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ABSTRACT: A force balance model for the rise and impact
of air bubbles in a liquid against rigid horizontal surfaces that
takes into account effects of buoyancy and hydrodynamic drag
forces, bubble deformation, inertia of the fluid via an added
mass force, and a film force between the bubble and the rigid
surface is proposed. Numerical solution of the governing
equations for the position and velocity of the center of mass of
the bubbles is compared against experimental data taken with
ultraclean water. The boundary condition at the air−water
interface is taken to be stress free, which is consistent for
bubbles in clean water systems. Features that are compared include bubble terminal velocity, bubbles accelerating from rest to
terminal speed, and bubbles impacting and bouncing off different solid surfaces for bubbles that have already or are yet to attain
terminal speed. Excellent agreement between theory and experiments indicates that the forces included in the model constitute
the main physical ingredients to describe the bouncing phenomenon.

■ INTRODUCTION

The rise and impact of bubbles against a solid surface is a
fundamental problem in many industrial applications that has
received considerable attention both experimentally1−4 and
theoretically.5−8 For small (radius, R < 60 μm) spherical
bubbles rising under Stokes flow that neglect the effect of fluid
inertia in the limit of zero Reynolds number, analytical
solutions were obtained9,10 for mobile and immobile hydro-
dynamic boundary conditions on the bubble surface. Bubbles in
water in the Stokes flow regime remain spherical and start to
slow down at a distance many bubble radii away from the
surface, and such bubbles will approach and settle on the
surface without bouncing. These theoretical predictions agree
with experimental data11,12 provided the effects of surface forces
such as van der Waals and repulsive electrical double layer are
also included at submicrometer separations.
For large bubbles traveling at high velocities and hence high

Reynolds number due to large buoyancy force, the effect of
inertia can no longer be neglected. Such bubbles will also
exhibit considerable deformations both during rise and
especially during impact with the surface. Furthermore, such
bubbles can bounce a few times before finally adhering or
settling close to the solid surface.1 Surprisingly, even bubbles in
water impacting on a horizontal air/water interface bounce
before bursting into upper air phase.13,14

The boundary condition that needs to be applied at the air−
water interface depends on the cleanliness of the system. In the
presence of impurities or added surfactants, the boundary
condition at the bubble surface can shift from tangentially
mobile to partially mobile or fully immobile depending on the

concentration of impurities or added surfactants.15−17 Con-
sequently, the terminal velocity of bubbles at high Reynolds
numbers can vary by about a factor of 2 between clean18,19 and
contaminated bubbles,2,3 whereas in the low-speed Stokes flow
regime20 (i.e., small size bubbles) the difference is only a factor
of 3/2. Early experiments on bubble terminal velocity were
probably prone to contamination, as can be seen from the large
variations in terminal speed in a compilation of data from
various authors.21

Full numerical solution of the Navier−Stokes equations have
been performed for bubbles rising and impacting on surfaces
using the volume of fluid method8 that is capable of
reproducing the consecutive bounces as observed in experi-
ments.1 The major challenge is in predicting accurately the
shape of the draining fluid film between the bubble and the
rigid surface whose thickness is orders of magnitude smaller
than the size of the bubble. This requires the use of refined
grids that increases significantly the computational cost.
On the other hand, lubrication theory is very accurate when

the separation between the bubble and the surface becomes
smaller than other dimensions. It has proven successful in
comparison with a number of experimental data from the
literature, summarized in recent reviews22,23 or, for example, in
Taylor bubble modeling.24 In those systems the deformable
interfaces were driven at low speeds, and the entire system was
under the Stokes flow regime.
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Recent improvements in high-speed photography allow
measurements of bubble position and thin film drainage at
relatively high impact velocities using synchronized cameras.3

The experiments were modeled by using the experimental
bubble velocity as a boundary condition to the drainage
equations, and the numerical solutions showed the utility of
lubrication in capturing the drainage phase accurately.25,26

Recently, a model that uses the bubble velocity based on a force
balance as the boundary condition to the drainage equations
was proposed for spherical bubbles with tangentially immobile
condition at the bubble surface.5 This model was successful in
predicting trajectories as well as thin film drainage compared
with the experimental data3 in a contaminated system. Bubbles
in clean water systems exhibit a much more pronounced
bouncing behavior than contaminated bubbles due to their
greater impact speed. Experiments concerning bubbles in clean
systems appear to be remarkably reproducible,1 and proper
modeling of inertial effects is now of utmost importance.
Given the availability of recent well-controlled experimental

data and our improved theoretical understanding, it is timely to
revisit and extend the force balance model for mobile and
deformable bubbles at even higher Reynolds numbers. The
model is inspired by early work6 that takes into account the
deformation of the bubble during rise27 and incorporates
modifications of the added mass effect due to the presence of
the rigid surface.28 It is applicable for bubbles that follow a
vertical straight path, so that the system remains axisymmetric
during the impact and drainage processes.
We assume the dynamics of the bubble can be modeled using

an equation of motion of a “point particle”

Σ = + + + = ≈F mF F F F a 0A B D F (1)

where FA is the added mass force, FB the buoyancy force, FD
the drag force, and FF the film force due to the lubrication
pressure build up in the film between the deformed bubble and
the surface. Inertia effects of the fluid comprise a history force
that is negligible for clean bubbles at high Reynolds numbers29

and an added mass force that varies with separation between
the bubble and the rigid surface. Although the mass of the
bubble m can be ignored, the inertia effect of the fluid that
arises from the acceleration a of the bubble needs to be taken
into account. We will discuss each force individually. The
results of the proposed model will be compared with
experimental data from the literature for bubbles that rise
from rest, bubbles at terminal velocity, and bubbles impacting
solid horizontal surfaces.

■ TERMINAL SPEED: BALANCE BETWEEN
BUYOANCY AND DRAG

In order to model the correct behavior of a bouncing bubble, it
is crucial to obtain the correct terminal velocity when it is far
from the surface. This is found by balancing the buoyancy and
drag force taking into account deformation of the rising bubble.
If the deformation is overestimated for a given equivalent
radius, the cross-sectional area of the bubble will be too large,
resulting in more drag and hence a lower terminal velocity. In
this section, the relation between the buoyancy force, drag
force, and deformation will be investigated.
In Figure 1 we introduce the parameters that are needed for

the development of the model. A bubble of equivalent radius R
rises with velocity V(t) before impacting a horizontal solid
surface (t is time). Depending on the size and velocity, the
bubble can attain an oblate ellipsoid shape during rise as

indicated by the dashed shape. The equivalent radius R is
defined as

π
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⎝
⎞
⎠R

V3
4

o
1/3

(2)

where the volume Vo of the bubble is give by Vo = (4π/3)Rh
2Rv

with Rh being the horizontal radius and Rv the vertical radius of
the ellipsoidal bubble. The aspect ratio of the deformed bubble
is defined as χ = Rh/Rv. In the experiments of Duineveld18 a
bubble rising with terminal velocity with R = 0.5, 0.75, and 1.0
mm gives χ ≈ 1.1, 1.5, and 2.0, respectively. On the basis of
these results, the deformation of the bubble needs to be taken
into account if R > 0.3 mm.
A bubble rising in a liquid experiences a buoyancy force,

which is equal to the density of the fluid ρ, multiplied by the
gravitational constant, g, and the volume of the bubble

ρ π= − g RF k
4
3B

3

(3)

The density of the gas inside the bubble has been neglected.
The unit vector k points in the vertical direction of gravity g.
When a bubble moves in a liquid, it experiences a drag force

of the form27

π μ= C RVF kRe
4D D (4)

where Re = 2RρV/μ is the instantaneous Reynolds number. For
a bubble rising at terminal velocity VT, the velocity is simply V
= VT. The drag coefficient CD was calculated analytically for an
ellipsoidal bubble with zero tangential stress boundary
condition27 and has the form
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with χ = Rh/Rv and
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The function K was found numerically27 and can be
approximated by the following polynomial6

Figure 1. Schematic of the experimental system: An air bubble with
equivalent radius R and interfacial tension σ rises with velocity V(t) in
clean water with zero tangential stress boundary condition (t indicates
time) with viscosity μ and density ρ. Dashed line corresponds to the
shape of the ellipsoidal bubble.
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χ χ χ χ χ= − + −

−

K( ) 0.0195 0.2134 1.7026 2.1461

1.5732

4 3 2

(7)

At steady state, terminal velocity is determined by FB + FD = 0.
The bubble will then rise at a constant speed VT that depends
on the aspect ratio χ.
It was observed by Duineveld18 that if the experimental

aspect ratio is provided in the model of Moore27 then the
predicted terminal velocity using Moore’s analytical expression
for CD corresponds to the experimentally observed terminal
velocity. Therefore, an expression for the aspect ratio as a
function of equivalent radius is desired. We can find an
approximated expression for the aspect ratio using a ratio
between polynomials (see Figure 2a) that best fits the
experimental data. The expression for the inverse aspect ratio
is then written as

χ λ
λ λ

= +
− +

− 0.74 0.45
1 1.17 2.74

1
2 (8)

where λ =R/R0 and R0 = 1 mm that is accurate for 0.3 mm < R
< 1 mm or equivalently 0.3 < λ < 1. The constants were chosen
to give the best fit to the experimental data. For R < 0.3 mm the
deformation is negligible and a spherical shape can be assumed,
and for R ≳ 1 mm the bubble starts to zigzag and movement is
no longer in a straight path.18

The curve of the inverse aspect ratio given by eq 8 is also
shown in Figure 2a. It was designed to fit the experimental data
of Duineveld18 and Wu and Gharib.19 Moore’s result
overestimates the deformation (dashed line) slightly, and this
will result in a noticeable effect on the terminal velocity.
The terminal velocity VT as a function of radius of rising

bubbles is shown in Figure 2b. Experimental data1,13,18,19 of
rising bubbles in a clean water system are compared with the
analytical solution for ellipsoidal bubbles given by Moore27 and
also using the aforementioned fit for the aspect ratio of eq 8 in
Moore’s drag force (eqs 4−7). The combination of the
analytical result of Moore and our fit for the aspect ratio are
used to predict the terminal velocity of such bubbles. Note that
if the bubble would remain spherical, the terminal velocity
would continue to increase as a function of the radius, but with
deformation included the velocity has a maximum at R ≈ 0.8
mm before it decreases.
Analytical expressions for the aspect ratio as a function of

equivalent bubble radius that are valid for small deformations
were given by Moore27 as χ = 1 + 9We/64 and also by
Legendre et al.30 as χ = 1/(1 − 9We/64). In these expressions
the Weber number, We = 2RρV2/σ, is required, which is a
function of velocity.
The terminal velocity for bubbles in contaminated systems is

lower by about a factor of 2 when compared to clean systems.
The experimental data of Zednikova et al.2 and Hendrix et al.3

agree well with the empirical drag relation for solid spheres with
no slip boundary condition proposed by Schiller and
Naumann31 where the drag coefficient is given empirically by

= +C Re 24(1 0.15Re )D
0.687

■ ACCELERATING BUBBLES: THE ADDED MASS
FORCE

Now that we have seen how the terminal velocity can be
obtained, we will extend the theory toward a bubble
accelerating from rest. Besides the bubble itself, part of the
surrounding fluid must also be accelerated. This will give rise to
the added mass force. First, consider a bubble accelerating from
rest in a liquid far away from any boundary. The added mass
force inertial effect is given by

π ρ ρ+R C
V
t

k
4
3

( )
d
d

3
m b (9)

where Cm is the added mass coefficient. For a spherical bubble
in an infinite domain, Cm = 1/2, while for an oblate ellipsoid
bubble Cm depends on the bubble’s aspect ratio.6 Since we are
dealing with bubbles in water, the density of the air contents of
the bubble ρb is much smaller than the density of the
surrounding liquid, ρ, and can thus be neglected. Balancing the
forces of eqs 3, 4, and 9 results in a differential equation for an
accelerating bubble as

π ρ π ρ π μ= −R C
V
t

R g C RV
4
3

d
d

4
3

Re
4

3
m

3
D (10)

Figure 2. (a) Inverse aspect ratio χ−1 of rising bubbles in clean water.
The continuous line corresponding to using eq 5 and the dashed line
corresponding to Moore27 calculation are compared with experiments
of Duineveld18 and Wu and Gharib.19 (b) Terminal velocity of bubbles
rising in bulk. (Top cluster) Bubbles rising in clean water systems from
various experimental sources1,13,18,19 are compared with the theory of
Moore27 assuming a spherical (dotted), ellipsoidal (dashed), and
ellipsoidal with eq 8 for the aspect ratio fit (solid line). The Reynolds
number ranges between 50 and 700. (Bottom cluster) Bubbles rising
in surfactant systems2,3 remain mostly spherical, and their terminal
velocity is compared with the empirical relation for solid spheres with
no slip boundary condition of Schiller and Naumann.31
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In Figure 3 we compare the theoretical result of eq 10 for the
position and velocity of the bubble as a function of time with

the experimental data of Zawala and Malysa.13 The bubbles
with different radii are released from a syringe from rest (V = 0
at t = 0) and accelerate. Theoretically we assume the aspect
ratio given by eq 8 for the deformation, which will provide the
same deformation as a bubble at constant terminal velocity. We
have taken Cm = 1/2 for the added mass coefficient, which is
the case for the start of the acceleration process when the
bubbles are still spherical. When the bubbles become deformed,
the assumption of a spherical bubble underestimates the added
mass effect, and consequently, the bubbles travel faster than
those of the experiment. For the smaller bubble with R = 0.50
mm, the agreement is reasonable as the deformation remains
small. In reality, both the aspect ratio χ and the added mass
coefficient Cm are functions of the velocity (and thus of time),
but for simplicity we have taken them as constants (Cm = 1/2
and χ given by eq 8).
In Figure 3a we see that experimentally the distance traveled

by bubbles of different radii in the first 25 ms after release from
rest is very similar. This is because larger bubbles deform
significantly and the extra drag caused by the larger projected
area compensates for the buoyancy increase. The inset shows
the evolution of the acceleration of the bubble, which is 2g
initially because Cm = 1/2 in eq 10. However, as the drag effect

increases, the acceleration decreases to zero when the bubble
reaches terminal velocity. In Figure 3b we show that the model
captures the bubble acceleration phase as well as the terminal
velocity. We notice that the bubble reaches about 90% of its
constant terminal velocity after traveling just over 10 radii. The
terminal velocity is then determined by the balance between
buoyancy and drag force, as shown in the previous section.
The next step in the formulation is to obtain an expression

for the added mass for a bubble that is impacting on a surface.
This will be done using an energy approach based on potential
flow theory.28 The kinetic energy EK of the system is defined as

π ρ=E V R C
1
2

4
3K

2 3
m (11)

where we have again neglected the density of the bubble. The
power applied to the system can be described by

ρ π− = − = − +
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Cm is no longer a constant but depends on the separation
between the bubble and the surface, H, with dCm/dt = (dCm/
dH)(dH/dt). In our model H is taken to be the film thickness
between the bubble and the surface at the axis of symmetry
(Figure 1) even if deformation is present. For a spherical
bubble approaching a surface,28,32 the force can be written as
(noting that dH/dt = −V)

ρ π ρ π= −
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The first term on the right-hand side of this equation represents
the classical added mass force (eq 9), and it depends on the
acceleration of the bubble. The second term arises from the fact
that the added mass coefficient Cm changes when the bubble
approaches the surface.28 The second term is proportional to
V2 and thus always points in the direction away from the
surface irrespective of whether the bubble is moving toward or
away from the surface. This also implies that it does not
contribute to the damping of the system.
The added mass coefficient Cm for a sphere approaching a

solid wall is approximated as28

ζ ζ

ζ ζ

= + + +

+

− −

− −

C
1
2

0.19222 0.06214 0.0348

0.0139

m
3.019 8.331

24.65 120.7 (14)

where ζ = (H + R)/R (see Figure 1). For a sphere in bulk Cm
=1/2.

■ LUBRICATION THEORY AND DEFORMATION: FILM
DRAINAGE FORCE

The final yet essential piece of the model consists of two
components: a lubricating film between the bubble and the
surface combined with surface tension which will govern the
deformation of the bubble in this area. This balance between
viscous lubrication and deformation of the bubble will give rise
to a pressure build up in the film great enough to cause
rebound.
The film drainage force, which is calculated from the area

integral of the pressure in the film, assuming axisymmetric film
drainage

Figure 3. Comparison between theory (lines) and experiments of
Zawala and Malysa13 (symbols) for bubbles with different radii. (a)
Distance as a function of time, where the inset shows the acceleration
for the bubble with R = 0.5 mm. (b) Velocity as a function of distance
traveled.
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∫ ∫ ∫π π= = ≈
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where rm is the size of the computational domain of the
lubrication theory and the pressure in the film p is calculated
from the classical film drainage Stokes−Reynolds equation22 in
axial symmetric form for a mobile bubble surface and immobile
solid surface, that is, the velocity is zero at the solid surface and
the shear stress is zero at the bubble surface
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The pressure p in the film obeys the Young−Laplace equation
of the form22

σ σ= − ∂
∂

∂
∂
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⎝

⎞
⎠p

R r r
r

h
r

2
(17)

Equation 17 is crucial for the model, since the surface tension is
the only component capable of storing energy due to
deformation. During rebound, the energy stored in the pressure
build up (even when V = 0) is given back to the bubble as
kinetic energy. In our calculations the disjoining pressure Π is
neglected since it is only important at separations below ∼100
nm just before rupture of the film and we are mostly interested
in the bouncing behavior of the bubble which happens at film
thicknesses > 1 μm.
To solve the drainage eqs 16 and 17 we require one initial

and four boundary conditions. The initial condition assumes a
parabolic profile based on the equivalent radius R of the bubble:
h(0,r) = H0 + r2/(2R) with H0 = H(t = 0). This will
automatically create a zero pressure profile at t = 0 in eq 17.
The axial symmetric domain is discretized from 0 < r < rm,
where rm is comparable to the radius R of the bubble (rm =
0.9R). Symmetry conditions for p and h are imposed at the
center of symmetry (r = 0). At the far field boundary (r = rm)
we assume the pressure vanishes (p ≈ 0) and impose the
velocity of the center of mass V based on the force balance
model through a boundary condition of the form dh/dt = −V at
r = rm. The time evolution of the velocity V of the bubble is
calculated by balancing all forces (eqs 3, 4, 13, and 15) resulting
in the following evolution equation

∫
π ρ π ρ π μ π ρ
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3
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3
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3 m 2

0
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(18)

Equation 18 is solved to determine the value of V that is used as
the boundary condition at r = rm for dh/dt , which drives the
system according to the drainage eq 16. It is added as an extra
equation to the linear evolution system (after finite difference in
the spatial derivatives), which is solved using ode15s in Matlab.
Here, Cm is a function of separation (eq 14), so is dCm/dH. The
instantaneous Reynolds number Re is calculated at each time
step based on the velocity V, and CDRe is given by eq 5. The
pressure p is calculated from eq 17.
This completes the theoretical formulation for the impact of

clean bubbles with surfaces. In the next section we compare the
theoretical results of eqs 16−18 with experimental data
available.

■ SOME EXPERIMENTAL OBSERVATIONS
Before we can apply the theoretical model described in the
previous sections to predict bubble bounces during impact with
a solid surface in clean water systems we investigate a number
of experiments performed for bubbles rising under buoyancy
after being released from rest from a syringe in a water
container.1−4,13,14 Lets first investigate the experimental data of
Kosior et al.1 in which different experimental aspects were
considered: bubbles released far or near a solid surface or air−
water interface, bubbles impacting on different solid surfaces,
and bubbles in the presence of added surfactants or in different
alcohols. In Figure 4 we reproduce typical experimental data in

clean water for two bubbles of the same size (R = 0.74 mm)
impacting on different surfaces1 released far from the surface
and one released from a syringe 3 mm from the surface.
Experimental results show that these bubbles bounce in a very
reproducible way, while film rupture depends strongly on the
nature of the surface. For example, collisions with hydrophobic
Teflon result in bubble rupture due to surface roughness,
whereas rupture did not occur in collisions with smooth glass
surfaces.
Figure 4 indicates that releasing the bubble at 3 mm from the

surface is very similar to releasing the bubble far away but
starting from the second bounce. Our theoretical model will be
compared with some typical experimental data.

■ BUBBLE RELEASE NEAR THE SURFACE
We start our modeling by studying the case where the bubble
was released from a syringe 3 mm away from a Teflon plate.
Comparison between theory and experiment1 is shown in
Figure 5a. The radius of the bubble is R = 0.74 mm, and
therefore, H0 = 1.52 mm is the initial separation between the
bubble and the surface. The bubble accelerates and impacts the
surface long before reaching terminal velocity (35 cm/s), so we
can neglect deformation during rise (χ = 1). The domain size
was taken to be rm = 0.9R as in a previous study.5 The bubble
bounces a few times before adhering to the surface at time 80
ms when the experimental rupture of the film occurred. The

Figure 4. Experimental data from Kosior et al.1 for the velocity of
several bubbles in clean water (all R = 0.74 mm) that were released
from a syringe at a great distance (triangle and circle) or at a distance
of 3 mm (square) and impacting different solid surfaces (Teflon or
glass). Positive velocity represents approach and negative velocity
rebound. Experimental data for the bubble that was released from 3
mm was shifted by about 25 ms such that all data points overlap.
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model is able to predict the subsequent bounces of the bubble,
only slightly deviating toward the end.
The evolution of forces on a bubble released 3 mm from the

surface during consecutive bounces is shown in Figure 5b. The
major contributions to the bouncing process come from the
balance between added mass and film force. Even though the
drag force is very small in comparison with the balance between

added mass and film force, it is still necessary to be included to
capture the experimental bounces accurately.
In Figure 5c we show the film thickness at the center of the

film h0 (see Figure 6a) and at the rim hm of the bubble where

the minimum film thickness occurs as a function of time. For
this case of Teflon, experimental film rupture happened at 80
ms when the numerically predicted film thickness is
approximately 1 μm. Therefore, rupture is likely caused by
the roughness of the Teflon, which can contain surface
nanobubbles.
An interesting observation in Figure 5c is the sudden inward

movement of the bubble surface at t ≈ 20 ms (similar at t ≈ 40
and 60 ms), that is, the moment the bubble departs from the
surface, which also corresponds to the maximum negative
velocity of Figure 5a and where the film force changes sign
(becomes positive) in Figure 5b. During the pull-off phase, the
film force generates a “suction effect”, which can be responsible
for premature rupture of the film observed in coalescence of
droplets.36,37

In Figure 6 we show the film profile evolution during the first
impact from time 14 to 20.5 ms of Figure 5. Figure 6a shows
the bubble deformation during the approach phase where a
curvature inversion appears, also known as “dimple”, that then
grows. The minimum thickness hm is no longer at the center.
The occurrence of a dimple is a well-known phenomenon for

Figure 5. Bubble of radius R = 0.74 mm is released from a syringe
located 3 mm away from a Teflon surface. (a) Experimental bubble
velocity1 (circles) is compared with the model proposed by eqs 16−18
(line). Theoretical domain size is taken as rm = 0.9R, and the bubble
was assumed to have a spherical shape (χ = 1). (b) Evolution of forces
during multiple impacts. Buoyancy is constant throughout the process,
while drag is small. Film force and added mass are large and have
opposite effects. Note the film force changes sign during the pull-off
phase. (c) Film thickness at the center h0 and at the rim hm (as defined
in Figure 6). Note the similarity of the first and second impacts.

Figure 6. Thin film drainage during the first impact of the bubble from
time 14 to 20.5 ms during (a) approach t = 14−16.3 ms and (b)
retraction t = 16.3−20.5 ms. We define the thickness at the center h0
and minimum thickness hm (both are functions of time).
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approaching deformable surfaces and was first observed
experimentally many decades ago by Derjaguin and Kussakov33

using interferometry and also more recently.3,34,35

In Figure 6b we show the retracting phase. Even though the
center of mass of the bubble is already moving away from the
surface (negative velocity V < 0 in Figure 5a), the film is still
thinning to about 4 μm, which is not enough for film rupture,
and the bubble bounces away from the surface. Note that
bubble departure at t = 20.5 ms in Figure 6b corresponds to the
maximum negative velocity in Figure 5a and the dip in the force
in Figure 5b. Theoretically, subsequent bounces show very
similar features of dimple formation happening at smaller
separations. Unfortunately none of the experimental data of
bouncing bubbles in clean water systems provide film thickness
measurements to compare with the predictions given in Figure
6. On the other hand, comparison between a similar theory for
bouncing bubbles in contaminated systems showed excellent
agreement for the film drainage process.5,25,26 This provides us
with the confidence that the currently predicted film heights are
accurate from a spatiotemporal point of view.

■ SMALL BUBBLE RELEASED FAR FROM THE
SURFACE

Now we move to bubbles impacting surfaces at terminal
velocity. In Figure 7 we compare the model with experimental

data from Zednikova et al.2 for a bubble with R = 0.525 mm

that is rising at terminal velocity before impacting the surface.

The aspect ratio during rise was calculated from eq 8 and

resulted in χ = 1.17, which is close to unity, so it was

maintained at that value for the calculation even though after

the first bounce the bubble becomes mostly spherical. General

features of the system such as evolution of forces and film

thickness at subsequent impacts are very similar to the case of

large bubbles, so we will only show them in detail in the next

section.

■ LARGE BUBBLE RELEASED FAR FROM THE
SURFACE

For the case of a larger bubble (R = 0.74 mm) impacting a
smooth glass surface presented in Figure 8, the bubble rises
with larger velocity (VT = 34.5 cm/s) and also larger
deformation with an aspect ratio during rise of χ = 1.52
according to eq 8. These features complicate the numerical
procedure slightly. Numerically, we start the calculation with

Figure 7. Comparison between theory (line) and experimental data of
Zednikova et al.2 (circles) for a bubble (R = 0.525 mm) released far
from the surface and impacting at terminal velocity VT = 27.5 cm/s.
Theoretically, we take rm = 0.9R and H0 = 3.63 mm, and the aspect
ratio of χ = 1.17 given by eq 8 is kept constant for the calculation. No
experimental data is available for t > 35 ms.

Figure 8. (a) Velocity as a function of time for a bubble (R = 0.74
mm) impacting a glass surface corresponding to an experiment of
Kosior et al.1 (circles) compared with the model (line). Square symbol
and vertical dotted line represent changes made to the parameters
during numerical calculation. From 0 < t < 11.3 ms we take an
ellipsoidal bubble and after t = 11.3 ms spherical. Before the dashed
line at t = 25 s we take rm = 1.2R and after rm = 0.9R. (b) Evolution of
the forces. (c) Film heights h0 and hm as a function of time using log
scale. Consecutive bounces appear to repeat each other at shorter
separations.
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the terminal velocity VT = 34.5 cm/s as the initial velocity
condition. Experimentally, during the rise process the bubble is
deformed with an aspect ratio of χ = 1.52, but after the first
impact and subsequent impacts, the aspect ratio becomes close
to χ = 1.0 (a spherical bubble). Therefore, we decided to
separate the time domain in three stages where we make the
following changes: During the first stage a deformed bubble
rises based on the analytical expression given by Moore27

combined with the aspect ratio χ = 1.52 and domain size rm
=1.2R. In this case, we need to take rm to be larger than the
radius of the bubble R since the deformation during impact is
about 0.6 mm (very close to R; see also Figure 9). A further

justification for this value is that for a deformed bubble with
aspect ratio of χ = 1.52, rm = 1.2R is roughly proportional to rm
= 0.9R for an equivalent undeformed bubble. After the first
impact (when the velocity becomes zero at t = 11.3 ms) we
remove the deformation effect by changing χ from 1.54 to 1.0
(time marked by a square) and run the calculation until the
velocity becomes zero again.
We continue the calculation after the first bounce at t = 25

ms by changing the domain size rm from 1.2R to 0.9R (time
marked by the dashed line). This is because the bubble
becomes mostly spherical after the first impact, while it was
considerably deformed during rise. The film force at this instant
is zero. In the discussion we show a comparison where we
maintain the domain size to be rm = 1.2R. Unlike the Teflon
case, where the experiment of Kosior et al.1 showed premature
film rupture, for the smooth glass case the experiment showed
that the film remained much longer and rupture did not
happened, presumably due to the presence of a repulsive
surface force.
The evolution of forces presented in Figure 8b shows a very

similar trend as Figure 5b. Note that at t = 0 the bubble is at its
terminal velocity and the buoyancy force is exactly equal but
opposite to the drag force. Toward the end (at t = 150 ms)
buoyancy is compensated by the film force. In Figure 8c we
show the film thickness during consecutive bounces. To show
details of the bouncing process we show the position of the
center h0 and rim hm in a log scale. This allows visualization of
multiple bounces of the bubble. The features repeat themselves
at shorter separations until the bubble stops bouncing and only

film drainage is observed for t > 100 ms. Compared with Figure
5c we observe two extra bounces in this case.
In Figure 9 we plot the evolution of the film thickness during

the first impact of the bubble with the glass surface where we
show the extent of the deformation. The deformation of
roughly 0.6 mm is comparable to the bubble radius R = 0.74
mm. A domain size rm = 0.9R would be too small to run the
calculation, and the outer boundary of the film would interact
with the deformation region and even can go through the
surface. For that reason rm = 1.2R was chosen for the first
impact consistent with the literature.6

■ DISCUSSION
The first occurrence of the dimple formation hD can be
predicted by an analytical expression38 that was derived for a
bubble with immobile boundary condition that impacts on a
surface when approaching with constant velocity. The first
moment of dimple formation hD (See Figure 9) is given by hD =
0.4R√2Ca with Ca = μV/σ being the capillary number. Here
we need to adapt this result to account for the fact the bubble
has a tangentially mobile boundary condition in which hD can
be written as

=h R Ca0.4 /2D (19)

due to the factor of 4 difference in the drainage equation (eq
16) when compared to the immobile case. Dimple formation
indicated in Figure 9 is hD ≈ 15.5 μm, in very good agreement
with eq 19, which gives hD ≈ 14.6 μm.
The choice of the film drainage domain size rm is important

when capturing the physical features of the problem. Here we
used rm = 0.9R for most of the calculations; the same value used
before5 apart from the comparison in Figure 8a where we
solved in two steps. For the large deformation we have taken rm
= 1.2R and for the rest rm = 0.9R. In Figure 10 we show the
result if we keep rm = 1.2R for the entire calculation where we
see agreement is still acceptable.
In Figure 10 we have also added the numerical simulations of

Albadawi et al.8 using the volume of fluid method. Their
solution is very good even though the terminal velocity is not
captured exactly. Though expensive computationally when

Figure 9. Film thickness during the first impact of the bubble (R =
0.74 mm) with rm = 1.2R. We can see the extension of the maximum
deformation that is around 0.6 mm. We define the dimple formation
hD, the height where the bubble surface first changes its curvature.

Figure 10. Using rm = 1.2R for the entire calculation of a bubble with
R = 0.74 mm rising at constant velocity VT = 34.5 cm/s against a glass
surface compared to Kosior et al.1 and with numerical solutions using
the volume of fluid method.8 The square indicates the time when the
bubble is changed from ellipsoidal (χ = 1.52) to spherical (χ = 1.0)
when V = 0 for the first time.
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compared to the force balance that only takes a few seconds to
run, the full numerical simulation is able to capture details of
the flow field and also the bubble shape oscillations after impact
that are not captured in the force balance model.

■ CONCLUSION
The model based on a force balance captures the main physical
features of a clean bubble during rise, impact, and bounce
against a solid surface. For bubble rise in bulk where only
buoyancy and drag forces play a role, we provided a fitting
expression for the aspect ratio, which resulted in the correct
terminal velocity using Moore’s analytical formula. With the
inclusion of added mass the force balance predicted the
acceleration of a bubble starting from rest. The combination of
lubrication theory for film drainage, deformation of the bubble,
and force balance for the global movement proved robust when
compared to experiments, predicting subsequent bounces of
the bubble impacting against a solid surface. The model also
provided film heights, which can be used as benchmark data for
experiments when such data becomes available. This model can
be extended to study oblique impact and bubble sliding along
the solid surface.39,40 The force balance model could also be
used in combination with full numerical simulations providing
the bouncing behavior of bubbles that impact surfaces.
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