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A boundary integral formulation for the solution
of the Helmholtz equation is developed in which
all traditional singular behaviour in the boundary
integrals is removed analytically. The numerical
precision of this approach is illustrated with calculation
of the pressure field due to radiating bodies in
acoustic wave problems. This method facilitates the
use of higher order surface elements to represent
boundaries, resulting in a significant reduction in the
problem size with improved precision. Problems with
extreme geometric aspect ratios can also be handled
without diminished precision. When combined with
the CHIEF method, uniqueness of the solution of the
exterior acoustic problem is assured without the need
to solve hypersingular integrals.

1. Introduction
Central to acoustic wave theory is solving the Helmholtz
equation for the pressure field in the frequency domain.
The boundary integral method is commonly used
because of the reduction in spatial dimension. However,
it is well-known that the numerical solution of the
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boundary integral equation for external problems can become inaccurate when the wave number
is close to one of the eigenvalues of the internal problem [1,2]. The issue has been addressed by
two common methods. The CHIEF method due to Schenck [3] imposes an additional constraint
on the solution of the boundary integral equation by requiring it to vanish at selected positions
inside the boundary to suppress the resonant solution that has no physical significance in the
external problem. An alternative approach proposed by Burton and Miller [4] involved solving a
hypersingular integral equation in which the original boundary integral equation is the real part
and the boundary integral equation for the normal derivative is the imaginary part. In both cases,
the equations to be solved contain mathematical singularities associated with the conventional
formulation of the boundary integral equation and much effort since then has been concerned
with the expeditious and efficient treatment of these singularities [5].

Recently we reformulated the boundary integral solution of the Laplace equation: ∇2ϕ= 0,
and the Stokes equation of fluid mechanics whereby all singular terms in the integrals are
removed analytically [6]. This regularisation of all the singular behaviour on the boundary
means that the surface integrals can be evaluated using any convenient quadrature method. A
significant practical consequence of this is that high numerical precision can be obtained with
mixed boundary conditions [7] and for problems with multiscale characteristics such as those
with boundaries that are very close together compared to their characteristic dimensions or where
the boundaries possess extreme geometric aspect ratios [8].

In this work, we apply this boundary regularisation to the Helmholtz equation that removes
much of the technical effort needed to use linear or quadratic surface elements to represent
boundaries and results in significant improvement in the accuracy in the evaluation of surface
integrals. Also, it is no longer necessary to calculate the solid angle at each node – a complexity
that can discourage the use of higher order surface elements. As a result, far fewer degrees
of freedom are needed to achieve the same precision that in turn translates to a significant
decrease in computational time – demonstrated here by numerical examples. When the high
precision of this boundary regularised formulation is combined with the CHIEF method [3], the
possibility of numerical error arising from the resonance solution becomes negligible in practice.
The framework given here is applicable for both external and internal problems, for Dirichlet,
Neumann or mixed boundary conditions and for radiation as well as scattering problems.

Although examples motivated by problems in acoustics have been used to demonstrate the
theoretical formulation and practical numerical advantages, this method of de-singularising
boundary integral equations can be applied in other contexts such as the Laplace equation [8],
the equations of hydrodynamics [6,7] and linear elasticity or any equation that belongs to the
Moisil-Theodorescu system [9].

2. Boundary regularised integral equation formulation (BRIEF)
To illustrate the boundary regularised integral equation formulation of the Helmholtz equation,
we draw on the problem of calculating the acoustic pressure wave generated by a vibrating
boundary specified by a closed surface, or more generally a set of closed surfaces denoted by
S. The acoustic pressure, p(x) outside S, obeys the Helmholtz equation: ∇2p+ k2p= 0 where k
is the wave number. The solution can be found by solving the conventional boundary integral
equation that follows from using Green’s second identity [10]

c0 p(x0) +

∫
S+S∞

p(x)
∂G(x0,x)

∂n
dS(x) =

∫
S+S∞

∂p(x)

∂n
G(x0,x)dS(x), (2.1)

where G(x0,x) = eikr/r, with r≡ |x− x0|, is the fundamental solution of the Helmholtz
equation. These integrals are taken over the set of closed surfaces, S, specified by the problem
and also over the “surface at infinity”, S∞ at which the Sommerfeld radiation condition is applied
(see the Appendix). The points x and x0 are on the boundaries. For simplicity, we assume that
the surfaces S and S∞ have well-defined tangent planes at all points on the surfaces. We refer the
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readers to our another work [8] for the treatment of surfaces with sharp edges and vertices. The
normal derivatives are defined by ∂p/∂n≡∇p · n(x) and ∂G/∂n≡∇G · n(x) where n(x) is the
unit normal vector at x pointing out of the solution domain. The solid angle, c0 at x0 is equal to
2π if the tangent of the boundary at x0 is defined, otherwise it has to be calculated from the local
geometry [11]. Equation (2.1) provides a relation between the function p and its normal derivative
∂p/∂n on the surfaces S and S∞. For Dirichlet (Neumann) problems, p (∂p/∂n) is specified on
the surfaces, and (2.1) can be solved for ∂p/∂n (p).

In spite of the fact that the physical problem may be well-behaved on the boundaries, the
mathematical singularities in (2.1) at x= x0 due to G and ∂G/∂n require careful treatment. To
quote Jaswon [12] and Symm [13]: “Most integral equations of physical significance involve
singular, or weakly singular, kernels, thereby hampering the procedures of both theoretical and
numerical analysis." – a statement that is still valid up to this day.

Here we seek to eliminate these singularities analytically by exploiting the linear nature of (2.1)
as follows.

But before we tackle (2.1) that corresponds to the Helmholtz equation for p(x), consider first
the simpler case of the Laplace equation: ∇2q(x) = 0 for which the corresponding boundary
integral equation is

c0 q(x0) +

∫
S+S∞

q(x)
∂G0(x0,x)

∂n
dS(x) =

∫
S+S∞

∂q(x)

∂n
G0(x0,x)dS(x), (2.2)

where G0(x0,x) = 1/|x− x0|. The standard way to remove the singularity arising from ∂G0/∂n

on the left hand side is to note that the constant q(x0) also satisfies the Laplace equation with a
vanishing normal derivative on the boundaries, so that equation (2.2) for [q(x)− q(x0)] becomes∫

S+S∞

[q(x)− q(x0)]
∂G0(x0,x)

∂n
dS(x) =

∫
S+S∞

∂q(x)

∂n
G0(x0,x)dS(x). (2.3)

This is known as the ’constant value subtraction’. However, the integral on the right hand side
of (2.3) still involves an integration over the singularity from G0 and is normally handled by a
change to local polar coordinates [5]. However, this singularity can also be removed analytically
[8]. Implicit in this approach is the generally valid assumption that as x→ x0, [q(x)− q(x0)]

vanishes as |x− x0| or faster.
In this paper, we extend the approach [8] developed for the Laplace equation to remove all

singularities in the boundary integral equation (2.1) for the Helmholtz problem. However, since
a constant is not a solution of the Helmholtz equation, we need to construct an auxiliary function
ψ(x) for a given value of x0 in (2.1) that satisfies the Helmholtz equation that is analogous to the
constant, q(x0), in the case of the Laplace equation. We choose ψ(x) to be linear in the pressure,
p(x0) and its normal derivative, (∂p/∂n)0 at x0

ψ(x)≡ p(x0) g(x) +

(
∂p

∂n

)
0

f(x). (2.4)

Now provided the general functions g(x) and f(x) satisfy the Helmholtz equation with the
following boundary conditions:

∇2g(x) + k2g(x) = 0, g(x0) = 1, ∇g(x0) · n0 = 0, (2.5a)

∇2f(x) + k2f(x) = 0, f(x0) = 0, ∇f(x0) · n0 = 1, (2.5b)

with n0 ≡ n(x0) being the outward unit normal at x0, ψ(x) will also satisfy the same boundary
integral equation as (2.1). By taking the difference between the boundary integral equations for
p(x) and ψ(x), we obtain∫

S+S∞

[
p(x)− p(x0)g(x)−

(
∂p

∂n

)
0

f(x)

]
∂G(x0,x)

∂n
dS(x)

=

∫
S+S∞

[
∂p(x)

∂n
− p(x0)∇g(x) · n(x)−

(
∂p

∂n

)
0

∇f(x) · n(x)
]
G(x0,x)dS(x). (2.6)
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The conditions imposed on g(x) and f(x) at x0 in (2.5) will remove both the singularities due toG
and ∂G/∂n in the new boundary integral equation in (2.6) under the generally valid assumption
that as x→ x0, [p(x)− ψ(x)] and [∂p/∂n− ∂ψ/∂n] vanish as |x− x0| or faster. Therefore, if g(x)
and f(x) satisfy (2.5), all singular behaviour in (2.6) due to G and ∂G/∂n will be removed. The
formal proof is a straightforward generalisation of that given in [6] for the Laplace equation.

Equation (2.6) is the final key result for the singularity-free [6] boundary regularised integral
equation formulation (BRIEF) of the solution of the Helmholtz equation that replaces the
conventional boundary integral equation in (2.1). The integrals are now completely free of
singularities [6] and can be evaluated by any convenient integration quadrature. Given values
for p (Dirichlet) or ∂p/∂n (Neumann) or a relation between these two quantities on the boundary,
S, (2.6) can be readily solved. Also the term involving the solid angle, c0, in the conventional
boundary integral equation, (2.1), has now been eliminated. Thus higher order area elements –
linear, quadratic or splines, can be used to represent the surface to improve numerical accuracy
without the need to calculate the solid angle at each node.

For our key result in (2.6), we see that apart from having to satisfy (2.5), there is considerable
freedom in selecting the functional forms of g(x) and f(x) and hence ψ(x). As a specific example,
we can choose the following for g(x) and f(x)

g(x) =
a cos[k(rd − a)]

rd
+

sin[k(rd − a)]

k rd
, f(x) =

a sin[k(rd − a)]

b k rd
, (2.7)

where xd is any convenient point outside the solution domain in order to ensure ψ(x) is non-
singular within the solution domain, with a≡ |x0 − xd|, rd ≡ |x− xd| and the proviso that b≡
(x0 − xd) · n(x0)/|x0 − xd| ̸= 0 (see figure 1a). For this particular choice of g(x) and f(x), the
integral over the surface at infinity, S∞ in (2.6) can be found analytically using the Sommerfeld
radiation condition [14,15], (see Appendix A for details)

p(x0)

∫
S∞

[
∇g(x) · nG− g(x)

∂G

∂n

]
dS = 2πp(x0)

(
1 +

i

ka

)[
1− e2ika

]
, (2.8)(

∂p

∂n

)
0

∫
S∞

[
∇f(x) · nG− f(x)

∂G

∂n

]
dS =

(
∂p

∂n

)
0

2πi

kb

[
1− e2ika

]
. (2.9)

In the limit k= 0, the Helmholtz equation reduces to the Laplace equation with g(x)→ 1 and
f(x)→ (a/b)[1− a/|x− xd|], and (2.6) will become a boundary regularised integral equation for
the solution of the Laplace equation given earlier [8]. This is an example of how the singularity in
the integral on the right hand side of (2.3) may be removed analytically.

We note that the conventional boundary integral formulation of the solution of the Helmholtz
equation, or for that matter solutions of the Laplace equation or the equations of hydrodynamics
or elasticity, gives rise to singularities in the integrands of the surface integrals. These
mathematical singularities originate from the fundamental solution of the equations used
in Green’s second identity whereas the physical problem is perfectly well-behaved on the
boundaries. Therefore it is not too surprising that these mathematical singularities can be
completely removed by subtracting a related auxiliary solution of the governing equation: ψ(x)
in the case of the Helmholtz equation considered here. Apart from having to satisfy the governing
differential equation and some mild constraints, see (2.5), there is considerable flexibility in
choosing the precise functional form of the auxiliary solution or any free parameters that it
may contain - such as the value of xd in (2.7). A broad physical interpretation is that we have
constructed a pressure field, ψ(x), that cancels the value of p and ∂p/∂n at x0.

One well-studied uniqueness issue is that the solution of the boundary integral method, (2.1),
with a closed boundary is identical to that obtained from solving directly the differential form of
the Helmholtz equation: ∇2p+ k2p= 0, except at a discrete set of values of k. These k values
correspond to the resonant wave numbers of the closed boundary [3,4]. The solution of the
BRIEF, (2.6), also shares this feature. The resonant or homogeneous solutions corresponding to
the resonant values (eigenvalues) of the closed boundary will always emerge from solving the
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integral equation. But as we shall see in Section 4, the higher precision that the BRIEF can attain
will alleviate much of the practical numerical difficulty.

3. Accurate evaluation at field points near boundaries
The boundary regularised integral equation formulation (BRIEF) of the solution of the Helmholtz
equation also offers an accurate and numerically robust method to calculate the solution at field
points close to boundaries. Indeed, the loss of precision due to the near singular behaviour in the
evaluation of the requisite integrals that arise in the conventional boundary integral method is
often more difficult to deal with than the singularities on the boundaries.

To evaluate the solution p(xp) of the Helmholtz equation at a point xp in the solution domain,
we first use the conventional boundary integral equation to find [p(x)− ψ(x)] at xp, with x0 in
(2.4) taken to be the node on the boundary closest to xp

4πp(xp) = 4πψ(xp)−
∫
S+S∞

[p(x)− ψ(x)]
∂G(xp,x)

∂n
dS(x)

+

∫
S+S∞

∂[p(x)− ψ(x)]

∂n
G(xp,x)dS(x). (3.1)

The near singular behaviour of the surface integrals due to G and ∂G/∂n as xp approaches the
boundary, S, can be now removed by subtracting the boundary regularised boundary integral
equation (2.6) from (3.1). Then using (2.4) for ψ(x) we obtain a numerically robust expression for
p(xp) that is free of near singular behaviour irrespective of the distance from xp to any boundary:

4πp(xp) = 4π

[
p(x0)g(xp) +

(
∂p

∂n

)
0

f(xp)

]
−

∫
S+S∞

[
p(x)− p(x0)g(x)−

(
∂p

∂n

)
0

f(x)

] [
∂G(xp,x)

∂n
− ∂G(x0,x)

∂n

]
dS(x)

+

∫
S+S∞

[
∂p(x)

∂n
− p(x0)∇g(x) · n(x)−

(
∂p

∂n

)
0

∇f(x) · n(x)
]
[G(xp,x)−G(x0,x)]dS(x).

(3.2)

4. Examples from acoustics
We use examples drawn from acoustics to illustrate the implementation and advantages of the
BRIEF of the Helmholtz equation relative to the conventional boundary integral method (CBIM).
The first classic problem is the pressure field outside a radiating sphere of radius, R, with
a prescribed time harmonic, radially symmetric surface normal velocity vn = V exp(−iωt) [3],
giving the boundary condition: ∂p/∂n=−iωρV , with k= ω/c where ρ is the density and c the
speed of sound in the region outside the sphere. This is a Neumann problem since p(x) is to be
found for prescribed values of the normal derivative ∂p/∂n. The analytic solution of this problem
is [3]: p(r) =−[(iωρV R2)/(1− ikR)]eik(r−R)/r.

In figure 1, we compare the maximum relative error of the following six different numerical
solutions of the above problem at kR= π/2 for varying numbers of degrees of freedom or
unknowns on the surface of the sphere:

1. CBIM Constant: The value of the unknown pressure associated with every flat triangular
surface element is assumed to be constant within the element.

2. CBIM Linear c0: The points on the surface of the sphere on which the pressure is to be found
are at the vertices of planar triangular area elements with linear shape functions used to
represent the boundary. The solid angle, c0 in (2.1) is calculated according to the local
geometry around each point x0 [11].
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Figure 1: (a) The radiating sphere, S with x0, x; surface normals n0 and n; the point xd lies inside
S; (b) Maximum relative error of six numerical approaches as functions of the number of surface
nodes, for kR= π/2 and xd in (2.7) is at the origin of the sphere.

3. CBIM Linear c0 = 2π: This an often used approach that assumes the incorrect value of c0 =
2π for the solid angle at every node even though the surface tangent plane is clearly not
defined at the vertices of the surface elements.

4. BRIEF Constant: Using BRIEF with the assumption that the unknown pressure associated
with every flat triangular surface element is constant within the element.

5. BRIEF Linear: Using BRIEF where the points on the surface of the sphere on which the
pressure is to be found are at the vertices of planar triangular area elements with linear
shape functions used to represent the boundary.

6. BRIEF Quadratic: Using BRIEF where the points on the surface of the sphere on which the
pressure is to be found are at the nodes of quadratic 6-noded triangular area elements with
quadratic shape functions used to represent the boundary.

It is clear from figure 1b that results obtained from the BRIEF are at least as good as, and in the
case of BRIEF Quadratic, far superior to any results from the CBIM. Depending on the degrees of
freedom, the relative error is smaller by 1 to 3 orders of magnitude; or BRIEF Quadratic can achieve
the same precision as any CBIM with about 1/10th the number of degrees of freedom. In all
BRIEF approaches, there is no need to deal with singular integrals or to compute the solid angle
c0 at any node. Moreover, the poor performance of the erroneous CBIM Linear c0 = 2π approach is
demonstrated.

In figure 2a, we compare the BRIEF using constant, linear and quadratic elements for a single
radiating sphere considered at wave numbers very close to the first resonant value, kR= π [3]. We
observe that: (i) using the BRIEF with quadratic (BRIEF Quadratic) elements, the maximum relative
error is not significant until |kR− π|< 10−4; (ii) when the BRIEF is used with constant elements
(BRIEF Constant), the resonant wave number is located incorrectly. This is because the spherical
shape is not well represented by constant elements and resulted in a slightly different resonant
wave number, even though the polyhedra that represent the sphere have the same volume. Even
in this case, the resonant solution is only evident when k is within 1% of the (incorrect) resonant
value.

In Table 1, we compare the condition number at various values of kR. We see that using BRIEF

Linear or BRIEF Quadratic, the condition number at kR very close to the resonant value can be
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Figure 2: Solutions of the single radiating sphere problem in figure 1 using the BRIEF with 1280
constant elements (dash line) and 624 nodes with 1280 linear (dash dot line) or 320 quadratic (solid
line) elements. (a) Maximum relative error as a function of the wave number, k; (b) Maximum,
mean and median relative errors of results from BRIEF Quadratic plus CHIEF as a function of the
location of the CHIEF point, rcf for kR= 2π. The point xd in (2.7) is at the origin of the sphere.

reduced by a factor of 60 when compared to BRIEF Constant. This demonstrates the numerical
stability that can be achieved using BRIEF Linear or BRIEF Quadratic.

Next, we study the error when BRIEF Quadratic is combined with one CHIEF point located at
rcf inside the sphere. With kR= 2π the lowest resonant mode has a node at r=R/2 [3]. The
maximum, mean and median errors when the CHIEF point, rcf is positioned close to this node at
R/2 are compared in figure 2b. Note that to incur a maximum error exceeding 1%, rcf/R has to
be within 0.004 of the node at r/R= 1/2. Thus in practice, the BRIEF Quadratic approach plus one
CHIEF point is very unlikely to encounter problems with the resonant solution.

In a second example, we illustrate the unique ability of the BRIEF in being able to handle
boundaries with extreme geometric aspect ratios by considering two radiating spheres that are
nearly touching. We calculate the pressure field due to these spheres of radii R and 3R at a
distance of closest approach, h/R= 0.001, with kR= π/2 (see figure 3). The spheres have identical
time harmonic radially symmetric normal velocities as in the previous example, but are out of

Table 1: Variation of the condition number of the BRIEF for a pulsating sphere of radius R for two
values of kR close to resonance at kR= π, using constant, linear or quadratic surface elements
to represent the sphere. The constant element representation predicts an incorrect resonant value
very close to kR/π= 1.0038 - see also Figure 2.

kR/π = 0.95 kR/π = 1.0038

Constant element 6.0 6000

Linear element 6.5 81

Quadratic element 6.5 100
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Figure 3: Two spheres of radius R and 3R at separation h/R= 0.001 radiating with a phase
difference of π calculated using kR= π/2 and 6938 nodes on each sphere. (a) The magnitude
of the scaled pressure, |p̄|= |[(1− ikR)/(ρωRV )]p| on the sphere surfaces along the longitudes
through the point of closest approach. (b) Relative difference in the pressure magnitude, |p| on
the spheres obtained using BRIEF Linear and CBIM Linear along the longitudes through the point of
closest approach. Inset: The geometry of the two spheres. The point xd in (2.7) is at the origin of
each of the spheres.

phase by π. In figure 3a, we show the variation of the magnitude of the pressure, |p|, along the
longitudes of the 2 spheres that pass through the point of closest approach at z = 0. Near this
point, the result from BRIEF Linear remains continuous as expected whereas the result from CBIM

Linear exhibits large errors that have their origin from the adverse influence of the nearly singular
behaviour of the kernel of one surface on an adjacent surface that is very close by. The relative
difference in the pressure magnitude, |p| obtained using BRIEF Linear and CBIM Linear is shown in
figure 3b.

A comparison of the accuracy in the the magnitude of the pressure obtained using the
boundary regularised integral equation formulation (BRIEF) and the conventional boundary
integral method (CBIM) is given in the contour plots for two spheres of radius R and 3R, at
separation h/R= 0.001 as illustrated in figure 3b. In figure 4a, we compare the variation of the
magnitude of the pressure in the median plane, z = 0, in the neighbourhood of the osculating
point and in figure 4b, pressure variations in the far field. Around ρ≡ (x2 + y2)1/2 ∼ 0, the BRIEF

Linear results remain smooth as expected from the results in figure 3a. In contrast, the numerical
errors of the conventional boundary integral method (CBIM) are already quite evident from the
roughness of the pressure contours at ρ∼ 0.7R, and these errors become unacceptably large for
ρ<R/2. This is consistent with the comparison shown in figure 3. The pressure variations in the
far field for the two-spheres in the plane y= 0 shown in figure 4b demonstrate the utility of the
BRIEF in furnishing accurate results in both the near and far field.

5. Conclusions
We have developed the boundary regularised integral equation formulation (BRIEF) of the
solution of the Helmholtz equation given by (2.6) that replaces the conventional boundary integral
method (CBIM) given by (2.1). As all integrands in the BRIEF contain no singular behaviour and
the term containing the solid angle has been removed, any convenient quadrature method can be
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(a) (b)

Figure 4: Contour plots of the scaled pressure magnitude, |p̄|= |[(1− ikR)/(ρωRV )]p|, obtained
by the boundary regularised integral equation formulation (BRIEF Linear) and by the conventional
boundary integral method (CBIM Linear) for the two closely spaced radiating spheres of radius
R and 3R, at separation h/R= 0.001: (a) pressure contours in the median plane, z = 0, within
square region |x|<R, |y|<R, and (b) pressure contours in the far field in the y= 0 plane. Linear
elements and 6938 nodes were used on each sphere in both cases. All other parameters are the
same as those in figure 3.

used to evaluate the surface integrals thus facilitating the use of more accurate linear, quadratic
or spline elements to represent the boundaries.

The BRIEF also has the unique ability to handle problems with extreme geometric aspect ratios
such as where boundaries are very close together or where boundaries possess very different
characteristic length scales. For such cases, the absence of singular behaviour in the BRIEF means
that high precision is always maintained whereas the inherent singularities in the integral of the
CBIM will give rise to unavoidable deteriorations in numerical precision.

The absence of singular behaviour in the surface integrals means that the BRIEF provides
a simple and numerically robust way to compute the solution at field points located near
boundaries using (3.2). This is an important advance in the accurate evaluation of the solution
near surfaces or within small gaps between surfaces where the errors in the conventional
boundary integral method become unacceptably large using the same surface mesh. This is an
advantage of the BRIEF that is unmatched by the CBIM without very significant additional
numerical and analytical effort.

In the derivation of the key result, (2.6), we have assumed that the boundary S is sufficient
smooth whereby the tangent plane is defined at all points on the surface. For points on boundaries
at which the tangent plane is not uniquely defined, for example at sharp corners and edges, one
can still implement BRIEF using the double node technique to construct the requisite system of
linear equation [8].

From numerical case studies drawn from acoustics considered here, the use of linear elements
or quadratic elements with the BRIEF can lower the relative error by a factor of 10 to 1000.
Conversely, the same precision as the CBIM can be obtained even when the number of degrees of
freedom is reduced by a factor of 10 to 100 or more. This represents a very significant speed up in
computational time.

Of particular relevance to acoustic problems, the much higher precision results that can be
obtained using the BRIEF also means that the uniqueness issue associated with the resonant or
normal mode solutions of the Helmholtz equation around closed surfaces is very unlikely to
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arise. This is simply because the numerical value of the wave number must be within a relative
deviation of smaller than 10−3 from the resonant value before the resonant solution can start to
contribute to the answer. Indeed, if the CHIEF method of Schenck [3] is also used, the uniqueness
issue will not arise in practice since the CHIEF node must now lie within a relative deviation
of smaller than 10−3 of an internal resonance node before the BRIEF-CHIEF combination might
breakdown. The BRIEF is also much simpler than the Burton-Miller [4] approach because no
hypersingular integrals are involved.

Given the above advantages of the BRIEF, the case for its wide adoption is very compelling,
not only for the Helmholtz equation that has applications ranging from wave phenomena in
acoustics to electromagnetics, but also for boundary integral solutions of the Laplace equation [8]
and hydrodynamic problems [7].
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A. Derivation of the integrals over the surface at infinity
In this Appendix, we derive analytic expressions for the integrals over the surface at infinity, S∞,
that appear in (2.8), (2.9) and (3.2).

In (2.8) and (2.9) the integrals at infinity vanish due to the Sommerfeld radiation condition
[14,15]:

r

(
∂p

∂r
− ikp

)
→ 0, as r→∞, (A 1)

except for the two terms ∫
S∞

(
∂g

∂n
G− g

∂G

∂n

)
dS (A 2)

and ∫
S∞

(
∂f

∂n
G− f

∂G

∂n

)
dS (A 3)

that correspond to Eqs. (2.8) and (2.9), respectively. For simplicity, we have applied g≡ g(x),
f ≡ f(x), ∂g/∂n≡∇g(x) · n(x), ∂f/∂n≡∇f(x) · n(x), G≡G(x0,x), ∂G/∂n≡ ∂G(x0,x)/∂n

and dS ≡ dS(x).
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Both g and f vanish as 1/rd ∼ 1/r at the surface at infinity, S∞, and G and ∂G/∂n vanish as
1/r, when r→∞, because

G=
eikr

r
, (A 4)

and

lim
r→∞

∂G

∂n
= lim

r→∞
eikr

r3
(ikr − 1)n · x→ ik

eikr

r
, (A 5)

where terms that vanish faster than 1/r can be omitted because the surface S∞ only grows as r2 at
infinity. Consequently, only terms multiplying ∂G/∂n, that vanish as 1/r can give contributions
to the integrals.

The sine and cosine terms in g and f , see (2.7), can be rewritten in complex notation as

g=
eik(rd−a)

2rd

[
a− i

k

]
+
e−ik(rd−a)

2rd

[
a+

i

k

]
, (A 6)

f =
−ia
2bkrd

[
eik(rd−a) − e−ik(rd−a)

]
. (A 7)

Therefore the normal derivatives of g and f as r→∞ asymptotes to :

lim
r→∞

∂g

∂n
→ ik

2rd

[
a− i

k

]
eik(rd−a) − ik

2rd

[
a+

i

k

]
e−ik(rd−a), (A 8)

lim
r→∞

∂f

∂n
→ a

2brd

[
eik(rd−a) + e−ik(rd−a)

]
(A 9)

where we have again neglected higher order terms.
It can be easily seen that the terms proportional to eik(rd−a) in the integrals of (A 2) and (A 3)

remain finite and the individual terms cancel out exactly. However, for the terms proportional to
e−ik(rd−a), this is not the case and they contribute to the integrals in (A 2) and (A 3) to give:∫

S∞

(
∂g

∂n
G− g

∂G

∂n

)
dS =

a

b

∫
S∞

eik(r−rd+a)

rrd
dS, (A 10)

and ∫
S∞

(
∂f

∂n
G− f

∂G

∂n

)
dS =−ika

[
1 +

i

ka

] ∫
S∞

eik(r−rd+a)

rrd
dS. (A 11)

Finally we need to determine the integral∫
S∞

eik(r−rd+a)

rrd
dS

that appears in both of the above equations. The denominator rrd of the integrand can be
approximated by r2 since r≈ rd. For the numerator, we need to invoke the cosine rule and
a Taylor expansion to r − rd + a, which gives r − rd + a≈ a(1 + cosα) with α being the angle
between the line segments rd and a. We then get:∫
S∞

eik(r−rd+a)

rrd
dS =

∫
S∞

eika(1+cosα)

r2
dS =

∫π
0

eika(1+cosα)

r2
2πr2 sinα dα=− 2π

ika

[
1− e2ika

]
.

(A 12)

This leads immediately to (2.8) and (2.9).
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In (3.2), we need to evaluate the following two integrals over the surface at infinity, S∞:∫
S∞

(
∂g

∂n
Gp − g

∂Gp

∂n

)
dS, (A 13)

and ∫
S∞

(
∂f

∂n
Gp − f

∂Gp

∂n

)
dS (A 14)

where Gp ≡G(xp,x), ∂Gp/∂n≡ ∂G(xp,x)/∂n. Here we can rewrite g and f in (A 6) and (A 7) as

g=
eik[(rd−ap)+(ap−a)]

2rd

[
a− i

k

]
+
e−ik[(rd−ap)+(ap−a)]

2rd

[
a+

i

k

]
, (A 15)

f =
−ia
2bkrd

[
eik[(rd−ap)+(ap−a)] − e−ik[(rd−ap)+(ap−a)]

]
, (A 16)

in which ap = |xp − xd|. Following the same procedure we used to evaluate (A 2) and (A 3), the
key integral that needs to be determined for calculating of (A 13) and (A 14) is∫

S∞

eik(rp−rd+ap)

rprd
dS,

where rp = |x− xp|. By using (A 12), we then find∫
S∞

eik(rp−rd+ap)

rprd
dS =− 2π

ikap

[
1− e2ikap

]
. (A 17)
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Captions of figures

Figure 1. (a) The radiating sphere, S with x0, x; surface normals n0 and n; the point xd lies inside
S; (b) Maximum relative error of six numerical approaches as functions of the number of surface
nodes, for kR= π/2 and xd in (2.7) is at the origin of the sphere.

Figure 2. Solutions of the single radiating sphere problem in figure 1 using the BRIEF with 1280
constant elements (dash line) and 624 nodes with 1280 linear (dash dot line) or 320 quadratic (solid
line) elements. (a) Maximum relative error as a function of the wave number, k; (b) Maximum,
mean and median relative errors of results from BRIEF Quadratic plus CHIEF as a function of the
location of the CHIEF point, rcf for kR= 2π. The point xd in (2.7) is at the origin of the sphere.

Figure 3. Two spheres of radius R and 3R at separation h/R= 0.001 radiating with a phase
difference of π calculated using kR= π/2 and 6938 nodes on each sphere. (a) The magnitude
of the scaled pressure, |p̄|= |[(1− ikR)/(ρωRV )]p| on the sphere surfaces along the longitudes
through the point of closest approach. (b) Relative difference in the pressure magnitude, |p| on
the spheres obtained using BRIEF Linear and CBIM Linear along the longitudes through the point of
closest approach. Inset: The geometry of the two spheres. The point xd in (2.7) is at the origin of
each of the spheres.

Figure 4. Contour plots of the scaled pressure magnitude, |p̄|= |[(1− ikR)/(ρωRV )]p|, obtained
by the boundary regularised integral equation formulation (BRIEF Linear) and by the conventional
boundary integral method (CBIM Linear) for the two closely spaced radiating spheres of radius
R and 3R, at separation h/R= 0.001: (a) pressure contours in the median plane, z = 0, within
square region |x|<R, |y|<R, and (b) pressure contours in the far field in the y= 0 plane. Linear
elements and 6938 nodes were used on each sphere in both cases. All other parameters are the
same as those in figure 3.

Captions of tables
Table 1: Variation of the condition number of the BRIEF for a pulsating sphere of radiusR for two
values of kR close to resonance at kR= π, using constant, linear or quadratic surface elements
to represent the sphere. The constant element representation predicts an incorrect resonant value
very close to kR/π= 1.0038 - see also Figure 2.
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