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Single-phase Stokes flow problems with prescribed boundary conditions can be
formulated in terms of a boundary regularized integral equation that is completely
free of singularities that exist in the traditional formulation. The usual mathematical
singularities that arise from using the fundamental solution in the conventional
boundary integral method are removed by subtracting a related auxiliary flow field,
w, that can be constructed from one of many known fundamental solutions of the
Stokes equation. This approach is exact and does not require the introduction of
additional cutoff parameters. The numerical implementation of this boundary regular-
ized integral equation formulation affords considerable savings in coding effort with
improved numerical accuracy. The high accuracy of this formulation is retained even
in problems where parts of the boundaries may almost be in contact. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4907279]

I. INTRODUCTION

A common feature in the modelling of microfluidic design,1 the motion of particles with com-
plex mixed stick-slip boundary conditions,2 the motility of biological cells,3 and the dynamics of
cell-cell and cell-substrate interactions4,5 are the needs to determine low-Reynolds-number Stokes
flow in domains with boundaries having arbitrary shapes. In many applications, such boundaries
may also deform as the quasi-static flow progresses, for instance, in modelling mobile deform-
able droplets or biological cells.6 Furthermore, such problems may require precision in resolution
over very different characteristic length scales, for example, from micrometers for cell or droplet
dimensions to nanometers for the deformation and spacing between interacting surfaces.6

It is evident that modelling of the above problems using numerical methods based on the
discretization of the 3D spatial domain will encounter a number of challenges. These include the
need to insert and delete grid points when the boundaries deform and multi-grid methods might be
needed to give the desired resolution and precision over different length scales. When high accu-
racy in locating boundaries is required, the 3D domain based discretisation algorithms can become
impractical.

On the other hand, an approach based on the boundary integral formulation has a number of
advantages for such problems. The most obvious is the reduction in dimension from 3D to 2D as the
focus is entirely on the boundaries. Thus, precision tracking of their deformation or motion becomes
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easier. Although the boundary integral formulation will give rise to a full coefficient matrix, the
advent of the fast multipole method7 has reduced the computational cost to a very competitive
O(N log N) level.

However, the conventional boundary integral formulation of Stokes flow problems involves
singularities in the kernels that originate from the use of fundamental solutions of the Stokes
equation.8 Although such singularities are integrable, they do require careful analysis and addi-
tional coding effort in numerical implementation.9,10 Furthermore, when two boundaries are close
together, the singular behaviour on one surface can adversely affect the integral taken over the other
nearby surface even in cases in which the field quantities are expected to be bounded. Also, the
singular behavior in the flow domain near boundaries is often more difficult to deal with than the
singularities on the boundaries.

Recently, we have developed a reformulation of the boundary integral equations for the poten-
tial problem,11 the Helmholtz equation for problems in acoustics,27 the Stokes and linear elasticity
problems in which the traditional singularities can be eliminated analytically.12 This means that
none of the above mentioned issues associated with the integrable singularities in the traditional
boundary integral approach will arise and the integrals can be evaluated using any convenient
quadrature method. Furthermore, the term involving the solid angle in the conventional boundary
integral equation has also been eliminated, thus avoiding the need to calculate the solid angle at
each node that is a complex function of local geometry.13

In this paper, we show that corresponding to each of the many known fundamental solutions of
the single-phase Stokes equation, a different regularized boundary integral equation for the Stokes
problem can be derived. The regularization process results in numerically robust equations and this
affords a choice of different numerically equivalent approaches for different applications.

In Sec. II, we give the general formulation of the boundary regularized integral equation formu-
lation (BRIEF) for Stokes flow that involves finding an auxiliary flow field w that is used to remove
all singularities analytically. In Sec. III, we give a new derivation of an earlier result using a linear
flow field12 that is a special case of a third order tensor fundamental solution to serve as a template
on how to derive boundary regularized integral equations. In Sec. IV, we show how to construct
w for other fundamental solutions that are also third order tensors and in Sec. V, we consider the
construction of w from fundamental solutions that are second order tensors. For easy reference,
all key results are summarized in Tables I and II. Numerical examples are given in Sec. VI to
demonstrate the advantages of the BRIEF of Stokes flow. The structure of the algebraic system that
arises from our approach is discussed in the Appendix.

II. BRIEF OF STOKES FLOW

The Stokes equation for low-Reynolds-number flow in a Newtonian fluid with dynamic shear
viscosity, µ: −∇p + µ∇2u = 0 can be written in Cartesian tensor notation with the summation
convention of repeated indices as

− ∂p
∂xi
+ µ

∂2ui

∂xk∂xk
= 0 (1)

and the incompressibility condition: ∇ · u = 0 is

∂ui

∂xi
= 0. (2)

At the field point, x (with components xi) where the pressure is p(x) and the velocity field is u(x)
(with components ui), the stress tensor σik is given by

σik = −pδik + µ


∂ui

∂xk
+
∂uk

∂xi


, (3)

in which δik is the Kronecker delta function.
In the classic boundary integral formulation, the Lorentz reciprocal theorem14 is used to give

the following integral equation evaluated on the bounding surface(s), S, of the flow domain relating
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TABLE I. The auxiliary flow field wi = u
0
i +

1
µ M jkQi jk and the corresponding pressure, P, constructed using fundamental

solutions, Qi jk , of the Stokes equation that are third order tensors. The domain of applicability is for interior problems
bounded by a closed surface, exterior problems in an infinite domain or both. All other symbols are defined in the text or in
Fig. 1.

Solution name Pressure, P xd
i Domain

(I) Simple linear solution12 Constant No Both
Qi jk = x̂kδi j

M jk = f 0
j n

0
k
− 1

4 f
0
l
n0
l


δ jk+n

0
jn

0
k



(II) Stresson20,21 Constant No Interior
Qi jk = 4x̂ jδki− x̂kδi j− x̂iδ jk

M jk =
1
6

(
f 0
j n

0
k
+n0

j f
0
k

)
+ 1

3 f
0
l
n0
l


δ jk−4n0

jn
0
k



(III) Stokeson dipole20,21 Constant No Interior
Qi jk = 4x̂ jδki− x̂kδi j− x̂iδ jk

M jk =
1
3

(
n0
j f

0
k

)
+ 1

48 f
0
l
n0
l


δ jk−19n0

jn
0
k



(IV) Source potential21 Constant Yes Both

Qi jk =

(
x̂d
k

r3
d

− âd
k

a3

)
δi j

M jk =− a3

3b

(
f 0
j â

d
k
− âd

j f
0
k

)
+ a3

2


a2( f 0

l
n0
l
)−2b( f 0

l
âd
l
)

a2+b2

 
2

3b

(
n0
j â

d
k
− âd

j n
0
k

)
+δ jk



(V) Stresslet20,21 2M jk

(
3
x̂d
j
x̂d
k

r5
d

− δ jk

r3
d

)
Yes Both

Qi jk =

(
3
x̂d
i
x̂d
j
x̂d
k

r5
d

− x̂d
i
δ jk

r3
d

)
−

(
3
âd
i
âd
j
âd
k

a5 − âd
i
δ jk

a3

)
M jk =

a
12b2 â

d
j â

d
k


−6b( f 0

l
âd
l
)+a2( f 0

l
n0
l
) + a3

6b (âd
j f

0
k
+ f 0

j â
d
k
)

(VI) Stokes doublet20,21 2M jk

(
3
x̂d
j
x̂d
k

r5
d

− δ jk

r3
d

)
Yes Both

Qi jk =

(
3
x̂d
i
x̂d
j
x̂d
k

r5
d

− x̂d
i
δ jk

r3
d

)
−

(
3
âd
i
âd
j
âd
k

a5 − âd
i
δ jk

a3

)
+

(
x̂d
k
δi j−x̂d

j
δik

r3
d

)
−

(
âd
k
δi j−âd

j
δik

a3

)
M jk =

a5

6b2 (n0
j f

0
k
)+ a3

b âd
j â

d
k

(
f 0
l
n0
l

6b −
5

12a2 f
0
l
âd
l

)

the velocity and the stress tensor on the boundary15

c0u0
j +


S

uiTi jknk dS(x) = 1
µ


S

σiknkUi j dS(x) ≡ 1
µ


S

f iUi j dS(x). (4)

TABLE II. The auxiliary flow field wi = u
0
i +

1
µ D jSi j and the corresponding pressure, P, constructed using fundamental

solutions, Si j, of the Stokes equation that are second order tensors. All other symbols are defined in the text or in Fig. 1.

Solution name Pressure, P xd
i Domain

(I) Stokeson20,21 10D j x̂
d
j Yes Interior

Si j = (2r2
d
δi j− x̂d

i x̂
d
j )− (2a2δi j− âd

i â
d
j )

D j =


2 f 0

l
âd
l

b(9b2−6a2) −
f 0
l
n0
l

6b2−4a2


[−2bn0

j+ â
d
j ]+ 1

3b [ f 0
j − ( f 0

l
n0
l
)n0

j]

(II) Source potential doublet20,21 Constant Yes Both

Si j =


δi j

r3
d

−
3x̂d

i
x̂d
j

r5
d


−

δi j

a3 −
3âd

i
âd
j

a5



D j =−
a5 f 0

j

6b +
a5n0

j

6b


a2( f 0

l
n0
l
)−2b( f 0

l
âd
l
)

a2+b2


+

âd
j

6b


−2a5b( f 0

l
n0
l
)+(a5+5a3b2)( f 0

l
âd
l
)

a2+b2
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In Eq. (4), c0 is related to the solid angle at x0 that is located on the surface S. The component of
the velocity at x0 in the jth direction is u0

j ≡ u j(x0), the component of the velocity at x in the ith
direction is ui ≡ ui(x), and nk is the kth component of the unit normal vector at position x on the
surface, pointing out of the fluid domain. The ith component of the traction vector f is defined as
f i ≡ σiknk. The kernels Ui j and Ti jk are the fundamental solutions for the 3D Stokes equation under
a point force g: −∇p + µ∇2u + gδ(x − x0) = 0,15

Ui j(x, x0) = δi j

r
+

x̂i x̂ j

r3 , (5)

Ti jk(x, x0) = −6
x̂i x̂ j x̂k

r5 , (6)

where x̂i is the ith component of x̂ ≡ x − x0, r ≡ |x̂| ≡ |x − x0| (see Fig. 1), with corresponding
velocity and traction fields ui = (1/8πµ)Ui jgj and σik = (1/8π)Ti jkgj. The kernels Ui j and Ti jk

diverge as 1/r and 1/r2, respectively, as x → x0, but the integrals over these singularities in Eq. (4)
are finite even though their numerical evaluation requires careful treatment.10 One method to deal
with the singularities is to use a nonsingular contour-integral representation of the surface inte-
grals, but the resulting computational performance is about an order of magnitude slower than the
conventional approach.1 Another way to circumvent the divergence as x → x0 is to replace the Dirac
δ-function by spreading the applied force over a small ball of radius ϵ centered at x0.16 The new
length scale, ϵ has to be chosen carefully to give convergence without affecting the fidelity of solu-
tion since the fundamental solutions will also be modified. A “near-singularity” subtraction method
has also been proposed to handle the singularities in Eq. (4), but the method cannot completely
eliminate the unbounded behavior of the double-layer integrand.17

In earlier work,12 we have shown that all the singularities associated with the kernels can be
removed analytically, thus obviating the need to alter the nature of the fundamental solutions or
to develop special integration algorithms to deal with the singularities. The way to achieve this is
to construct an auxiliary known flow field, w(x) (with components wi), for a given x0 in Eq. (4),
that also satisfies the governing equations for the Stokes flow in Eqs. (1) and (2). Thus, the field w
satisfies

− ∂P
∂xi
+ µ

∂2wi

∂xk∂xk
= 0 (7)

and the compressibility condition

∂wi

∂xi
= 0 (8)

FIG. 1. The 3D internal domain defined by the closed surface S showing the observation point x0 with outward normal n0,
the integration point x with outward normal n, and the general location of a point xd outside the domain. Illustrated also
are the relative position vectors: x−x0≡ x̂≡ x̂i = xi− x0

i , x−xd ≡ x̂d ≡ x̂d
i = xi− x

d
i , and x0−xd ≡ âd ≡ âd

i = x
0
i − x

d
i . The

magnitudes of these vectors are r = |x̂|, rd = |x̂d | and a = |âd |, with b ≡ âd
l
n0
l
, 0.
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in which P is the pressure corresponding to flow field wi. The associated stress tensor Σik of this
flow field is

Σik = −Pδik + µ


∂wi

∂xk
+
∂wk

∂xi


. (9)

We further require wi to obey the following two constraints:

wi(x0) ≡ w0
i = u0

i ≡ ui(x0), (10a)
Fi(x0) ≡ F 0

i = f 0
i ≡ f i(x0), (10b)

where Fi ≡ Σiknk is the traction vector of the flow field wi.
Since wi satisfies the governing equations for incompressible Stokes flow, Eqs. (7) and (8), it

also satisfies the boundary integral equation similar to Eq. (4)

c0w
0
j +


S

wiTi jknk dS =
1
µ


S

FiUi j dS. (11)

Subtracting Eq. (11) from Eq. (4), we get
S

(ui − wi)Ti jknk dS =
1
µ


S

( f i − Fi)Ui j dS. (12)

This is the key general result of the BRIEF for Stokes flow that relates the traction, f i, and the
surface velocity, ui. The major advantages are that the term containing the solid angle c0 is no longer
present and that the integrands in Eq. (12) are regular over the entire integration surface S.12 As a
consequence, the surface integrals can be evaluated using any convenient quadrature method. The
remaining task is to construct the flow field wi that will satisfy the two conditions given by Eq. (10).
Then, Eq. (12) can be solved when either the traction, f i, or the surface velocity, ui, or a relation
between f i and ui is specified from the prescribed boundary conditions of the problem.

III. BRIEF OF STOKES FLOW USING A LINEAR FLOW FIELD

The simplest flow field wi that can be constructed to satisfy Eq. (10) is the linear solution

w = u0 +
1
µ

M · (x − x0) ≡ u0 +
1
µ

M · x̂, (13)

with an appropriate choice for the constant matrix M . The explicit form of M for this case has
been given earlier without proof.12 Here, we give a general derivation of this result that will provide
guidance on how to construct other forms of wi using different fundamental solutions of the Stokes
equation.

The linear flow field in Eq. (13) can be written as that due to a third order tensor

wi = u0
i +

1
µ

Mik x̂k = u0
i +

1
µ

Mjk x̂kδi j . (14)

We can see immediately that wi now satisfies Eq. (7) with P = 0, and Eq. (8) gives

Mll ≡ Tr(M) = 0. (15)

The stress tensor, Σil, and traction, Fi , that correspond to wi are

Σil = µ


∂wi

∂xl
+
∂wl

∂xi


= Mjkδklδi j + Mjkδkiδl j = Mil + Ml i,

Fi ≡ Σilnl = (Mil + Ml i) nl . (16)

Now M must be chosen to satisfy: Tr(M) = 0, and the traction, Fi, must, according to Eq. (10b), be
equal to f 0

i at x = x0, that is,

F 0
i ≡ [Mil + Ml i] n0

l = f 0
i . (17)

Noting that the only vectors at our disposal are f0 and n0, then owing to the linear nature
of the problem, Mjk can only be a linear combination of the tensors: δ jk, f 0

j n
0
k
, n0

j f 0
k
, and n0

jn
0
k
.
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One can see immediately that Mjk should contain f 0
j n

0
k
, since Mjkδklδi jn0

l
= ( f 0

j n
0
k
)δklδi jn0

l
= f 0

i .
However, terms with f 0

l
n0
l

will also appear due to the term Mjkδkiδl j that gives Mjkδkiδl jn0
l

= ( f 0
j n

0
k
)δkiδl jn0

l
= f 0

j n
0
in

0
j = ( f 0

l
n0
l
)n0

i . Thus, the most general form of Mjk is

Mjk = f 0
j n

0
k + f 0

l n0
l


c1δ jk + c2n0

jn
0
k


, (18)

where c1 and c2 are constants and c1δ jk + c2n0
jn

0
k

is the most general tensor, independent of f0

since it already appears in f 0
l
n0
l
, that can be constructed from n0

jn
0
k

(see Landau and Lifshitz18).
Combining Eqs. (15), (17), and (18), we have

2c1 + 2c2 + 1 = 0,
1 + 3c1 + c2 = 0, (19)

with solution c1 = c2 = − 1
4 . Thus, the desired form for Mjk is

Mjk = f 0
j n

0
k −

1
4

f 0
l n0

l


δ jk + n0

jn
0
k


, (20)

a result that was given earlier.12 The linear solution for w can be used for both interior problems or
exterior problems in an infinite domain, though not for semi-infinite domains.

IV. BRIEF OF STOKES FLOW USING A THIRD ORDER TENSOR FUNDAMENTAL
SOLUTION

We have seen in Sec. III that the linear flow field wi considered in Eq. (14) can be written in a
more general form as a third order tensor

wi = u0
i +

1
µ

MjkQi jk, (21)

in which Mjk is a constant matrix and Qi jk is a third order tensor function of x that can be one of
the fundamental solutions of Stokes flow.19–21 The various known forms of Qi jk together with the
corresponding pressure field P and coefficient matrix Mjk are summarised in Table I.

We now show how the constant matrix Mjk can be determined by ensuring that the conditions
in Eq. (10) are satisfied. Consider as an example, the Stokes stresslet fundamental solution20,21 given
by item (V) in Table I for which wi is

wi = u0
i +

1
µ

Mjk


*
,
3

x̂d
i x̂d

j x̂d
k

r5
d

−
x̂d
i δ jk

r3
d

+
-
− *
,
3

âd
i âd

j âd
k

a5 −
âd
i δ jk

a3
+
-


, (22)

with the corresponding pressure field

P = 2Mjk
*
,
3

x̂d
j x̂d

k

r5
d

−
δ jk

r3
d

+
-
. (23)

In Eqs. (22) and (23), xd ≡ xd
i is the source position of the stresslet that is located outside the

flow domain (see Fig. 1), x̂d ≡ x̂d
i = xi − xd

i , rd = |x̂d |, âd ≡ âd
i = x0

i − xd
i , a = |âd |. Obviously, the

flow field given in Eqs. (22) and (23) satisfies Eqs. (7) and (8) as well as the first requirement of
Eq. (10a): w0

i = u0
i , as x → x0. Noting that a stresslet is symmetric, the matrix Mjk in Eq. (22) must

also be symmetric. Thus, we can write the traction that corresponds to wi as

Fi =
6
r5
d


Mll(x̂d

l nl)x̂d
i + (x̂d

j Mjknk)x̂d
i + x̂d

j Mj i(x̂d
l nl) − 5

r2
d

(x̂d
j Mjk x̂d

k )(x̂d
l nl)x̂d

i


. (24)

The condition in Eq. (10b) implies

f 0
i =

6
a5


Mll(âd

l n0
l )âd

i + (âd
j Mjkn0

k)âd
i + âd

j Mj i(âd
l n0

l ) −
5
a2 (âd

j Mjk âd
k )(âd

l n0
l )âd

i


. (25)

There are a few different choices for Mjk that can satisfy the above constraint. The vectors at our
disposal are f0, n0, and âd, so to preserve the linear nature of Mjk with respect to f 0

i , it should be a
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linear combination of δ jk, f 0
j â

d
k
, âd

j f 0
k
, f 0

j n
0
k
, n0

j f 0
k
, n0

j â
d
k
, âd

j n0
k
, âd

j âd
k
, and n0

jn
0
k
. One possible option

for such a linear combination is

Mjk =
a

12b2 âd
j âd

k

�
−6b( f 0

l âd
l ) + a2( f 0

l n0
l )
�
+

a3

6b
(âd

j f 0
k + f 0

j â
d
k ), (26)

in which b = âd
l
n0
l
, 0. This is the result given in item (V) in Table I.

Different formulations of the regular form of the boundary integral equation (12) using other
fundamental solutions, Qi jk, of the Stokes equation that are third order tensors together with the
corresponding pressure field, P, and coefficient matrix, Mjk, are given in Table I. They can be
readily derived by following the steps outlined above.

V. BRIEF OF STOKES FLOW USING A SECOND ORDER TENSOR FUNDAMENTAL
SOLUTION

Fundamental solutions for Stokes flow that are second order tensor functions, Si j, can also be
used to construct the flow field, wi of the general form

wi = u0
i +

1
µ

D jSi j, (27)

where the constant vector, D j, is found by imposing the two conditions in Eq. (10).
One example of this class of solutions is the source potential doublet,20,21 see item (II) of

Table II, that has zero pressure, P = 0. The flow field wi that can be constructed is

wi = u0
i +

1
µ

D j






δi j

r3
d

−
3x̂d

i x̂d
j

r5
d


−


δi j

a3 −
3âd

i âd
j

a5






(28)

that satisfies Eq. (10a). The corresponding traction is

Fi = −
6
r5
d


Di(x̂d

l nl) + x̂d
i (nlDl) + ni(Dl x̂d

l ) −
5
r2
d

x̂d
i (Dl x̂d

l )(x̂d
knk)


. (29)

The requirement of Eq. (10b) on the traction then implies

f 0
i = −

6
a5


bDi + âd

i (n0
l Dl) + n0

i (Dl âd
l ) −

5b
a2 âd

i (Dl âd
l )

, (30)

in which b = âd
l
n0
l
, 0. This gives

D j = −
a5 f 0

j

6b
+

a5n0
j

6b



a2( f 0
l
n0
l
) − 2b( f 0

l
âd
l
)

a2 + b2


+

âd
j

6b



−2a5b( f 0
l
n0
l
) + (a5 + 5a3b2)( f 0

l
âd
l
)

a2 + b2


. (31)

Table II also contains the result for wi obtained using a Stokeson.

VI. EXAMPLES

We now furnish examples to illustrate the implementation of the BRIEF of single-phase Stokes
flow problems and to demonstrate the many unique advantages of this approach. The key result of
the BRIEF given by Eq. (12) relates the surface velocity to the surface traction. Therefore, we first
demonstrate the solution of two problems that are defined either by specifying the velocity field or
the surface traction. We also use this example to quantify the precision that can be gained by using
quadratic instead of linear surface elements while keeping the number of unknowns or degrees of
freedom consistent, and to show the numerical equivalence of using different fundamental solutions
to regularize the integral equation.

A second example will be used to demonstrate that it is straightforward to calculate the velocity
field accurately not only far from but also close to boundaries using the BRIEF because of the
complete absence of singular behavior. This is a very distinct advantage over the conventional
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boundary integral method (CBIM) in which singularities of the kernel can adversely affect the
accurate evaluation of the velocities at field points close to the surface.

Another advantage of the BRIEF is that extreme geometric aspect ratios in the boundaries do
not degrade the numerical precision of the solution. We illustrate this by considering the case of
two nearly touching spheres in an external flow field that also serves the purpose of illustrating how
forces and torques can be computed accurately by the BRIEF. In this and subsequent examples,
we also consider cases in which neither the surface velocity nor the surface traction is specified,
but rather a relation between these two quantities obeying the Navier slip boundary condition is
imposed.

We also consider examples of lubrication flow between closely spaced surfaces where the field
quantities become unbounded in the limit of zero separation. These examples illustrate the fact that
in absence of mathematical singularities, the BRIEF is better positioned to handle the unavoidable
physical divergences.

Finally, we consider the calculation of forces and torques experienced by bodies of varying
geometric aspect ratios with varying Navier slip boundary conditions imposed on the surfaces.

Where appropriate, we compare results with that obtained from the CBIM in which the rigid
body solution has been subtracted,8

S

(ui − u0
i )Ti jknk dS(x) = 1

µ


S

f iUi j dS(x). (32)

There is a general point to note in selecting the desired flow field w given in Tables I and II
to construct the BRIEF. For external problems, it is also necessary to consider the integral over the
surface at infinity, S∞, that grows at r2 as r → ∞. For the cases of w that have been identified as
applicable to both internal and external problems under the Domain category in Tables I and II, the
terms that involve rd decay faster than r−2 and so such terms do not contribute to the integral over
S∞. The integral on the right hand side of Eq. (12) also vanishes on S∞ because Ui j vanishes as r−1,
f i as r−2, and Fi as r−3 as r → ∞. Finally, the limiting form of the left hand side of Eq. (12) on S∞
will depend on the choice of the flow field wi constructed from the fundamental solutions. As an
example, for the case of a stresslet (entry V in Table I), the left hand side of Eq. (12) on S∞ is

8πu0
i −

8π
µ

âd
i


1

3b
( f 0

l âd
l ) −

a2

6b2 ( f 0
l n0

l )

. (33)

A notable exception is the linear solution for which the contribution on S∞ also vanishes due to
cancellations owing to the symmetry of the angular integration when the domain is infinite. If this is
not the case, for instance, in a semi-infinite domain, the linear solution cannot be used.

A. Velocity or traction boundary conditions

We consider two examples in which we determine the velocity on a boundary that is either
a sphere with free slip or zero tangential stress boundary conditions placed in an external flow
field, Uk, that is uniform at infinity, or on a boundary that is a sphere centered at the origin in a
quiescent fluid and subjected to a surface traction f = (3µU/R2)zn. In the former case, the veloc-
ity components parallel and perpendicular to the surface are given by23 u⊥ = U cos θ{1 − (R/rc)},
u|| = U sin θ{−1 + 1

2 (R/rc)}, where rc is the radial distance from the center of the sphere and θ is
the angle between the vector k and the radial direction.

In these two examples, we compare in Fig. 2, the variation of the maximum absolute error in
the surface velocity as a function of the number of degrees of freedom (or the number of unknowns)
using linear and quadratic elements based on the same triangular surface mesh. With linear ele-
ments, we see that results from the CBIM and from the BRIEF using a linear function, a source
potential or a stresslet with xd at the center of the sphere to remove the singularities, gave practically
identical results. However, if quadratic elements are used, the magnitude of the maximum absolute
error decreases by almost an order of magnitude, or equivalently, if quadratic elements are used
instead of linear elements, the same precision can be attained be reducing the degree of freedom by
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FIG. 2. The maximum absolute error of the surface velocity on a sphere: (a) with the zero tangential stress boundary condition
located in an uniform flow field and (b) in a quiescent fluid under a prescribed surface traction f = (3µU/R2)zn.22 The BRIEF
results, Eq. (12), obtained using a linear field, a source potential, and a stresslet for the auxiliary field w are compared to results
from the CBIM according to Eq. (32).

about a factor of 10. Thus the combination of the BRIEF with quadratic elements offers significant
advantages in terms of precision and computational effort.

B. Velocity field near boundaries

The BRIEF of Stokes flow can also be used to calculate accurately the velocity at field points
close to a boundary by alleviating the loss of precision in the CBIM due to the near singular
behavior of the integrals. We achieve this by using a simple extension of the method developed for
the solution of the Laplace equation11 to give a robust way to calculate the flow velocity by BRIEF
anywhere within the flow domain using

u j(xp) = w j(xp) − 1
8π


S

(ui − wi)(T p

i jk
− Ti jk)nk dS(x) − 1

µ


S

( f i − Fi)(U p
i j −Ui j) dS(x)


.

(34)

Here, xp is a point in the flow domain for which the fluid velocity u j(xp) is to be calculated, w j(xp)
is value of the constructed flow field at the same position, U p

i j = Ui j(x, xp), T p

i jk
= Ti jk(x, xp), and x0

in Ui j(x, x0), Ti jk(x, x0) is taken to be the node on the boundary, S. When xp is close to the surface,
we choose x0 to be related to xp by xp = x0 + αn0, where α is a small constant. With this choice, the
near singular behavior of the term (T p

i jk
− Ti jk)nk is alleviated.

To illustrate the accuracy that can be obtained by using the BRIEF, we consider a sphere of
radius, R, with the free slip (zero tangential stress) boundary condition in a uniform flow field, Uk,
at infinity and compare the velocity in the equatorial plane (z = 0) as a function of position with the
known analytical result23

uz(z = 0) = U
(
1 − R

2x

)
. (35)

From Fig. 3, we see that using the BRIEF plus the source potential (item IV in Table I with xd at the
center of the sphere) with 2352 linear triangular elements and 1178 nodes, the relative error is less
than 1% at all positions. In contrast, the relative error using the CBIM with the same surface mesh
can exceed 20% close to the sphere surface. This indicates that the BRIEF also alleviates the near
singular behavior in the flow domain close to boundaries that is often more difficult to deal with than
the singular behavior on the boundaries in CBIM.
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FIG. 3. The absolute relative error of the z-component, uz, of the velocity on the equatorial plane obtained by the BRIEF of
Stokes flow and by the CBIM for a free slip sphere with the zero tangential stress boundary condition in a uniform external
field Uk using 2352 linear elements with 1178 nodes and the source potential for w. Inset: The scaled velocity, uz/U , as a
function of position.

C. Nearly touching surfaces

Another significant advantage of the BRIEF of Stokes flow is in cases in which boundaries are
very close together whereby the problem has disparate but important characteristic length scales.
In the CBIM, the singular behavior of the kernel on one boundary will invariably have an adverse
effect on the precision of integrals evaluated on the other nearby boundary even in instances in
which the physical problem does not have any singular behavior. On the other hand, the complete
absence of singular terms in the BRIEF for Stokes flow means that such numerical problems do not
arise.

We illustrate this with the example of two nearly touching spheres of radius R in a uniform flow
field at infinity oriented either parallel or perpendicular to the line of centers. The sphere surfaces
either have a free slip (zero tangential stress) condition or a no slip (zero velocity) condition. Results
are given for the drag force, F, on each sphere calculated by integrating the traction on the surface,
S̄, of that sphere

F =

S̄

f dS(x), (36)

and similarly for the torque, N, about the center of the sphere at xc,

N =

S̄

(x − xc) × f dS(x). (37)

The force and torque are calculated as functions of the distance of closest approach, h/R, between
the spheres. The results are obtained using the source potential (item IV in Table I with xd at the
center of the sphere on which x0 is located) solution in the BRIEF with 2352 linear elements and
1178 nodes on each sphere.

For two spheres aligned with their line of centers along the uniform flow field, we show in
Fig. 4, the drag force as a function of sphere separation for the combinations of free slip boundary
condition on both spheres, no slip boundary conditions on both spheres, no slip boundary condition
on the upstream sphere with free slip boundary condition on the downstream sphere as well as for
two spheres that obey the Navier slip boundary condition with a prescribed slip length, s




un = 0,
ut1 = (s/µ) f St1,
ut2 = (s/µ) f St2,

s ≥ 0. (38)
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FIG. 4. (a) The geometry of two spheres in an uniform flow along the line of centers. (b) Drag force in the z-direction, Fz,
as a function of separation, h/R, for different combinations of no slip, finite slip length, s/a = 0.2, and free slip boundary
conditions on the spheres compared with exact analytical solutions (•) using bipolar coordinates.24 The BRIEF results (lines)
with maximum relative error of less than 0.1% are obtained using 2352 linear elements with 1178 nodes on each sphere and
the source potential for w.

Here, un is normal component and ut1 and ut2 are the tangential components of the fluid velocity
on the surface of the sphere. The tangential components of the traction acting on the sphere are
denoted by f S

t1 and f S
t2. The limit of the slip length s = 0 reduces to the familiar no-slip condition

with u = 0 on the surface. The limit s → ∞ is the perfect free-slip or zero tangential stress case with
the boundary conditions

un = 0, f St1 = 0, f St2 = 0.

In cases for which exact analytic solutions are available,24 the agreement with BRIEF is excellent
(see Fig. 4).

In Fig. 5, we show corresponding results for the surface velocity vector field for the free
slip/free slip and free slip/no slip combinations at a small distance of closest approach between the
spheres: h/R = 0.01 to illustrate the capabilities of the BRIEF. In Fig. 6, the traction field for all
three combinations of free slip/free slip, free slip/no slip, and no slip/no slip at the same separation
is shown.

In Figs. 7–9, we show similar results for the case when the uniform external flow field, Ui, is
oriented perpendicular to the line of centers between the spheres. The drag force on each sphere in

FIG. 5. The surface velocity field, u on (a) two free slip spheres (|u/U |max= 0.42), (b) a free slip and a no slip sphere
(|u/U |max= 0.35), at h/R = 0.01 in a uniform external field, Uk parallel to the line of centers. See Fig. 4 for details.
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FIG. 6. The traction field, f on (a) two free slip spheres (| f R/µU |max= 2.53), (b) a free slip and a no slip sphere
(| f R/µU |max= 2.19), (c) two no slip spheres (| f R/µU |max= 1.25) at h/R = 0.01 in a uniform external field, Uk in the
z-direction parallel to the line of centers. See Fig. 4 for details.

the direction of the external flow and the magnitude of the torque about the y-axis are shown in
Fig. 7 as a function of sphere separation, h/R. Again the agreement with results from available exact
analytic solutions25 is excellent. The surface velocity vector field for the free slip/free slip and free
slip/no slip combinations and the traction field for all three combinations at h/R = 0.01 are shown
in Figs. 8 and 9.

A further test of the numerical precision of our implementation is to compute components of
the forces and torques in the above examples that are expected to be zero from symmetry consid-
erations. We found that the magnitudes of these components are of the order 10−10 times smaller
than the non-zero component. These results illustrate the flexibility and accuracy for all types of
boundary conditions.

FIG. 7. Torques and forces on two spheres in an external uniform flow field, U i, in the x-direction perpendicular to the line
of centers as functions of separation, h/R. (a) The magnitude of the torque about the y-axis, Ny, on both no slip spheres or
on one no slip sphere. Inset: The geometry of two spheres in an uniform flow perpendicular to the line of centers. (b) The
drag force in the x-direction, Fx, when one or both spheres are no slip or free slip, together with exact analytical solution for
two no slip spheres (•).25 The BRIEF results (lines) with maximum relative error of less than 0.2% are obtained using 2352
linear elements with 1178 nodes on each sphere and the source potential for w.
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FIG. 8. The surface velocity field, u, on (a) two free slip spheres (|u/U |max= 0.46), (b) a free slip and a no slip sphere
(|u/U |max= 0.44), at h/R = 0.01 in a uniform external field, U i, perpendicular to the line of centers. See Fig. 7 for details.

FIG. 9. The traction field, f, on (a) two free slip spheres (| f R/µU |max= 2.51), (b) a free slip and a no slip sphere
(| f R/µU |max= 2.30), (c) two no slip spheres (| f R/µU |max= 1.37) at h/R = 0.01 in a uniform external field, U i, in the
x-direction perpendicular to the line of centres. See Fig. 7 for details.

FIG. 10. Torques and forces on two no-slip spheres in a stationary flow field moving with different velocities in the
x-direction perpendicular to the line of centers as functions of separation, h/R. (a) The magnitude of the torques about
the y-axis, Ny. Inset: The geometry of two spheres. (b) The drag force in the x-direction, Fx, compared with the exact
bipolar asymptotic solution (•).25 The BRIEF results with a maximum relative error less than 1.8% are obtained using 4800
linear triangular elements connected by 2402 nodes on each sphere with the source potential for w.
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FIG. 11. Torques and forces on two spheres no-slip spheres in a stationary flow field rotating in the y-direction perpendicular
to the line of centers as functions of separation, h/R. (a) The magnitude of the torque about the y-axis, Ny. Inset: The
geometry of two spheres. (b) The drag force in the x-direction, Fx, compared with the exact analytical solution (•).25 The
BRIEF results with a maximum relative error less than 1.2% are obtained using 4800 linear triangular elements connected by
2402 nodes on each sphere with the source potential for w.

FIG. 12. The drag force coefficients in (a) x-direction and (b) z-direction of the moving prolate spheroid as a function of
b/a in stationary Stokes flow; the drag force coefficients in (c) x-direction and (d) z-direction of the moving prolate spheroid
as a function of the Navier slip length s/a in stationary Stokes flow. Results from BRIEF with the linear function for w (Item
I in Table I) are shown as lines. For comparison, results shown as (+) in (a) and (c) are obtained by BRIEF with the source
potential w (Item IV in Table I), and results shown as (�) in (b) and (d) are obtained by BRIEF with the stresslet w (Item V
in Table I). Analytical results are shown as (•)20 in (a) and (b) and (▼)23 in (c) and (d). The BRIEF results with maximum
relative error of less than 0.2% are obtained using 2352 linear elements with 1178 nodes on the spheroid.
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D. Lubrication flow

Problems in which lubrication effects within thin gaps between closely spaced boundaries are
important provide additional challenges to the boundary integral methods. In addition to the mathe-
matical singularities in the conventional boundary integral method, the physics of the problem can
give rise to divergences such as an unbounded pressure field as the gap width approaches zero.
Although the BRIEF removed the mathematical singularities, the divergent behavior of the relevant
physical quantities must remain.

To illustrate such situations, we consider two examples: two nearly touching spheres with
no-slip boundary condition moving with different velocities, U and 2U, perpendicular to their line
of centers (Fig. 10(a)), and two nearly touching spheres rotating with the same angular velocity,
ω, about axes perpendicular to their line of centers (Fig. 11(a)). Due to the lubrication effect, the
pressure within the gap becomes very high as the sphere separation decreases, and can become chal-
lenging numerically. To obtain satisfactory results corresponding to a minimum sphere separation,
scaled by the radius, h/R down to 10−3, we employ a finer uniform mesh with 4800 linear triangular
elements connected by 2402 nodes on each sphere—about twice as dense as previous examples.
The results obtained using BRIEF with the source potential (Item IV in Table I) are in excellent
agreement with exact bipolar coordinate system solution,25 as shown in Figs. 10 and 11.

FIG. 13. The torque coefficients in (a) x-direction and (b) z-direction of a rotating prolate spheroid with angular frequency
ωx and ωz, respectively, as functions of b/a in stationary Stokes flow; the torque coefficients in (c) x-direction and (d)
z-direction of the rotating prolate spheroid as a function of the Navier slip length s/a in stationary Stokes flow. Results from
BRIEF with the linear function for w (Item I in Table I) are shown as lines. For comparison, results shown as (+) in (a) and (c)
are obtained by BRIEF with the source potential w (Item IV in Table I), and results shown as (�) in (b) and (d) are obtained
by BRIEF with the stresslet w (Item V in Table I). Analytical results are shown as (•).26 The BRIEF results with maximum
relative error of less than 0.1% are obtained using 2352 linear elements with 1178 nodes on the spheroid.
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E. Forces and torques on spheroids

As a final example, we consider forces experienced by a solid prolate spheroid translating
with constant velocity, U, along its axes as functions of the aspect ratio and varying Navier slip
boundary conditions (Fig. 12). We also investigate the torque experienced by a prolate spheroid
rotating about the major axes at constant angular velocity, ω (Fig. 13). The surface of the spheroid,
with semi-major and semi-minor axes a and b, is defined by

x2

a2 +
y2 + z2

b2 = 1, b ≤ a (39)

and is represented by a linear triangular mesh with 2352 elements connected by 1178 nodes.
Analytical expressions for the forces and torques of such particles with the no slip boundary condi-
tion are given by Chwang and Wu.20,26 For comparison, we also give results for spheroids with the
Navier slip boundary condition for different slip lengths, s, in which, the analytical solutions are
given by Lamb23 when a = b (sphere).

Results for the forces on the prolate spheroid in external flow fields of different orientations are
given in Fig. 12 and for the torques on rotating prolate spheroids are given in Fig. 13. In those cases
for which analytical results are available, the agreement with the numerical results obtained using
BRIEF is excellent.

VII. CONCLUSIONS

In this paper, we have shown how the Stokes equation for single-phase flow with prescribed
boundary conditions can be cast as a boundary regularized integral equation (12) with integrands
that are completely free of singularities that normally exist in the traditional form of the boundary
integral equation. The singularities are removed by subtracting an auxiliary known flow field w that
has the same singular behaviour as in the traditional formulation of the problem. As a result, the
singularities as well as the solid angle that appear in the conventional boundary integral formulation
are removed analytically without the need to introduce additional regularization parameters.

The present formulation is, therefore, fundamentally different to the regularized Stokeslet
approach16 that removes the singularities in the fundamental solutions by spreading a δ-function
force over a small ball of radius ϵ , where the optimal value of ϵ that minimises error needs to be
determined. The numerical effort in solving the linear system in BRIEF is comparable to that in
CBIM but no special provisions are needed to compute the matrix coefficients. In this sense, it is
more efficient than the contour integral formulation.1

We show that different auxiliary flow fields, w, can be constructed using different known funda-
mental solutions of the Stokes equation as summarized in Eqs. (21) and (27) and Tables I and II.
The absence of singular terms in the integrals means that even problems with surfaces that are very
close together will not suffer any loss of numerical precision due to the adverse influence of the
singularity of one surface upon a nearby surface. The regular nature of the BRIEF also provides
a numerically robust way to evaluate field quantities near boundaries that are often more difficult
to deal with than the singular behavior on the boundaries of the conventional boundary integral
method.

By reformulating the boundary integral equation to remove the traditional singularities analyt-
ically, rather than developing integration algorithms to handle the integration over the element that
contains the singular behavior, the same triangular mesh can be readily used to represent linear
or quadratic elements. In practical implementations, the absence of any singular terms allows a
significant reduction in the amount of computer code required with a corresponding reduction in the
possibility of coding errors. And as we have seen, the use of quadratic elements offers a substan-
tial gain in numerical precision. This flexibility therefore provides a convenient way to check the
accuracy of a calculation by comparing results obtained from using linear and quadratic elements.

In all our examples, there is no practical difference in the numerical results obtained from using
the different forms of the auxiliary function w given in Tables I and II. This is an expected result
and indicates the analytical stability of BRIEF in removing the mathematical singularities in the
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conventional formulation of the boundary integral equations. Any convenient choice of w will result
in a numerically robust scheme for solving the boundary integrals equation.

With all the above advantages, the BRIEF of the Stokes problem presented here should always
be used in preference to the traditional approach. Since the original physical fluid problem has no
singularities, it is also intuitively satisfying that the corresponding numerical scheme can indeed be
free of any singular behavior of a purely mathematical origin. Although we have only discussed
applications of the BRIEF to single-phase flow, an obvious development is to adopt this approach to
multi-phase flow problems.
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APPENDIX: NUMERICAL IMPLEMENTATION OF BRIEF

We now give the details of the numerical implementation of BRIEF of Eq. (12). Take the
BRIEF with simply linear solution (Item I in Table I), for example, after introducing Eqs. (14) and
(16) into Eq. (12) by using the expression for Mjk in Eq. (20) that is listed at Item I of Table I, the
boundary regularized integral formulation equation can be rearranged so that all velocities appear
on the left-hand side and all tractions on the right-hand side

S

(ui − u0
i )Ti jknk dS

=
1
µ


S

( f i − f 0
i n0

lnl)Ui j dS

+
1
µ


S


1
2
( f 0

kn0
k)(δil + n0

in
0
l ) − f 0

l n0
i


nlUi j dS

+
1
µ


S

�
f 0
i n0

l (xl − x0
l )
�
Ti jknk dS

+
1
µ


S


−1

4
( f 0

mn0
m)(δil + n0

in
0
l )(xl − x0

l )


Ti jknk dS. (A1)

FIG. 14. Structure of the matrix equation corresponding to Eq. (A1) for implementing the well-conditioned BIM. In the
traditional BIM, the entries that appear as blocks of 3×3 in the matrices along the diagonal (indicated with an “x”) will
involve integrals over the singular point of the fundamental solutions.
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When the surface S is partitioned into elements defined by N nodes, the integrals in Eq. (A1)
over each element can be evaluated by quadrature and give rise to the matrix equation

H ·u = 1
µ

G ·f (A2)

for the components of u and f at each node, see Fig. 14. Here, H is the 3N × 3N influence matrix
corresponding to the velocity on the left-hand side of Eq. (A1), and G is the 3N × 3N influence
matrix corresponding to the traction on the right-hand side of Eq. (A1). The vectors u andf, both
of size 3N , contain every component of u and f at all the nodes. The coefficients corresponding to
terms u0

i and f 0
i appear in the “x” items of the 3 × 3 sub-matrices along the diagonals of the matrices

H and G, respectively, and the coefficients corresponding to terms ui and f i appear in the “o” items
in the matrices H and G, respectively.

In the traditional BIM formulation, the elements of the 3 × 3 sub-matrices along the diagonals
of the matrices H and G, indicated with an “x” within the square boxes in Fig. 14, involved integrals
over the singularities of the fundamental solutions. Numerous schemes have been developed to
ensure the accurate numerical evaluation of such integrals10 and is one of the more arduous tasks
in the numerical implementation of the BIM. But since the integrands in Eq. (A1) are now free of
singularities, all matrix entries can be obtained using, for example, the Gauss-Quadrature scheme to
evaluate the integrals over each surface element.

To implement BRIEF with the linear solution for the auxiliary function w, the number of lines
of code needed to compute the matrix elements in squares that contain “x” along the diagonals of
the matrices H and G is less than 40% of that needed in the CBIM, where the local coordinate
system transformation10 is applied to deal with the singularities.
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