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 A bubble smaller than 1mm in radius rises along a straight path in water and attains a constant speed due to
the balance between buoyancy and drag force. Depending on the purity of the system, within the two ex-
treme limits of tangentially immobile or mobile boundary conditions at the air–water interface consider-
ably different terminal speeds are possible. When such a bubble impacts on a horizontal solid surface and
bounces, interesting physics can be observed. We study this physical phenomenon in terms of forces,
which can be of colloidal, inertial, elastic, surface tension and viscous origins. Recent advances in high-
speed photography allow for the observation of phenomena on the millisecond scale. Simultaneous use of
such cameras to visualize both rise/deformation and the dynamics of the thin film drainage through inter-
ferometry are now possible. These experiments confirm that the drainage process obeys lubrication theory
for the spectrum of micrometre to millimetre-sized bubbles that are covered in this review. We aim to
bridge the colloidal perspective at low Reynolds numbers where surface forces are important to high Reynolds
number fluid dynamics where the effect of the surrounding flow becomes important. A model that combines a
force balance with lubrication theory allows for the quantitative comparison with experimental data under dif-
ferent conditions without any fitting parameter.
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1. Introduction

1.1. Background and motivation

Bubbles rising in water have probably fascinated mankind since the
earliest of times. Leonardo da Vinci observed that large bubbles could fol-
low a non-rectilinear pathwhen rising under buoyancy [1,2]. But da Vinci
was certainly not the only one to be intrigued by bubbles. For example,
the inventor of the microscope, Anthoni van Leeuwenhoek [3], when de-
scribing an ‘airpump’ to study the presence of air in water and blood,
states that “…een groote quantiteit lugt-bellen uijt hetwater op quamen,
en als op borrelden, en nogmeer, als ik eenweijnig stootinge aan het glas
quam te maken.” (“a large quantity of bubbles came out of the water,
rose, and even more, when I gently tapped on the glass”).

Our knowledge of fluid dynamics improved over the next centuries.
For example, the concept of surface tensionwas first introduced in 1805
by Young [4], who studied, without using equations, the shape of the
fluid–fluid interface under capillary forces. In 1806 Laplace [5] used a
force balance method in the normal and tangential direction to provide
an equation of the fluid interface. Gauss [6] analysed this problem using
the minimization of the interfacial area under the effect of interfacial
tension.

Fluid flow in thin films was first analysed by Reynolds [7], resulting in
the lubrication equations. In the 20th century, the use of coherent (or
laser) lightmade it possible tomeasure the thickness of thin films. For ex-
ample, Derjaguin and Kussakov [8] discovered the inverted curvature (a
so-called dimple) of a bubble pressed against a surface using interferome-
try. In the 21st century, again advances in optics are improving our under-
standing in this area; this time it is the accessibility of high-speed cameras
that drives progress [9,10]. Features that were too fast for the human eye
to capture, can now be explored and examined with hundreds of thou-
sands of frames per second, revealing a wealth of interesting physics.

Single bubbles rising in an infinitemediumhave been studied exten-
sively, althoughmajor issues, such as the tangential mobility of the sur-
face are still not fully understood. Bubbles interacting with other
bubbles or surfaces have received much less attention [11]. Perhaps
the simplest case is the interaction of a rising bubble with a horizontal
solid surface, which is the focus of the current article. The understanding
of this phenomenon requires knowledge of the bubble–wall interaction,
for example the dynamics of the thinwater film that forms between the
bubble and the surface. In this work, wewill mainly study air bubbles in
water, which are of most practical importance for industrial and
environmental applications. With that in mind, it now seems timely to
write a review with the progress made so far for bubble rise and inter-
action with surfaces considering theoretical modelling of high quality
experimental data.

1.2. Perspective

In this review we focus on the theoretical modelling of very reliable
experimental data on the combined effects of bubble rise and impact
with horizontal solid surfaces. Bubble rise has been studied extensively
due to the appearance of intriguing features depending on the size of
the bubble. Smaller bubbles with radius R b 50 μm for air bubbles in
water tend to rise under Stokes flow conditions and the bubble velocity
for an ultra clean system (mobile interface) is known analytically [12,
13]. This result was confirmed experimentally [14,15] with extensive
purging of the system to eliminate any residual impurity. However, it
has been observed that exposure of the ultra-clean water to the atmo-
sphere is enough to contaminate the sample [14] and the bubble will
then rise with tangentially immobile boundary condition, in agreement
with Stokes' law for a rigid sphere [16].

Bubbles of intermediate sizes (50 b R b 1000 μm for air bubbles in
water) rise in a straight path and the problem is axisymmetric,which fa-
cilitates theoretical analysis, but results are mostly empirical [17]. Bub-
bles of even larger size rise in a spiral or a zig-zag path [18–22]. Bubbles
in aqueous sugar solutions attain complicated shapes and rising behav-
iour [23].

Considerable effort has been devoted to investigate the variation of
the terminal speed of bubbles with concentrations of different surfac-
tants [24,25]. It was proposed that small concentrations of surfactant
generate a surface tension gradient and the boundary condition at the
top of the rising bubble is different from that at the rear [26,27] resulting
in a so-called spherical cap model. Theoretical work was performed to
explain the experimental observations [28–30] as well as numerical
simulations [31,32]. For the case of Stokes flow an analytical solution
for the spherical cap model was obtained [33].

Bubbles interactingwith various surfaces have also received attention.
For Stokes flow, analytical results are known for different systems includ-
ing tangentially immobile [34] and mobile boundary conditions [35] at
the bubble surface. Experiments were also performed for such bubbles
rising against surfaces [36–38], which confirmed the theoretical results.

The interaction between bubbles (rising under buoyancy) and sur-
faces at relatively high Reynolds numbers is an active area of research
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until this day. Early experiments on bouncing bubbles mainly investi-
gated side view images [39–47] while no information about the thin
film drainage was collected. On the other hand, experiments capturing
thin film drainage using interferometry were done at low frame rates
[8,48–50]. Unfortunately a high frame rate is required to capture the
fast changing film on the microscale. It is only recently that the use of
synchronized high-speed cameras allowed for both observations simul-
taneously [9,10,51].

This review is organized in the following format. In Section 2 we in-
vestigate bubbles rising in a liquid and impactingwith surfaces for small
Reynolds numbers (Stokes flow). These are generally small bubbles
(R b 50 μm) where surface forces are important during interaction
with the surface. In Section 3 we look at bubbles rising in a liquid and
interacting with surfaces for large Reynolds numbers where deforma-
tion during rise also becomes important. These are intermediate size
bubbles (50 μm b R b 1 mm) where fluid dynamics aspects of the prob-
lem become more important. In Section 4 we provide a discussion on
various aspects of bubble rise and impact such as the first appearance
of a dimple and peculiar experimentswithmobile film drainage and im-
mobile rise behaviour. In Section 5 conclusions are presented.

1.3. Scope

In industrial multiphase reactors it is often necessary to predict areas
where coalescence or adhesion can occur and knowledge of bubble–
wall interaction is a prerequisite for a better design of such equipment.
Another application area is in the augmentation of heat transfer due to
impacting bubbles on a surface [52].

In Fig. 1we showa photograph and a schematic of an air bubblewith
radius R and surface tension σ rising under buoyancy with terminal ve-
locity V = VT in a medium with density ρ and viscosity μ.

We assume that the continuous phase is a Newtonian fluid, so that
the rise of the bubble and impact with a surface can be modelled by
the Navier–Stokes and continuity equations written as [53]

ρ
∂u
∂t

þ u � ∇u
� �

¼ −∇pþ μ∇2u−ρgk ð1Þ

∇ � u¼0 ð2Þ

where u is the velocity vector and p the pressure.
After scaling the dimensional coordinates in Eq. (1) with the bubble

diameter and velocities with the bubble velocity, the Reynolds number,
the ratio of typical magnitudes of inertia terms to viscous terms,
emerges

Re¼2RρV
μ

ð3Þ
Fig. 1. Photograph of a spherical bubble rising in water together with the schematic of a
bubble rising in bulk where the following parameters are defined: bubble radius R,
bubble velocity (of the centre of mass) V, density ρ and viscosity μ of the surrounding
liquid. Gravity g is pointing downward in the unit vector k direction.
A Reynolds number smaller than unity indicates the system behaves
as Stokes flow (i.e. viscosity dominated) while for large Reynolds num-
bers, the system is under potential flow conditions (i.e. inertia dominat-
ed). Note that here the Reynolds number refers to the terminal velocity
V = VT, but later in the article it can also apply to the instantaneous
velocity.

The internal pressure (Laplace pressure) of a bubble is equal to the
surface tension σ times the curvature (=2/R for a spherical bubble). If
the inertial pressure ρV2/2 becomes larger than the Laplace pressure,
surface tension will no longer be able to sustain the spherical bubble
shape. The Weber number expresses the ratio of these two effects as

We ¼ 2RρV2

σ
ð4Þ

A Weber number smaller than one indicates a spherical bubble,
while for Weber numbers larger than one but smaller than ~3, an ellip-
soidal bubble shape can be expected. The ellipse is directed with its lon-
gest axis perpendicular to the flow. The inertial pressure pushes at the
top and bottom of the bubble and creates a lower pressure at the
sides, due to larger velocities.

Numerical simulations using an axisymmetric boundary-fitted coor-
dinate formulation [54,55] and a full three-dimensional solution of the
Navier–Stokes equations for unsteady rising bubbles that take into ac-
count deformation in a self-consistent way are complex to implement
and demanding in terms of computational resources [56]. Moreover,
very fine grids are needed to capture details of the film drainage,
which occurs at length scale orders of magnitude smaller than the bub-
ble size. Nonetheless recent computational progress allowed numerical
simulations of bubble impactwith a surface and bounceswere captured
using for example the numerical code Gerris.

Instead of solving the full equations using grid based numerical sim-
ulations, simplifications to the Navier–Stokes equations that are valid in
different experimental regimes based on the Reynolds andWeber num-
bers can be made.

We will consider bubbles with mobile and tangentially immobile
boundary conditions represented in Fig. 2.

1.4. Balance of forces

When discussing the analytically calculated force on a bubble as
compared to detailed numerical simulations, Magnaudet & Eames [18]
state that this is “a potentially powerful tool”. The balance of forces im-
plicitly assumes that these forces can be added.

In this section we describe a balance of forces approach that can be
used for bubbles in both Stokes flow and high Reynolds number flow
from the moment it starts its movement from rest, reaches terminal
velocity and impacts with a surface. The forces to be considered are:
buoyancy, drag, added mass, history, film, Van der Waals and electrical
Fig. 2. Schematic of a bubblewithmobile and tangentially immobile boundary conditions.
For the immobile boundary condition, the tangential velocities at both the surface–water
and air–water interfaces are zero. In the mobile boundary condition case, the shear stress
at the air–water interface is zero.
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double layer. There is also a distinction depending on the boundary con-
ditions at the bubble surface. In a clean system the boundary is mobile
(zero stress) while in a system containing surfactants (‘dirty’) the
boundary becomes tangentially immobile. The sum of forces on the
bubble (Newton's second law) is given by

X
F ¼ FB þ FD þ FA þ FH þ FF þ FVDW þ FEDL ¼ ma≈ 0 ð5Þ

The mass of the bubble itself, m, is virtually zero, hence the appear-
ance of the term ‘0’ on the right hand side. Note that the acceleration vec-
tor a= dV/dt k is non-zero. In this equation FA is the addedmass force, FB
is the buoyancy force, FD is the drag force, FH is the history force, FF is the
film force, FVDW is theVanderWaals force and FEDL is the electrical double
layer force. Each term in Eq. (5) can bewritten in terms of the fluid prop-
erties such as μ and ρ, the radius of the bubble R, the velocity of the bub-
ble V and the acceleration of the bubble dV/dt. In the next sections we
will describe all the forces individually taking into account the forces
that are relevant for the particular system investigated.

2. Spherical bubbles in Stokes flow

2.1. Forces in Stokes flow in bulk

In this section we will study small bubbles in Stokes flow, which are
relevant in colloid science. If the bubble is small (R b 50 μm) the
Reynolds number (Eq. (3)) is smaller than unity, inertial effects are
negligible and the system can be treated with Stokes flow theory.
Under this assumption Eq. (1) becomes

ρ
∂u
∂t

¼ −∇pþ μ∇2u−ρgk ð6Þ

By solving Eqs. (2) and (6) analytically for the fluid velocity for a
bubble rising in a liquid and then calculating the different contributions
of the total force on the bubble, the trajectory of the bubble can be ob-
tained from a balance of forces. In the following we discuss these forces
in detail. If theWeber number (Eq. (4)) is also small, the bubble remains
spherical.

In bulk the surface forces and film forces are not important and the
only forces that remain in Eq. (5) are buoyancy, drag, added mass and
history. The equation of motion of the bubble [17] becomes

4
3
πR3ρCm

dV
dt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

added mass

¼ 4
3
πR3ρg|fflfflfflfflffl{zfflfflfflfflffl}

buoyancy

−6πμRVλ|fflfflfflfflffl{zfflfflfflfflffl}
drag

−6πμR
Zt
0

G t−τð Þ dV
dτ

dτ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
history

ð7Þ

where the addedmass coefficient Cm=1/2 and λ=1 or 2/3 depending
whether the boundary condition on the bubble surface is immobile
or mobile. Eq. (7) is a general equation for bubbles in Stokes flow ris-
ing in a liquid. We will look at each force individually in the next
subsections.

2.1.1. Buoyancy force
A bubble rising in a liquid experiences a buoyancy force, which is

equal to the density of the fluid ρ, multiplied by the acceleration due
to gravity g, and the volume of the bubble:

FB ¼ −ρg
4
3
πR3 k ð8Þ

(note that the density of the gas has been neglected when compared to
that of the liquid). A minus sign appears since k is defined to point
downwards (see Fig. 1).
2.1.2. Drag force
The drag force can be written as

FD ¼ 6πμRV k tangentially immobileð Þ
4πμRV k mobileð Þ

�
ð9Þ

The immobile result (like a solid sphere) corresponds to the Stokes
law for spheres in a liquid while the mobile result is valid for bubbles
with zero tangential stress. In most practical situations surfactants and
impurities in the water will render bubbles to behave like solid spheres
with immobile boundary condition.

2.1.3. Added mass force
If the bubble is accelerating some surrounding fluidmust also accel-

erate (hence the name “added mass”). In the Navier–Stokes equations
(Eq. (1)), the added mass force originates from the unsteady term
ρ∂u/∂t and is given by:

FA ¼ ρ
4
3
πR3Cm

dV
dt

k ð10Þ

The added mass force appears in both (unsteady) Stokes and high
Reynolds number flows. For a spherical bubble far away from any
other objects, the added mass coefficient is Cm = 1/2 for both cases.
The added mass force is of purely inertial origin. There is another force
that depends on the acceleration of the bubble, the history force.

2.1.4. History force
Another force that is of viscous origin is the history force, also known

as the Basset force [57,58]. This force is “originating from the unsteady
diffusion of vorticity around the bubble” [18] or in other words, the
drag force needs some time to establish itself resulting in the history
force (hence the appearance of the viscosity in this force)

FH ¼ 6πμR
Zt
0

G t−τð ÞdV
dτ

dτ k ð11Þ

where the kernel function G depends on whether the boundary condi-
tion at the surface of the bubble is mobile or tangentially immobile [59]

G t−τð Þ ¼
3ffiffiffi
π

p ξ−1 a; tangentially immobileð Þ
4
3
eξ

2

erfc ξð Þ b;mobileð Þ

8><
>: ð12Þ

with ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9μðt−τÞ

R2ρ

s
and erfcðξÞ ¼ 2ffiffiffi

π
p ∫∞ξ expð−s2Þds.

The expressions in Eq. (12) are only valid for low Reynolds flows.
Since the past acceleration dV/dτ appears in Eq. (11), it is also known
as the “history force” or Bassetmemory integral. Note that the immobile
G shows a (t−τ)−1/2 singularity under the integral sign. However the
mobile expression for G remains finite at t−τ = 0. The above expres-
sion can be obtained by solving the Stokes equations (Eq. (5)) and
using a Fourier transform [60]. In Fig. 3, we compare the function G for
mobile and immobile interfaces.

A closed form expression for the history force can no longer be ob-
tained for a bubble approaching a wall. Nevertheless we use Eq. (12)
as a first approximation.

Even though approximate results have beenproposed for the history
force [61], due caremust be taken to calculate the history force properly.

2.2. Terminal velocity

A bubble rising at a sufficiently large distance away from any bound-
aries in a quiescent liquid will attain a constant velocity, known as ter-
minal velocity VT. When the velocity is constant the drag (Eq. (9)) and



Fig. 3. The kernel function G (Eq. (12)) for mobile and immobile boundary conditions as a
function of the square root of time. Note that themobile curve remains finite at the origin
of time.

Fig. 4. Analytical solution of the drag force for a spherical bubble rising with speed V= VT
upwards under the spherical cap model assumption (due to Sadhal and Johnson [33],
continuous line). The angle θ indicates the region for which the surface is ‘clean’ (i.e.
zero stress, red section), while the remainder of the bubble (blue section) is considered
tangentially immobile. The Stokes as well as Hadamard–Rybczynski drags are the two
limiting cases for fully immobile (blue circle) and mobile (red square) bubbles and
correspond to θ = 0 and (θ = π).

Fig. 5. Terminal velocities for bubbles in water under Stokes flow. Comparison between
experiment for air bubbles by Parkinson et al. [15] and O2 bubbles of Kelsall et al. [14]
with the Hadamard–Rybczynski result (Eq. (13)b). The Stokes law (Eq. (13)a) is also
plotted. Inset shows the effect of purging and opening the container to the atmosphere
on the terminal velocity for O2 bubbles with radius about 40 μm in 10−4 M aqueous
NaClO4 solution at temperature 298 K.
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buoyancy (Eq. (8)) forces are the only two forces acting on the bubble,
and the vectorial sum of these two forces must be zero. For bubbles
with tangentially immobile or mobile interfaces, from Eqs. (8) and (9),
the terminal velocity is

VT ¼
2ρgR2

9μ
¼ VS a; tangentially immobileð Þ

ρgR2

3μ
b;mobileð Þ

8>>><
>>>: ð13Þ

Thus for a bubble with mobile boundary, the terminal velocity is
larger by a factor 3/2 compared to the tangentially immobile case.

In general, besides the two limits of completely mobile or immobile,
bubbles can also exhibit partiallymobile behaviour. This is often termed
“spherical cap bubble”. An analytical solution for the spherical cap
model that presumes that the surface is free of surfactant at the top,
gives rise to a mobile boundary condition (zero tangential stress). The
bottom surface is completely covered with surfactants, resulting in a
tangentially immobile boundary condition (zero tangential velocity). A
schematic of such a spherical cap bubble is shown in the inset of
Fig. 4. The drag force FD experienced on such a spherical cap bubble
was calculated analytically by Sadhal & Johnson [33] and they found
(note that the viscosity of the bubble has been neglected here):

FD ¼ 6πμVR
1−2θ−sin θ−sin 2θþ 1

3
sin 3θ

6π

8<
:

9=
; k ð14Þ

where FD depends on the cap angle θ defined in Fig. 4. For the case of a
bubble covered with surfactants the boundary condition is immobile
(θ = 0) and the drag obeys the classical Stokes law [16] FD = 6πμVR.
On the other hand, for a fully mobile bubble (θ= π), the boundary con-
dition is zero stress and the drag obeys the theoretical Hadamard–
Rybczynski [12,13] result FD = 4πμVR. The analytical result of Eq. (14)
as well as limiting cases are shown in Fig. 4.

Comparisons of terminal velocities from Eq. (13) with experiments
[14,15] are shown in Fig. 5. To achieve the terminal velocity correspond-
ing to the Hadamard–Rybczynski formula (mobile velocity of Eq. (13))
it was required to clean thewater system for several hours before taking
the measurements.

The inset of Fig. 5 shows what happens over time when bubbles of
radius R=40 μm rise in a liquid [14]. Initially at time t=0 the bubbles
rise with terminal velocity in agreement with Stokes' law (VT =
3.5 mm/s according to Eq. (13), dashed line at the bottom). After
purging for 3 h the bubbles rise under mobile boundary condition
(VT = 5.2 mm/s). If the system is kept sealed, the terminal velocity
remained the same. But if the container was opened to the atmosphere
for a few hours, the terminal velocity decreases and tends towards the
Stokes law for solid spheres oncemore. Intermediate velocities probably
correspond to bubbles that are partially covered with surfactants
(spherical cap bubbles).

It thus turns out that experiments that were able to observe bubbles
with mobile boundary condition in Stokes flow required extensive
cleaning. In general small bubbles in industrial applications will most
likely have immobile interfaces, when no extreme care has been taken
concerning the cleanliness of the system.

dyc
Text Box
 1–



Fig. 6. Comparison of the bubble velocity rising from rest with andwithout history force as
a function of (a) time and (b) distance.
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2.3. Bubble rising from rest in bulk

We continue with Eq. (7) to investigate the relative importance of
each force for a bubble starting from rest before approaching its termi-
nal speed in anunbounded initially quiescent liquid. The terminal veloc-
ity of the immobile bubble (Eq. (13)) is used as a velocity scale VS

(Eq. (13)a). Note that we use the same velocity scale for the mobile
and immobile cases. By choosing the following time scale

tS ¼ VS

2g
¼ ρR2

9μ
ð15Þ

Eq. (7) can be written with no parameters at all (t= tSt⁎; V= VSV⁎, τ=
tSτ⁎, Cm = 1/2).

dV�

dt�
¼ 1−λV�−

Zt�
0

G
dV�

dτ�
dτ� ð16Þ

where λ= 1 for immobile and λ= 2/3 for mobile bubble surfaces and

G ¼
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π t�−τ�ð Þp a; immobileð Þ
4
3
et

�−τ�erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�−τ�

p� �
b;mobileð Þ

8>><
>>: ð17Þ

The analytical solution of Eq. (16) for the immobile boundary condi-
tion (λ = 1) is given by Clift, Grace and Weber [17] on page 289, with
initial condition V⁎ = 0 at t⁎ = 0.

V� ¼ 1−
α

α−β

� �
exp β2t�

� �
erfc β

ffiffiffiffi
t�

p� �
−

β
β−α

� �
exp α2t�

	 

erfc α

ffiffiffiffi
t�

p� �
ð18Þ

where α ¼ 3
2
½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4=9

p
� and β ¼ 3

2
½1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4=9

p
�.

If the history force is neglected, with initial condition V=0 at t=0
(bubble at rest), the solution of Eq. (7) for the velocity of the bubble, V,
as a function of time is given analytically by

V tð Þ ¼ 2ρgR2

9μ

1− exp −9μt= ρR2
� �� �

a; immobileð Þ
3
2

1− exp −6μt= ρR2
� �� �h i

b; mobileð Þ

8><
>: ð19Þ

In Fig. 6, we compare the results of the numerical solution of Eq. (16)
combined with Eq. (17)b for themobile bubble, the analytical solutions
of Eq. (18) for the tangentially immobile bubble with history force in-
cluded and omitting the history force Eq. (19) for both mobile and
immobile.

The distance S travelled by the bubble starting from rest can be cal-
culated by integrating V with respect to time and is given in Fig. 6b,
where the scale for S is VS2/(2g). The acceleration of the bubble can be ob-
tained by differentiating Eq. (19) with respect to time

dV
dt

¼ 2g
exp −9μt= ρR2

� �� �
a; immobileð Þ

exp −6μt= ρR2
� �� �

b; mobileð Þ

8<
: ð20Þ

Note that the initial acceleration of the bubble is 2g due to the added
mass coefficient being Cm = 1/2.

Thus history force and added mass are both important for bubbles
rising from rest. In the next section we will analyse the behaviour of
the balance of forces when a bubble impacts on a surface.
2.4. Bubbles impacting on surfaces

In Section 2.2 we reviewed the terminal velocity that a bubble ob-
tains if it is far away from any surface. In this sectionwe will investigate
what happens if it approaches a horizontal flat surfacewith terminal ve-
locity (Fig. 7). In this context, the term ‘terminal’ is actually badly cho-
sen, since the real terminal velocity will be zero. Therefore, we will
use the more appropriate term ‘approach velocity’ instead of ‘terminal
velocity’ to avoid confusion. The first case we will investigate is a
small bubble approaching a surface under buoyancy. This example is
particularly interesting from both a colloid/interfacial science and a
fluid dynamics point of view. Effects from both fields of science occur,
but are important at different times. It will connect the fluid dynamic
forces with the more familiar colloidal interactions. Fluid dynamic
forces dominate the process in the early approach stage, while colloidal
forces become progressively more important towards the end of the
settling process. The theory for this case is relatively straightforward,
since inertial effects are largely absent, and it is possible to obtain ana-
lytical results for some limiting cases. This in turn will be useful in un-
derstanding the physics involved.

In the balance of forces of Eq. (5) we neglect surface forces for the
moment and assume that FB, FA, and FH are defined in Eqs. (8), (10)
and (11) respectively.We also assume that Cm=1/2 and that the histo-
ry force remains the same as in bulk even though they are slightly mod-
ified due to presence of the wall. The resulting equation is identical to



Fig. 8.The functionλ of Eq. (22) for a spherical bubble in Stokesflowapproaching a surface
(solid lines) and according to the theories of Bart [35] and Brenner [34] (dashed lines).
Around H/R = 0.5, the influence of lubrication and ‘free-field’ drags are equal. However,
even for H/R = 10, the bubble already clearly ‘feels’ the wall.

Fig. 7. Schematic of a bubble rising in bulk before hitting a flat horizontal surface. Themain
theoretical parameters are defined.

Fig. 9. The velocity of a bubble as it rises and interacts with a surface. (a) Velocity of the
bubble (R = 50 μm) starting from infinity and at 1 mm for mobile and immobile
boundary conditions. The dotted lines are the terminal velocities for the respective
cases. (b) Similar to (a) but using log–log scale. Results are shown starting at different
initial separations and the experiments of Parkinson & Ralston [36] are also shown for
comparison. The grey bar corresponds to the separation where surface forces become
important (H b 50 nm).
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Eq. (7) except that the drag force now also depends on the separation H
between the top of the bubble and the surface (in Eq. (7) it only
depended on the bubble surface mobility condition). For convenience,
the drag force FD is written in terms of a dimensionless function λ as

FD ¼ 6πμRVλ k ð21Þ

The exact analytical expression for λ involves infinite sums of hyper-
bolic functions [34,35]. Empirical approximations that are easier to use
(maximum 1.3% error for all values of H/R) were given in Manica et al.
[37]. Here we use approximated solutions of the form

λ ¼
1þ R

H
þ 3
8

R
Rþ Hð Þ a; immobileð Þ

2
3
þ R
4H

þ 3
8

R
Rþ Hð Þ b;mobileð Þ

8>><
>>: ð22Þ

Eq. (22) reflects the summation of three effects. For the immobile
case, the factor “1” represents the usual bulk drag force. The term with
R/H represents the lubrication limit result. A third term is added
which represents the fact that the bubble “sees” its own image. If the
bubble is relatively far from the wall, this contribution is essentially a
Stokeslet. This image Stokeslet will, when higher order terms are
neglected, create a velocity 3V/(4r*), at the location of the centre of
the original bubble with r* = 2(R + H) / R. Thus the bubble effectively
feels an additional last term of Eq. (22) for both the immobile and mo-
bile case. For the mobile bubble, the factor 2/3 represents the bulk
drag, while the factor R/(4H) represents the classical lubrication limit.
When compared to the exact analytical solutions of Bart and Brenner,
the maximum relative error is 3.4% for the immobile bubble and 5.2%
for the mobile case.

In Fig. 8 we compare the value of λ for the approximation given by
Eq. (22) (solid lines) with the analytical (dashed lines) for the mobile
and immobile boundary conditions. Classical limiting forms are also
indicated.

Unlike the bubble rising from rest, the solution cannot be written in
a universal form. By solving Eq. (7) numerically considering λ from
Eq. (22), the effect of history and added mass are not so pronounced
(see Fig. 9). Neglecting these two forces, Eq. (7) can be simplified to
(note that V = −dH/dt)

6πμRλ
dH
dt

¼ −
4
3
πR3ρg ð23Þ



Fig. 10. Typical equilibrium interaction curves corresponding to Van der Waals (dashed
red line) with A = −4 × 10−20 J and electrical double layer (solid blue curves) for
different concentrations (with surface potential −45 mV and −60 mV) indicated in the
curves. Increasing salt concentration decreases the electrostatic repulsion. Typical
buoyancy forces for small bubbles (R = 10, 20 and 40 μm) are represented by
horizontal lines.
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Using Eq. (22) an analytical solution of Eq. (23) can be found by in-
tegration and is given by

−
2ρgR
9μ

t−toð Þ ¼ H−H0

R
þ ln

H
H0

� �
þ 3
8

ln
H þ R
H0 þ R

� �
ð24aÞ

for the immobile case and

−
2ρgR
9μ

t−toð Þ ¼ 2 H−H0ð Þ
3R

þ 1
4

ln
H
H0

� �
þ 3
8

ln
H þ R
H0 þ R

� �
ð24bÞ

for the mobile case, where H0 = H(t0).
In Fig. 9a we show the numerical solution of Eq. (7) for mobile and

immobile bubble surface boundary conditions for a bubble with radius
50 μm for bubbles starting at H0 = 1 mm and infinity. The terminal
velocity is indicated by the horizontal dotted line. The approximate
solutions of Eq. (23) assuming λ of Eq. (22) for immobile and mobile
surfaces are also shown. In Fig. 9b we show the numerical solution of
Eq. (7) in a log–log plot at different starting points (1.0, 0.1 and
0.01 mm). The velocity increases fast, but not enough to attain terminal
velocity before hitting the surface. At short separations the theoretical
results are compared with experiments of Parkinson and Ralston [36]
where good agreement is found.

The theoretical results presented in Fig. 9 do not include surface
forces, which are important at close separations as indicated by the
grey bar in Fig. 9b. In the next section surface forceswill be investigated.

2.5. Inclusion of surface forces

When the bubble is very close to the surface, surface forces due to
VanderWaals FVDW and electrical double layer FEDL interactions become
important [37]. We write FVDW = 2πReffEVDWk and FEDL = 2πReffEEDLk
where EVDW and EEDL are respectively, the Van der Waals and electrical
double layer interaction energy per unit area between the bubble and
surface [62,63]. They are related to the corresponding force via the
Derjaguin approximation (i.e. the force between two spheres with radi-
us R1 and R2 is equal to 2πReffEVDW, where 1/Reff=1/R1+1/R2, thus here
Reff = R, since the wall is flat) [64]. Note, that in the force balance of
Eq. (5), the added mass and history forces are ignored since accelera-
tions are very small.

2.5.1. Van der Waals force
The Van der Waals interaction free energy per unit area between

two flat plates (neglecting electromagnetic retardation due to relativis-
tic effects) has the form [63]

EVDW ¼ −
A

12πH2 ð25Þ

where A is the Hamaker constant (absolute value typically ranging from
10−19 to 10−20 J). For the case under consideration the Hamaker con-
stant is negative (repulsive) [63]. When Van der Waals forces become
important, we are usually in the lubrication limit of the function λ (i.e.
λ = R/H) Eq. (22).

2.5.2. Electrical double layer force
If the concentration of salt is low, the electrical double-layer interac-

tion (EEDL) cannot be neglected. The electrical double layer interaction
free energy per unit area can be calculated from the superposition ap-
proach for κH N 2 as [63,65]

EEDL ¼ 64no kBT
κ

tanh
eψb

4kBT

� �
tanh

eψs

4kBT

� �
e−κH ð26Þ

where no is the number concentration (number density of the ions
in bulk solution = mol/m3) of monovalent (1:1) electrolyte, kB is
Boltzmann's constant, T the absolute temperature, 1/κ the Debye length
and e the elementary charge of a single electron,ψb is the surface poten-
tial on the bubble and ψs the surface potential on the solid plate. The use
of Eq. (26) is justified if the equilibrium film thicknesses, Heq is larger
than the Debye length (κHeq N 1). Furthermore in the superposition
limit, we do not need to be concerned with whether the surfaces inter-
act under constant surface potential or constant surface charge [63].

Typical repulsive curves for electrical double layer (solid lines for dif-
ferent concentrations) and Van der Waals (dashed line for a given
Hamaker constant A = −4 × 10−20 J) [37] are presented in Fig. 10.
The buoyancy forces for bubbles of different size are represented byhor-
izontal dotted lines.When the surface force exceeds the buoyancy force
the bubble stops approaching. For example a bubble with radius R =
40 μm in 1mMconcentration stops at pointmarked “A” due to electrical
double layer repulsion while a bubble of R=10 μm in high salt stops at
the separation marked “B” in the plot due to Van der Waals repulsion.
Intermediate regions will require both Van der Waals and electrical
double layer forces.

Neglecting addedmass and history, the force balance Eq. (5), is writ-
ten with the aid of the Derjaguin approximation as [37]

6πμRλ
dH
dt

¼ −
4
3
πR3ρg−

RA

6H2

þ 2πR
64no kBT

κ
tanh

eψb

4kBT

� �
tanh

eψs

4kBT

� �
e−κH

ð27Þ

In situationswhere the electrical double layer term can be neglected,
Eq. (27) can be integrated analytically for immobile bubbles (λ= R/H)
to give the separation as a function of time as

H tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ H2

0−η2
� �

e−2t=τ

r
ð28Þ

where H0 is the initial separation, η2 = |A | / (8πρgR2) and τ = 9 μ /
(2ρgR). A similar result can be obtained for the fully mobile bubble in
the limit H/R → 0.



Fig. 12. Schematic of bubbles rising and impacting a solid surface. There are two sources of
deformation: (a) Deformation in bulk (b) deformation during impact with the surface. In
reality the ratio of dimpleheight tofilmwidth is very small. Theoretical variables including
the length of the computational domain rm are defined.
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In Fig. 11, the numerical solutions of Eq. (27) are compared to exper-
iments [36] of small bubbles rising under gravity against a titania
surface in a solution at pH 6.3 under different concentrations of the
electrolyte N(CH3)4Br. Details of the experiment as well as the theo-
ry can be found in Manica et al. [37]. The separation was obtained
with interference fringes (see also Section 3.3). The interaction
force is repulsive so that the bubble will never touch the surface
but instead settles close to the surface at the separation where the
surface force balances the buoyancy force. The final separation of
cases (a) and (b) is dominated by a repulsive electrical double layer
while for cases (c) and (d) by the Van derWaals force, which is also re-
pulsive for the system investigated.

The agreement between experiment and theory is impressive, espe-
cially when one considers that there are no fitting parameters in the
theory. The approach velocity was VT = 0.079 cm/s for R = 19 μm and
VT = 0.54 cm/s for R = 50 μm. The Reynolds number (Eq. (3)) based
on this approach velocity ranges from Re = 0.03 to 0.54 and the
Weber number (Eq. (4)) from We = 3.2 × 10−7 to We = 4.0 × 10−5

for the R=19 μmand R=50 μmbubbles respectively. These values in-
dicate that the whole process including approach is under the Stokes
flow regime (Re b 1) and that the deformation of the bubbles is truly
negligible (We ≪ 1). In the next section we will investigate bubbles
that are approaching under significantly higher Reynolds numbers and
exhibit deformation.

3. Deformable bubbles with high Reynolds number

In this section we cover large bubbles (0.1 b R b 1 mm) rising and
impacting on solid surfaces at large Reynolds numbers up to 700. The
balance of forces is very similar to the one presented for the previous
section but the terms become more complex due to deformation of
the bubble and inertial effects. Due to the larger bubble size, buoyancy
will be larger, resulting in larger approach velocities. At such large
speeds the bubble deforms considerably during impactwith the surface.
If theWe number (Eq. (4)) is larger than unity, deformation of the bub-
ble is also important during rise and the bubble no longer remains
spherical but instead assumes an ellipsoidal shape.

In Fig. 12a we introduce the parameters that are needed for the de-
velopment of the theoretical model. Depending on size and velocity
V(t), the bubble can attain an approximate oblate ellipsoid shape during
rise as indicated by the dashed shape. We define the horizontal radius
RH and the vertical radius RV as the bubble rises in bulk before impacting
Fig. 11. Air bubble approaching a titania surface. Comparison between theory and
experiment for (a) R = 19 μm, no salt added (b) R = 10 μm; 1 mM N(CH3)4Br (c) R =
27 μm; 10 mM N(CH3)4Br (d) R = 50 μm; 100 mM N(CH3)4Br. Experimental data
correspond to the circular symbols while the theory is given by solid lines. The
equilibrium heights Heq correspond to 340 nm, 100 nm, 20 nm and 10 nm for cases
(a) to (d) respectively. For all cases the pH = 6.3, A = −4 × 10−20 J (repulsive). The
surface potentials are Ψ1 = −60 mV (bubble) and Ψ2+ = −45 mV (titania).
a surface. The equivalent radius R based on the volume of the bubble is
defined as

R ¼ RVR
2
H

� �1=3
ð29Þ

and the aspect ratio of the deformed bubble is defined as χ = RH/RV.
When the bubble impacts the surface, the top also deforms due to lubri-
cation effects (see Fig. 12b).

It is important to consider both deformations in a self-consistent
way to be able to predict the rise and bounce of bubbles.We start by de-
scribing a bubble rising in bulk that reaches constant speed, where
buoyancy and drag balance each other.

3.1. Bubbles rising in bulk

For a bubble rising at constant speed the only two forces are buoyan-
cy and drag in the force balance of Eq. (5) resulting in

4
3
πR3ρg ¼ CdRe

π
4
μRV ð30Þ

In this balance we have neglected forces due to acceleration, i.e.
added mass [66,67] and history force. We will discuss the drag force in
the next section in more detail.

3.1.1. Drag force for high Reynolds numbers
It is clear from the discussion of Section 2 that a theory without

viscous forces will not be able to explain the terminal velocity of a
bubble, let alone the interaction with a wall. In potential flow, a non-
accelerating free particle does not have a drag, the so-called d'Alembert
paradox [68]. The viscous force thatwe have already discussed in Eq. (9)
is the drag force FD. Contrary to the relatively simple analytical expres-
sions for the drag force for Stokes flow, Eq. (9), for high Reynolds flow
the drag force is a complicated function of the Reynolds number
(Eq. (3))

FD ¼ CDRe
π
4
μRV k ð31Þ

Here Re is expressed as a function of the instantaneous velocity of
the centre of mass, V (not necessarily the terminal velocity VT). Tradi-
tionally the drag force is expressed as a function of the drag coefficient
CD, defined as

CD ¼ FDj j
πR21

2ρV
2 ð32Þ

in which ρV2/2 represents the dynamic pressure (from the Bernoulli
equation) and πR2 the frontal area of the bubble.



Fig. 14. The terminal velocities from experiments of Duineveld [75], Okazaki [76], Malysa
[25] and Wu and Gharib [21] are compared with theory. Experimental results of Hendrix
et al. [9] (open squares) agree with the results for immobile spheres from the empirical
formula of Schiller and Naumann [73] (Eq. (37)). Note that for this ‘inertial’ regime, the
terminal velocity for ‘mobile’ bubbles (clean) is more than twice that of ‘immobile’
bubbles (contaminated).
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When a bubble with mobile interface rises in a liquid at large veloc-
ity it deforms.Moore [69] obtained the drag coefficient for an ellipsoidal
bubble as

CDRe ¼ 48G χð Þ 1þ H χð Þffiffiffiffiffiffi
Re

p
� �

ð33Þ

where χ is the aspect ratio of the larger axis RH to the smaller axis RV of
the bubble (as defined in Fig. 12). The functions G(χ) and H(χ) are
given by

G χð Þ ¼ 1
3
χ4=3 χ2−1

	 
3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2−1ð Þ

p
− 2−χ2
	 


cos−1 1=χð Þ
h i

χ2 cos−1 1=χð Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2−1ð Þ

ph i2 ð34Þ

and [70]

H χð Þ ¼ 0:0195χ4−0:2134χ3 þ 1:7026χ2−2:1461χ−1:5732 ð35Þ

A relation between the aspect ratio χ and the Weber number
(Eq. (4)) that takes the form [71,72]

RV

RH
¼ 1

χ
¼ 1−

9
64

We ð36Þ

has been proposed for bubbles rising in bulk. Eq. (36) can easily be ob-
tained by a Taylor expansion using the pressure distribution on a sphere
linked with the Laplace pressure and surface deformation [72]. This re-
sult is very accurate forWe b 3.5 when compared to experimental data
(see Figs. 13 and 14).

If the bubble has a tangentially immobile boundary condition, the
velocity is lower, the bubble remains spherical with negligible deforma-
tion and the drag coefficient obeys the classical empirical result of Schil-
ler and Naumann [73] for a solid sphere

CDRe ¼ 24 1þ 0:15Re0:687
	 
 ð37Þ

Carefully conducted experimentalmeasurements by Duineveld [74],
by adding different surfactant concentrations of Triton X100, Brij30 and
SDS show that for larger surfactant concentrations, the bubble rises
like a solid sphere.
Fig. 13. Comparison between experiments [21,25,75] and theory for the bubble aspect
ratio, χ = RH/RV as a function of equivalent radius for clean bubbles. The inset shows the
definition of RV and RH. Small bubbles will have an aspect ratio of 1.0, as the bubble radius
increases the shape becoming more and more ellipsoidal.
3.1.2. Comparison between theory and experiments for terminal speed and
deformation

The aspect ratios as a function of bubble radius for different experi-
ments [21,25,75] are compared with theory (Eqs. (31)–(36)) in
Fig. 13. Note that the deformation becomes larger for increasing bubble
size.

The terminal velocity for a clean system considering various experi-
ments [25,75,76] and theory (Eqs. (31)–(36)) where the bubble inter-
face behaves as mobile is given in Fig. 14. The maximum at R
~0.75mmcan be explained from a physics point of view, since a consid-
erable increase of the frontal area occurs, which in turn increases the
drag.

The terminal velocities obtained by Hendrix et al. [9] are also plotted
in Fig. 14 and agreewith the solid sphere result (Eq. (37)) suggesting an
immobile boundary condition at the bubble surface. In Hendrix et al. [9],
de-ionizedwaterwasusedunder standard laboratory conditions. To ob-
tain terminal velocities that agree with a fully mobile interface, extreme
care has to be taken in the whole process to prevent any surface-active
material to remain in the water. Small concentrations are enough to
change the boundary condition from mobile to immobile.

The results presented in Fig. 14 correspond to bubbles that rise with
a straight path. Larger bubbles bigger than about 1 mm in radius would
present helical of zig-zag path during rise. Careful experiments have
been performed to explain different aspects of non-straight bubble
rise [77,78]. Most numerical simulations are based on a fixed non-
spherical bubble and analyse the drag and vortex shedding (which is
not symmetric) that causes the bubble not to rise straight [79,80]. The
focus of the current review is on bubbles that rise in a straight path.
3.2. Bubbles impacting on a surface

For the case of a large bubble impacting a surface some additional
forces need to be taken into account. Besides buoyancy and drag, the
balance of forces (Eq. (5)) now also contains FA the added mass force,
FH the history force and FF the film force due to a lubrication pressure
build up in the film between the bubble and the surface.

Besides the usual addedmass force in an unbounded domain, an ad-
ditional contribution that only acts near the surface appears. The history
force needs to be included for the immobile boundary condition
(termed “immobile bubbles”) and we take the same form as the one



Fig. 15. Added mass coefficient Cm as a function of H/R (blue curve). Also plotted is
dCm/d(H/R). Note that dCm/d(H/R) b 0. The approximate theory of Kharlamov [82] is
indicated with the green curve, while the exact solution of Miloh [81] is given in
the red curve.
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in the previous section (Eqs. (11) and (12)a), but can be neglected for
the mobile boundary condition [59]. We first give the final form of the
force balance for mobile and immobile bubbles and then derive the
new forces individually.

3.2.1. Bubble with tangentially immobile surface
The balance of forces for immobile bubbles will result in the follow-

ing equation

4
3
πR3ρCm

dV
dt

¼ 4
3
πR3ρg−CdRe

π
4
μRVþ 2

3
πR3ρ

dCm

dH
V2
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ffiffiffiffiffiffiffiffi
πμρ

p
R2

Zt
−∞

1ffiffiffiffiffiffiffiffiffiffi
t−τ

p dV
dτ

dτ−
Z∞
0

2π rpF dr
ð38Þ

This equation can be solved by numerical means. The term on the left
hand side together with the third term on the right hand side represent
two contributions to the added mass force FA which will be derived in
Section 3.2.3. Buoyancy FB and drag FD are represented by the first and
second terms on the right hand side with CDRe given by Eq. (37). The
fourth term is the history force FH (derived from Eqs. (11) and (12)a for
the immobile case). The last term represents the film force FF which will
be derived in Section 3.2.4. It is essentially the integral of the lubrication
pressure pF over the film area [70]. In Section 3.4 we compare results
from this equation and experimental data of bouncing bubbles.

3.2.2. Bubble with mobile surface
Mobile bubbles have a much higher approach velocity than immo-

bile bubbles (see Fig. 14). For example a bubble with radius R =
0.6 mm will rise with about 13 cm/s if the surface is immobile, while
it will attain 30 cm/s for a mobile surface.

The equation ofmotion for a bubblewith amobile interface is almost
identical to Eq. (38)

4
3
πR3ρCm

dV
dt

¼ 4
3
πR3ρg−CdRe

π
4
μRVþ 2

3
πR3ρ

dCm

dH
V2

−
Z∞
0

2π rpF dr
ð39Þ

Note that the history force can be neglected for themobile boundary
condition at the bubble interface [59] and CDRe is now given by Eq. (33).

3.2.3. Added mass force
We can obtain the added mass force FA using an energy approach.

The kinetic energy of the system is defined as

E ¼ 1
2
V2 4

3
πR3 ρb þ Cmρð Þ ð40Þ

Since we are dealing with bubbles in water, the density of the air
contents of the bubble ρb is much smaller than the density of the sur-
rounding liquid ρ; we can neglect the term with ρb here. For a drop in
another liquid, both densities are needed. The work done per unit
time on the system can be described by:

−V FA ¼ −
dE
dt

k ¼ −ρ
4
3
πR3 CmV

dV
dt

þ 1
2
V2 dCm

dH
dH
dt

� �
k ð41Þ

(with dCm/dt = dCm/dH dH/dt). For a spherical bubble approaching a
surface [81,82], the force can thus be written as (noting that dH/
dt= −V)

FA ¼ ρ
4
3
πR3Cm

dV
dt

−
1
2
ρ
4
3
πR3 dCm

dH
V2

� �
k ð42Þ

which explains the two separate contributions in Eqs. (38)–(39). In our
model H is taken to be the film height between the bubble and the wall
at the axis of symmetry (even if deformation is present). The first term
on the right hand side of this equation represents the classical added
mass force (Eq. (10)) and it depends on the acceleration of the bubble.
It is a typical ‘inertial’ force; it does not give any damping to the system.

The second term arises from the fact that the addedmass coefficient
Cm changes when the bubble approaches the wall. It is proportional to
V2 and thus always points in the direction away from the wall (no mat-
ter if the bubble is approaching or retracting). This also implies that it is
not contributing to the damping of the system; it is a purely inertial
force since it has its origins in potential flow theory.

An approximate expression for Cm was given by Kharlamov et al.
[82] and will be used here. With ζ = (H + R) / R, this approximation
reads

Cm ¼ 1
2
þ 0:19222ζ−3:019 þ 0:06214ζ−8:331 þ 0:0348ζ−24:65þ

0:0139ζ−120:7
ð43Þ

Since the bubble will attain a shape which very closely approaches
that of a sphere shortly after ‘feeling’ the wall, we have not included
non-spherical effects of the added mass coefficient in this study i.e.
the factor 1/2 remains the same. Cm is plotted as a function of H/R in
Fig. 15. It reverts back to the classical result Cm = 1/2 as ζ becomes
large. For ζ = 1.0 (H = 0, or a touching bubble), its value becomes
Cm = 0.803. An analytical solution for dCm/d(H/R) has been derived by
Miloh [81]. A comparison of the (exact) solution of Miloh [81] and the
approximation (used in this work) based on Eq. (43) is also given in
Fig. 15.

3.2.4. Film force based on lubrication and film deformation
As mentioned during the discussion on the drag force, the influence

of the wall is not included in Eq. (31) (except for the fact that the veloc-
ity V changes during approach, resulting in a different drag force). If the
bubble is getting closer to the wall, a water film is being formed which
creates an effective barrier for the bubble to advance. Thisfilm is pushed
forward and the film ‘drains’ under the pressure pF that this is generat-
ing. It turns out that a good approximation for pF can be obtained using
lubrication theory (see Hendrix et al. [9]). Surface tension also plays an
active role in the lubrication process (since it ‘pushes’ the film) and de-
formation due to surface tension must be taken into account. A full de-
scription of the lubrication–film deformation model is given next. It
suffices to mention here that the force thus generated on the bubble
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can be obtained by integrating the pressure pF over the (axial symmet-
ric) film domain as

FF ¼
Z∞
0

2π rpF dr k ð44Þ

The integral is extended to infinity since pF decays to zero as 1/r4

[83]. However, for most cases the pressure builds up in a region smaller
than the bubble radius and decays very fast. A positive sign appears in
Eq. (44), since the film force is pushing the bubble down (and thus
acts opposite to the buoyancy force). The film force has both a damping
effect (due to the viscosity of the film), and an elastic effect (surface ten-
sion effectively stores energy during the deformation of the bubble). At
first sight, itmight seem that the viscous effects of Eqs. (31) and (44) are
double counted, but one should realize that Eq. (31) does not take into
account any wall effects. Furthermore, it will be shown later, when the
forces are actually calculated that either the drag force FD or the film
force FF is dominant. This is due to the fact that the velocity is almost
zero when the film is formed and the film force is almost zero when
the velocity is not.

If the film Reynolds number is smaller than unity the film is under
Stokes flow. Assuming that the problem remains axisymmetric, and
that the film height is much smaller than the bubble size, the Navier–
Stokes and continuity equations, Eqs. (1) and (2) can be simplified to
the lubrication form

∂pF

∂r
¼ μ

∂2ur

∂z2
ð45Þ

∂pF

∂z
¼ 0 ð46Þ

∂uz

∂z
¼ −

1
r
∂ rurð Þ
∂r

ð47Þ

where ur and uz are the velocity components in the r (radial) and z (ver-
tical) directions. Since thepressure does not dependon the z-coordinate
according to Eq. (46), ur can be solved with Eq. (45) andwill give a qua-
dratic velocity profile. Taking into account the boundary condition ur =
0 at the water–solid interface and at the air–water interface (for an im-
mobile bubble), we will get a parabolic velocity profile as shown on the
left in Fig. 2. If on the other hand the air–water interface cannot sustain a
shear stress, the half parabolic velocity profile shown on the right of
Fig. 2 will be obtained. If the obtained function ur is substituted into
Eq. (47) and integrated from 0 to the film height h, we will get an ex-
pression for dh/dt.

After some algebraic manipulation, the classical film drainage equa-
tion or Stokes–Reynolds model can be derived in axial symmetric form
[7,83,84]

∂h
∂t

¼ c
12μr

∂
∂r

r h3
∂pF

∂r

� �
ð48Þ

where the constant c=1 corresponds to an immobile boundary condi-
tion at the airwater interface and c=4 for amobile condition. Note that
the film height h is (besides time) a function of the radial coordinate r;
the film is in general not flat, nor can it be assumed to be ‘quasi-flat’ (a
discussion on this issue can be found in Chan et al. [85]).

If the film would not deform, Eq. (48) would give rise to a pressure
that is ever increasing. In practice however, the surface tension will
not be able to keep up with high pressures and the actual pressure in
the film will be around or slightly above the Laplace pressure 2σ/RL,
where RL is the Laplace radius (RL ~ R), σ is the interfacial tension. We
assume that the deformation is governed by the Young–Laplace equa-
tion that relates the mean curvature of a fluid interface to the pressure
difference across the interface of the bubble under quasi-equilibrium
conditions. Besides the Laplace pressure (2σ/RL) between the two
sides of the curved interface, we consider two additional contributions
to the pressure difference, the hydrodynamic pressure pF, due to the
drainage of the aqueous thin film between the bubble and the surface
and the disjoining pressureΠ on the interface [63]. If the bubble defor-
mations are axially symmetric, the pressure pF in the film obeys the
Young–Laplace equation of the form [4,5,63,86]

σ
r
∂
∂r

r
∂h
∂r

� �
¼ 2σ

R
−Π−pF ð49Þ

where Π is only relevant when the separation becomes really small
(h b 0.1 μm) just before bubble adhesion. We need one initial condition

h 0; rð Þ ¼ H0 þ r2

2R
ð50Þ

where H0 is the initial separation and time t = 0 is taken at a position
where the bubble rises at its approach velocity and the deformation
due to the wall can be neglected. The initial profile as given in Eq. (50)
will give rise to a zero pressure pF = 0 when substituted in Eq. (49).

We also apply four boundary conditions. Due to symmetry ∂pF/∂r=
∂h/∂r = 0 at r = 0. For the far-field boundary conditions we assume
that the pressure decays as 1/r4 [83] to write r∂pF/∂r + 4pF = 0 at
r = rmax. The last boundary condition assumes that dh/dt = −V(t) at
r = rmax [87]. Once we calculate V from Eqs. (38) or (39) we use it as
the boundary condition for the lubrication equations. In the simulations
we used as interfacial tension σ= 72 mN/m and the viscosity of water
as μ = 1.0 mPa·s.

In order to test the above lubrication model, the authors have taken
the V(t) from the experiment and simulated the film height, which was
then compared to experimentally obtained data [9]. Alternatively, we
can predict V(t) from Eqs. (38) or (39), resulting in a model without
any fitting parameters. This is done in Section 3.4.1 for the immobile
film drainage and in Section 3.4.2 for mobile film drainage (as experi-
mental comparisonwe have used the data from theMalysa group [47]).

3.3. Experiments with bouncing bubbles

A great deal of research has been devoted to the impact of
millimetre-sized bubbles with surfaces. Most experimental work that
concerns bouncing bubbles is restricted to side images of rise and im-
pact [25,39,43,44]. The process of thin film drainage is not observed in
those experiments. An experimental challenge for this system is the
widely different length scales that are present. Bubbles of millimetre
size form films that are on the micro to nanometre scale.

An innovative approach was used by Hendrix et al. [9]. In their ex-
periment, a millimetre size bubble is released from a needle and rises
under buoyancy against a horizontal glass surface. A schematic of an ex-
perimental setup of a bubble thatwas rising under gravity before hitting
a surface together with a photograph of such a bubble is presented in
Fig. 16. A high-speed camera captures the trajectory and shape of the
rising bubble and a synchronized camera records the evolution of the
film thickness between the bubble and the glass surface by following
the interference fringe pattern.

A typical set of experimental results is shown in Fig. 17. The top se-
quence shows the interferometric photographs at selected stages of in-
teraction: bubble rise stage (Fig. 17a), impact and dimple formation
(Fig. 17b), film rupture (Fig. 17c) and three-phase contact line expan-
sion to a final position where the bubble is attached to the glass
(Fig. 17d). We notice that while the film changes continually in the
top view, the corresponding side view images at the bottom sequence
show that the centre of mass of the bubble barely moves (bottom se-
quence of Fig. 17b–d).

In Fig. 18, we show a typical fringe evolutionwhen a bubble first im-
pacts on the glass surface. The interferometric fringes are (almost)



Fig. 16. Schematic of the experimental setup of Hendrix et al. [9] combined with
photograph of a bubble impacting a surface, R=400 μmaswell as interferometric fringes.
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always circular indicating that the film exhibits axial symmetry. In less
than 2ms the bubble approaches and inverts its curvature in thefilm re-
gion to form a so-called ‘dimple’. For deformable bubbles, a dimple
forms if the pressure in the film becomes higher than the Laplace pres-
sure of the bubble. The conversion from fringes to separation is indicat-
ed on top of Fig. 18. To obtain the experimental film thickness h(r,t), we
use Bragg's equation [88] for a fringe of orderm: h=m λL/(2 n), where
λL=532nm is thewavelength of the laser and n=1.33 is the refractive
index ofwater. This equation indicates that in practical terms, the differ-
ence in separation between two white fringes is about 200 nm. The rel-
ative film profiles can now be reconstructed as a function of radial
coordinate and time. The absolute separation is obtained from the
point of contact when the film ruptures and the bubble adheres to the
surface. After that, we count backwards to produce the time evolution
of the absolute separation and the bubble shape.

The purpose of the interferometric measurement is to: (1) measure
the film height and (2) ascertain that the film drainage process is axial
symmetric (circular fringes) thus axial symmetric theory can be used.
Note that measurements based on intensity, although feasible, must
be interpreted with extreme care. The small sizes of these bubbles en-
sure a straight vertical rise path and axisymmetric bubble deformation
resulting from interaction with the glass plate.
Fig. 17. Selected movie frames highlighting (a) bubble rise, no fringes are observable (b) int
(d) three-phase contact line formation. The top sequence corresponds to interferometric data
same time instants by a second camera. The bubble radius is R = 400 μm and the experimen
rupture is clearly a non-axial symmetric event.
3.4. Comparisons between experiment and theory on bouncing bubbles

3.4.1. Bubbles with tangentially immobile surface and drainage
The next stage in this review is to test the constructed theory against

experimental data. Even though lubrication theory is known to be quite
sturdy [89], it is by no means obvious that it will still be accurate under
the current conditions. By analysing the experimental videos the trajec-
tory of the bubbles was obtained. The velocity of the centre of mass V(t)
can thus be obtained. In Fig. 19 we present the experimental velocity
of the centre of mass for different bubble sizes as symbols (Hendrix
et al. [9]). Two different representative experiments were chosen,
one bubble with radius R = 385 μm and another with R = 630 μm.
As can be expected, the bigger bubble has a larger approach velocity
and also exhibits a larger bounce (both in period and in amplitude).
In Hendrix et al. [9] and Manica et al. [51], the lubrication model of
Eqs. (48)–(50) was solved using the experimental V(t) as input for
the model.

In this section, we will use the force balance model (Eq. (38)), to-
gether with the drainage equations (Eqs. (48)–(50)) with c= 1 solved
simultaneously [90]. The numerical results are represented as solid lines
in Fig. 19. The agreement is good taking into account the simplicity of
themodel and the fact that there are nofitting parameters in themodel.

The comparison between numerical simulations of the force bal-
ance–lubrication theory and the experiment of Hendrix et al. [9]
concerning the film heights is shown in Fig. 20a for immobile boundary
condition at the air–water interface. The agreement is impressive all the
way to film rupture. A dimple first appears at t ~9 ms and disappears
again around t = 12 ms. During this period the film height is thinnest
not at the centre, but at a circular region, termed a ‘rim’. The rim reaches
a maximum value of about 75 μm. Fig. 20b shows the spatiotemporal
evolution during the first impact and the drainage process of a fewmil-
liseconds. It clearly shows that the film is axial symmetrically draining,
whichwas the case for all the experiments thatwere analysed. The dim-
ple disappears during a short period from t = 12 to 14 ms. It then
reappears and remains all the way to film rupture. In Hendrix et al.
[9], the results were analysed with the lubrication theory only by feed-
ing V(t) as a boundary condition to Eqs. (48)–(50). The results of the
two approaches are quasi-indistinguishable.

The forces obtained from the coupled force-lubrication approach are
plotted in Fig. 21. Most of the action occurs during the first impact while
later on everything settles. Initially (t b 0 ms) buoyancy is balanced by
eraction with the glass plate, with formation of interference fringes (c) film rupture and
from a first camera while the bottom sequence represents side view images taken at the
tal times corresponding to the sequence (a) to (d) are t = 0, 6, 90 and 150 ms. The film



Fig. 18. Typical sequence of interferometric fringes for a time-step of 0.37 ms between frames during the first contact of the bubble of R = 400 μm against the glass surface. (a) Bubble
approach; (b) flattening of the bubble surface; (c) curvature inversion or dimple formation; (d) dimple grows. The actual film shapes have been plotted above each frame.
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the drag force and once inertial effects are gone buoyancy is balanced by
the film force (t N 200 ms).

From Fig. 21 it is evident that themost important contribution to the
bubble bounce originates from the film force. More details as well as a
different example for a larger bubble can be found in Klaseboer et al.
[90].

3.4.2. Bubbles with mobile surface and drainage
Experiments with bubbles rising under clean surface conditions and

bouncing from various surfaces have been performed extensively by the
group of Malysa [41,42,45–47]. The bubble velocity is obtained with the
force balance model of Eqs. (39) and (48)–(50) with c = 4 and com-
pared against the experiments of Kosior et al. [91]. In Fig. 22a we com-
pare a typical experiment. More details can be found in Manica et al.
[92]. Since the deformation is very large for this kind of bubbles, we
have taken rmax = 1.2R for the first part of the simulation and rmax =
0.9R after t = 25 ms. The value of the aspect ratio, χ, used in Eq. (33)
is calculated to be χ = 1.52. It is then changed to χ = 1 at the time
marked with a square in Fig. 22a because the bubble is observed exper-
imentally to remain nearly spherical after the first impact. The agree-
ment is impressive, especially when it is realized that our model does
not contain any fitting parameters. Unfortunately, no experimental
data concerning the film thickness is available. We have plotted the nu-
merical film thicknesses (both at the centre h0 and at the rim hm) for this
case in Fig. 22b. The results of the previous sections give us confidence
Fig. 19. Comparison between force balance model (continuous lines Eq. (38)) and
experiment for immobile bubble with immobile drainage (symbols) for two different
bubbles with size R = 385 and 630 μm. Both curves show a ‘damped oscillator’
response. The origin of time is taken arbitrary. The Reynolds and Weber numbers based
on the approach velocity VT are also indicated.
that the constructed theory is probably giving the right answer. If this
is indeed the case, the film height during thefirst bounce reaches amin-
imum value of about 4 μm.

We can see that during subsequent bounces the phenomena are
similar. Eventually the bounces stop and only film drainage remains
all the way to film rupture. Five distinct dimples can be observed.
Fig. 20.Comparison between theory and experiment for theheight at the centre and at the
rim for a bubble with R=385 μm (from Fig. 19) using the immobile boundary condition,
VT = 8.7 cm/s. Note that the scaling of the time axis is changed at t = 14 ms. (b) Spatial
evolution of the film profile during first impact from 8.7 to 11.7 ms.



Fig. 21. The forces as a function of time for a bubble with R = 385 μm (from Fig. 19)
according to the force balance model. The sum of all forces is (necessarily) zero. Far
away from the wall, buoyancy balances drag. For larger times (t N 200 ms), buoyancy
and the film force compensate each other.

Fig. 22. (a) The velocity of the centre ofmass of the bubbles of Eq. (39) as a function of time
compared to experiments of Kosior et al. [91] for a bubble with radius R = 730 μm and
approach velocity VT = 35 cm/s. It has mobile boundary conditions during rise, film
drainage and bounce. (b) Film thickness at the centre, h0, and at the rim, hm, during
subsequent bounces (numerical results). (c) Time evolution of the forces (numerical).
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The evolution of forces as a function of time for this case is shown in
Fig. 22c and has some interesting features. The film force becomes pos-
itive for several short periods, which means that there is a “suction ef-
fect” which can cause film rupture in some cases if the film is thin
enough. However, from Fig. 22b we can see that the film thickness re-
mains well above 1 μm during the bouncing process.

4. Discussion

4.1. The remarkable success of lubrication theory

If due care is taken, deformable thin films can be modelled surpris-
ingly accurately with lubrication theory, ranging from the modelling
of a thin film in a Taylor bubble [93–95] to air lubrication between a de-
formable tape and a recording head [89]. This is somewhat surprising
since the global Reynolds number (Re) is much larger than one. It
must be remembered though that the film Reynolds number very
quickly becomes smaller than one and lubrication theory (combined
with surface deformation) can describe an important part of the physics
of the problem. Furthermore, it has been shown in this review that if the
velocity of the centre of mass is given as input for the lubrication equa-
tions through a force balance, a theory without any fitting parameters is
capable of predicting the experimentally measured film heights as well
as the bouncing behaviour of the bubble.

4.2. Some remarks on mobile and immobile surfaces

In this article we have seen several times different boundary condi-
tions on the bubble surface (mobile or zero tangential stress vs immo-
bile or zero tangential velocity). In this section we describe a rather
peculiar experiment in which the bubbles rise under immobile bound-
ary conditions, but appear to exhibit film drainage with mobile condi-
tions [10]. In Fig. 23 we compare the results for two bubbles with
approximately the same radius (625 and 630 μm), the same approach
velocity (VT ~13.5 cm/s), yet exhibiting an entirely different bouncing
behaviour after 10 ms. One bubble has a much more oscillating behav-
iour than the other. The film heights were measured simultaneously
with the velocity of the centre of mass and are shown in Fig. 24. We at-
tribute this difference to the surfacemobility in the film area. If the bub-
ble is (partly) clean, it is most likely to be in the frontal area, since all the
surfactants are swept to the back and the film area might remain clean
enough to exhibit mobile interface behaviour. This result is consistent
with experimental data of Malysa et al. [25] and numerical simulations
of Cuenot et al. [31]. From experiments similar to Fig. 23, the bouncing
behaviour can give us further clues on the state of thefilm–bubble inter-
face; mobile or immobile. If the bubble is entirely covered with surfac-
tants, the whole bubble will be immobile (including the film area).



Fig. 23. Experimental velocity of the centre of mass against time for bubbles of similar size
with similar approach velocity (VT ~13.5 cm/s, corresponding to an immobile interface),
yet presenting significantly different bouncing behaviour. The Reynolds number (based
on approach velocity) and Weber number are almost identical for both cases Re ~165
and We ~0.30, indicating that these two parameters are not the only ones governing the
dynamics of the system. The difference is attributed to the thin film boundary condition
(immobile or mobile drainage).

Fig. 24. Comparison of bouncing behaviour for two almost identically sized bubbles R
~630 μm and approach velocities (VT ~13.5 cm/s see Fig. 23), but with different mobility
conditions at the film–bubble interface (a) immobile and (b) mobile. The red circles
represent the experimentally measured film heights at the centre (h0) and the thinnest
film height (hm). See Fig. 20 for definition of h0 and hm. Note the substantially qualitative
different behaviour of the film drainage.
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Surface mobility plays a crucial role in the dynamical behaviour of
the bubble. It enters the physics of the problem in three different
ways. First of all, as we have seen in Fig. 14, the rise velocity can be af-
fected. However, a spherical cap bubble can still rise with (almost) the
same speed as a ‘clean’ bubble. During the film drainage process, a
draining film with a mobile interface will be substantially different
from the drainage of an immobile interface. As could be expected intu-
itively, a mobile film drains much faster (a factor of 2; see Eq. (48) with
c = 1 or 4). Finally, mobility can affect even the importance of the his-
tory force, due to its close relationship with the boundary layer around
the bubble.

In Fig. 24 the experimental as well as the numerical minimum film
height and the height at the centre (at r = 0) are shown. By setting
c = 1 or c = 4 in Eq. (48) we can simulate an immobile and a mobile
film interface respectively, while keeping all other parameters the
same. We see that the immobile bubble (Fig. 24a), forms a film and
the film keeps on thinning except for a small period around t =
25 ms. On the other hand, the mobile bubble (Fig. 24b) forms a film,
but then the whole profile detaches around t = 12 ms. In both the ex-
periment and the numerical simulation, the film essentially disappears
at that instant (the experimental interference fringes even disappear
here). Also note that thefirst appearance of the dimple appears at values
of 19 μm and 8 μm for the immobile and mobile drainage cases respec-
tively. In conclusion, it thus turns out that ‘mobile draining bubbles’ ex-
hibit much less damping, but the film heights attained are roughly a
factor of two less than their immobile counterparts during the first im-
pact. Thus, all other parameters remaining the same, the surface mobil-
ity of the film has a real influence on the global bouncing behaviour as
clearly illustrated in Figs. 23 and 24.

4.3. Extreme film thinning just before rebound

When rebound occurs, a peculiar phenomenon can be observed.
From the experiment as well as theory, as the outside of the bubble is
already retracting, the film still keeps thinning. This is obvious from
Fig. 22b or 24b, where the main part of the bubble is moving away
from the wall, while the central part is still thinning. Just before this
part of the bubble is also retracting, the centre of the bubble becomes
very thin in a very small amount of time (≪1ms) and then immediately
becomes very large (this corresponds to the sharply pointed profile
observed in Fig. 22b at t ~15ms and in Fig. 24b at t ~12ms). Themove-
ment of the film and the movement of the bubble itself can thus be in
opposite directions. This can even result in a negative film pressure
(i.e. a suction, such as observed in Fig. 22c at t=15ms during a fraction
of a millisecond). If the film becomes thin enough during this process, it
can actually lead to film rupture. This phenomenon was also observed
during the coalescence of bubbles in AFM [96], drops in a four-roll mill
[97], inmicrofluidics channels [98] and in shearflow [99]. This phenom-
enon can be explained theoretically [100,101].

4.4. The relation between bounce time and relaxation time

There is still onemore aspect of the physics thatwe can explore. The
typical ‘bounce-time’ for a bubble appears to be closely related to the so-
called relaxation time. Far away from the surface, even during rebound,
surface forces can be neglected, and assuming the history force contri-
bution is not too large, Eqs. (38) and (39) essentially reduce to

4
3
πR3ρCm

dV
dt

¼ 4
3
πR3ρg−CdRe

π
4
μRV ð51Þ
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When the left hand side of Eq. (51), the added mass force, with
Cm = 1/2, is compared to the buoyancy force, a typical time scale for
the system can be derived (a typical velocity scale is VT), the relaxation
time

tR ¼ VT

2g
ð52Þ

For example, if we take as a typical oscillation period to be the time
elapsed between the first and second minimum in the velocity–time
graphs, thenwe see that this period is about 2tR=VT/g. The factor ‘2’ ap-
pears since it takes two ‘relaxation times’ to bounce back and return to
the surface again. For example in Fig. 19, the bounce time is about 11ms
for the bubblewithR=630 μm,while 2tR ~13.8ms. For the secondbub-
ble with R = 385 μm, the bounce time is 7 ms, while 2tR ~8.2 ms. This
‘law’ is also observed in Fig. 22a (35 ms vs 2tR ~36 ms).

It seems as if the physics of the problem is decoupled in two distinct
phases. First of all, the film with its drainage, which forms a dimple,
which appears to depend on the approach speed. Secondly, the inertia
of the bubble itself, which results in a bounce time which is related to
the relaxation time of the bubble. Of course, when the bubble becomes
smaller the viscous effects become more dominant (as in Section 2)
until no bounce will be observed anymore.

4.5. Solid surface vs air–water interface

It is interesting to note that the bouncing behaviours for bubbles
against a free surface and a solid surface appear very similar. In Fig. 25
we compare experimental data extracted from Kosior et al. [47,91] on
the bouncing behaviour of bubbles when impacting solid surfaces and
free surfaces. As can be seen the bouncing is very similar, but in the
free surface case the bubble bursts to the atmosphere while in the
solid surface case the bubble does not.

Experimentally, it thus appears that the nature of the surface (solid
surface or free surface) has a negligible effect on the global bouncing be-
haviour of a bubble (at least for these bubbles). Using a force balance
model, it was shown that, though the bouncing behaviour is almost
identical, the deformation of the free surface plays an important role
in the dynamics of the bubble bounce [72]. Bubble bouncing behaviour
was also predicted using full numerical simulations of the Navier–
Stokes equations [102] for a flat horizontal surface.
Fig. 25.Bounce of a bubble against solid surface vs bounce of a bubble against an air–water
interface from Kosior et al. [47,91]. The amplitude of the bounce as well as period is very
similar until eventually the bubble bursts at 90 ms.
4.6. The first appearance of the dimple

In Klaseboer et al. [87], while investigating approaching drops at a
constant velocity, it was noted that, if the approach velocity remains
constant, the governing equations could be non-dimensionalised in
such a way that no parameters remain. Thus a universally valid solution
could be found. This formula predicted that a dimple first occurs at a
film height hD = 0.4RCa1/2 with Ca = μVT/σ. If we compare with
Eqs. (48)–(50), the equations we are solving here are very similar
(provided the disjoining pressureΠ in Eq. (49) is zero), but two factors
1/2 appear in Eqs. (49) and (50). Also a factor ‘c’ appears in Eq. (48) ac-
counting for the immobile (c = 1) or mobile (c = 4) character of the
water–air interface. With some rescaling it can easily be shown that
for our bouncing bubble problem the following equation could hold:

hD ¼ 0:4R

ffiffiffiffiffiffiffiffiffiffiffiffi
2μVT

cσ

r
¼ 0:4R

ffiffiffiffiffiffiffiffi
2Ca
c

r
ð53Þ

The factor ‘2’ under the square root sign appears due to the factor 1/2
mentioned above. The first appearance of the dimple according to this
equation is shown in Fig. 26 for a variety of experimental data. Strictly
speaking, Eq. (53) is only valid for cases where the approach velocity
remains constant at VT. Comparing the velocity and film height plots,
we can see that this is actually no longer the case. Nevertheless, just
prior to the formation of the film the velocity is still very close to VT.
This is probably the reason that Eq. (53) still works very well as a first
approximation.

In the above discussion we have introduced the capillary number,
but previously we mentioned that the dynamics of the bubble should
be governed by the Reynolds and Weber number. These numbers are
actually related to each other by Ca= We/Re. A similar law as Eq. (53)
is valid for drops impacting on solid surfaces [104,105].

5. Conclusions

In this review, the rise and bounce of bubbles have been investigated
in light of new experimental advances that allowed precise measure-
ments of the trajectory and film heights simultaneously. The proposed
theory showed to be effective in capturing the physical features of the
problemall thewaydown to the colloidal size. The problemwas tackled
fromboth afilmdrainage point of view and froma force balancepoint of
view. The force balance–lubrication framework is capable of predicting
Fig. 26. Comparison of first appearance of dimple formation of Eq. (53) with different
experimental systems from the literature: [9] (squares), [10] (blue triangles), [103]
(diamonds) and [87] (green triangles).
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the trajectory of the centre of mass and film evolution without any ad-
justable parameter. This is even feasible for bubbles with a high Reyn-
olds number based on the approach velocity.

From a colloidal science point of view, for large bouncing bubbles,
Van der Waals and electrical double layer forces can be neglected for
the first few bounces, since the films that are being formed are always
on the micrometre scale, while surface forces are typically only impor-
tant if the film has thinned to the nanometre scale range or for very
small bubbles. Surface mobility on the other hand can considerably
change the dynamics of the bouncing bubble and/or its approach veloc-
ity. It is most likely that bubbles in real industrial systems, unless ex-
treme care has been taken to eliminate impurities, will exhibit
immobile rising behaviour and immobile film drainage. The rising ve-
locity of a single bubble can confirm if the bubble rises under mobile
or immobile conditions.

Though considerable progress using full numerical simulations in-
volving multiphase systems has been achieved recently due to increase
in computational power, it is still very challenging to use such tech-
niques to capture the last stages of film drainage just before film rupture
due to widely different length scales about onemm for the bubble radi-
us, tens of micrometres for the film size and nanometres for the film
height. The impact of bubbles on deformable surfaces adds one extra
complication due two deforming surfaces that need to be tracked simul-
taneously and to high resolution and precision. This is a direction nu-
merical simulations can develop. From the experimental point of view,
being able to measure forces and film thickness simultaneously [106]
for impacting bubbles at large approach speeds is still needed to further
validate the theoretical results.

Inmany applications ranging from thebubbles stability and lifetimes
in beverages to the aeration of bioreactors in which the dynamics of the
interaction of bubbles with deformable interfaces is more pertinent,
there is little detailed quantitative experimental data in this regard. Al-
though the present theoretical framework can be extended to analyse
the bubble interaction with deformable surfaces, the special case in
which both interfaces have mobile (zero tangential stress) boundary
conditions still requires the development of an accurate quantitative
theoretical framework. Therefore, there remain experimental and theo-
retical challenges in the broad area of bubble interaction with soft
interfaces.
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