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The general space-time evolution of the scattering of an incident acoustic plane wave pulse by an

arbitrary configuration of targets is treated by employing a recently developed non-singular boundary

integral method to solve the Helmholtz equation in the frequency domain from which the space-time

solution of the wave equation is obtained using the fast Fourier transform. The non-singular boundary

integral solution can enforce the radiation boundary condition at infinity exactly and can account for

multiple scattering effects at all spacings between scatterers without adverse effects on the numerical

precision. More generally, the absence of singular kernels in the non-singular integral equation con-

fers high numerical stability and precision for smaller numbers of degrees of freedom. The use of fast

Fourier transform to obtain the time dependence is not constrained to discrete time steps and is partic-

ularly efficient for studying the response to different incident pulses by the same configuration of

scatterers. The precision that can be attained using a smaller number of Fourier components is also

quantified. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4996860]

[MD] Pages: 697–707

I. INTRODUCTION

The space-time solution of the scalar wave equation

underpins the prediction of the scattering of acoustic waves

by discrete targets and is relevant to applications that range

from noise suppression to seismic exploration to ultrasonic

therapy. There are a number of complementary approaches

to finding general numerical solutions to the problem. One

of these is based on a direct solution of the wave equation by

replacing derivatives in the spatial and time variables by

finite differences (Wang, 1966; Yee, 1966), referred to as the

finite difference time domain approach. This method is also

used extensively in the study of electromagnetic scattering

in the time domain (Taflove, 1988). In the context of acous-

tic waves, there are a number of complementary approaches

to solving the wave equation that are summarised in a recent

monograph (Jensen et al., 2011).

Another approach to solving the wave equation is to

extend the conventional boundary integral method to the time

domain using the time-dependent Green’s function to repre-

sent the spatial solution in terms of values of the wave func-

tion on the boundaries of scatterers and the time evolution is

treated by time marching (Groenenboom, 1983). A compre-

hensive summary of time domain boundary integral methods

to solving the wave equation is given by Sayas (2016).

Recently there is renewed theoretical interest in the sta-

bility of the time dependent solutions of the wave equation

at large times particularly for the canonical problem of scat-

tering by a sphere in an infinite spatial domain for which

space and time variations can be represented analytically in

terms of infinite series of spherical harmonics and Bessel

functions with time-dependent coefficients (Greengard et al.,
2014; Martin, 2016a,b).

In this paper, a recently developed non-singular boundary

integral formulation of the solution of the wave equation in

the frequency domain is used as the basis of constructing the

solution in the time domain by Fourier transform. In this

non-singular formulation, the usual singularities of the surface

integrals have been eliminated analytically (Klaseboer et al.,
2012; Sun et al., 2015). This confers a number of advantages

in that high accuracy in the evaluation of the surface integrals

can be achieved with simple quadrature and with fewer surface

nodes. In addition, the algorithm remains stable even when the

wave number is very close to the resonant values (Sun et al.,
2015). The non-singular nature of the integrals means that field

values near boundaries can be evaluated directly without the

need for further steps to avoid numerical divergences that are

characteristic of the traditional boundary integral method.

Since the solution at any time value can be found directly

by Fourier transform, it is not subjected to error accumulation

effects of time marching methods. Furthermore, this approach

is particularly suited for exploring the effects of different inci-

dent pulsed waves on a fixed configuration of scatterers. This

is because once the boundary integral solution that depends

on the scatterers is found, the scattering by different types of

incident pulses can be found directly by a process of linear

computational complexity.
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Before giving details of our approach, it is instructive to

review the characteristics of the existing finite difference time

domain method and time marching solution of the conven-

tional boundary integral method of finding the space-time

solution of the wave equation, as well as to touch on recent

theoretical studies of the time dependence of series solutions

of the wave equation—this is done in Sec. II. Our non-

singular boundary integral formulation combined with the

Fourier transform method is introduced in Sec. III. Results for

the scattering of a plane wave pulse by different targets are

given in Sec. IV. The paper closes with a discussion of possi-

ble future directions of our approach to obtaining space-time

domain solutions of the wave equation in other applications.

II. OVERVIEW OF EXISTING METHODS

The equations that govern acoustic wave propagation

are obtained by combining the Euler momentum equation

q
@u

@t
þ qu � ru ¼ �rp; (1)

with the continuity equation

@q
@t
þr � quð Þ ¼ 0; (2)

that relate the position x, time t, dependent density q, veloc-

ity u; and pressure p (Wang, 1966).

For small amplitude oscillations, the density is written

as q � q0 þ q1 and only terms linear in p, u and the small

density deviation, jq1j � q0, from the constant mean den-

sity, q0, are retained in Eqs. (1) and (2) to give a pair of first

order partial differential equations:

q0

@u

@t
¼ �rp; (3)

@q1

@t
þ q0r � u ¼ 0: (4)

These equations can be closed by introducing the material

constitutive equation characterized by the speed of sound c,

p ¼ @p

@q

� �
q0

q1 � c2q1: (5)

Eliminating u and q1 from Eqs. (3), (4), and (5) gives the

wave equation for the pressure p,

r2 � 1

c2

@2

@t2

� �
p x; tð Þ ¼ 0: (6)

A. Finite difference time domain

The finite difference time domain solution of the acous-

tic wave equation follows the method that was developed for

solving the propagation of Maxwell’s electromagnetic equa-

tions (Yee, 1966). The first order equations, Eqs. (3)–(5),

that are equivalent to the wave equation are discretized using

central differences so that given initial and boundary condi-

tions, the space-time solution is obtained by time marching.

Although the finite difference time domain algorithm is

conceptually straightforward, there are a number of technical

issues that require careful implementation (see Taflove, 1988

for details). For instance, to ensure convergence, the step sizes

in time, Dt, and space, Dx;Dy;Dz, are constrained by the

condition

cDt � 1

Dx2
þ 1

Dy2
þ 1

Dz2

� ��1=2

: (7)

Numerical dispersion effects associated with the relative orien-

tation of the spatial grid and the direction of propagation can

arise. If there are changes in the spatial grid density within the

solution domain, necessitated for example by differences in

characteristic length scales of the problem, care needs to be

exercised to avoid unphysical reflections at the boundary

between regions of the different grid densities. Physical bound-

aries between different media are assumed to conform to the

stepwise nature of the grid. If the problem domain is infinite,

then an “outer” boundary needs to be constructed with bound-

ary conditions that will satisfy the Sommerfeld radiation

boundary condition at infinity (Sommerfeld, 1912) so as to

avoid unphysical reflections back into the solution domain.

B. Time marching with conventional boundary integral
methods

The boundary integral equation formulation of the solution

of the wave equation avoids the task of solving the wave equa-

tion in a three dimensional (3D) spatial domain due to the ellip-

tic nature of the wave equation in the frequency domain that

takes the form of the Helmholtz equation. Instead, it is only

necessary to determine values of the function and its normal

derivative on the boundary surfaces S that enclose the problem

domain. This reduces the dimension of the problem by one.

The solution of the wave equation, Eq. (6) at the space-time

point ðx0; t0Þ can be expressed as a surface integral over the

surface S, involving the function p and its normal derivative

@p=@n � rp � n, where the surface normal nðxÞ points out of

the solution domain (Groenenboom, 1983)

c0 x0ð Þ p x0; t0ð Þ ¼
ð1
�1

dt

ð
S

dS xð Þ
@p x; t� t0ð Þ

@n
G

�

�p x; t� t0ð Þ
@G
@n

�
: (8)

The constant c0ðx0Þ is the solid angle subtended at x0:

c0ðx0Þ ¼ 4p, if x0 lies within the solution domain and c0ðx0Þ
¼ 0, if x0 lies outside the domain. If x0 is on the boundary

surface S, the solid angle subtended at the boundary, c0ðx0Þ,
will depend on the details of the local geometry of the bound-

ary that is relevant, as for instance, in numerical implementa-

tions where the boundary is represented by piecewise

continuous surface elements.

The kernel of this integral equation is the time-retarded

Green’s function

G x� x0; t� t0ð Þ ¼
d t� tretð Þ
jx� x0j

; tret � t0 � jx� x0j=c

(9)
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that satisfies

r2 � 1

c2

@2

@t2

� �
G x� x0; t� t0ð Þ

¼ �4p d x� x0ð Þ d t� t0ð Þ: (10)

Given initial conditions and boundary data for p
(Dirichlet problems) or @p=@n (Neumann problems), Eq. (8)

can be solved by a time marching method. The divergence

of the Green’s function G at x ¼ x0 means that Eq. (8) con-

tains singularities that require careful treatment in numerical

evaluations of the surface integrals. The most common

approach is to simply represent the surfaces S by a number

of planar elements and assume the function p is constant

within each element. The use of higher order surface ele-

ments to represent the surface with more accuracy introduces

further complexities because of the presence of the singulari-

ties in the kernel.

Even though the physical acoustic problem is well-

behaved on domain boundaries that are the surfaces of scat-

terers, the singular behavior of the Green’s function G that

originates from the mathematical formulation of Eq. (8),

means that the precision to which function values can be

computed near boundaries or in problems in which surfaces

are close together may be compromised, and will require

additional effort to resolve.

C. Stability of series solutions

Both the finite difference time domain method dis-

cussed in Sec. II A and the conventional boundary integral

formulation summarized in Sec. II B use time marching to

track the time evolution. This process accumulates global

numerical error as time progresses. Recently, there has

been detailed theoretical analysis of the stability of the solu-

tion at large times for the solution of the wave equation out-

side a single sphere in an infinite domain. In this simpler

problem, the spatial variation can be represented analyti-

cally as infinite series comprised of spherical harmonics

and Bessel functions. The time dependent coefficients

of such expansions turn out to grow exponentially with

increasing order. As a consequence, a loss of significant fig-

ures will result from cancellations between terms of grow-

ing magnitude at large times unless new formulations are

used to calculate the coefficients (Greengard et al., 2014;

Martin, 2016a,b).

It is therefore attractive to be able to retain the lower spa-

tial dimensionality of the boundary integral approach in com-

bination with a different way to treat the time evolution that

does not accumulate global error associated with time march-

ing. In Sec. III, a recently developed non-singular boundary

integral formulation will be used that eliminates all the sin-

gular behavior that arises from the Green’s function. A fast

Fourier transform of the frequency domain solution is used

to circumvent the error accumulation characteristics of time

marching solutions. Further efficiencies can be gained by

focusing only on frequency components in the dominant

part of the power spectrum of the incident wave.

III. NON-SINGULAR BOUNDARY INTEGRAL FOURIER
TRANSFORM METHOD

The twin objectives of the present non-singular boundary

integral Fourier transform method to obtain space-time solu-

tions of the wave equation are to retain the lower spatial

dimensionality feature of the boundary integral method while

avoiding the use of time marching to track the time evolution.

The boundary integral approach automatically satisfies the

Sommerfeld radiation at infinity exactly. Thus unlike the

finite difference time domain methods, it is no longer neces-

sary to construct a “boundary at infinity” to cater for problems

with an infinite spatial domain. Since there is no need to rep-

resent the 3D domain by a grid, it is not necessary to be con-

cerned with numerical dispersion issues associated with grid

based methods. In the absence of the need to have a fixed spa-

tial grid, there is flexibility to accommodate special character-

istics in the shapes of the scatterers.

A recently developed non-singular boundary integral

method (Klaseboer et al., 2012; Sun et al., 2015) to solve the

Helmholtz equation in the frequency domain is employed.

With this method, the usual singularities associated with the

conventional boundary formulation are eliminated analyti-

cally. This makes it easy to use quadratic surface elements to

represent the geometric features of boundaries more faith-

fully and to do so with a smaller number of degrees of free-

dom to minimize the problem size. Rather than simply

assuming a constant function value for each surface element,

quadratic interpolants are used to represent functional varia-

tions within each element since there are no singular inte-

grals to complicate such an approach. Consequently, surface

integrals can be evaluated efficiently with simple quadrature.

Also, the absence of singularities in the kernel means that

function values on or near the boundaries can be calculated

without restrictions or possible loss of precision.

The following convention is used to define the Fourier

representation of a function, hðx; tÞ, in space and time in

terms of its Fourier transform Hðx;xÞ:

h x; tð Þ ¼
1

2p

ð1
�1

H x;xð Þexp �ixtð Þ dx: (11)

In the frequency domain, the wave equation for the pressure

in Eq. (6) becomes

r2Pðx;xÞ þ k2Pðx;xÞ ¼ 0; k2 � x2=c2: (12)

The non-singular boundary integral equation for

Pðx;xÞ � PðxÞ is (Klaseboer et al., 2012; Sun et al., 2015)

ð
SþS1

P xð Þ�P x0ð Þg xð Þ� @P

@n

� �
0

f xð Þ

" #
@G x0;xð Þ

@n
dS xð Þ

¼
ð

SþS1

@P xð Þ
@n
�P x0ð Þrg xð Þ �n xð Þ

�

� @P

@n

� �
0

rf xð Þ �n xð Þ
�

G x0;xð ÞdS xð Þ; (13)

where dependence on x ¼ kc in all functions is suppressed

to ease the notation. The Green’s function G is given by
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G x; x0ð Þ ¼
exp ikjx� x0jð Þ
jx� x0j

(14)

and the functions f ðxÞ and gðxÞ can be any convenient solu-

tion of the equations

r2f ðxÞ þ k2f ðxÞ ¼ 0; f ðx0Þ ¼ 0;

rf ðx0Þ � n0ðx0Þ ¼ 1; (15)

r2gðxÞ þ k2gðxÞ ¼ 0; gðx0Þ ¼ 1;

rgðx0Þ � n0ðx0Þ ¼ 0; (16)

with nðx0Þ being the outward normal at x0:
The integrals in Eq. (13) are taken over the surfaces S of

scatterers and over the surface at infinity S1 that together

enclose the 3D solution domain. If f ðxÞ and gðxÞ obey Eqs.

(15) and (16), the terms containing f ðxÞ and gðxÞ and their gra-

dients in Eq. (13) will cancel the singular behavior of G and

@G=@n at x ¼ x0. The choices adopted here for f ðxÞ and gðxÞ
and the related integrals over the surface at infinity S1 in Eq.

(13) can then be evaluated analytically are given in Sec. IV.

As the surface integrals in Eq. (13) are not singular, they can

be evaluated efficiently and accurately using quadrature, with-

out the need to interpret them as principal value integrals.

It is also worthy to note that the solid angle cðx0Þ that

appears in the conventional boundary integral formulation, see

Eq. (8), has been eliminated in our non-singular formulation,

Eq. (13). This is advantageous in practical numerical imple-

mentations because there is no longer the need to be concerned

with calculating the solid angle at x0 that depends on the

details of the local surface geometry of the surface elements.

A numerically robust way to evaluate the pressure

Pðxp;xÞ at a point xp in the solution domain that may be

arbitrarily close to a boundary is to use the following expres-

sion (again for brevity, the dependence on x ¼ kc is sup-

pressed in all functions):

4pP xpð Þ ¼ 4p P x0ð Þg xpð Þ þ
@P

@n

� �
0

f xpð Þ

" #

�
ð

SþS1

P xð Þ � P x0ð Þg xð Þ � @P

@n

� �
0

f xð Þ

" #

�
@G xp; xð Þ

@n
�
@G x0; xð Þ

@n

� �
dS xð Þ

þ
ð

SþS1

@P xð Þ
@n
� P x0ð Þrg xð Þ � n xð Þ

�

� @P

@n

� �
0

rf xð Þ � n xð Þ
�

G xp; xð Þ
�

�G x0; xð Þ
�

dS xð Þ; (17)

where x0 is a point on the surface that is closest to xp. Again

all integrals in Eq. (17) are free of singularities and well-

behaved even as xp ! x0, and therefore, can be evaluated

using the standard Gauss quadrature. Proofs of these results

are given in Sun et al. (2015).

Having found the pressure Pðxp;xÞ in the frequency

domain, the space-time solution pðxp; tÞ can be found by

taking the inverse Fourier transform, Eq. (11), using the dis-

crete fast Fourier transform method (Cooley et al., 1965).

IV. RESULTS—SCATTERING OF A PLANE WAVE
PULSE

We consider the scattering of an incident wave that

comprises an infinite periodic train of plane wave pulses that

replicates a fundamental waveform. Consider an example of

the fundamental wave pulse with the form, where s � k0ðz
�ctÞ � ð2p=k0Þðz� ctÞ,

pincðx; tÞ � ~pðsÞ

¼

0; �4pNc < s < �2pNc

sinðsÞ expð�ajsjÞ; �2pNc < s < 2pNc

0; 2pNc < s < 4pNc

8>>><
>>>:

(18)

and travels in the z direction. This pulse ~pðsÞ has 2Nc oscil-

latory cycles modulated by the constant 0 < a < 1 and pre-

and post-padded by zero amplitudes to make a total

non-dimensional width, ~w ¼ 8pNc, as shown in Fig. 1.

This fundamental wave pulse is then replicated to create an

infinite periodic train as illustrated in the inset of Fig. 1(b).

By sampling the incident wave at Nf evenly spaced points

in the interval �4pNc < s < 4pNc then gives a set of dis-

crete Fourier components Pincðx;xÞ � ~PðxÞ. In Fig. 1(a),

such an incident wave, ~pðsÞ, is shown with 2Nc ¼ 4 oscilla-

tory cycles, each of wavelength k0 sampled at Nf¼ 128 val-

ues. Since ~pðsÞ is an odd function, its Fourier transform
~PðxÞ is an even function so there are only Nf =2 ¼ 64

unique values of the amplitude j ~PðxmÞj as shown in Fig.

1(b). The aliasing properties of the discrete Fourier repre-

sentation will produce the infinite wave train shown in the

inset of Fig. 1(b).

With the sampling rate shown in Fig. 1, one would, in

general, solve the wave equation, Eq. (12), in the frequency

domain at each of the 64 values of km ¼ xm=c using the

non-singular boundary integral method given by Eq. (13).

Then the inverse discrete fast Fourier transform of these sol-

utions will give the total pressure in the space-time domain

that is a sum of the incident and scattered components:

pðx; tÞ ¼ pincðx; tÞ þ pscatðx; tÞ. As the Fourier spectrum

j ~PðxmÞj shown in Fig. 1(b) is dominated by only a few val-

ues of xm, then as shall be seen, accurate results can be con-

structed from the boundary integral solutions obtained only

at the km ¼ xm=c values that correspond to say just the 10

largest j ~PðxmÞj amplitudes.

In the non-singular boundary integral equation, Eq. (13),

for the pressure in the frequency domain, we need to specify

the functions f ðx;xÞ and gðx;xÞ that satisfy Eqs. (15) and

(16) that will also determine the value of the integral over

the surface at infinity, S1 in Eq. (13). The choice

f x;xð Þ ¼
1

k
sin k � x� x0ð Þ
� �

; (19)

gðx;xÞ ¼ cos k � ðx� x0Þ½ �; (20)
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with k ¼ k nðx0Þ ¼ ðx=cÞnðx0Þ, is one possibility. It is easy

to verify that this will ensure the absence of singularities in

the integrands in Eq. (13).

The integral over the surface at infinity S1 in Eq. (13) has

two separate contributions from the functions f ðx;xÞ and

gðx;xÞ. Without loss of generality, S1 can be taken as the sur-

face of a sphere with radius r ¼ jrj ¼ jx� x0j and centered at

x0, in the limit as r !1. The outward surface normal is

n ¼ r=r, so that k � n ¼ k cos h and k � ðx� x0Þ ¼ kr cos h. A

direct integration then gives

ð
S1

@g x;xð Þ
@n

G x0; xð Þ �
@G x0; xð Þ

@n
g x;xð Þ

� �
dS ¼ �4p;

(21)ð
S1

@f x;xð Þ
@n

G x0; xð Þ �
@G x0; xð Þ

@n
f x;xð Þ

� �
dS ¼ 0:

(22)

The integral over S1 gives rise to a term 4pPðx0Þ on the

left hand side of Eq. (13). Although this resembles the term

with the solid angle in the conventional boundary integral

method [Eq. (8)], it is of a totally different origin. Note also

that if different f ðxÞ and gðxÞ functions are chosen, the S1
integrals will be different, see , for example, Sun et al. (2015).

A. Spherical scatterers

Numerical results are given for the space-time domain

solution of the scattering of the plane wave pulse given in

Fig. 1 by a sphere of radius, a. The width of the fundamental

pulse, w in Fig. 1(a) is taken to be w ¼ 20:1a so that the

parameters in Eq. (18) are k0a ¼ 2pa=k0 ¼ 16p=20:1 and

the modulating constant is taken to be a ¼ 0:1. The choice

w ¼ 20:1a is to avoid having the wave number being too

close to the resonant value for the sphere. Two types of

boundary conditions are considered: a “soft” sphere that cor-

responds to the boundary conditions: p¼ 0 and a “hard”

sphere that is specified by @p=@n ¼ 0 on the surface.

The results are presented with t¼ 0 (and the first time

step) defined as the moment the leading edge of the oscilla-

tory part of the pressure pulse first come into contact with

the sphere as illustrated in Fig. 2. By the 78th time step, the

oscillatory part of the incident wave has completely passed

over the sphere and so no further scattering will take place

thereafter. However, until the 128th time step, that is also the

last time step in the fundamental period, the scattered wave

will continue to travel away from the sphere. In all video files

in the supplementary material, the animation starts at time

zero, as described above, and continues for 128 time steps.

The fast Fourier transform of the incident pulse was

taken with 128 sampling points and since the pulse is an odd

function, this gives 64 distinct frequencies: kma ¼ ð2p=
20:1Þm; m ¼ 0; 1; 2;…; 63, at which the non-singular bound-

ary integral equation, Eq. (13), has to be solved. To account

for the above time convention, the incident wave must

be adjusted by a multiplicative phase factor eib, with b
¼ �kma½w=ð4aÞ � 1� in the boundary integral equation.

As in previous work (Sun et al., 2015), the sphere sur-

face was represented by 500 quadratic elements and 1002

nodes. Quadratic interpolation was used to represent the var-

iation of the function within each element to construct a lin-

ear system from Eq. (13) that was solved using a direct

method. Although this is less efficient, it does have the

advantage that if the form of the incident pulse is changed,

FIG. 1. (a) The fundamental finite

width incident plane wave pressure

pulse function ~pðsÞ, given by Eq. (18)

over the interval �4pNc < s < 4pNc

with a ¼ 0:1 and 2Nc ¼ 4 oscillatory

cycles of wavelength 2p. (b) The first

Nf =2 ¼ 64 unique values of the ampli-

tude j ~PðxmÞj of the corresponding dis-

crete Fourier transform of ~pðsÞ with

Nf¼ 128 sampling points. The inset

shows the inverse discrete Fourier

transform that gives an infinite wave

train due to the alias effect.

FIG. 2. (Color online) Illustration of the positions of a single spherical scat-

terer with respect to the wave front at different time points. The leading

edge of the oscillatory part of the incident pressure pulse first come into con-

tact with the sphere at t1 ¼ 0 and by time step t78, the oscillatory part of the

incident wave has completely passed over the sphere and so no further scat-

tering occurs after this time.
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there is no need to solve the boundary integrals again, pro-

vided that the wave width w remains the same.

For soft sphere (p¼ 0) or hard sphere (@p=@n ¼ 0)

boundary conditions on the surface, the non-singular bound-

ary integral equation was solved for the scattered field pscat

that obeyed the Sommerfeld radiation condition at infinity,

and on the sphere surface pscat was given in terms of the

incident field pinc: pscat ¼ �pinc for the soft sphere or

ð@pscat=@nÞ ¼ �ð@pinc=@nÞ for the hard sphere. The time

sequence of wave amplitudes in Figs. 3 and 4 shows the

space-time variation of the scattered and total wave as the inci-

dent pulse within a 20a� 20a square in the xy-plane as the

incident wave traverses the sphere that is located at the origin.

In view of the symmetry of the problem, both the scattered

pressure wave and the total pressure wave in the yz-plane can

be displayed within the same figure. Videos of animations of

these results are available in the electronic supplement (Mm. 1

and Mm. 2). Although the boundary condition for the scattered

wave is not spherically symmetric, the scattered wavefronts

become spherical as they travel away from the sphere.

FIG. 3. (Color online) Snapshots of the space-time variation of the pressure field of a plane wave pulse shown in Fig. 1 scattered by a soft sphere of radius, a
with boundary condition p¼ 0 on the sphere surface. The incident pulse travels from the bottom to the top of the figures at the indicated time step. In each fig-

ure, the scattered field is shown on the left and total field on the right. The incident pulse has 2Nc ¼ 4 oscillatory cycles, a ¼ 0:1 [see Eq. (18)] and total width

w ¼ 20:1a that corresponds to k0a ¼ 2pa=k0 ¼ 16p=20:1, with 80 field points in the y and z directions to generate the pressure field. See Mm. 1.
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Mm. 1. The split view of scattered and total fields in space-

time domain for a soft sphere. This is a file of type mov

(1.18 Mb).

Mm. 2. The split view of scattered and total fields in space-

time domain for a hard sphere. This is a file of type mov

(1.14 Mb).

Our results obtained from quadratic elements were com-

pared with those obtained using 774 linear elements and 389

nodes with linear interpolation for the variation of the func-

tion on each element. Results from using quadratic or linear

elements agree to better than two significant figures. Since

an analytical solution of the wave equation, Eq. (12) as a

series expansion in terms of spherical harmonics and Bessel

functions is available, see, for example, Doinikov (1994), it

can also be ascertained that the present non-singular bound-

ary integral solution with the stated numbers of elements and

nodes are correct to better than two significant figures.

In Fig. 5, the scattered wave is shown as a function of

time at a position four radii from the sphere center: x

¼ ð0; 0;�4aÞ or at just one-tenth of a radius from the sphere

surface at x ¼ ð0; 0;�1:1aÞ obtained by using just 5, 10, or

20 terms of the largest Fourier amplitudes j ~PðxmÞj out of the

FIG. 4. (Color online) The space-time variation of the pressure field of a plane wave pulse shown in Fig. 1 scattered by a hard sphere with boundary condition

@p=@n ¼ 0 on the sphere surface. In each figure, the scattered field is shown on the left and total field on the right. The incident pulse has 2Nc ¼ 4 oscillatory

cycles, a ¼ 0:1 [see Eq. (18)] and total width w ¼ 20:1a that corresponds to k0a ¼ 2pa=k0 ¼ 16p=20:1. See Mm. 2.
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64 amplitudes to construct the time behavior. These results

are consistent with the familiar notions that with Fourier rep-

resentations, quite acceptable answers can be obtained using

just the dominant frequencies of the incident pulse to con-

struct the space-time solution of the wave equation.

The results in Fig. 6 provide a simple illustration of the

space-time variation of scattering and interference in the pres-

ence of two spherical scatterers. The identical spheres of radius

a, with hard boundary conditions @p=@n ¼ 0 are placed at a

distance 3a between centers along the direction of the incom-

ing pulse. The pulse has 2Nc ¼ 10 cycles and a total width

w ¼ 20:1a that corresponds to k0a ¼ 2pa=k0 ¼ 40p=20:1 for

the incident pulse. The snap shots of the scattered and total

waves shown in Fig. 6 illustrate the appearance of temporal

and positional dependence of constructive and destructive

localized interference that can occur in between the spheres,

Fig. 6(b), or on the far surface of the downstream sphere, Fig.

6(c). The amplification effect can be up to 80% larger than

the maximum amplitude of the incoming pulse. The entire

animated sequence of the scattering is available in the online

supplementary material (Mm. 3).

Mm. 3. The split view of scattered and total fields in space-

time domain for two hard spheres aligned vertically in

the direction of the incident wave pulse. This is a file

of type mov (1.3 Mb).

B. Wave focusing

To illustrate the transient wave focusing effect of a hard

axisymmetric acoustic bowl whose surface with coordinates

ðn; gÞ are constructed by taking the closed curve defined by

the parametric equation over 0 � h < 2p:

n=a ¼ 2 sin h; (23a)

g=a ¼ 0:2 cos h� 0:6 sin2h; (23b)

and rotating the curve about the g-axis. This axis of symme-

try is then oriented at an angle of 0:15p radian relative to the

direction of propagation of the incident pulse. The pulse

with width w ¼ 20:1a is similar to that in Fig. 1 but has a
¼ 0:001 and 2Nc ¼ 6 oscillatory cycles so that k0a
¼ ð2p=k0Þa ¼ 24p=20:1 in Eq. (18).

The space-time variation of the focusing and direc-

tional effects are illustrated in Fig. 7 with an oblique view

in Fig. 8. Animations of these results are available in the

online supplementary material (Mm. 4 and Mm. 5). The

focusing effect of this hard reflecting bowl creates time-

varying high amplitude pressure hotspots close to the bowl

surface that can amplify the maximum amplitude of the

incident pulse by about 4.5 times. Relative to spherical scat-

terers in Figs. 3, 4, and 6, the higher directional and inten-

sity effects in the far field due to focusing is evident well

after the incident pulse has passed the scatterer.

Mm. 4. The side-by-side animation of the total and scattered

fields in space-time domain for a hard acoustic bowl.

This is a file of type mov (1.6 Mb).

Mm. 5. The animated total field in space-time domain for

the hard acoustic bowl from an oblique perspective.

This is a file of type mov (0.9 Mb).

V. CONCLUSION

This paper demonstrates an approach to finding the

space-time dependent solution of the scalar wave equation in

the context of acoustic scattering and propagation that does

not involve time-marching. The scattering of incident pulses

of finite spatial extent and time duration were used as

FIG. 5. (Color online) The time variation of the scattered wave due to the

soft sphere in Fig. 3 at position (a) x ¼ ð0; 0;�4aÞ and (b) x ¼ ð0; 0;�1:1aÞ
obtained by using 5, 10, or 20 terms of the Fourier amplitude j ~PðxmÞj of larg-

est magnitude compared to using all Fourier components (see also Table I).

Note the higher magnitude of the scattered wave at the point closer to the

sphere.

TABLE I. The percentage root mean squared (RMS) relative errors at all

positions on the scattered wave between the scattered wave calculated by

using the indicated number of Fourier amplitudes and by using all Fourier

amplitudes. The results are for the observation points at (0,0,�4a) and

(0,0,�1.1a). The ratio � � j ~PðxmÞj=j ~Pmaxj denotes the magnitude of the

Fourier amplitudes relative to the maximum amplitude.

Number of % RMS error at % RMS error at

Fourier amplitudes � (0,0,�1.1a) (0,0,�4a)

5 >20% 4.4 4.9

10 >3.5% 1.6 1.7

20 >0.9% 0.5 0.6
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illustrative examples. The method builds on the recent devel-

opment of a non-singular boundary integral formulation of

the solution of the wave equation in the frequency domain,

the Helmholtz equation (Sun et al., 2015) and then uses fast

Fourier transform (Cooley et al., 1965) of the result to obtain

answers in the time domain. This is fundamentally different

to the time-marching method based on a fully finite differ-

ence representation of the wave equation in the space and

time domains or the time-marching solution based on the

conventional boundary integral formulation using time-

retarded Green’s functions.

Although a boundary integral based approach may

appear to require many solutions of the Helmholtz equation

in the frequency domain, it was shown that quite accurate

results could be obtained by only using those frequencies that

have relatively large amplitudes in the power spectrum of the

incident pulse. By exercising judicious choice in selecting the

physically important frequencies, considerable savings in

computational effort can be achieved. Furthermore, the use of

the non-singular boundary integral also means that higher pre-

cision can be obtained with fewer degrees of freedom. Also

the concern with numerical handling of singularities that

FIG. 6. (Color online) The space-time variation of the pressure field due to scattering by two hard spheres with boundary condition @p=@n ¼ 0 on the sphere

surfaces. The incident plane wave pulse is similar to that shown in Fig. 1 but with 2Nc ¼ 10 oscillatory cycles, a ¼ 0:1 and total width w ¼ 20:1a that corre-

sponds to k0a ¼ 2pa=k0 ¼ 40p=20:1. In each figure, the scattered field is shown on the left and total field on the right. [see Eq. (18)]. See Mm. 3.
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invariably accompany traditional boundary integral formula-

tions is eliminated.

It is well known that integral equation solutions of

the wave equation in the frequency domain, the Helmholtz

equation, can admit fictitious solutions when the wave number

is close to the resonance frequency (Schenck, 1967). This

can be a serious issue if the conventional boundary integral

equation is used. However, with the present non-singular

FIG. 7. (Color online) The space-time variation in the yz-plane of the focusing and directional effects of a hard acoustic bowl that can increase the pressure

amplitude by a factor of 4.5. The incident plane wave pulse is similar to that shown in Fig. 1 and Eq. (18) but with 2Nc ¼ 6 oscillatory cycles, a ¼ 0:001 and

total width w ¼ 20:1a. See Mm. 4.
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formulation of the boundary integral equation given by Eq.

(13), the adverse effects of the resonance solution does not

appear until the wave number is within 0.01% of the reso-

nance values (Sun et al., 2015). This is because the non-

singular formulation imparts much higher precision to the

numerical solution.

This Fourier transform approach to obtain the time

domain solution also affords the flexibility to obtaining solu-

tions at any required time point and therefore is not sub-

jected to the space-time stability constraints, such as that in

Eq. (7), on the time step size in time-marching methods.

For a fixed configuration of scatterers, the solution

matrix of the boundary integral equation can be stored so

that exploring the effects of varying the incident wave can

be carried efficiently without having to solve the boundary

integral equation again. In contrast, with time-marching meth-

ods, changing the incident wave will require an ab initio
solution.

The present approach therefore provides a viable alter-

native to the established time-marching methods of solving

acoustic problems in the space-time domain given its differ-

ent characteristics. With recent reformulation of the

Maxwell’s equations for electromagnetic scattering in terms

of coupled scalar wave equations for the Cartesian compo-

nents of the electric field E and the scalar function ðx � EÞ
(Klaseboer et al., 2017; Sun et al., 2017), this approach has

broader applications for finding time dependent solutions

beyond the field of acoustics.
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