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Nonsingular Field-Only Surface Integral Equations

for Electromagnetic Scattering
Evert Klaseboer, Qiang Sun, and Derek Y. C. Chan

Abstract— A boundary integral formulation of electromagnetics that
involves only the components of E and H is derived without the use of
surface currents that appear in the classical Poggio and Miller, Chang and
Harrington, and Wu and Tsai formulation. The kernels of the boundary
integral equations for E and H are nonsingular so that all field quantities
at the surface can be determined to high precision and also geometries
with closely spaced surfaces present no numerical difficulties. Quadratic
elements can readily be used to represent the surfaces so that the surface
integrals can be calculated to higher numerical precision than using
planar elements for the same numbers of degrees of freedom.

Index Terms— Boundary element methods, boundary integral
equations, electric field integral equation, electromagnetic propagation,
electromagnetic scattering, electromagnetic theory, Helmholtz equations,
magnetic field integral equation, Maxwell equations, vector wave
equation.

I. INTRODUCTION

The surface integral or boundary integral formulation of fre-
quency domain electromagnetics was established by the classic
works of Poggio and Miller [1], Chang and Harrington [2], and
Wu and Tsai [3] (PMCHWT) over 40 years ago and has been
widely used ever since. In the PMCHWT formulation, the electric and
magnetic fields, E and H , are given in terms of electric and magnetic
surface currents or equivalently scalar and vector potentials [4] that
are found by solving surface integral equations. The fields E and H
are then obtained by postprocessing the surface current values. Many
numerical methods have been developed to solve the surface current
integral equations. A popular scheme is to use the Rao–Wilton–
Glisson (RWG) [5] basis functions that enforce charge conservation to
represent the surface currents on planar triangular surface elements.
It has been pointed out recently that this development is still not
without challenges [6]. The evaluation of field quantities gives rise to
integral equations with hypersingular kernels due to dyadic Green’s
functions [7] that introduce additional numerical difficulties in the
zero frequency or long wavelength limit [8].

The well-known analytical solution of the scattering of an
electromagnetic plane wave by a single sphere uses two scalar
Debye potentials that satisfy the scalar Helmholtz equation [9]–[11].
Here, motivated by the conciseness of this approach, we develop a
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fundamental reformulation of electromagnetics that works directly
with field variables that satisfy scalar Helmholtz equations.
In contrast to the PMCHWT approach, it is not necessary to solve
for surface current densities as intermediate quantities. The scalar
Helmholtz equations for the field components are solved by a recently
developed boundary integral method in which all surface integrals
have singularity-free integrands and the term involving the solid
angle is eliminated [12], [13]. Thus, the consequential advantages are:
1) components of E and H are computed directly; 2) field quantities
at or near surfaces can be calculated without loss of precision;
3) geometries where different parts of surfaces are very close together
do not have detrimental effects on the numerical accuracy; 4) the ease
with which higher order surface elements can be used to represent
boundaries more accurately enables the boundary integrals to be
evaluated using standard quadrature and yet confer high numerical
accuracy with fewer degrees of freedom; and 5) the accuracy of the
numerical implementation means that the effect of any resonant solu-
tions of the Helmholtz equation are negligible unless the wavenumber
is extremely close to the resonant values, so that the resonant solution
should not affect practical applications if the present approach is used.

II. THEORY

We illustrate our electromagnetics formulation with the scatter-
ing problem by the 3-D perfect electrical conductors (PECs). The
generalization to dielectric scatterers involves more complex algebra,
yet is based on the same physical concepts [16]. In the frequency
domain with time dependence exp( jωt), the propagating electric
field E in a source free region is given by the wave equation
(k2 ≡ ω2ϵrϵ0µr µ0 ≡ ω2ϵµ)

∇2 E + k2 E = 0 with ∇ · E = 0. (1)

Since ∇ · E = 0, there are only two independent components
of E in (1) and they are found by specifying the incident field,
Ei = E0 exp(− j k · r), where r = (x, y, z) is the position vector,
and imposing the boundary condition that the tangential components
of E must vanish on the surface, S of the PEC.

The condition ∇ · E = 0 can be replaced using a vector identity
for (r · E) to give

∇2 E + k2 E = 0 (2)
2(∇ · E) ≡ ∇2(r · E) + k2(r · E) = 0. (3)

The results in (2) and (3) were first demonstrated explicitly by Lamb
for elastic vibrations [14]. They are independent of the choice of
the origin of the coordinate system as can be verified by adding
a constant vector to r . However, they have significant relevance to
electromagnetics in that they show that E is determined directly by
a coupled set of four scalar Helmholtz equations

∇2 pi (r) + k2 pi (r) = 0, i = 1 . . . 4 (4)

that we will solve by the boundary integral method. The scalar
functions pi (r) denote one of the three Cartesian components of
E or (r · E). Equation (2) furnishes three relations between the six
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unknowns: Eα and ∂Eα/∂n, (α = x, y, z), where ∂/∂n ≡ n · ∇
and n is the outward unit normal of the surface, S of the solution
domain. Equation (3) between (r · E) and ∂(r · E)/∂n provides
one more relation between Eα and ∂Eα/∂n, since ∂(r · E)/∂n =
n · E + r · ∂ E/∂n. The electromagnetic boundary conditions on the
continuity of the tangential components of E provide the remaining
two equations to determine E and ∂ E/∂n completely.

For scattering by a PEC, it is more convenient to work in
terms of the normal component, En = n · E, and two tangential
components, Et = (Et1, Et2), of the electric field at the surface.
In the PEC case, there are four unknowns to be determined, namely,
∂Ex/∂n, ∂Ey/∂n, ∂Ez/∂n, and En , because the tangential compo-
nents of the electric field must vanish on the surface of a PEC.
We decompose E into a sum of the incident field, Ei and the scattered
field Es so on the surface of the PEC, the tangential components
of the scattered field cancel those of the incident field. Physically,
En is proportional to the induced surface charge density on the PEC.
Thus, the number of unknowns to be found is the same as for the
classic solution of the scattering problem by a PEC sphere using a
pair of scalar Debye potentials in which the two unknown functions
and their derivatives have to be found [10], [11]. However, in the
Debye potential approach, the electromagnetic boundary conditions
are expressed as combinations of the two potentials and components
of their gradients on the surface of the PEC and give rise to equations
that are not straightforward to solve in the framework of the boundary
integral method.

The boundary integral solution of (4) for the scattered field is
based on Green’s second identity that gives a relation between
pi (r) and its normal derivative ∂ pi /∂n at points r and r0 on the
boundary, S. All singularities associated with Green’s function G ≡
G(r, r0) = exp(− j k|r − r0|)/|r − r0| can be removed analytically to
give [12], [13]
∫

S

[
pi (r) − pi (r0)g(r) − ∂ pi (r0)

∂n
f (r)

]
∂G
∂n

d S(r)

=
∫

S
G

[
∂ pi (r)

∂n
− pi (r0)

∂g(r)
∂n

− ∂ pi (r0)

∂n
∂ f (r)

∂n

]
d S(r). (5)

The requirement on f (r) and g(r) is that they satisfy the Helmholtz
equation and the following conditions at r = r0 on surface,
S: f (r) = 0, n · ∇ f (r) = 1, g(r) = 1, n · ∇g(r) = 0. The examples
of possible choices of f (r) and g(r) can be found in [12] and [13].
Thus, if pi (or ∂ pi /∂n) is given, then (5) can be solved for ∂ pi/∂n
(or pi ) in a straightforward manner. The reason is that for f (r)
and g(r) that obey the above conditions, the terms that multiply
G and ∂G/∂n vanish at the same rate as the rate of divergence
of G or ∂G/∂n as r → r0, and consequently, both integrals
have nonsingular integrands and can thus be evaluated accurately
by quadrature (see [12], [13] for details). Note that the solid angle
at r0 has also been eliminated in (5).

With the removal of all singular behavior and without the need to
represent surface current densities, quadratic surface elements can
be used to represent the surface geometry more accurately. This
can provide orders of magnitude improvement in the numerical
integration over the standard methods (with singular integrands)
for the same number of degrees of freedom [13]. Once the field
quantities are known on the boundary, the values in the 3-D solution
domain, even at locations close to the boundaries, can be obtained
easily and accurately, since the boundary integral equations are not
singular [12], [13].

The formulation for the magnetic field H is similar

∇2 H + k2 H = 0 (6)

2(∇ · H) ≡ ∇2(r · H) + k2(r · H) = 0 (7)

Fig. 1. Interpolation scheme on a quadratic surface element in the local
surface variables (ξ , η).

but at PEC boundaries, (7) is equivalent to the simpler condition that
the normal component of H vanishes on the PEC

n · H = 0 on S. (8)

To apply the boundary condition on the tangential components of E,
we choose two orthogonal unit tangents p and t on S, and use
Ampere’s law to express the component of E parallel to p, namely,
E p ≡ E · p = E · (t × n), in terms of H

E p = t · (n × E) = 1
jωϵ

{t · (n × ∇ × H)}

= 1
jωϵ

{n · (t · ∇)H − t · (n · ∇)H} = 0. (9)

The second equality in (9) follows from the electric field boundary
condition on the PEC surface S.

Our formulation for PEC problems for H , in (6)–(9), is slightly
more complex than our formulation for E, in (2) and (3), because of
the need to use (9) to impose the PEC boundary condition for E in
terms of H .

III. NUMERICAL IMPLEMENTATION

We show how the solution of (2) and (3) for the electric field E
on the surface of a PEC scatterer can be formulated as a system
of linear equations that is the discretized representation of four
nonsingular boundary integral equations (5) for the solution of three
scalar Helmholtz equations for the three components of E and an
additional scalar Helmholtz equation for (r · E). The total field, E,
can be written as the sum of the incident and scattered fields:
E = Ei + Es . Clearly, the known incident field, Ei , such as a plane
wave, satisfies (2) and (3), so we only need to solve for the unknown
scattered field, Es . On the surface of an object, it is convenient
to work in terms of the normal and tangential components of the
scattered field: Es = Es

n + Es
t . Since the tangential component of

the total field, E must vanish on the surface of a PEC, and then,
the tangential components of the scattered and incident fields must
cancel, that is, Et ≡ Es

t + Ei
t = 0. Thus, the components of the

scattered field, Es = (Es
x , Es

y, Es
z ) on the surface of a PEC can

be expressed in terms of the known tangential components of the
incident field, Ei

t = (Ei
t,x , Ei

t,y, Ei
t,z), the components of the surface

unit normal, n = (nx , ny , nz) with the unknown being the normal
component of the scattered field, Es

n as follows:
Es

x = Es
n nx − Ei

t,x (10)

Es
y = Es

n ny − Ei
t,y (11)

Es
z = Es

n nz − Ei
t,z . (12)

We discretize the surface S using quadratic triangular area elements
where each element is bounded by three nodes on the vertices and
three nodes on the edge (see Fig. 1 for a total of N nodes on the
surface). The coordinates of a point within each element and the
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Fig. 2. Comparisons between results from the present field-only formulation (symbols) and from the analytical Mie theory (solid lines). The normal
components of the scattered field, Es

n along the meridian line at y = 0 on the PEC sphere surface at (a) ka = 1, using 362 nodes and 180 quadratic elements
and (b) ka = 10, using 1962 nodes and 980 quadratic elements. The induced surface charge density (color sphere) and far field RCS at r = 20a in the planes
(c) x = 0 and (d) y = 0 for ka = 10 (color online).

function value at that point are obtained by quadratic interpolation
from the values at the nodes using the standard quadratic interpolation
function (ν ≡ 1 − ξ − η)

φ = ν(2ν − 1) φ1 + ξ(2ξ − 1) φ2 + η(2η − 1) φ3
+ 4νξ φ4 + 4ξη φ5 + 4ην φ6 (13)

in terms of the local coordinates (ξ, η) (see Fig. 1).
The solution of (2) and (3) for components of the scattered

field, Es and (r · Es ), on the surface is expressed in terms of the
values at the N surface nodes. The surface integral solution of these
quantities (5) can be expressed as a system of linear equations in
which the elements of the matrices H and G are the results of integrals
over the surface elements involving the unknown 4N-vector (Es

x , Es
y,

Es
z , r · Es). Since the surface integral equation (5) does not have any

singular behavior, these matrix elements can be calculated accurately
using the standard Gauss quadrature. The linear system can be
written as

H · Es
x = G ·

(
∂Es

x/∂n
)

(14)

H · Es
y = G ·

(
∂Es

y/∂n
)

(15)

H · Es
z = G ·

(
∂Es

z /∂n
)

(16)

H · (r · Es) = G · [∂(r · Es )/∂n]. (17)

For the left-hand sides of (14)–(16), we use (10)–(12) to eliminate
the Cartesian components: Es

x , Es
y , and Es

z in terms of the normal

component, Es
n , and the tangential component of the known incident

field, Ei
t . For (17), we use (10)–(12) to write

r · Es = (r · n)Es
n −

(
r · Ei

t
)

(18)

and

∂(r · Es)

∂n
= Es

n + r · ∂ Es

∂n
. (19)

Thus, (14)–(17) can be expressed in terms of the normal component
Es

n and the three components of the normal derivative ∂ Es/∂n of
the scattered field as

H ·
(
nx Es

n
)
− H · Ei

t,x = G ·
(
∂Es

x/∂n
)

(20)

H ·
(
ny Es

n
)
− H · Ei

t,y = G ·
(
∂Es

y/∂n
)

(21)

H ·
(
nz Es

n
)
− H · Ei

t,z = G ·
(
∂Es

z /∂n
)

(22)

H · (r · n)Es
n − H ·

(
r · Ei

t
)

= G ·
[

Es
n + r · ∂ Es

∂n

]
. (23)

The above set of equations is a 4N × 4N linear system for the
unknown complex 4N-vectors: {∂Es

x/∂n, ∂Es
y/∂n, ∂Es

z /∂n, Es
n} on

the surface in the final form
⎡

⎢⎢⎣

−G 0 0 Hnx
0 −G 0 Hny
0 0 −G Hnz

−Gx −Gy −Gz Y

⎤

⎥⎥⎦

⎡

⎢⎢⎣

∂Es
x/∂n

∂Es
y/∂n

∂Es
z /∂n
Es

n

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎣

HEi
t,x

HEi
t,y

HEi
t,z

Z

⎤

⎥⎥⎥⎦
(24)
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where Y ≡ −G+H(r ·n) and Z ≡ H(r ·Ei
t ). This is the linear system

to be solved for the surface values of the normal component of the
scattered field, Es

n and the three components of normal derivatives
(∂ Es/∂n).

In a similar way, we can construct the linear system by solv-
ing (6) and (8) together with (9) for the tangential components of
the E field on the surface. In this case, there are 5N unknowns com-
prising the 2N unknowns for the tangential components of H and 3N
unknowns for the components of (∂ Hs/∂n).

In contrast to the familiar PMCHWT formulation, the coefficient
matrix of our linear systems are well-behaved because of the absence
of singularities in our surface integral equations (5). The values of the
surface field on the PEC scatterer—the normal component of E and
the tangential components of H—are obtained directly. In addition,
we also obtain the normal derivatives of the fields at the surface. Such
quantities are often sought in surface plasmon applications. In certain
EM modeling, the surfaces are assumed to have mathematically sharp
corners or edges. For such idealized representations of geometric
features, the surface normals and the normal derivatives of surface
fields are undefined even though no such difficulties occur with actual
physical problems. Thus, a more realistic representation of the details
of such geometric features would avoid any unphysical behavior.

IV. VALIDATION AND ILLUSTRATIVE EXAMPLES

We demonstrate the key features and advantages of our field-only
formulation with the scattering of an incident plane wave by different
PEC objects: 1) a single PEC sphere for which the analytic Mie
solution [10], [11] is available for validation; 2) three PEC spheres
in a triangular configuration in which two spheres are nearly touching;
and 3) a 3-D ellipsoid that has aspect ratio 1:3:9. The coupled
Helmholtz equations (4) are solved using the nonsingular formulation
(5) for the scattered field that are implemented with quadratic surface
elements as detailed in Section III. The results are designated as
follows.

1) “PEC-E”: If based on (2) and (3) and Et = 0 on S.
2) “PEC-H”: If based on (6), (8), and (9).

We present field quantities on or near the surface of the PEC objects
to highlight the utility of our formulation in being able to calculate
near fields accurately, in contrast to the PMCHWT formulation.
All E field results that follow are obtained with PEC-E, and all
H field results are obtained with PEC-H. The induced surface electric
current density, J s , can be obtained from the magnetic field on S:
J s = H×n, and we also check that far field results, such as the radar
cross sections (RCSs), can be obtained accurately with our approach.
We normalize numerical results for E by the amplitude of the incident
field, |E0|, and H is normalized by k|E0|/(ωµ) to ensure that all
nondimensional quantities are of comparable magnitude. Compar-
isons between PEC-E and PEC-H results for the same problem can
also be used to quantify the accuracy of the implementations.

A. Single PEC Sphere—Mie Scattering

Our PEC-E and PEC-H results are checked against the analytic
series solution of the Mie problem of the scattering of a linearly
polarized incident plane wave by a PEC sphere of radius a [10], [11].
The incident electric field is polarized in the x-direction:
Ei = (E0, 0, 0) and propagates in the z-direction: k = (0, 0, k).
In Fig. 2(a) and (b), we show the normal component of the scattered
field Es

n on the surface of the PEC sphere along the meridian line
in the plane y = 0 that is calculated by the linear system introduced
earlier. In Fig. 2(c) and (d), we show the results for the induced
surface charge density that is proportional to the normal component

Fig. 3. Results for the normal component of the total field, En (color scale),
the total fields E and H , and the induced electric surface current density Js
at selected locations on the surface of a perfect conducting sphere of radius,
a due to an incident electric field, Ei = (1, 0, 0) exp(− jkz) with ka = 1,
obtained using 642 nodes and 320 quadratic elements (color online).

of the total electric field and the RCS computed from the far field
values at r = 20a. From these, we see excellent agreement between
the results calculated by our field-only formulation and the analytical
Mie theory.

It is straightforward to show that the resonant modes that arise
from our PEC-E or PEC-H solution of a spherical cavity with a PEC
boundary [4] are given by the zeros of the spherical Bessel functions
of the first kind of order n = 1, 2, . . .: jn(knpa) = 0, p = 1, 2, . . ..
These are the TE modes [4] for which the lowest resonant wave
number is k11a = 4.493409. For example, our numerical solutions
are only affected by the resonant solution when k is within 0.1%
of k11 using 642 nodes and 320 quadratic elements so the resonant
solution is unlikely to affect practical numerical calculations.

In Fig. 3, we show the magnitude of the normal component of
the total electric field En = E · n that is proportional to the induced
surface charge together with the total electric E and magnetic H field
vectors as well as the induced surface current density J s on the
sphere surface at ka = 1.

In Fig. 4, we show the magnitude of the normal component of
the total electric field En at ka = 10 as contours together with the
scattered electric field on and near the surface.

B. Three PEC Spheres

The absence of singular integrands in our boundary integral
solution of our field-only formulation means that closely spaced
surfaces will not cause degradation of numerical precision in mul-
tiple scattering problems. We consider the scattering of an inci-
dent plane wave by three identical PEC spheres with ka = 1,
in a general triangular configuration. The distance of the closest
approach hi j between spheres 1–3 are kh12 = 0.15, kh13 = 0.41,
and kh23 = 0.84. In Fig. 5, we show the magnitude of the normal
component En of the total field and the scattered electric field Es

on the spheres obtained by the PEC-E method.

C. 3-D PEC Ellipsoid

To illustrate the capability of our field-only formulation in handling
scatterers with a wide range of aspect ratios, we consider the
scattering of a plane wave by a 3-D PEC ellipsoid whose surface
is given by: (x/a)2 + (y/3a)2 + (z/9a)2 = 1, at ka = 1. The
magnitude of the normal component En of the total field and the
scattered electric field Es on the ellipsoid are shown in Fig. 6.
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Fig. 4. Scattered electric field (arrows) on and near the surface of a perfect
conducting sphere of radius a and the normal component of the total field En
(color scale), due to the same incident field as Fig. 1 with ka = 10, obtained
using 1442 nodes and 720 quadratic elements (color online).

Fig. 5. Scattered electric field Es (arrows) on the surfaces of three
identical perfect conducting spheres of radius a and the normal compo-
nent of the total field En (color scale), due to an incident electric field
Ei = (0, 1, 0) exp(− jkx) with ka = 1. The distance of the closest approach
between each pair of spheres hi j is indicated in the figure. The results
are obtained using 362 nodes and 180 quadratic elements on each sphere
(color online).

V. CONCLUSION

We have developed a formulation of electromagnetics in the
frequency domain that only involves the electric field E or the
magnetic field H . This is a simpler alternative to the established
PMCHWT approach. Our formulation only involves solving scalar
Helmholtz equations for the components of E or H and for the
scalar functions (r · E) or (r · H). The PEC-E formulation gives rise
to 4N unknowns as only the normal component of E is unknown,
whereas with the PEC-H formulation, both tangential components
of H are unknown, and thus, it gives rise to 5N unknowns. Indeed,
the ability to obtain the same numerical solution using the PEC-E 4N
system and using the PEC-H 5N system provides an internal check

Fig. 6. Scattered electric field Es (arrows) and the normal component of the
total field En (color scale) on the surface of an ellipsoid with semimajor axes
a, 3a, and 9a due to an incident electric field Ei = (0, 1, 0) exp(− jkx)
with ka = 1, obtained using 2562 nodes and 1280 quadratic elements
(color online).

of the consistency of our theoretical formulation and accuracy of the
numerical implementation.

A nonsingular boundary integral method [13] is used to solve the
Helmholtz equation that is easy to implement and affords much higher
precision than the conventional numerical methods as quadratic
elements can be readily employed. Consequently, it is no longer
necessary to work with electric and magnetic surface currents as
intermediate quantities as required in the PMCHWT formulation.
However, if required, surface currents can be readily found by
postprocessing. This affords considerable simplification in implemen-
tation compared with that of surface current basis functions, such as
the popular RWG scheme. The immediate availability of surface field
values without further postprocessing may be desirable in studies
of surface enhanced Raman effects as well as in photonic and
plasmonic applications. Thus, relative to the current-based surface
integral formulation that requires further postprocessing by taking
numerical derivatives of the surface current to obtain the surface
fields, the present approach yields the surface fields directly at the
expense of working with a larger number of degrees of freedom, but
this is compensated by the ability to use quadratic elements that can
furnish higher precision with fewer unknowns. The balance of this
tradeoff may be a topic for future evaluation.

The absence of singularities in the integral equation formulation
of the Helmholtz equations means that surface integrals can be
calculated accurately using the standard quadrature. The removal of
the singularity has no adverse effect on the condition number of
the linear system [13]. Furthermore, problems that have boundaries
that are close together will no longer suffer degradation of numerical
stability and precision [13]. In all our examples, only a very modest
number of nodes are needed. The solution of the integral equations
can be accelerated to be a O(N log N) problem using fast Fourier
transform and fast multipole methods [15].

Since the present formulation works directly with field values on
the surface, there remains the open question of modeling boundaries
that have mathematically sharp edges and corners. At such idealized
geometric singularities, the surface field values are physically not
defined. Therefore, more investigation is needed for the application
of this formulation to nonsmooth surfaces.
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