
Compound pendant drop tensiometry for

surface tension measurement at zero Bond

number—Supporting Information

Michael J. Neeson,† Derek Y. C. Chan,∗,†,‡ and Rico F. Tabor∗,¶

Department of Mathematics and Statistics, University of Melbourne, Parkville 3010,

Australia, Department of Chemistry and Biotechnology, Swinburne University of

Technology, Hawthorn 3122, Australia, and School of Chemistry, Monash University,

Clayton 3800, Australia

E-mail: D.Chan@unimelb.edu.au; Rico.Tabor@monash.edu

Compound pendant drop theory

Here we provide a detailed derivation of the theory presented in the main text for the shape

of a pendant drop with density ρd suspended from a surface (in this case a needle), with a

particle of density ρp hanging axisymmetrically at its apex. The compound pendant drop

system is surrounded by a bulk fluid phase with density ρ. A schematic of this configuration

is shown in Fig. 1.

We now show that the shape of this system is characterized by a drop Bond number,
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Figure 1: A schematic representation of a particle attached to the interface of a pendant drop
below a needle. Gravitational forces act on both the particle and the liquid drop, resulting
in coupled drop deformations.

Bod, and a particle Bond number, Bop, defined by

Bod ≡ (ρd − ρ) ga2/γ, Bop ≡ (ρp − ρ) ga2/γ. (1)

Here, Bond numbers are directional, as defined by the sign of the density difference.

The shape of the fluid interface is described by the axisymmetric Young–Laplace equation,

which can be written as a system of first order differential equations for the coordinates r

and z of the drop interface, together with the azimuthal angle φ, in terms of the arc length

s, measured from the three phase contact at the particle. The dimensional Young–Laplace

equations are

dφ

ds
= 2H0 − (ρd − ρ)gz − sinφ

r
(2a)

dr

ds
= cosφ (2b)

dz

ds
= sinφ. (2c)

In the preceding expression, H0 is the mean curvature at the particle contact. Scaling by
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the particle radius a leads to the ordinary differential equations:

dφ

ds̄
= 2H̄0 − Bod z̄ −

sinφ

r̄
(3a)

dr̄

ds̄
= cosφ (3b)

dz̄

ds̄
= sinφ (3c)

where the Bond number associated with the drop Bod naturally arises, together with the

scaled mean curvature H̄0 ≡ a∆P0/2γ. The associated boundary conditions at the particle

p and needle n contacts are:

p : s̄ = 0, r̄ = sinα, z̄ = cosα, φ = π − (α + θp) (4a)

n : s̄ = s̄n r̄ = r̄n, z̄ = h̄, φ = θn. (4b)

Since the particle is stationary, the net force acting on it must be zero. The net force is

the sum of three forces:

(i) the interfacial tension Finterfacial, acting upwards around the perimeter of the three phase

contact,

(ii) the pressure inside the drop Fpressure acting downwards on the drop/particle contact area,

and

(iii) the weight of the particle Fweight acting downwards.

We now calculate each of these components separately, adopting the notation where a

force with a positive sign acts in the positive z-direction.

The force arising from the interfacial tension will act around the perimeter of the three

phase contact. By symmetry, the resulting force will act only in the z-direction. Taking the

vertical component of the interfacial tension and rotating around the perimeter of the three
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phase contact line gives

Finterfacial = (2πa sinα)(γ sin(α + θp)). (5)

The force due to pressure is a double integral over the particle-drop contact area (denoted

‘area’),

Fpressure = −
∫∫

area

∆P dS

= −
∫∫

area

∆P0 − (ρd − ρ) g z dS.

Although the above expression is a vector quantity, axial symmetry results in a force acting

in the z-direction. Changing to spherical coordinates, the signed pressure force is

Fpressure = −
∫ 2π

0

∫ α

0

{∆P0 − (ρd − ρ)g(a cosϕ− a cosα)}

a2 sinϕ cosϕ dϕ dθ

= −π(a sinα)2∆P0 + (ρd − ρ) g vcap(a, α). (6)

The first term above is the Laplace pressure at the particle contact acting on the circular

cross section of the particle while the second term represents the force due to the weight of

displaced fluid, where vcap(a, α) is the volume of the displaced fluid, where

vcap(a, α) ≡ πa3

3

(
2− 3 cosα + cos3 α

)
≡ 2πa3ν(ϕ). (7)

Finally, the weight of the particle is

Fweight = −(ρp − ρ)Vp g = −(ρp − ρ) g vcap(a, π). (8)
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Taking the net force on the particle to be zero gives

F̄net = sinα sin[α + θp]− H̄0 sin2 α + Bod ν(α)− Bop ν(π)

= 0, (9)

where we have also introduced the force scale 2πaγ, together with the scaled spherical cap

volume defined in eq. (7).

Fitting theoretical curves to experimental photographs

In this section we detail the routine developed to fit the theoretical curve to the experimen-

tal photograph, thus allowing the Bond numbers, and ultimately the particle density and

interfacial tension, to be determined. The routine implemented can be separated into two

subroutines: firstly, the compound drop profile is extracted from an experimental photograph

via image analysis, and secondly, the theoretical curve is fitted to the extracted experimental

drop profile. This is illustrated in Fig. 2.

Canny
edge detection

Levenberg–Marquardt
optimisation

Figure 2: An example of an experimental photograph that has been fitted with the theoretical
solution presented. The compound drop profile is extracted using the Canny edge detection
algorithm. This profile is then fitted with the theoretical solution by minimizing the sum of
least squares, using the Levenberg–Marquardt algorithm. The three profiles correspond to
the experiment Fig. 2 a (v) from the main text.

We now detail each of the subroutines.
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Image analysis

For a given experimental photograph, noise is initially reduced using a Gaussian filter. The

compound pendant drop profile is then extracted using a Canny edge detection algorithm,1

returning a list of integer (r, z) coordinates corresponding to pixels of the compound pendant

drop profile.

Next the theoretical curve is fitted to this data.

Levenberg–Marquardt

From the presented theory, a compound pendant drop profile depends on five parameters;

the particle radius a and filling angle α, the particle contact angle θp, and finally two Bond

numbers, Bod and Bop. From this set of parameters, all other quantities associated with the

interface can be determined from eqs. (3), (4) and (9).

For a given experimental photograph, there are three additional parameters; two associ-

ated with the position of the axes, (R0, Z0), and finally, a possible small rotation ω associated

with a small camera rotation.

The theoretical curve was fitted to the experimental drop profile using a numerical op-

timization algorithm (Levenberg–Marquardt) similar to those used in current pendant drop

tensiometers. We minimize the sum of the distance squared between each data point and

the theoretical function, which is a function of the unknown parameters

β = {a, α, θp,Bod,Bop, R0, Z0, ω}.

Given a parameter set β, a theoretical profile can be generated. For each data point

(ri, zi), the squared residual (the minimal squared distance between the given point and

the theoretical curve) can be calculated as follows: the data point is rotated according to

the new axes origin (R0, Z0), and axes rotation ω. If the rotated data point is above the

particle contact line, {(ri −R0) sinω + (zi − Z0) cosω} > a cosα, the residual is calculated
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by finding the minimum distance between the rotated point and the theoretical curve for the

drop interface. Thus, the residual ei can be calculated as

e2i = min
s
Fi(s), (10)

where Fi(s) is the squared distance between the data point (ri, zi) and the theoretical point

(r(s), z(s)) at arc length s (see Fig. 3)

Fi(s) = eri (s)
2 + ezi (s)

2 (11)

where

eri (s) = |(ri −R0) cosω − (zi − Z0) sinω| − r(s) (12)

ezi (s) = ((ri −R0) sinω + (zi − Z0) cosω)− z(s) (13)

are the horizontal and vertical distances between the (rotated) experimental data points and

the theoretical curve, respectively. In the preceding expression r = a r̄ and z = a z̄.

If the rotated data point is below the particle contact line, {(ri −R0) sinω + (zi − Z0) cosω} ≤

a cosα, the residual is calculated by comparing the point to the particle, which gives

ei =
∣∣∣√(ri −R0)2 + (zi − Z0)2 − a

∣∣∣ . (14)

The residual ei is calculated for each experimental data point, thus giving the objective

function that we minimize, the sum of squares E, defined

E = E(β) ≡
n∑
i=1

e2i . (15)

For a given experimental photograph, this objective function is explicitly a function of the

parameters β used in generating a theoretical profile.
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Figure 3: The residual ei for a given data point (ri, zi) from the drop interface, found
by minimizing the squared distance (the function Fi(s)) between the data point and the
interface. The axes origin with respect to the experimental photograph (R0, Z0), together
with the angular offset ω are also shown.

A robust and efficient iterative procedure to minimize an m-dimensional nonlinear func-

tion (with m = 8) is the Levenberg–Marquardt optimization routine. To implement the

method, the residual vector e (with elements ei) and the Jacobian matrix J are evaluated

for each data point, with the Jacobian defined

Jij =
∂ei
∂βj

. (16)

The Jacobian can be calculated numerically by individually perturbing each parameter and

calculating a numerical derivative, i.e. for h� 1

∂ei
∂βj

=
ei(β1, . . . , βj + h, . . . , βm)− ei(β)

h
. (17)

The Levenberg–Marquardt optimization routine iteratively updates the parameter vector

β(k) according to

β(k+1) = β(k) + δ (18)
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where δ is calculated by solving

(
JTJ + λ diag(JTJ)

)
δ = −JTe, (19)

where diag(JTJ) is the diagonal matrix with diagonal elements taken from JTJ, while λ is

a parameter which varies at each of the iteration. If the objective function E reduces, the

parameter λ is reduced (typically λ = λ/10). Conversely, if the objective function increases

in magnitude, the parameter is increased (typically λ = 10λ).

This iterative process is repeated until either:

i. the objective has converged, E < tol1

ii. the parameters have converged, ‖β(k+1) − β(k)‖ < tol2

iii. the number of iterations has exceeded a specified threshold, nsteps > tol3.

The optimized parameter set includes the two Bond numbers, as well as the particle

radius. Provided one of these Bond numbers is not zero, this Bond number can be used to

express the interfacial tension in terms of the physical quantities associated with the system

(from eq. (1)). If both Bond numbers are non-zero, their ratio can be used to express the

particle density ρp in terms of the two fluid densities,

ρp = ρ+ (ρd − ρ)Bop/Bod. (20)

Experimental details

Water was obtained from a Millipore Direct-Q 5 system (minimum resistivity 18.4 MΩ cm).

Toluene and bromodecane were obtained from Sigma (>99%) and used as received. Silica

spheres were obtained from Over the Rainbow, Seaford, VIC, Australia. Silica spheres with

a radius of ∼1 mm were made hydrophobic by sputtering 5 nm of copper onto the spheres,

and subsequently soaking in a 1 mM decanethiol solution in absolute ethanol. For each
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experiment, a pendant drop was formed below the needle, with the particle attached by

bringing the drop into contact with the particle.

Experiments were visualized using a CCD camera (Flea3, Point Grey, Richmond, BC,

Canada) coupled to a Kozo XJP-300 microscope. The optical system was calibrated using

the known needle diameter. Diffuse illumination was provided using a white LED source and

a diffuser. A routine developed in Mathematica (Wolfram Research) was used to extract the

profile and fit the theoretical solution.

The interfacial tension for the bromodecane/toluene mixture was calcuated from litera-

ture values for bromodecane of 44 mN/m,2 and toluene of 37 mN/m,3 assuming ideal mixing.

The molar ratio used was 1.00:0.97 (bromodecane:toluene) giving a predicted interfacial ten-

sion of 40.6 mN/m.

Sensitivity
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Figure 4: A comparison between the sensitivity of the compound pendant drop tensiometry
method presented here to conventional pendant drop tensiometry. The image on the left
shows a bromodecane drop (red), and a compound silica-bromodecane drop (blue). Both
drops have the same volume and all other physical quantities are taken from our experiments.
Two more simulated plots illustrate a 10% increase in the interfacial tension (dashed purple
for the plain drop, dashed green for the compound pendant drop). The figure on the right
illustrates the profile change, with the grid lines showing the pixel density of the camera
used in this work.

Ultimately the sensitivity of a tensiometer which relies on fitting a theoretical curve to
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an experimental drop profile depends on its ability to distinguish between different drop

profiles. To illustrate the sensitivity of the method presented in this Letter compared with

existing pendant drop tensiometers, we compared theoretical drop profiles formed with the

same physical quantities as those in Experiment 3, for a bromodecane drop surrounded by

water (i.e. the same fluid densities, interfacial tension, needle diameter, particle size and

particle density).

Firstly, a theoretical pendant drop profile was formed, which was then compared to a

pendant drop of the same volume but with an interfacial tension that differed by 10%. This

process was repeated for the compound pendant drop system (with a silica particle attached).

The associated Bond number for the system is Bod ∼ 0.02. All four interfaces are shown

in Fig. 4. The unperturbed interfaces are shown in blue (compound pendant drop) and red

(pendant drop), with the increase in interfacial tension of 10% shown in dashed green and

dashed purple, respectively.

An analogy to Hookean springs

We draw an analogy between the system presented and that for a more classical spring scale.

A well know method for calculating the mass of an object is to attach it to a spring with

a known spring constant k and measure the displacement x. Using Hooke’s law for small

deformations, the applied force can be calculated and then equated to the gravitational force,

i.e. F = −kx = mg. To calibrate the spring constant, a precisely known mass is attached to

the spring. This analogy illustrates the case where the particle Bond number is appreciable,

while the drop Bond number is negligible (Bod � 1, Bop ∼ 1), where γ takes the role of the

spring constant, while the ‘displacement’ is no longer an easily extracted value, but rather

it is related to the deformation profile and can be calculated by fitting the theoretical curve

to the experimental data.

The method corresponding to both Bond numbers being appreciable (Bod ∼ 1, Bop ∼ 1)
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is slightly more involved, and can be thought of as a spring with its own mass. Thus, the

spring will itself deform due to its own weight. If a mass is added to this new ‘heavy’

spring, this mass will further deform the spring, however these two deformations will result

in fundamentally different deformation profiles. The attached mass deformation will deform

the spring constantly throughout, however the spring weight will deform the top of the

spring more than the bottom. By using knowledge of the spring mass will then enable the

spring constant to be calculated, which in turn can be used to calculate the weight of the

added mass. Similarly, if a pendant drop is deformed with both the drop and particle Bond

numbers being appreciable, it is possible to calculate both the interfacial tension and the

particle density simultaneously.
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