 

𝑃!" − 𝑃!"# = 𝜎
1
𝑅!
+
1
𝑅!

 

 

1.1 

where σ is the interfacial tension. The radii of curvature R1 and R2 are defined to be 
positive when the concave side is the interior, when the pressure inside, Pin, is higher 
than the pressure outside, Pout. 
 
 
2 Bernoulli equation 
 
The momentum equation for an inviscid incompressible fluid in constant gravity is 
(see Fig 1) 
 

𝜌
𝜕𝒖
𝜕𝑡 + 𝒖 ∙ ∇𝒖 = −∇𝑝 + 𝜌𝑔  ∇𝑧 2.1 

 
For potential flow, we have 
 

𝒖 =   ∇𝜙 2.2 
 
and incompressibility gives 
 

∇!𝜙 = 0 2.3 
 
So 2.1 becomes 
 

∇ 𝜌
𝐷𝜙
𝐷𝑡 −

!
!
  𝜌  𝑢! = ∇ −𝑝 + 𝜌𝑔𝑧  2.4 

 
Integrating from some reference position ro gives the Bernoulli equation 
 

𝜌
𝐷𝜙
𝐷𝑡 −

!
!
  𝜌  𝑢! − 𝜌

𝐷𝜙
𝐷𝑡 −

!
!
  𝜌  𝑢!

!!
= −𝑝 + 𝜌𝑔𝑧 −    −𝑝 + 𝜌𝑔𝑧 !! + 𝑝

∗(𝑡) 
 

2.5 

 
where p*(t) is a position independent pressure that can vary with time.   
 
For a falling drop in a quiescent medium p*(t) = 0. 
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3 Stokes-Reynolds lubrication film 
 
When the film Reynolds number Ref = ρ V (h Ro)1/2/µ << 1 is small we can use the 
classical Reynolds lubrication equation to describe the evolution of the thickness 
h(r,t). of the axisymmetric film of the external fluid trapped between the flat bottom 
of the drop and solid surface  
 

  
𝜕ℎ
𝜕𝑡 =

𝑚
12𝜇

1
𝑟
𝜕
𝜕𝑟 𝑟  ℎ!

𝜕𝑝!
𝜕𝑟  3.1 

 
The hydrodynamic boundary condition on the solid is immobile. If the boundary 
condition on the drop surface is also immobile, m =1. If the zero tangential stress 
condition holds on the drop surface, m = 4. 
 
Outside the film, the pressure pf approaches the pressure in the outer bulk phase.  For 
the case in which the outer phase is air with negligibly small viscosity compared to 
the drop, we an omit solving the Bernoulli equation in the outer phase and assume it is 
static so outside the film: 
 

𝑝! → 𝑝! + 𝜌𝑔  𝑧! 3.2 
 
Note that the density ρ and the viscosity µ in this section is that of the outer bulk 
phase. 
 
Since the film thickness varies on a much smaller scale compared to the drop motion, 
3.1 should be used to give the time-stepping in h(r,t) that determines the evolution of 
the position of the bottom of the drop where the film pressure pf is obtained from the 
normal stress balance for the film given in Sec 5. 
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4 Shape of an axisymmetric drop 
 
The upper surface of the drop is given by (Fig 1) 
 

𝑧 = 𝜁!(𝑟, 𝑡) 4.1 
 
and the lower surface of the drop is given by 
 

𝑧 = 𝜁!(𝑟, 𝑡) 4.2 
 
The curvature on the upper/lower surface is given by 
 

1
𝑅!
+
1
𝑅!

= ±
1
𝑟
𝜕
𝜕𝑟

𝑟  (𝜕𝜁±/𝜕𝑟)
[1+ (𝜕𝜁±/𝜕𝑟)!]!/!

 

 

4.3 

 
At the bottom of a drop around point B that is flat, we (𝜕𝜁!/𝜕𝑟) ≪ 1, so we define 
the mean radius of curvature RB at the bottom of the drop by 
 

2
𝑅!

≡
1
𝑅!
+
1
𝑅! !

= −
1
𝑟
𝜕
𝜕𝑟

𝑟  (𝜕𝜁!/𝜕𝑟)
[1+ (𝜕𝜁!/𝜕𝑟)!]!/!

≈ −
1
𝑟
𝜕
𝜕𝑟 𝑟  

𝜕𝜁!
𝜕𝑟  

 

4.4 

Since from geometry, the width of the gap, h, between the bottom of the drop and the 
horizontal surface is 
 

ℎ(𝑟, 𝑡) = 𝑧! − 𝜁!(𝑟, 𝑡) 4.5 
 
We can express the mean radius of curvature RB in terms of h 
 

2
𝑅!

≡
1
𝑅!
+
1
𝑅! !

≈
1
𝑟
𝜕
𝜕𝑟 𝑟  

𝜕ℎ
𝜕𝑟  

 

4.6 

 
If we are modeling 2 identical drop, the gap, h, between them is 
 

ℎ(𝑟, 𝑡) = 2𝑧! − 2  𝜁!(𝑟, 𝑡) 4.7 
 
where zB is now the distance form the top of one drop to the median plane between 
the drops and we have the result 
 

2
𝑅!

≡
1
𝑅!
+
1
𝑅! !

≈
1
2
1
𝑟
𝜕
𝜕𝑟 𝑟  

𝜕ℎ
𝜕𝑟  

 

4.8 

With a factor 1/2 on the RHS.  
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5 Normal stress balance for the film 
 
Application of the normal stress balance at the bottom of the drop where the pressure 
inside the drop is pB.  
 
The pressure outside the drop in the film of thickness, h, comprise of a hydrodynamic 
pressure, pf, and a disjoining pressure, Π(h), that accounts for molecular scale 
interactions between the drop and the solid surface due, for example, to van der Waals 
attraction responsible for the drop wetting the solid surface.   
 
Thus the Laplace eqn 1.1 takes the form 
 

𝑝! − [𝑝! + Π(ℎ)] =
2𝜎
𝑅!

≡ 𝜎
1
𝑅!
+
1
𝑅! !

 

 

5.1 

where RB is the mean radius of curvature of the bottom of the drop.  
 
When the bottom of the drop is very flat, we have from 4.6 for a drop against a flat 
solid surface 
 

2
𝑅!

≈
1
𝑟
𝜕
𝜕𝑟 𝑟  

𝜕ℎ
𝜕𝑟  

 

5.2 

So the normal stress balance for the film thickness is 
 

1
𝑟
𝜕
𝜕𝑟 𝑟  

𝜕ℎ
𝜕𝑟 = 𝑝! − 𝑝! − Π(ℎ) 

 

5.3 

Eq 5.3 should be solved for to give the film pressure pf that will be used in the Stokes-
Reynolds equation 3.1.  
 
The pressure pB is to be obtained from the Bernoulli equation 2.5. 
 
For the case of 2 identical drops, the normal stress balance for the film thickness is 
 

1
2
1
𝑟
𝜕
𝜕𝑟 𝑟  

𝜕ℎ
𝜕𝑟 = 𝑝! − 𝑝! − Π(ℎ) 

 

5.4 
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6 Model for drop impact 
 
• The drop is an inviscid fluid, so solve the Bernoulli equation inside the drop 

 
• Air affects only in the thin gap between the drop and surface. Do not solve the 

Bernoulli equation for the bulk air phase. Assume it is static. 
 
• The surface tension of the drop is constant 

 
Bernoulli equation 
 
Choose the reference position ro to be at the top of the drop at position T (just inside 
the drop at z = 0) where the pressure is pT that is related to the pressure, po, in the 
outer phase just above the apex of the drop (with mean radius of curvature, RT) by 
 

𝑝!" 𝒓! , 𝑡 ≡ 𝑝! = 𝑝! +
2𝜎
𝑅!

 6.1 

 
so eq 2.5 becomes 
 

𝑝!" 𝒓, 𝑡 = 𝑝! +
2𝜎
𝑅!

+ 𝜌!"𝑔𝑧  −𝜌!"
!
!
    𝑢! −

𝐷𝜙
𝐷𝑡 +𝜌!"

!
!
    𝑢! −

𝐷𝜙
𝐷𝑡 !

 

 

6.2 

with  
𝒖 =   ∇𝜙 

 
∇!𝜙 = 0 

6.3a 
 
6.3b 

 
with boundary condition 
 

𝑝!" − 𝑝!"# = 𝜎
1
𝑅!
+
1
𝑅!

 

 

6.4a 

and 
𝑝!"# = 𝑝! + 𝜌!"#  𝑔  𝑧 

 6.4b 

Combine 6.4a and 6.4b to give 
 

𝑝!" − 𝑝! − 𝜌!"#  𝑔  𝑧 = 𝜎
1
𝑅!
+
1
𝑅!

 

 

6.5 

that holds on all points on the surface apart from along the bottom.  
 
Solve 6.2 to 6.6 for the pressure in the drop at the bottom: pB 
 
If X is the position of a point on the boundary, it moves with surface velocity u(X)  
 

𝑑𝑿
𝑑𝑡 = 𝒖(𝑿) 6.6 
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Stokes-Reynolds equation 
 

𝜕ℎ
𝜕𝑡 =

𝑚
12  𝜇!"#

1
𝑟
𝜕
𝜕𝑟 𝑟  ℎ!

𝜕𝑝!
𝜕𝑟  6.7 

 
Use 6.7 to time step h(r,t) forward in time with pf from 6.9 below. 
 
 
 
 
Normal stress balance - film 
 
For a drop on a solid flat surface 

ℎ(𝑟, 𝑡) = 𝑧! − 𝜁!(𝑟, 𝑡) 
 6.8 

 
 

1
𝑟
𝜕
𝜕𝑟 𝑟  

𝜕ℎ
𝜕𝑟 = 𝑝! − 𝑝! − Π(ℎ) 

 

6.9 

Use 6.9 to express pf in terms of pB, Π(h) and spatial derivatives of h(r,t) and used in 
6.7 to step h(r,t) forward in time. 
 
 
 
Normal stress balance - drop 
 
 

±
𝜎
𝑟
𝜕
𝜕𝑟

𝑟  (𝜕𝜁±/𝜕𝑟)
[1+ (𝜕𝜁±/𝜕𝑟)!]!/!

= 𝑝!" − 𝑝! − 𝜌!"#  𝑔  𝑧 

 

6.10 

This is the boundary condition at the surface of the drop needed to solve the Bernoulli 
equation in the interior of the drop. 
 
The reference pressure po in the outer phase just above the apex of the drop is a 
constant and so can be set to zero. 
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7 Model in air 
 
• Set the reference pressure in air above the drop apex: po = 0 

 
• ρout = ρair << ρin, set:  ρout g zo = 0, so film pressure pf → 0 outside the film 

 
The reference pressure po in the outer phase just above the apex of the drop is a 
constant and so can be set to zero.  
 
 
Bernoulli equation 
 
Eq 6.2 becomes 
 

𝑝!" 𝒓, 𝑡 =
2𝜎
𝑅!

+ 𝜌!"𝑔𝑧  −𝜌!"
!
!
    𝑢! −

𝐷𝜙
𝐷𝑡 +𝜌!"

!
!
    𝑢! −

𝐷𝜙
𝐷𝑡 !

 

 

7.1 

with  
𝒖 =   ∇𝜙 

 
∇!𝜙 = 0 

7.2a 
 
7.2b 

 
with boundary condition 
 

𝑝!"(𝜁) = ±
𝜎
𝑟
𝜕
𝜕𝑟

𝑟  (𝜕𝜁±/𝜕𝑟)
[1+ (𝜕𝜁±/𝜕𝑟)!]!/!

 

 

7.3 

that holds on all points on the surface.  
 
Solve 7.1 to 7.3 for the pressure in the drop at the bottom: pB 
 
If X is the position of a point on the boundary, it moves with surface velocity u(X)  
 

𝑑𝑿
𝑑𝑡 = 𝒖(𝑿) 7.4 

 
 
 
 
Stokes-Reynolds equation 
 

𝜕ℎ
𝜕𝑡 =

𝑚
12  𝜇!"#

1
𝑟
𝜕
𝜕𝑟 𝑟  ℎ!

𝜕𝑝!
𝜕𝑟  7.5 

 
ℎ(𝑟, 𝑡) = 𝑧! − 𝜁!(𝑟, 𝑡) 

 7.6 
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Normal stress balance - film 
 
 

1
𝑟
𝜕
𝜕𝑟 𝑟  

𝜕ℎ
𝜕𝑟 = 𝑝! − 𝑝! − Π(ℎ) 

 

7.7 

for a drop on a solid flat surface. 
 
Use 6.9 to express pf in terms of pB, Π(h) and spatial derivatives of h(r,t) and used in 
6.7 to step h(r,t) forward in time. 
 
 
 
Approximate pB by the stagnation pressure 
 
The point on the axis of symmetry at position (r, z) = (0, zB), at the bottom of the 
drop, is a stagnation point where the velocity is identically zero. We estimate the 
pressure at this stagnation point as follows. Assume the velocity at the top of the drop 
at position T is a constant V, then we have 
 
 

𝑝!"#$ =        
!
!
    𝜌!"𝑉! 

 
7.8 

 
We now approximate the pressure, pB, along the bottom of drop with the inclusion of 
the stagnation pressure, pstag, to give 
 
 

𝑝!   ≅   
2𝜎
𝑅!
  +   𝜌!"𝑔𝑧!     +    

!
!
    𝜌!"𝑉! 

 

7.9 

 
This is eq. (1) in the main text. 
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Characteristic scales 
 
From 7.1  
 

𝑃  ~   
𝜎
𝑅 + 𝜌!"  𝑔  𝑅! +   𝜌!"  𝑉

!   
 

7.10 

From 7.5 
 

𝑉  ~   
1
𝜇!"#

1
𝑅!ℎ

ℎ!  𝑃    

 

7.11 

Use 7.8 in 7.9 
 

𝑉  ~   
𝑅!
𝜇!"#

  
ℎ!

𝑅!!
     
𝜎
𝑅!

+ 𝜌!"  𝑔  𝑅! +   𝜌!"  𝑉!    

 

7.12 

Rearrange to give 
 

ℎ
𝑅!
    ~      

1
𝐶𝑎 +

𝐸𝑜
𝐶𝑎 +   𝑆𝑡

!!/!

   

 

7.13 

 
Capillary number, Ca 
 

𝐶𝑎 =   
𝜇!"#   𝑉
𝜎    

 

7.14 

Eötvös number, Eo (or Bond number). Note that ρout is negligible for drop in air 
 

𝐸𝑜 =   
𝜌!"  𝑔  𝑅!!

𝜎    
 

7.15 

Stokes number, St 
 

𝑆𝑡 =   
𝜌!"  𝑅!  𝑉
𝜇!"#

   

 

7.16 

Weber number, We 
 

𝐶𝑎  𝑆𝑡 =𝑊𝑒 =   
𝜌!"  𝑅!  𝑉!

𝜎    
 

7.17 

Note We involves the density of the drop (internal phase). 
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8 Non-dimensional model 
 
Define dimensionless number K 
 

𝐾    ~      
1
𝐶𝑎 +

𝐸𝑜
𝐶𝑎 +   𝑆𝑡

!!

≡
𝐶𝑎

1+ 𝐸𝑜 + 𝐶𝑎  𝑆𝑡 ≡
𝐶𝑎

1+ 𝐸𝑜 +𝑊𝑒   
 

 
 
8.1 

Scaled non-dimensional O(1) variables denoted by over bar for a drop on a solid flat 
surface. 
 

ℎ  ~   2!/!  𝐾!/!  𝑅!     ℎ 
 

𝑟  ~   2!/!𝐾!/!  𝑅!     𝑟 
 

𝑡  ~   2!/!𝐾!/!  𝑅!/𝑉     𝑡 
 

𝑢  ~   𝑉     𝑢 
 

𝑝!"  ~      
𝜎
𝑅!

+ 𝜌!"  𝑔  𝑅 +   𝜌!"  𝑉!   𝑝!"   ≡   𝑃  𝑝!" 

 
𝐹  ~  𝐾     

𝜎
𝑅 + 𝜌!"  𝑔  𝑅 +   𝜌!"  𝑉

!   𝑅!!    𝐹 ≡   𝐾    𝑃𝑅!!    𝐹 
 

𝑃   ≡      
𝜎
𝑅!

+ 𝜌!"  𝑔  𝑅 +   𝜌!"  𝑉!    

8.2 

 
Scaled Stokes-Reynolds equation 
 

𝜕ℎ
𝜕𝑡 =

𝑚
12  

1
𝑟
𝜕
𝜕𝑟 𝑟  (ℎ)!

𝜕𝑝!
𝜕𝑟  8.3 

 
Scaled normal stress balance - film 
 

1
2
1
𝑟
𝜕
𝜕𝑟 𝑟   

𝜕ℎ
𝜕𝑟 = 𝑝! − 𝑝! −

1
𝑃Π(ℎ) 

 
8.4 

 
Scaled Bernoulli equation 
 

1+ 𝐸𝑜 +𝑊𝑒   𝑝!" 
 

= 2  
𝑅!
𝑅!
   + 𝐸𝑜    

𝑧
𝑅!

  +𝑊𝑒   !
!
    𝑢! −

𝐷𝜙
𝐷𝑡 −𝑊𝑒   !

!
    𝑢! −

𝐷𝜙
𝐷𝑡

!
 

8.5 

 
  



Electronic Supplement – Physical Review Letters Klaseboer, Manica & Chan 

	
   	
  13 

For the case of the drop-drops, we use the scaling 
 
 

ℎ  ~     𝐾!/!  𝑅!     ℎ 
 

𝑟  ~   𝐾!/!  𝑅!     𝑟 
 

𝑡  ~   𝐾!/!  𝑅!/𝑉     𝑡 
 

𝑢  ~   𝑉     𝑢 
 

𝑝!"  ~      
𝜎
𝑅!

+ 𝜌!"  𝑔  𝑅 +   𝜌!"  𝑉!   𝑝!"   ≡   𝑃  𝑝!" 

 
𝐹  ~  𝐾     

𝜎
𝑅 + 𝜌!"  𝑔  𝑅 +   𝜌!"  𝑉

!   𝑅!!    𝐹 ≡   𝐾    𝑃𝑅!!    𝐹 
 

𝑃   ≡      
𝜎
𝑅!

+ 𝜌!"  𝑔  𝑅 +   𝜌!"  𝑉!    

8.6 

 
 
In the respective scaled variables, the drop-solid and the drop-drop governing 
equations appear exactly the same. 
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9 Scaling of hd 
 

The scaling of hd  in eq. (10) of the main text is 
 

ℎ! = 0.4  𝑅!(2𝐾)!/!   = 0.4   2  𝑅  
𝐶𝑎!/!

(1+ 𝐸𝑜 +𝑊𝑒)!/!     

 

 
 
9.1 

 
where 
 

𝐶𝑎 =   
𝜇!"#   𝑉
𝜎 ,      𝐸𝑜 =   

𝜌!"  𝑔  𝑅!!

𝜎 ,      𝑊𝑒 =   
𝜌!"  𝑅!  𝑉!

𝜎      
 

9.2 

so that 
 

𝑑𝐶𝑎!/!

𝑑𝑉 =   
𝐶𝑎!/!

2𝑉 ,            
𝑑𝑊𝑒
𝑑𝑉 =   

2𝑊𝑒
𝑉      

 

9.3 

 
The maximum of hd  is located by 

 
𝑑ℎ!
𝑑𝑉 = 0.4   2  𝑅!

𝐶𝑎!/!

(1+ 𝐸𝑜 +𝑊𝑒)!/!   
1
2𝑉 −

𝐶𝑎!/!

(1+ 𝐸𝑜 +𝑊𝑒)!/!
𝑊𝑒
𝑉 = 0 

 

 
 
9.4 

to give the velocity at the maximum Vmax 
 

  
𝜌!"  𝑅!  𝑉!"#!

𝜎   =𝑊𝑒!"# = 1+ 𝐸𝑜;                     𝑉!"# =   
𝜎(1+ 𝐸𝑜)
𝜌!"  𝑅!

 

 

9.5 

 
Therefore the maximum dimple height (hd)max is 

 

(ℎ!)!"# = 0.4  𝑅!   
(𝐶𝑎!/!)!"#
(1+ 𝐸𝑜)!/! = 0.4  𝑅!

𝜇!/!

[𝜌!"  𝜎𝑅!(1+ 𝐸𝑜)]!/!
     

 

 
 
9.6 
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10 Experimental data of drop and bubble impact 
 
In the following tables we summarize the experimental parameters from different 
sources used in for Figure 2 in the main manuscript for hd the separation at which the 
dimple first develops. 
 

Drop in air on glass 
 

In Table S1, experimental parameters are from the experiment of Van der Veen et al 
[1] using water drops falling on a glass slide and also experiments of Bouwhuis et al 
[2] in which a wide range of impact velocities were studied for a ethanol drops falling 
onto glass. 
 
Ref Experiment ρout 

(kg/m3) 
µout 

(µPa s) 
ρin 

(kg/m3) 
µin 

(mPa s) 
R 

(mm) 
σ 

(mN/m) 
V 

(m/s) 
hd 

(µm) 
[1] Drop-solid 1.22 18 1000 1.0 1.0 72 0.22 4 
[2] Drop-solid 1.22 18 780 1.0 0.9 22 10–3 - 2 0.2-5 
 
Table S1. Liquid drops impacting on glass surface. 
 

Mercury drop in water on mica 
 

In Table S2, experimental parameters for experiments of Connor and Horn [3] on the 
interaction between a mercury drop and a mica surface in water.  
 
Ref Experiment ρout 

(kg/m3) 
µout 

(mPa s) 
ρin 

(kg/m3) 
µin   

(mPa s) 
R 

(mm) 
σ 

(mN/m) 
V 

(µm/s) 
hd 

(µm) 
[3] Drop-solid 1000 0.9 13500 1.5 1.9 420 24 0.25 
[3] Drop-solid 1000 0.9 13500 1.5 1.9 420 67 0.4 
 
Table S2. Liquid drops impacting surfaces or other drops in another liquid. 
 

Bubble in water on glass 
 

In Table S3, experimental parameters are for the impact of buoyant bubbles rising in 
water and hitting a glass surface. One experiment was performed using regular 
deionized water in which the boundary condition at the bubble surface during impact 
was immobile [4] [5]. The second experiment used cleaner water [6] and the 
boundary condition was mobile and that is the reason the dimple formation happening 
at separations that are shorter for similar sized bubbles. 
 
Ref Experiment ρout 

(kg/m3) 
µout 

(mPa s) 
ρin 

(kg/m3) 
µin 

(µPa s) 
R 

(µm) 
σ 

(mN/m) 
V 

(cm/s) 
hd 

(µm) 
[4] Bubble-solid 1000 1.0 1.22 18 385 72 8.7 7 
[5] Bubble-solid 1000 1.0 1.22 18 630 72 13.4 18 
[6] Bubble-solid 1000 1.0 1.22 18 400 72 9.2 3.5 
[6] Bubble-solid 1000 1.0 1.22 18 625 72 13.5 7 
 
Table S3. Air bubbles impacting a glass surface in water. 
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Drop-drop in another liquid 

 
In Table S4, experimental parameters from Klaseboer et al [7] obtained using a 
combination of drop-drop impact in which water, glycerol and silicone oil drops were 
held by two syringes and driven against each other at low speed. 
 
Ref Experiment ρout 

(kg/m3) 
µout 

(Pa s) 
ρin 

(kg/m3) 
µin   

(Pa s) 
R 

(mm) 
σ 

(mN/m) 
V 

(µm/s) 
hd 

(µm) 
[7] Drop-drop 1000 0.3 1000 1.0 1.5 30 2.0 2.7 
[7] Drop-drop 1000 0.2 1000 0.1 1.5 30 1.67 2.1 
[7] Drop-drop 1000 0.05 1000 1.0 1.5 30 6.7 2.0 
[7] Drop-drop 1000 0.1 1000 2.0 1.5 30 3.33 2.0 
[7] Drop-drop 1000 0.023 1000 0.05 1.5 30 2.67 0.85 
[8] Drop-drop 1000 0.3 1000 1.0 1.5 30 6.7 5.0 
 
Table A4. Drop-drop interaction inside another liquid at low speeds. 
 
References 
 
[1] R.C.A. van der Veen, T. Tran, D. Lohse, and C. Sun, Phys. Rev. E 85, 026315 
(2012). 
 
[2] W. Bouwhuis, R.C.A. van der Veen, T. Tran, D.L. Keij, K.G. Winkels, I.R. Peters, 
D. van der Meer, C. Sun, J.H. Snoeijer, and D. Lohse, Phys. Rev. Lett. 109, 264501 
(2012). 
 
[3] J. N. Connor and R. G. Horn, Faraday Discuss. 123, 193 (2003). 
 
[4] M.H.W. Hendrix, R. Manica, E. Klaseboer, D.Y.C. Chan, C.-D. Ohl, Phys. Rev. 
Lett. 108, 247803 (2012). 
 
[5] R. Manica, M.H.W. Hendrix, R. Gupta, E. Klaseboer, C.-D. Ohl, D.Y.C. Chan, 
Appl. Math. Modell. 38, 4249 (2014).  
 
[6] R. Manica, M.H.W. Hendrix, R. Gupta, E. Klaseboer, C.-D. Ohl, D.Y.C. Chan, 
Soft Matter 9, 9755 (2013). 
 
[7] E. Klaseboer, J. P. Chevaillier, C. Gourdon and O. Masbernat, J. Colloid Interface 
Sci. 229, 274 (2000).  
 
[8] R. Manica, E. Klaseboer and D. Y. C. Chan, Soft Matter, 4, 1613 (2008). 


