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Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer
in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with
Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds
numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis
depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity
of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation
within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate
tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy
simulations of flow past a sphere at moderate to high Reynolds numbers (102 ≤ Re ≤ 4 × 104) are
employed to quantify comparisons with experimental results, including the drag coefficient and the
form of the downstream wake on the sphere. This provides a simple one parameter characterization
of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body. Published
by AIP Publishing. https://doi.org/10.1063/1.4993298

I. INTRODUCTION

The drag on a moving solid body is determined by the
nature of fluid flow over its surface, and the control of such
flow has important consequences on the optimisation of energy
use in the design of moving vehicles, ships, and aircrafts.
Depending upon the speed of the flow and the shape of the
object, the flow can separate at a point on the body and result
in a pressure drop on the downstream side of the body. For
instance, at high Reynolds numbers, the fore-aft difference in
pressure distribution on a sphere accounts for around 95% of
the drag force.1 The drag force FD acting on a sphere of radius
R moving at velocity U is often characterized in terms of the
non-dimensional drag coefficient, CD,

CD ≡
FD

(πR2)( 1
2 ρU2)

, (1)

where ρ is the fluid density. For a solid sphere that obeys the
no-slip boundary condition, CD is observed to be a univer-
sal function of the Reynolds number, Re = 2RρU/µL, where
µL is the viscosity of the Newtonian fluid. Since there are no
geometrical features such as edges or protrusions to fix the
point of flow separation, the location of the separation point
on a sphere is extremely sensitive to the local boundary-layer
conditions and other surface characteristics. Thus, at a high
Reynolds number, the major influence on the drag coefficient
is the position of flow separation on the sphere.

In the familiar description of the behavior of the boundary
layer at a solid sphere, the flow near the surface is retarded due
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to viscous effects. However, as the fluid passes over the front
of the sphere, this retardation is counteracted by a negative
pressure gradient and the flow remains attached. As the flow
moves over the sphere, the pressure gradient changes sign and
acts to oppose motion in conjunction with viscous effects. This
causes the fluid velocity in the boundary layer to eventually
slow to zero at the stagnation point at which the flow separates
from the sphere surface. This gives rise to a region of low pres-
sure in the wake region beyond the stagnation point, resulting
in a large pressure difference between the front and the back
of the sphere and consequently a large drag force.

For a solid sphere characterised by the no-slip bound-
ary condition, the variation of the drag coefficient CD with
the Reynolds number, Re, has been studied extensively both
experimentally1–3 and numerically.4–10 At low Re ∼ 0, the
flow around the sphere is axisymmetric, steady, and fully
attached, and the drag coefficient varies as CD = 24/Re,
with the no-slip or zero tangential velocity boundary condi-
tion on the sphere surface. Flow separation occurs at Re ≈ 5,
and the axisymmetry of the wake is broken at Re ≈ 210. At
Re ≈ 270, the wake becomes unsteady and planar asymmetry
such as vortex shedding begins to occur. Above Re ≈ 375,
the planar symmetry is broken and the wake becomes both
unsteady and asymmetric thereafter. For Reynolds numbers in
the range 103 ≤ Re ≤ 4 × 105, the drag coefficient of a no-
slip sphere is relatively independent of the Reynolds number,
CD ∼ 0.4. As the Reynolds number increases further, beyond
about Re ∼ 5 × 105, the drag coefficient on the no-slip sphere
undergoes a sharp drop to CD ∼ 0.1 as the boundary layer
transitions to turbulence. This phenomenon is the well-known
“drag crisis” (see Fig. 1).
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FIG. 1. Experimental data showing the variation of the drag coefficient CD
with the Reynolds number, Re, for hot spheres above the Leidenfrost temper-
ature, see Refs. 22,24 for details, free falling in fluorocarbon liquids: PP11
(µL = 19.2 mPa s, solid magenta diamonds), PP10 (µL = 9.6 mPa s, solid
red squares), PP3 (µL = 1.9 mPa s, solid blue triangles), and water at 95 ◦C
(µL = 0.3 mPa s, solid green circles). The open symbols represent corre-
sponding results for CD of room temperature spheres without a vapor layer
free falling in the same liquids. The viscosity of the vapor is estimated to be
∼1.2 × 10−2 mPa s for all liquids presented. The variation of CD with Re for
a no-slip (free-slip) solid sphere in a Newtonian liquid is shown as the dashed
(dotted) curve.13,25,26

In contrast to a no-slip sphere, analytical studies of flow
around a sphere with the free-slip or zero tangential stress
boundary condition show that the drag coefficient follows the
Hadamard-Rybczynski result, CD = 16/Re, at Re ∼ 0.11,12

With increasing Re, the wake remains axisymmetric and steady
for low, moderate, and high Reynolds numbers,13 and no
separation is predicted to occur. For Re � 1, the wake thick-
ness varies as O(Re−1/4) as the drag coefficient assumes the
asymptotic form13

CD ≈
48
Re

(
1 −

2.2
√

Re

)
. (2)

Thus, the drag coefficient of a free-slip sphere decreases mono-
tonically for large Reynolds numbers, and the flow remains
fully attached. However, such limiting behavior has yet to be
observed because a sphere with a free-slip or zero tangential
stress surface has yet to be realised, although recently near-
zero drag has been observed on teardrop-shaped gas cavities
at high Reynolds numbers.14 Nevertheless, it is pertinent to
note that at Re ∼ 0, the drag coefficient, CD, only changes
by a factor 2/3 between the no-slip and the free-slip bound-
ary conditions, and Eq. (2) provides a point of reference as to
the limiting behavior of a free-slip spherical body in the limit
Re� 1.

Recent experimental studies using solid spheres have
demonstrated the possibility of using a surface bound vapor
layer that is maintained by the Leidenfrost effect generated by
a hot surface held at a temperature well above the boiling point
of the liquid15–22 or using a thin surface mass transfer layer
maintained by a melting solid surface23 to move the point at
which flow separates toward the rear of the sphere and thereby
achieve a corresponding reduction in the drag. The thicknesses
of these surface layers are of order hundreds of micrometers,
extremely small relative to the centimeter radius of the sphere.

The early studies on drag reduction caused by the presence of
a stable Leidenfrost vapor layer on a sphere found significant
reduction only at high Reynolds numbers19,24 (Re & 2× 104).
However, more recent experiments showed that the Reynolds
number at the onset of significant drag reduction is dependent
on the viscosity of the gas in the vapor layer, µV , relative to the
viscosity of the surrounding liquid,24 µL. Indeed, significant
drag reduction was observed for large values of the viscos-
ity ratio, µL/µV ∼ 1900 at Re ∼ 103, that is, well below the
critical Re value, Re ∼ 5 × 105, that marks the transition to
turbulence for solid spheres without surface vapor layers (see
Fig. 1). Results from such experimental observations are sum-
marized in Fig. 1 for hot spheres with sustained Leidenfrost
vapor layers undergoing free fall in four fluorocarbon liquids
that span a 10-fold variation in viscosities.22,24 Collapse of the
drag coefficient data onto a single curve was achieved when
plotted as a function of the parameter (µL/µV )Re, though this
is not necessarily an indication of a universal master curve.24

Attempts at modeling of the effective boundary condition
that would describe laminar fluid flow over the solid surface
covered by a thin vapor layer have been reviewed recently.27

Such models specify the constant thickness of the vapor layer,
the viscosity and density of the vapor phase and allow for
the possibility of circulation of the vapor phase within the
thin layer. The objective is to obtain a relation between the
vapor layer properties to a slip length of the Navier model.
The results have then been used to interpret numerical solu-
tions of the Navier-Stokes equation for the same model of a
concentric vapor layer of constant thickness around a sphere
up to18,28 Re ∼ 100. These models assume no mass transfer
between the vapor layer and the surrounding liquid. How-
ever, for free falling spheres that are covered by a sustained
Leidenfrost vapor layer as in our experiments, vapor is contin-
ually generated by the hot surface of the sphere and then shed
into the wake at the rear. Therefore, these explicit models will
require more parameters such as vapor density and viscosity,
in addition to the assumption of constant vapor layer thick-
ness, in order to describe the key features of the flow. For a
centimeter diameter sphere, the vapor layer thickness can only
be estimated to be in the range of 50–200 µm, thus making pre-
cise measurement and modeling of the vapor layer properties
problematic.

To circumvent the above practical limitations that pre-
clude specification of the detailed features of the surface vapor
layer, we study the predictions of the full Navier-Stokes equa-
tions with a Navier slip boundary condition and compare them
to experimental observations. Preliminary results suggest that
this simplified model was able to capture the drag reduction
observed experimentally.24 The Navier slip boundary condi-
tion has often been used to characterise the flow of a liquid
over a thin layer of gas next to a wall.29,30 When applied to
Leidenfrost scenarios, the Navier slip model has been previ-
ously used to derive the variation of the Navier slip length λs
with the vapor layer thickness, λV , and the viscosities of the
vapor, µV , and liquid, µL.18,27,31–34 These results obtained in
the limit Re = 0 suggests the relationship

λs ∼

(
µL

µV

)
λv. (3)
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As yet, this relationship has not been tested at moderate to high
Re flows up to the drag crisis.

In the context of flow over a sphere, the Navier slip model
has the advantage of direct, unambiguous calculation of phys-
ical quantities such as the drag force and the wake separation
angle because there is no longer separate vapor and liquid
regions as in the model of Gruncell et al.28 Further, the Navier
slip model is characterized by only one parameter, the Navier
slip length, λs. As λs is increased from zero, the separation
angle will move toward the rear of the sphere, until the free-
slip limit of Eq. (2) is reached when the flow remains fully
attached. In effect, the parameter λs allows us to quantify
the variation of the drag coefficient CD with the separation
angle ϕsep.. In this paper, we use the Navier slip model to
capture the effects of the Leidenfrost vapor layer on the drag
force and wake shape over the experimental range of Reynolds
numbers, 102 ≤ Re ≤ 4 × 104.24 We compare our results
with existing experimental data in order to quantify the rela-
tionship between the Navier slip length, λs, and measurable
quantities such as the Leidenfrost vapor layer thickness, λv,
and the viscosities µV and µL of the vapor and the liquid,
respectively.

II. METHOD

For the Leidenfrost sphere in free fall experiments, vapor
is continually created at the surface of the super-heated sphere
and is subsequently swept downstream along the sphere and
into the wake. In this study, we do not attempt to capture
the dynamics inside the vapor layer. Instead, as in Vakarelski
et al.24 and in low Reynolds number models as in Gruncell
et al.,28 we assume that the vapor layer has a constant thick-
ness, λv, that is much smaller than the sphere radius (λv � R)
and thus affects the flow through a modification of the usual
no-slip boundary condition at the surface of the sphere (Fig. 2).
In this simple model of the Leidenfrost vapor layer, we assume
that the flow around the sphere is isothermal and that the vapor
layer thickness is constant and uniform. These assumptions are
then represented by the Navier slip boundary condition in the
non-dimensional form29,30,35,36

FIG. 2. Schematic of a partial-slip sphere with the slip length λs in a uniform
flow of velocity U.

t(i) · u =
1
2
λs
R

t(i)n : τ. (4)

Here λs/R is the constant slip length divided by the sphere
radius, t(i) and n are the unit vectors tangential and normal to
the surface, respectively, u is the fluid velocity, and τ is the
fluid shear stress. Equation (4) has been non-dimensionalised
with the velocity scale U, length scale 2R, and stress scale
µLU/R.

To model the terminal velocity state of a sphere in free fall
in an incompressible Newtonian liquid, we use direct numeri-
cal simulations (DNS) for Re ≤ 104 and large eddy simulations
(LES) for Re ≥ 104 with a dynamic Smagorinsky turbu-
lence model that is consistent with previous studies.6,7,24,37

ANSYS Fluent 15.0 was used to simulate the flow past a
sphere with a rectangular domain extending 32R upstream
and 42R downstream of the sphere centre and 32R in the
directions normal to the flow. The normal velocity at the
upstream boundary was specified as a constant velocity U,
with U chosen to give the desired Reynolds number. The
corresponding tangential velocities were set to zero. The tan-
gential velocity in the flow direction on the four boundaries
normal to the flow was also specified as U, with the other
two velocity components set to zero. The downstream bound-
ary was specified as an outlet, with a zero normal velocity
gradient.

The first mesh point normal to the sphere surface was
located within one dimensionless viscous unit,

∆r+ =
ρuτr
µ
= 1, (5)

where r is the distance from the sphere surface, uτ =
√
τw/ρ

is the (maximum) friction velocity, and τw is the (maximum)
surface shear stress. Consistent with previous numerical sim-
ulations,7,24 the friction velocity was estimated as 0.04U a
priori and then checked for validity a posteriori. A minimum
of 7 mesh points were positioned within 10 wall units of the
sphere, and the maximum size of elements on the sphere sur-
face was approximately 5–30 wall units, depending upon the
size of the Reynolds number chosen. The resultant mesh size
was approximately 6.26 × 106 elements.

Simulations were run using SIMPLE pressure-velocity
coupling and second-order implicit time stepping with time
step size∆t = 0.02D/U, ensuring adequate resolution of shed-
ding frequencies. The convergence criterion for each time step
was set to 10−4 for the non-dimensional velocity and pressure
residuals. Second-order upwind spatial discretisation was used
for DNS, whereas bounded central difference spatial discreti-
sation was used for LES. Validation of the method can be found
in Vakarelski et al.,24 showing comparisons of DNS and LES
results to previous experimental and numerical observations
available in the literature.

III. RESULTS AND DISCUSSION

In Fig. 3(a), we show examples of the instantaneous exper-
imental wake patterns on spheres without and with a Leiden-
frost vapor layer falling in the perfluorocarbon liquid PP11,
from the results of Vakarelski et al.24 Also, the numerical
results for a no-slip sphere and a sphere with the Navier slip
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FIG. 3. (a) Comparisons of instantaneous wakes
between experiment24 (performed in PP11) and
simulation based on the Navier slip model with
the indicated slip lengths, λs: (i) no vapor layer:
Re = 2.3 × 103—experiment (left) and simulation with
λs/R = 0 (right), (ii) with the Leidenfrost vapor layer:
Re = 5.8 × 103—experiment (left) and simulation
with λs/R = 0.045 (right). The simulation results
show contours of instantaneous out-of-plane vorticity.
(b) Contours of instantaneous out-of-plane vorticity for
Re = 103 and four different values of slip length λs/R.

boundary condition at similar Reynolds numbers are shown.
It is clear that the Navier slip model is able to reproduce the
delay in separation of the boundary layer, and the subsequent
wake pattern, observed experimentally for spheres encased by
thin vapor layers.

In Fig. 3(b), we show the effect of slip length on the wake
at a fixed Reynolds number Re = 103. For the no-slip case
(λs/R = 0), the flow is unsteady and asymmetric. As the
slip length increases, the flow separation point moves down-
stream along the sphere toward the rear stagnation point. For
λs/R & 0.1, the wake becomes steady, and as the slip length
increases further, the flow becomes axisymmetric and remains
fully attached.

In Fig. 4, we show the normal mean stress (2σ/ρU2) dis-
tributions and tangential velocity (uϕ) profiles for flow past
a sphere at Re = 103 for various values of dimensionless
slip length, λs/R. For a no-slip sphere without a vapor layer
(λs/R = 0) in incompressible flow, there is no normal compo-
nent of the viscous stress tensor at the sphere surface because
mass conservation stipulates that ∂ur/∂r = 0, and the only
normal stress acting on the sphere is the pressure. However,
for non-zero slip lengths, a normal component of viscous stress
can exist at the sphere surface because the surface tangential
velocities and their corresponding tangential derivatives at the
surface are in general non-zero. This gives rise to a finite value
of ∂ur/∂r and a normal stress at the surface. Finite values of

FIG. 4. Flow past a sphere at the Reynolds number Re = 103. (a) Distributions of mean normal stress 2σ/ρU2 on the sphere surface and (b) tangential velocity
profiles near the sphere at three positions for slip lengths λs/R = 0, 0.05, 0.1 and 0.5. Here, r is the coordinate in the normal direction (r = 0 on the sphere
surface) and uϕ is the velocity in the tangential direction. The crosses in (a) indicate the angle at which the flow separates from the sphere surface.
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λs/R have a marked effect on the normal stress distribution,
with separation delayed considerably in comparison with the
non-slip case (λs/R = 0), resulting in a much narrower wake.
When λs/R , 0, the viscous retardation of the fluid in the
boundary layer is not as strong because the fluid is able to
move along the surface of the sphere [Fig. 4(b)]. This means
that the flow remains attached beyond the expected separation
point for a no-slip sphere before the adverse pressure gradi-
ent is able to slow the fluid down enough to cause separation.
The resulting delay in separation decreases the size of the wake
region, resulting in a smaller region of low pressure on the sur-
face of the sphere and also a larger back pressure [Fig. 4(b)].

FIG. 5. (a) Drag coefficient normalised by the drag coefficient for a no-slip
sphere, (b) separation angle as a function of the dimensionless slip length λs/R,
and (c) drag coefficient as a function of the separation angle, for Reynolds num-
bers Re = 102, 103, and 104. The dashed lines in (a) indicate the normalised
drag coefficients for a free-slip sphere at each Reynolds number, calculated
with the aid of Eq. (2).

These two effects act to decrease the total drag force exerted
on the sphere.

This reduction in drag force is demonstrated clearly in
Fig. 5, where we plot the drag coefficient, CD, and separa-
tion angle, ϕsep., for three Reynolds numbers: Re = 102, 103,
and 104, over a wide range of slip lengths λs/R. Here, the
drag coefficients have been normalised by the drag coeffi-
cient of a no-slip sphere at the same Reynolds number. The
decrease in the drag coefficient with increasing slip length
corresponds with a delay in the angle at which the flow sep-
arates from the sphere [Fig. 5(b)]. For λs/R > 0.5, the flow
remains fully attached to the sphere, ϕsep. ≈ 180◦, and the

FIG. 6. (a) Pressure drag coefficient, Cp, (b) skin friction coefficient, Cτ , and
(c) ratio of the skin friction drag coefficient to total drag coefficient, Cτ/CD, as
functions of dimensionless slip length, λs/R, for Reynolds numbers Re = 102,
103, and 104.



107104-6 Berry et al. Phys. Fluids 29, 107104 (2017)

FIG. 7. (a) Variation of the drag coef-
ficient with the Reynolds number for
three values of λs/R. The experimen-
tal results of Vakarelski et al.24 are
also depicted for a sphere radius of
R = 20 mm. (b) Numerical slip lengths
matching the experimental data for three
viscosity ratios.

drag coefficient approaches the predicted value for a free-
slip sphere, given by Moore’s formula [Eq. (2)]. The results
demonstrate that the effect of the slip length becomes more
marked as the Reynolds number increases. For Re = 104, slip
lengths λs/R & 0.02 have significant effect on the separa-
tion angle and subsequent drag coefficient. By contrast, slip
lengths λs/R . 0.1 have little effect at Re = 102. The effect
of the separation angle on the drag coefficient is shown in
Fig. 5(c). It is clear that a small delay in the separation angle
has a profound effect on the drag coefficient, with an expo-
nential decay in the drag coefficient as the separation angle
moves from ∼90◦ for the no-slip case to 180◦ for the free-slip
case. This explains the increased sensitivity with the Reynolds
number to the presence of a slip length at the surface of the
sphere because the drag coefficient for the fully attached, free-
slip case is proportional to Re−1 [Eq. (2)], whereas the drag
coefficient for the no slip case is relatively independent of the
Reynolds number (CD ∼ 0.4). Thus, as the Reynolds number
increases for fixed slip length λs, the drag coefficient will also
decrease.

The delay in flow separation decreases the overall con-
tribution of pressure drag but may lead to an increase in
skin friction drag because the flow remains attached over a
greater portion of the sphere. To examine if this is the case, in
Fig. 6, we plot the individual contributions to the drag coeffi-
cient: CD ≡ Cp + Cτ , from the normal stress, Cp, and from the
skin friction, Cτ , to the overall drag coefficient, along with the
ratio Cτ/CD. It is clear that for Re > 102, the delay in the sepa-
ration angle induced even by small slip lengths has little effect
on the skin friction coefficient Cτ but has a significant effect
on the pressure coefficient Cp. The pressure drag coefficient
decreases markedly due to the delay in separation induced by
finite slip lengths, with little effect on the skin friction coef-
ficient, and consequently, the total drag coefficient decreases
commensurately. At higher slip lengths, the skin friction coef-
ficient decreases monotonically toward the free-slip limit of
zero, and the drag coefficient consists entirely of drag due to
pressure.

In Fig. 7(a), we compare the simulation results to the
experimental results of Vakarelski et al.24 for spheres of
fixed radius R = 20 mm. The experimental results depicted
include the results for spheres sustaining vapor layers in three
perfluorocarbon liquids PP3, PP10, and PP11 of viscosity
ratios µL/µV ∼ 150, 800, and 1600, respectively. In these
experiments, the vapor layer thickness was estimated to be

150 ± 50µm for all cases. The results of the simulation show
excellent agreement with experimental observations, demon-
strating that a partial slip boundary condition is sufficient to
capture the effect of the presence of a vapor layer on the sur-
face of a solid sphere. In Fig. 7(b), we plot the numerical
slip length that best matches the experimental datasets against
the corresponding experimental viscosity ratio µL/µV . Equa-
tion (3) implies that the slip length λs varies linearly with the
viscosity ratio for low Re flows. It is clear from Fig. 7(b) that
assuming this relationship for moderate to high Reynolds num-
ber flows will over-predict this dependence, providing strong
evidence that the variation of slip length with viscosity ratio is
not universal for all Reynolds numbers.

IV. CONCLUSION

We have shown that the significant drag reduction exhib-
ited by hot spheres that are capable of sustaining a stable
Leidenfrost vapor layer on its surface can be modeled numer-
ically using a Navier slip boundary condition, characterised
by the slip length λs. As the slip length decreases from high
to very low for a fixed Reynolds number, the flow past the
sphere transitions from steady attached flow to separated flow
to vortex shedding arising from complex unsteady behavior.
The presence of a finite tangential velocity on the surface of the
sphere enables the flow to resist the adverse pressure gradient
for longer, delaying flow separation and leading to a smaller
low pressure region behind the sphere and a larger back pres-
sure. As a direct consequence, the magnitude of pressure drag
acting on the sphere decreases with increasing slip length.

As the Reynolds number is increased, small slip lengths
have a profound effect on the flow and resultant drag reduction,
due to the delay in flow separation. The increased sensitiv-
ity to the Reynolds number is due to the dependence of the
drag coefficient for a free-slip sphere on the Reynolds number
(CD ∼ Re−1), whereas the drag coefficient for a no-slip sphere
is relatively independent of Re. Thus a small delay in the sepa-
ration angle due to a finite slip length leads to a large decrease
in the drag coefficient at high Re. Analysis of low Re flows
in the literature suggests that the slip length is of magnitude
λs ∼ (µL/µV )λv.18,27,31–34 Through comparison with experi-
mental results in the literature, we have demonstrated that, at
moderate to high Reynolds numbers, the slip length λs is a
function of the viscosity ratio µL/µV but does not follow the
form suggested by low Re flow analysis.
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To enable simulations to model higher Reynolds numbers
near and above transition in the boundary layer (Re & 105),
the turbulence model needs to be formulated for a partial-
slip surface. For the Reynolds numbers considered here, the
flow becomes turbulent in the wake, downstream of the sphere
surface, and standard turbulence models are applicable. For
Re & 4 × 105, the boundary layer becomes turbulent and the
standard turbulence model breaks down. More sophisticated
models that account for the correct asymptotic behavior near
a gas/liquid interface are available,38 but significant modifi-
cation is required in order to model this system at and above
transition.
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