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We investigate the effects of solute/solvent size ratio on the solvent mediated potential of mean force between solutes at 
intiite dilution. Predictions of Landau-Gmzburg mean field theory are comuared with a Percus-Yevick-hypemetted chain 
theory of a mixture of infbitely dilute hard sphere solutes in a solvent of hard spheres with surface adhesion (sticky spheres). 

The study of solvent mediated (structural) interac- 

tions began with Langmuir [l] and encompasses a host 
of problems in colloid science and solution theory. The 
systems of interest, for instance ion-dipole mixtures 
and hydrophobic solutions, are complex and there is 
a need for simple theories which capture the essence 
of solvent effects on solute-solute interactions. Re- 
cent progress includes the direct experimental observa- 
tion of structural forces in aqueous systems [2,3] and 
the application of simple mean field theory [4-61 and 
liquid state theories [7] to model systems. Other stud- 
ies include Monte Carlo calculations wirh a model 
water solvent [S] and studies of ion-ion interactions 
in a dipolar solvent [9-121. Deutch and co-workers 
[13] have used the hypemetted chain equation to in- 
vestigate the interaction of hard sphere solutes in a 
sohJent of equal size hard spheres with a Yukawa po- 
tential attraction. They found that the inftite dilu- 
tion solute-solute potential of mean force changed 
from an oscillatory to nearly monotonic form as the 
solvent-solvent attraction was increased. They also 
observed the solvent depletion near a solute molecule 
usually associated with monotonic interactions [7] as 
did Sullivan and Stell [ 14]_ 

Our previous studies of structural interactions [7] 
in model solvent systems were for large solute particles 
(walls) since this simplified the analysis. Here we ex- 
tend this study to finite size solutes and show that the 
results are essentially independent of solute size. Fur- 

ther we compare the predictions of liquid state theories 
directly with the simpler mean field theory. 

Consider then an infinitely dilute hard sphere solu- 
tion of specL 3 2 of diameter R, in a solvent (species 1) 
with number density p r and diameter R 1 _ The pair po- 

ten&al is taktn to be a surface adhesion (“sticky 

spheres”) [ 1 f. ] 

exp I-r@)/kTl - 1 

= -1 + (R,+12~~) 6(r - Rii>, r G Rii; (1) 

= 0, r > Rij, 

where Rq = (Ri + Rj)/2 and Tii measures the strength 

of the adhesion. The form of eq. (1) ensures that the 

analysis of this model fluid is simple yet retains the 
essential physics of the problem; e.g. the model exhib- 

its a realist& liquid-gas phase transition 1161. We seek 
the solute-solute potential of mean force, Wz2 

= -kT !n (1 + h&, at infinite dilution from the 
Omstein-Zemike equation (& -+ 0): 

h,,(r) = C&(r) +P1 j-d+@ -r’)C&)* (2) 

where hii and Cg are respectively the total and direct 
correlation functions. Successive use of the Percus- 
Yevick (PY) and hypemetted chain (HNC) approxima- 
tions for Czz allow the identification [7] 
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Fig. 1. Potential of mean force IV22 between two hard sphere 
solutes in a sticky sphere solvent at infmite dilution wi4 p* 
= 0.7, T* = 1.0 (low pressure; and solute/solvent size ratio 
Rz/R,: (a) 0.1, @) 1.0, (cc) 5 and (d) -_ The dotted curve 
corresponds tc the case Rz/R 1 = I in which the solute- 
solvent adhesion is one quarter of that between solvents. 

W&NC(r) = -kThI;;(r), (3) 

when u.&) = 0. 
In this calculation we use the more readily accessible 

PY solutions [7,15,17] to e 
B 

s. (1) and (2) to yield 
WpzNc via eq. (3) Unlike W2$, WY?’ is well behaved 
for all R,/R, , and satisfies the Deryaguin approxima- 
tion [ 191; i.e. (R, /R2) WFP’ becomes independent 
ofR, as R21R, + 00. We solve eq. (2) using Baxter’s 
technique [7,15-17,20]. For any specified solvent re- 
duced density, p* = pRz , the solvent-solvent adhesion 
(rl r j is chosen to yield the same second virial coeffi- 
cient as a Lennard-Jones fluid with reduced tempera- 
ture T* = kT/e [7]. 

In figs. 1 and 2 the effect of solute/solvent size ra- 
tio on (R JR2)W22 is shown for low and high pressures, 

Fig. 2_ As for fig. 1 but at p* = 0.85, T* = 1.3 (high pressure) 

and Rz/!R 1: (aI 0.1, cb) 1 and (c) -. The dotted curve cor- 
responds to the case Rz/R 1 = 1 in which the solute-soIvent 
adhesion is one half of that between solvents_ 

respectively. For hard sphere solutes (7r2. 722 + m) 
W22 is monotonic and becomes oscillatory as the 
solute-solvent interaction becomes attractive although 
this effect is less pronounced as R2/Rl increases. It is 
clear that W22/R2 is not strongly dependent on R2. 
As the solvent-solvent attraction increases (smaller r1 1) 
the solute-solute attraction also increases. These re- 
sults indicate that our earlier studies [7] of the interac- 
tion of large solutes (walls) do bear upon finite size 
solutes. However, for more strongly correlated solvents, 
such as water, the different clathrate cages formed 
about small solutes [21] and near interfaces require 
more detailed study. 

So far our results have provided some insight into 
the conditions under which we can expect to find 
oscillatory or monotonic forms of W,,, but calcula- 
tions for more realistic potentials rapidly become im- 
possible. It is therefore desirable to have a simple ana- 
lytic theory of solute-solute interactions due to sol- 
vent structure. This possrhility has been foreshadowed 
in a recent mean field theory based on the Landau- 
Ginzburg formalism [4-6]. When solute induced per- 
turbations of solvent structure in an infinitely dilute 
solution are smal! and slowly varying, mean field 
theory predicts an essentially exponential form for 
W22 with a decay length .$ given by [6] 

b,/6)lh,,(r)r2dr 

E2 = 1 iplJhll(r)dr ’ (4) 

which depends only on the properties of the pure sol- 
vent. The predictions of eq. (4) are compared in table 1 
with decay length for exponential interaction energies 
for large solutes (hard walls) separated by sticky sphere 
and Lennard-Jones fluids [7]. For the sticky sphere 
fluid E was calculated using PY h 11 while for the 
Lermard-Jones case Monte Carlo calculations of h 1 1 
were used. The agreement is good even though .$ is only 
of the order of a molecular diameter. This is remarkable 
since, strictly speaking, mean field theory should only 
be valid when the correlation length is of the order of 
many molecular diameters 161. 

A direct test of the mean field theory prediction of 
W22 for large solutes is presented in fig. 3 for the most 
favourable case; i.e. for low pressures when ,!j = 6(2Rl). 
Taking the order parameter (a concept invoked in the 
mean field theory) as the local solvent density about a 
solute, 6p/p = h12(r), mean field theory predicts [6] 
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Table 1 
Comparison at decay lengths predicted by cq. (4) and deter- 
mined from exponential interaction energies for huge hard 
sphere solutes interacting across model solvents 

Pf f mean field theory numerical 

sticky sphere fluid 

0.5 1.3 1.79 1.81 

0.7 1.3 0.77 0.81 

0.7 1.0 1.40 1.43 

0.75 1.05 0.92 0.95 

0.85 1.3 0.44 0.54 

Lennard-Jones fluid 

0.75 1.07 1.8 1.5 

the interaction energy per unit area between two planar 
surfaces to be 

2Eh;2(0) e-~I~ 
E=- K 

1 +e-r/#’ 
(5) 

wfiere .$ is given by eq. (4) and K is the bulk solvent iso- 
thermal compressibility. Use of the Deryaguin relation 
[19] then yields the potential of mean force between 
two large solutes (R2 + -) 

W2*/R2 = -[%T$~(O)E~/K] lR(l + e-“‘). (6) 

‘Ihe quantities h r2(0), ,$ and K are calculated using the 
PY equations for a sticky sphere fluid [7] against a 

00 , 1 I I 

Fig. 3. A comparison of the potential of mean force between 

Mrge CR2 + -) hard sphere solutes in a sticky sphere solvent 
@ = OS, T’ = 1.3) calculated by (a) mean field theory and 
(b) by the Percus-YevIck-hypemetted chain approximation. 

hard wail. The comparison in fig. 3 indicates that the 
mean field theory underestimates the WF2Nc by about 
30% consistent with uncertainties usually found with 
the PY and HNC theories. It appears that a major dif- 
ficulty with the mean field theory here, and with small 
solutes, is in specifying the boundary value of the or- 
der parameter, here taken as h 12(O). For the case of a 
solvent near a hard wall we have the exact result h12(0) 
= (pplp - 1) where P is the pressure of the solvent. In 
addition the assumption of a constant boundary con- 
dition, independent of solute separation, may be too 
restrictive [6] _ None the less the comparison in Iig. 3 
is an honest test of the mean field theory. 

We have investigated the effects of solute/solvent 
size ratio on the solute-solute potential of mean force 
at infinite dilution using a PY-HNC approximation for 
a system of sticky spheres. The scaled potential of mean 

force (R1/R2)W22 is not strongly dependent on the 
size ratio. We have also shown that a very simple mean 
field theory is capable of giving a reasonable descrip- 
tion of the solute-solute potential of mean force. 
This encourages the search for a simple analytic descrip- 
tion of solvent mediated solute-solute interaction that 
does not require extensive numerical computations. 
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