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The scattering of electromagnetic pulses is described using a non-singular boundary integral method to solve
directly for the field components in the frequency domain, and Fourier transform is then used to obtain the
complete space-time behavior. This approach is stable for wavelengths both small and large relative to character-

istic length scales. Amplitudes and phases of field values can be obtained accurately on or near material boun-

daries. Local field enhancement effects due to multiple scattering of interest to applications in microphotonics are

demonstrated. © 2017 Optical Society of America
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1. INTRODUCTION

Current theoretical formulations and computational algorithms
for time domain electromagnetic problems are well developed
for applications that range from transient spectroscopy [1] to
telemetry involving high-speed spacecrafts [2]. Under condi-
tions relevant to microphotonics in which the interest in re-
gimes of wavelengths can be small or large compared to the
characteristic dimensions of the scatterers or the need to have
accurate values of the phases and amplitudes of the field near
boundaries, current methodologies encounter challenges.

This paper addresses the time domain electromagnetic prob-
lem of the scattering of electromagnetic pulses by working
directly in terms of the components of the electric field using
a non-singular surface integral formulation in the frequency
domain. Fourier transform is then used to give the complete
space-time behavior.

This approach retains the advantages of reduction in spatial
dimension of surface integral methods, and because of the non-
singular nature of the surface integrals, it has the added ability
to handle surface geometric intricacies that often arise in
microphotonics problems in which certain length scales in
the problem may be small compared to the wavelength or
where there is the need to obtain accurate results for field values
on or near surfaces. The use of the Fourier transform to give
the time evolution also avoids possible instabilities that can arise
with march on time algorithms. Examples of the space-time
dependence of scattering of an incident wave pulse by
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conducting and dielectric scatterers are provided to illustrate
the transition between wave and geometric optics. The struc-
ture of the field near the surfaces is used to demonstrate field
focusing and multiple scattering effects.

2. BACKGROUND

One established approach to time domain electromagnetics is
based on extending the surface integral formulations, the elec-
tric field integral equation or magnetic field integral equation
method, to the time domain using a march on time method;
see, for example, [3—5] for reviews. This widely used approach
involves solving surface integral equations for the surface cur-
rents. The electric and magnetic fields are then obtained by
post-processing the surface current values. In present formula-
tions, the surface integral equations that need to be solved for
the induced surface current densities contain singular kernels
that originate from the Green’s function. This mathematical
feature that does not have a physical basis means a loss of pre-
cision in the calculation of field values close to boundaries
between different media. Furthermore, march on time algo-
rithms can also lose precision as time progresses.

Another approach to time domain electromagnetics is the
finite-difference time-domain (FDTD) method of Yee [6]
where the space- and time-dependent Maxwell’s equations
are discretized in the 3D space variables and time stepping
is used to track the space-time evolution from given initial con-
ditions. Although the FDTD algorithm is simple conceptually,
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there are a number of technical issues that require care in im-
plementation. Convergence constraints impose limitations on
the step sizes in time and space. Numerical dispersion effects
associated with the relative orientation of the spatial grid and
the direction of propagation can arise and unphysical reflections
can occur at the boundaries (that conform to the stepwise
nature of the grid) between regions of the different grid den-
sities. If the problem domain is infinite, an outer boundary
needs to be constructed with suitable boundary conditions
to satisfy the radiation condition at infinity so as to avoid
unphysical reflections back into the solution domain [7].

Earlier works on pulses have been based on extending the
analytic Mie theory for scattering by a sphere [8,9] and as such
are not readily applicable to consider problems involving
general scatterers.

3. THEORY

The present theoretical development is motivated by the Mie
theory [10] in which the solutions of Maxwell’s equations in the
frequency domain are constructed from two scalar Debye
potentials that obey the Helmholtz equation. Although the
Debye potentials can be found by solving boundary integral
equations, they are not suitable for numerical implementation
because the boundary conditions on the electric, E, and
magnetic, H, fields involve the first and second derivatives
of these scalar potentials.

The following is a summary of the field-only, non-singular
boundary integral formulation of the solution of Maxwell’s
equation in the frequency domain. Detailed development
and numerical implementation issues have been given in the
literature [11,12].

For a vector field that satisfies the wave equation

V2E + F*E = 0, (1)
the divergence free condition on E can be written as
2V-E=V*(x-E)+ F(x-E) =0, (2)

whereby the scalar function (x - E), where « is the position vec-
tor, also satisfies the scalar wave equation or the Helmholtz
equation.

Therefore the solution of Maxwell’s equation for the scat-
tered electric field, E, can be expressed as the simultaneous
solution of four coupled scalar Helmholtz equations of the
general form

V2p,(x) + Bpx) =0,  i=1..4, &)

where p,(x) denotes (x - E) or one of the three Cartesian com-
ponents of E. These four equations are coupled by the usual
boundary conditions on the normal and tangential components
of E at material boundaries. The scalar function (x - E) is the
result of the application of the angular momentum operator on
one of the Debye potentials [13].

Writing the solution of Eq. (1) as surface integral equations
furnishes three relations between the six unknowns: £, and
0E,/on, (a =x,7,2), where 0/on=n-V and = is the
outward unit normal of the surface, S, of the solution domain.
The boundary integral solution of Eq. (2) for the quantity
(x - E) provides one more relation between £, and 0E,/on
since d(x - E)/on =mn-E 4 x - 0E/0n. The electromagnetic
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boundary conditions on the continuity of the tangential com-
ponents of E provide the remaining two equations to deter-
mine E and 0E/on completely. At the surface of a perfect
electrical conductor (PEC), the tangential component of the
incident field must be canceled by that of the scattered field.

The boundary integral solution of Eq. (3) for the scattered
field is based on Green’s second identity that gives a relation
between p;(x) and its normal derivative dp;/0n at points
x and x, on the boundary, S. All singularities associated
with the Green’s function G = G(x, %)) = exp(ikr)/r, as
r=|x-x5| > 0 can be removed analytically by using the
following non-singular formulation of the boundary integral
equations [11,12]:

[ -0 - 22 )| S st

-/ G[ap(;(x) 20 ag(x) AL
S n 7

}dS( ) (4)

The requirement on the functions f(x) and g(x) is that they
satisfy the Helmholtz equation and the following conditions

at the point x = x on surface, § [11,12]:
f(x) =0, (5a)
n-Vf(x) =1, (5b)
glx) =1, (5¢)
n-Vg(xy) = 0. (5d)

Therefore, if p; (or dp;/0n) is given, then Eq. (4) can be solved
for dp,/0n (or p,) in a straightforward manner. The reason is
that for f(x) and g(x) that obey the above conditions, Eq. (5),
the terms that multiply G and dG/0n vanish at the same rate
as the rate of divergence of G or G /0n as x — xy and con-
sequently both integrals have non-singular integrands and can
thus be evaluated accurately by quadrature; see [11,12] for
details. Consequently, this approach affords higher numerical
precision with fewer degrees of freedom and confers numeri-
cally robustness that enables, in particular, the accurate calcu-
lation of field values on or near boundaries without adverse
numerical issues. Note that the solid angle at x, that occurs
in the traditional boundary integral equation has also been
eliminated in Eq. (4). Suitable choices for f(x) and g(x)
can be found in [11,12]. Similar coupled equations also hold
for the magnetic field H; see [11,12] for details.

Furthermore, the present field-only formulation is not
affected by the so-called zero frequency catastrophe as k — 0 that
limits the accuracy of the familiar electric and magnetic field
integral equations for the surface current density [14].

As to be expected, the system of equations to be solved is
simpler for PEC scatterers [11] than for dielectric scatterers
[12], but the underlying physical concepts are the same.

4. RESULTS

A demonstration of our field-only approach for small and large
dimensionless wavenumber, %z, where 4 is a characteristic
length scale of the problem, is now given. To this end we
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Fig. 1. Parametric curve (blue) in Eq. (6) with f = 0.6 and
7 = 0.5 together with the parabola Z = X2 /(4f) (red) that is fitted

to the concave inner surface of the bowl. The focus is marked at

(X, 2) = (0, ) = (0, 24/ (2 - y) = (0,2.83).

consider variations of the magnitude of the scattered field
around

(a) A PEC sphere of radius, a.

(b) An axisymmetric bowl-shaped PEC object obtained by
rotating the parametric closed curve in the body coordinates;
see Fig. 1:

(X,Z) = a(2sin 6, Bsin® O +y[cos 0-1]), 0<0<2x, (6)

about the Z-axis. The bowl rim has radius, 24, and the inner
concave bottom of the bowl can be fitted to a parabola
Z = X?/(4f) where the focal length, f = R/2, is related
to the radius of curvature, R = 44/ (2 - y), at the inner center
of the bowl. Here we choose f = 0.6 and y = 0.5, which gives
f =2.86a and R = 5.71a, as shown in Fig. 1.

(¢) An axisymmetric thin nano-rod with length, Z, and maxi-
mum cross-section diameter, 4, whose surface is defined by ro-
tating an analytic curve about the long axis [15]. The aspect
ratio of the rod is L/b = 10. The cases of the nano-rod being
a PEC and a dielectric are studied.

In Fig. 2 we show the scattered field amplitudes by PECs: a
sphere and a bowl, excited by an incident plane wave that
propagates in the positive z-direction and with E polarized
in the y-direction with wavenumber, 4. The results shown
in the yz-plane demonstrate the transition from the electrostatic
limit at small wavenumbers, 4, to approaching geometric or
physical optics as ka increases. Note also the high induced local
field strengths associated with the corona effect that is evident
around the high curvature rim of the bowl in the long wave-
length (small 44) limit.

To demonstrate time-dependent effects, we consider the
scattering of an incident plane wave pulse, E™ = (0, £}, 0),
that is polarized in the y-direction and propagates in the
positive z-direction with the following form in a window of
width, w:

0, -4nN. <t <-2zN,
E}"C = ¢sin(7) exp(-alz]), -2zN, <7t <2zN. , (7)
0, 27[NC<TS4”N£
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Fig. 2. Scattered electric field amplitudes in the yz-plane of an
incident plane wave given by Eq. (7) around a perfect electrical
conducting sphere or bowl (see text) at the indicated values of the
dimensionless wavenumber, 2. The axis of symmetry of the bowl
is inclined at an angle 0.157 rad relative to the direction of propaga-
tion, along the positive z-axis.

where 7 = ky(z - vt). Examples of such pulse functions that
comprise of 2N, oscillatory cycles and their Fourier compo-
nents calculated using a 128 point discrete Fourier transform
are given in Fig. 3 for different values of NV, and a [16]. Since
the Fourier amplitudes are small at high wavenumbers, using
say the first 20 Fourier components is generally sufficient to
give an accurate representation of the pulse.

For each of these Fourier components of the incident pulse
we solve for E and (x - E) at the corresponding value of # and
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Fig. 3. Examples of the incident field pulse £, Eq. (7), of window
width, w, and its Fourier amplitudes for pulses comprising (a) two
cycles, N, =1, a = 0.5 (upper set) and (b) four cycles, N, = 2,
a = 0.1 (lower set) with 128 sampling points and the 64 values of
its discrete Fourier transform.
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Scattered Scattered Total 35

i N, =2,0=01 -1 N =2,0=01

Fig. 4. Total (right) and scattered (left) electric field amplitudes
and field vectors in the yz-plane due to scattering of the plane
wave pulse, Eq. (7) with kga = 167/20.1, by a perfect electrical
conducting sphere at selected time steps. See Visualization 1 for full
animation.

then the time domain behavior can be found by inverse
discrete fast Fourier transform [16]. As in earlier work on
the scattering of acoustic pulses [17], we set the total window
width of the incident pulse to be w = 20.14, of which the

Fig. 5. Snapshots of the total E field amplitude and field vector in
the yz-plane due to scattering of a plane wave pulse given by Eq. (7)
with kgz = 87/20.1 by a perfect electrical conducting bowl of
rim radius 24 at the indicated time steps. The bowl is inclined at
an angle 0.157 rad relative to the z-axis. See Visualization 2 for full
animation.
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central oscillatory portion has width w/2. So for a pulse with
2N, oscillatory cycles over the width w/2, the wavenumber,
ky, in Eq. (7) is determined by the relaton (2NV,)1)=
(2N, )(2n/ky) = w/2, giving kya = 8xN,/20.1. The results
are presented in such a way, that the pulse just reaches the
bottom of the scatterer at the first frame. To account for this,
each frequency component of the incoming wave must be
multiplied with a phase factor ¢ with g = -k,,a{w/(4a) - 1]
and #,, the mth wavenumber of the Fourier spectrum.

In Fig. 4 we show both the total and scattered £, electric
field amplitudes as well as the electric field vectors excited by
the plane wave pulse given by Eq. (7). Results in the yz-plane
around a PEC sphere are shown at selected time steps out of a
total of 128 steps (1002 nodes and 500 quadratic elements were
used). The field strengths are indicated by the color scale and
their strengths and directions by arrows. These results have
been validated against available analytic solutions [10].

In Fig. 5, we show the magnitudes of the total field excited
by a broader incident plane wave pulse given by Eq. (7) with
N, =1,a= 0.5, and hence kyz = 87/20.1 in the neighbor-
hood of a PEC bowl with 1002 nodes and 500 quadratic

T s bEAEees) O 3Ll i

Fig. 6. Snapshots of the total E field amplitude and field vector in
the yz-plane due to scattering of a plane wave pulse by a perfect elec-
trical conducting bowl of rim radius 24. The incident wave is given by
Eq. (7) with kya = 167/20.1 at the indicated time steps. The bowl is
inclined at an angle 0.157 rad relative to the z-axis. Also shown are a
magnified region to show the local structure of the field vectors.
See Visualization 3 for full animation.
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elements. Here the high field strengths associated with the
corona effect are more evident around the high curvature
rim of the bowl although the maximum field amplitude is only
about half that in Fig. 4.

In Fig. 6 we show the total amplitudes and field vectors of
E excited by the same incident plane wave pulse as in Fig. 4 in
the neighborhood of a PEC bowl with rim radius 24 as given in
Eq. (6). The electric field strengths are indicated by the color
scale and the field strengths and directions by arrows. The fo-
cusing effects due to the curvature of the bowl are clearly evi-
dent with regions of high field amplitudes located near the
position of the focal point discussed above. The focusing
effect increases the field amplitude by up to about 50%.
Complex structures in the vector E are evident in the enlarged
sub-figures near the concave surface of the bowl.

To demonstrate the ability of the present field-only formu-
lation to handle multiple scattering effects in which spatial
configurations of the scatterer can cause significant field en-
hancements, we consider the scattering by the combined
effect of a PEC bowl that has a rim radius 24, with a sphere
of diameter 4, that is located near the focal point of the bowl.
The bowl and the sphere each have 362 nodes and 180
quadratic elements. In Fig. 7, we show the space-time variation
of the total field amplitudes and directions, for an inci-
dent pulse given by Eq. (7) with N, =2, a=0.1, and

Fig. 7. Same as Fig. 6, but with the addition of a sphere posi-
tioned near the focus of the bowl. See Visualization 4 for full
animation.
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koa = 167 /20.1—the same as that in Fig. 6. Here we sce that
this configuration of a bowl with a sphere placed near its focus
can enhance the local field amplitude by about a factor of 3,
twice that achieved by a bowl on its own. The complex field
structures in the region between the bowl and the sphere
are shown in the enlarged sub-figures.

The scattering from an object with high aspect ratio is
tackled next, both for a PEC and a dielectric object, a task
which is rather challenging for conventional methods. In
Figs. 8 and 9, we compare the values of the £, and E, com-
ponents of the total electrical field excited by the incident pulse
given in Eq. (7) by a PEC and by a dielectric nano-rod with
refractive index 72, = 3 [12]; the surrounding medium has unit
refractive index. The y-component of the electric field, £, is
shown on the left and the z-component, E, on the right at
three time instances in both figures. In both cases, the long axis
of the nano-rod is oriented at an angle of 45° to the propagation
direction of the incident pulse. The surface of the axial sym-
metric nano-rod is defined by rotating an analytic closed curve
about the long axis [15]. The rod has length, Z, and maximum

31 outof 128

31 out of 128
Y4

N, =2;0=0.1
PEC nano-rod

N =2;0=0.1
PEC nano-rod

53 out of 128 53 out of 128

0.8 1
0.6 Yy
0.4

_— 0.2
| ;b : g&a
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0.4 0.4
0.6 0.6
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S VST 2 vl 85 out of 128
E, z

9'8’ ——
0.6 y L;y

N, =2;0=0.1
PEC nano-rod

N, =2;0=0.1

PEC nano-rod

Fig. 8. Snapshots of total amplitudes of £, and £, components in
the yz-plane at different time points due to scattering of a plane wave
pulse by a perfect electrical conducting nano-rod with length to width
ratio 10. The incident wave is given by Eq. (7) with 4yL = 3272/20.1
at the indicated time steps. The nano-rod is inclined at an angle of 45°
relative to the direction of pulse propagation along the z-axis. See
Visualization 5 for full animation.
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Fig. 9. AsFig. 8, but replacing the perfect electric conducting nano-
rod by a dielectric nano-rod with refractive index 7, = 3 relative to the
surrounding medium. See Visualization 6 for full animation.

cross-section diameter, 6, at the middle of the rod, with
L/b = 10. In both figures, the incident pulse is defined by
Eq. (7) with N, = 2 and a = 0.1. This corresponds to byL =
327/20.1 and ko6 = 3.27/20.1 so that the length of the nano-
rod is approximately the same wavelength, Ag = 27/ k,, of the
incident pulse and the width of the nano-rod is about 44/10.
As expected, the PEC nano-rod scatters much more strongly
than its dielectric counterpart. This is evident by comparing
the snapshots at the same time step in Figs. 8 and 9. At frame
31, when the nano-rod is near the center of the pulse, the
scattering due to the PEC nano-rod is larger and consequently
the perturbation of the total field is more severe. Toward the
tail of the pulse at frame 53, the scattered field around the PEC
is again much more pronounced than that of the dielectric
nano-rod. After the pulse has passed, the scattered field from
the dielectric nano-rod is essentially zero, whereas that due to
the PEC is still creating a scattering effect which slowly dies out.
This effect is even more obvious in the supplementary
Visualization 5 and Visualization 6. As a check of our numeri-
cal implementation, the scattering goes to zero smoothly, as ex-
pected, when the nano-rod is made transparent by taking the
limit of its refractive index to be the same as that of the

surrounding medium, n, = 1.
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5. CONCLUSIONS

We have leveraged on the direct nature and numerical stability
of the field-only formulation of the solution of Maxwell’s equa-
tions in the frequency domain [11,12] to extend it to find time
domain solutions using the Fourier transform. The field-only
formulation solves directly for the field components instead of
first finding the surface current and then computing the field
by post-processing. It is therefore particularly suitable for sit-
uations in which one is interested in the field amplitudes,
phases and directions, especially near material boundaries—
often desired in the design of microphotonic devices or in sur-
face-enhanced Raman spectroscopy.

In contrast, because of the singular nature of the surface in-
tegrals for the surface currents, the post-processing step to find
field components from the surface currents becomes unstable
numerically as the field point becomes close to a boundary.
Although only results for the field in the yz-plane of symmetry
are given for simpler visualization purposes, the complex
3D structure of the field around the scatterers is readily
available.

Although the FDTD method also solves directly for the field
components, it is necessary to discretize the 3D spatial domain
as opposed to only to focus on 3D boundaries in surface in-
tegral formulations. This becomes especially beneficial for spa-
tial regions with different characteristic length scales, such as
near the rim of the PEC bowl and around the sharp ends of
the nano-rods in our examples. The 3D discretization problem
can be challenging for conventional methods. Furthermore,
when the natural orientation of the scatterer is at an angle
to the direction of field propagation, care is needed in the con-
struction of the 3D spatial mesh to avoid spurious dispersion
effects [7].

The present non-singular boundary integral formulation
[18] for the solutions of the Helmholtz equation for the field
components, is unaffected by numerical instabilities at the
low-frequency regime or in the regime when the character-
istic length scale of the problem is small compared to the
wavelength. In this low-frequency or long-wavelength regime,
the conventional boundary integral equation approach will
exhibit numerically troublesome near-singular behavior some-
times referred to as the zero frequency catastrophe that limits
the precision that can be attained in calculations that involve
first having to find induced surface currents [14]. In contrast,
the present approach is numerically robust for wavelengths
that span the electrostatic to approaching the geometric op-
tics regimes without the need to modify the algorithm.

The absence of singularities in the integral equations also
means numerical instabilities do not arise in multiple scattering
effects due to scatterers in close proximity or in the evaluation
of field values close to material boundaries. And in the absence
of singular kernels, it is easy to use quadratic surface elements
with consistent quadratic interpolation of the continuous inte-
grands [11,17], as we have done so in our numerical examples,
to evaluate the surface integrals. This means higher-order pre-
cision can be obtained with fewer number of nodes compared
to using planar surface elements.

For a fixed set of scatterers, the boundary integral equa-
tions only need to be solved once from which the space-time
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variation of the total field for different incident pulses can be
found by inverse Fourier transform.

In summary, the present approach involves solving non-sin-
gular scalar surface integral equations directly for the electric
field components on the boundary of scatterers. In contrast,
the conventional surface integral equation approach involves
solving integral equations with singular kernels for surface cur-
rents. Although there are well-developed methods to deal with
such issues in the conventional surface integral approach, the
integral equations become numerically ill-conditioned when
the characteristic length scales of the scatterers are small com-
pared to the wavelength. Since the electric field is obtained
from the surface current by post-processing, the presence of
singularities in the integral equations means that the precision
of field values at or near surfaces is compromised. The present
approach avoids such issues by having to solve four scalar
Helmholtz equations by a non-singular integral equation for-
mulation. Thus, in handling the time evolution by Fourier
transform, the robustness of our method at all frequencies is
a distinct advantage.

Compared to the FDTD method, the ability to achieve a
reduction in dimension by only having to solve the problem
on the boundary of scatterers also removes the challenge of hav-
ing to discretize a complex 3D domain when there are vastly
different characteristic length scales and spatial directions in a
problem. In the FDTD approach, changing the incident field
for the same set of scatterers requires repeating the solution
process with each new incident field. In contrast, with the
present approach, once the frequency domain problem has
been found for a fixed set of scatterers, the solution can be used
to find the response to different incident fields by simply taking
the inverse Fourier transform.
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