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Abstract The displacement field for three dimensional dynamic elasticity problems in the
frequency domain can be decomposed into a sum of a longitudinal and a transversal part
known as a Helmholtz decomposition. The Cartesian components of both the longitudinal
and transverse fields satisfy scalar Helmholtz equations that can be solved using a desingu-
larized boundary element method (BEM) framework. The curl free longitudinal and diver-
gence free transversal conditions can also be cast as additional scalar Helmholtz equations.
When compared to other BEM implementations, the current framework leads to smaller
matrix dimensions and a simpler conceptual approach. The numerical implementation of
this approach is benchmarked against the 3D elastic wave field generated by a rigid vibrat-
ing sphere embedded in an infinite linear elastic medium for which the analytical solution
has been derived. Examples of focused 3D elastic waves generated by a vibrating bowl-
shaped rigid object with convex and concave surfaces are also considered. In the static zero
frequency limit, the Helmholtz decomposition becomes non-unique, and both the longitudi-

This work is supported in part by the Australian Research Council through a Discovery Early Career
Researcher Award DE150100169 to QS and a Discovery Project Grant DP170100376 to DYCC.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10659-018-09710-y) contains supplementary material, which is available to
authorized users.

B Q. Sun
Qiang.Sun@unimelb.edu.au

E. Klaseboer
evert@ihpc.a-star.edu.sg

D.Y.C. Chan
D.Chan@unimelb.edu.au

1 Institute of High Performance Computing, 1 Fusionopolis Way, Singapore 138632, Singapore

2 Particulate Fluids Processing Center, Department of Chemical Engineering, The University
of Melbourne, Parkville 3010, VIC, Australia

3 School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, VIC, Australia

4 Department of Mathematics, Swinburne University of Technology, Hawthorn 3122, VIC, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s10659-018-09710-y&domain=pdf
http://orcid.org/0000-0002-6672-2415
http://orcid.org/0000-0002-4183-1260
http://orcid.org/0000-0002-2156-074X
https://doi.org/10.1007/s10659-018-09710-y
mailto:Qiang.Sun@unimelb.edu.au
mailto:evert@ihpc.a-star.edu.sg
mailto:D.Chan@unimelb.edu.au


84 E. Klaseboer et al.

nal and transverse components contain divergent terms that are proportional to the inverse
square of the frequency. However, these divergences are equal and opposite so that their
sum, that is the displacement field that reflects the physics of the problem, remains finite in
the zero frequency limit.

Keywords Harmonic waves in the frequency domain · Desingularized boundary element
method · Navier equation · Helmholtz equation

Mathematics Subject Classification (2010) 74B05 · 35J05 · 35Q74 · 65M38

1 Introduction

Numerical modeling using dynamic linear elasticity theory has found applications in many
fields. It has been used in areas such as geological surveys, earth-soil interaction, sound re-
duction, crack detection [1] or even in earthquake propagation studies [2]. Currently, there is
renewed interest in this area due to advances in the development of ultrasonic and microflu-
idic based devices for trapping of biological cells and micro particles [3].

An extensive review of early analytic treatments of the theory of dynamic elasticity is
given by Sternberg [4] who, according to Gurtin [5] in his classic survey, tried to intro-
duce the concept of elasticity in “a form palatable to both engineers and mathematicians”.
However, such analytic methods are only suitable for problems with simple geometries,
whereas with more general and complex geometries, numerical solutions must be em-
ployed.

One of the existing numerical approaches is the finite element method. Although the ap-
proach is general, actual implementation can become complicated when domain geometry
with regions of different elastic properties are considered, e.g., composite systems with in-
clusions of different materials. If the geometric properties of the problem necessitate the use
of multi-scale grids, spurious refraction or dispersion in wave propagation can arise at the
boundaries separating grids of different length scales. In cases where an infinite domain is
involved, one further needs to construct the effective outer boundary condition in order to
satisfy the Sommerfeld radiation condition at infinity.

Another approach is the boundary element method (BEM) that involves the solution of
surface integral equations [6, 7]. Although the resulting matrix system is dense, one only
needs to deal with a surface mesh coinciding with the geometry of the domain boundaries
thereby reducing a 3D problem to a 2D problem, see for example Rizzo et al. [8], or Beskos
[2, 9]. This approach involves handling of at least weakly singular but integrable kernels
in the integral equations [10], unless a recently developed desingularization method is em-
ployed [11].

The objective of this paper is to apply the Helmholtz decomposition to dynamic elasticity
problems in the frequency domain using the desingularized boundary element method that
provides high precision with fewer number of unknowns or degrees of freedom. The key
idea is to use the Helmholtz decomposition of the dynamic elastic equation as described in
Landau and Lifshitz [12] and work directly with the displacement vector field, u which is
decoupled into the sum of a transversal field, uT and a longitudinal field, uL. The solution
can then be framed in terms of a set of scalar Helmholtz equations that are coupled by given
boundary conditions. The divergence free condition on the transversal component and the



Helmholtz Decomposition and BEM Applied to Dynamic Linear Elasticity 85

curl free condition on the longitudinal component can both be framed as Helmholtz scalar
equations. Furthermore, these Helmholtz equations, all of the form

∇2f + k2f = 0, (1)

with f a scalar function and k the constant wavenumber, can be solved with a recently
developed BEM method that does not involve singular integrals [11].

In conventional BEM applied to Helmholtz equations, it is common practice for the sur-
face to be represented by planar area elements and the unknown functions are taken to be
constant within each of these elements. The singularity of the Green’s function implies that
integrals in which the integration point and the observation point lie in the same area ele-
ment need to be treated with care. Although the presence of the diverging integrands is an
accepted feature of the BEM, it does raise the philosophical question as why a mathemati-
cal formulation of physical problems that are well-behaved on boundaries needs to contain
mathematical singularities.

In our non-singular version of the BEM [11], the singularities associated with the Green’s
function are removed analytically so that the surface integrals do not contain diverging in-
tegrands. The unknowns are taken to be values of functions at points or nodes that define
quadratic surface elements on the boundary. For numerical evaluation of the surface in-
tegrals, the value of the integrand at any point within each area element is obtained by
quadratic interpolation from the nodal values and such integrals can be evaluated accurately
by quadrature. This approach increases the precision over conventional BEM by about 2
orders of magnitude with the same number of degrees of freedom [11, 13].

It is sometimes believed that the singular integrals are necessary to create a diagonal
dominant matrix after discretizing the integral equations. In theory this is correct, provided
that one can calculate the singular terms accurately enough. In practice, however, this almost
always leads to considerable errors. For example, for a simple Laplace problem with linear
elements, the terms on the diagonal are equal to the sum of the terms off-diagonal [13]. Any
small error will destroy the critical diagonal dominance. Our non-singular implementation
circumvents this difficulty and as a bonus allows us to use higher order elements combined
with quadrature to evaluate all integrals. As an additional advantage, it is no longer necessary
to calculate the solid angle that simplifies the implementation.

The theory concerning dynamic linear elasticity is introduced in Sect. 2. A rigid sphere
executing harmonic oscillatory motion with a constant amplitude in an infinite linear elastic
material will be chosen as a benchmark example. The analytical solution for this problem is
given in Sect. 3. Since to the best of our knowledge, it has not been presented elsewhere in
the literature, the derivation of this result is sketched in the Appendix. The concept of the
desingularized boundary element method is presented in Sect. 4. Some results for the afore-
mentioned vibrating rigid sphere are presented in Sect. 5 including plots of the displacement
field in the 3D domain. Although a simple example has been used as a proof of concept, nev-
ertheless it illustrates the underlying physics and theoretical intricacies. For example, it is
found that in the limit of very low wave numbers, each of the decomposed longitudinal and
transversal fields will develop a large term of equal magnitude but of opposite sign so that
their sum reduces to the correct static solution. Consequently, the BEM framework should
be used with caution in the low frequency limit and a discussion of this issue is given in
Sect. 6. For moderate wave numbers these problems do not occur. We also present results
for elastic wave pulses generated by an oscillating rigid bowl-shaped object that has both
convex and concave surfaces that can produce focused elastic waves. Concluding remarks
are given in Sect. 7.
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2 Dynamic Linear Elastic Waves

2.1 The Navier Equation

In the time domain, the classical equation of motion without body forces is

∇ · Σ = ρ
∂2U

∂t2
, (2)

where the stress tensor, Σ and the displacement field, U are functions of position and time,
t and ρ is the material density. Assuming a harmonic time variation with angular frequency,
ω for both the stress tensor, Σ = σ e−iωt and displacement vector, U = u e−iωt one obtains,
in the frequency domain:

∇ · σ = −ρω2u. (3)

The infinitesimal strain tensor ε is given in terms of the gradient of u and its transpose:

ε = 1

2

(∇u + [∇u]T )
. (4)

For a linear elastic isotropic and homogeneous material, σ and ε are related by Hooke’s Law

σ

2μ
=

[
c2
L

2c2
T

− 1

]
tr(ε) I + ε, (5)

with I the identity tensor, the trace operator tr(ε) ≡ εii (adopting the convention of summa-
tion over repeated indices of Cartesian tensors), the constants cL and cT are the longitudinal
dilatational and transversal shear wave velocities, respectively, that are defined in terms of
the Lamé constants λ and μ [12]:

c2
L = (λ + 2μ)/ρ, (6a)

c2
T = μ/ρ. (6b)

Introducing Eq. (5) into Eq. (3) we obtain two equivalent forms of the Navier equation
(
c2
L − c2

T

)∇(∇ · u) + c2
T ∇2u + ω2u = 0, (7a)

c2
L∇(∇ · u) − c2

T ∇ × ∇ × u + ω2u = 0, (7b)

where Eq. (7b) follows from the identity: ∇ × ∇ × u = ∇(∇ · u) − ∇2u. This result will
be the starting point of our subsequent analysis. It will be shown that Eq. (7b) can be used
for the analysis of dynamic linear elasticity by applying a Helmholtz decomposition to the
displacement field. It turns out that the resulting equations can all be expressed in terms of
scalar Helmholtz equations.

2.2 The Helmholtz Decomposition Applied to Dynamic Linear Elasticity

In this section a Helmholtz decomposition will be applied to the Navier equation (Eq. (7b)).
It is well known [12] that the displacement vector u can be decomposed into a transversal
and a longitudinal part as

u = uT + uL, (8)
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in which the transversal uT and the longitudinal uL displacements satisfy

∇ · uT = 0, (9)

∇ × uL = 0. (10)

We now define two wave numbers, one for the transversal component kT = ω/cT and one
for the longitudinal component kL = ω/cL (noting that from Eqs. (6a), (6b), k2

T > 2k2
L).

Substituting Eq. (8) into Eq. (7b) and taking into account the conditions of Eqs. (9) and
(10), it can easily be seen that both uT and uL satisfy the vector Helmholtz wave equation
[12]:

∇2uT + k2
T uT = 0, (11)

∇2uL + k2
LuL = 0. (12)

These furnish six scalar Helmholtz equations, for each of the x, y and z component of the
transversal and longitudinal displacements. However, the divergence and curl free conditions
of Eq. (9) and Eq. (10) still need to be satisfied separately. It turns out that we can also cast
these conditions as additional Helmholtz scalar equations.

2.3 Longitudinal Waves, uL

The zero curl condition, Eq. (10), of the longitudinal part of the displacement vector (also
commonly referred to as compression wave), uL can be satisfied by introducing a scalar
potential φ, where

uL ≡ ∇φ. (13)

Equation (12) and Eq. (10) can then be replaced by the scalar Helmholtz equation:

∇2φ + k2
Lφ = 0. (14)

2.4 Transversal Waves, uT

The zero divergence condition, Eq. (9), of the transversal part of the displacement vector
(a shear wave), uT can be satisfied by the following general vector identity

∇2(x · uT ) − x · ∇2uT = 2∇ · uT , (15)

with x being the position vector: x = (x, y, z). Substituting Eqs. (9) and (11) into Eq. (15)
gives

∇2(x · uT ) + k2
T (x · uT ) = 0. (16)

This is just another Helmholtz equation for the scalar function (x · uT ). The origin of x can
be chosen arbitrarily as can be seen by taking the dot product of a constant vector, b with
Eq. (11) and subtracting this from Eq. (16), the result will be a similar equation as Eq. (16),
but with the vector x replaced by (x − b). Thus the transversal part can be described with
four scalar Helmholtz equations: one for each of the 3 components of uT and one for (x ·uT ).

Such an approach has been used successfully in electromagnetic scattering problems
[14] where the electric field E is divergence free: ∇ · E = 0 and satisfies the vector wave
equation: ∇2E + k2E = 0 (interested readers are referred to [15, 16]).
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2.5 Solution Strategy

To summarize the above findings, the dynamic linear elastic problem can be expressed in
terms of four Helmholtz equations with wavenumber kT ; three for the x, y, z components
of uT (Eq. (11)) and one for the scalar function (x · uT ) in Eq. (16); and another Helmholtz
equation with wavenumber kL for the longitudinal potential φ (Eq. (14)). In the current im-
plementation, the Helmholtz equations are solved with a boundary element method, which
relates a function on the surface to its normal derivative (see also Sect. 4). In order to retrieve
the longitudinal displacement vector uL, the following formula can be employed

uL = ∂φ

∂n
n + ∂φ

∂t1
t1 + ∂φ

∂t2
t2, (17)

in which ∂/∂n ≡ n · ∇ is the normal derivative, n is the unit normal vector, ∂/∂t1 ≡ t1 · ∇
and ∂/∂t2 ≡ t2 · ∇ are the two tangential derivatives along the unit tangential vectors t1 and
t2 on the surface.

Essentially, the above described approach is a combination of the soundwave scalar
Helmholtz solution for longitudinal waves of Sect. 2.3 (see also [11]) and the transversal
wave approach similar to the one used in electromagnetic scattering (for more details see
[15] and [16]).

3 An Analytical Solution for a Vibrating Sphere

The analytical solution for a radially oscillating sphere as described in Lautrup [17] is well
known but unfortunately it is less suitable as a numerical test case, since the transversal
component is zero due to symmetry considerations.

Here we consider the waves generated in an elastic medium surrounding a rigid sphere
with radius a, with the origin of the coordinate system located at the center of the sphere.
The sphere executes harmonic displacement of constant amplitude so that in the frequency
domain, the prescribed displacement on the surface of the sphere is u = u0, with u0 a con-
stant vector. The ith component (i = x, y, z) of the analytical solution for such a case is (see
the Appendix for derivation)

ui = c1

[
eikT r

[
1 + G(kT r)

] − eikLr k2
L

k2
T

G(kLr)

]
2a

r
u0

i

+ c1

[
eikT rF (kT r) − eikLr k2

L

k2
T

F (kLr)

]
2a

r3
xi

(
xju

0
j

)

− c2e
ikLr

[
δij (ikLr − 1) + xixj k

2
LF (kLr)

]a3

r3
u0

j , (18)

where r is the radial coordinate, δij is the Kronecker delta function and the Einstein summa-
tion convention is taken over repeating indices. The functions F(x) and G(x) are defined
as

F(x) = −1 − 3i

x
+ 3

x2
, (19)

G(x) = i

x
− 1

x2
. (20)
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The terms proportional to eikT r correspond to the divergence free transversal part and the
terms proportional to eikLr correspond to the curl free longitudinal part. The constants c1

and c2 can conveniently be expressed in terms of four other constants A, B , C and D as
c1 = −B/(DA − BC) and c2 = A/(DA − BC) that are defined as:

A = 2eikT aF (kT a) − 2eikLa(kL/kT )2F(kLa), (21a)

B = −eikLa(kLa)2F(kLa), (21b)

C = 2eikT a
[
1 + G(kT a)

] − 2eikLa(kL/kT )2G(kLa), (21c)

D = −eikLa(ikLa − 1). (21d)

The method of constructing the solution in Eq. (18) is outlined in the Appendix. However,
it can be verified by direct substitution that Eq. (18) is indeed a solution of the Navier
equation with the boundary condition ui = u0

i on the surface r = a and it decays for large
values of r .

Perhaps also worth mentioning, although we will not use it in the current work, is the so-
lution that corresponds to the zero tangential stress boundary condition. That is, the bound-
ary condition ui = u0

i is replaced by (σijnj )ti = 0 and uini = u0
i ni on the surface of the

sphere. The constants A, C and D that appear in the coefficients c1 and c2 in Eq. (18) then
have to be replaced by A′, C ′ and D′ (B remains the same) as

A′ = eikT a(ikT a − 1) + A, (22a)

C ′ = C + A, (22b)

D′ = D + B. (22c)

4 Desingularized Boundary Element Method for Helmholtz Problems

In Sects. 2.2–2.4 it was shown that the problem of dynamic linear elasticity can be ex-
pressed in terms of five scalar Helmholtz equations in the form of Eq. (1): four of them with
wavenumber kT (Eqs. (11) and (16)) and another one with wavenumber kL (Eq. (14)). Here
it will be shown how a scalar Helmholtz equation can be solved efficiently using the frame-
work of the boundary element method. The boundary element method has the advantage that
only values of the unknown function on boundaries, S, need to be found, and from which
values anywhere in the 3D domain can be calculated. In the context of Helmholtz equations,
a further advantage of the boundary element method is the fact that the Sommerfeld radi-
ation condition at infinity is automatically satisfied. Thus the boundary element method is
especially suited for an object embedded in an infinite domain. Some recent advances in the
boundary element method include the concept of full desingularization [18], which allows
for high accuracy with reduced implementation effort.

The classical boundary element method is expressed as (see for example Becker [19],
Kirkup [20] or any classical textbook on boundary element methods)

c(x0)φ(x0) +
∫

S

φ(x)
∂H

∂n
dS(x) =

∫

S

∂φ(x)

∂n
H dS(x) (23)

in which the Green’s function for the Helmholtz equation is defined as H ≡ H(x,x0) =
eikr/r , with k the wavenumber, r = |x − x0|, and x0 and x the observation and integra-
tion points, respectively. The variable c(x0) is the solid angle when x0 is on the boundary
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and c = 4π when x0 is situated in the domain. The boundary element method relates the
potential φ to its normal derivative ∂φ/∂n, where ∂/∂n ≡ n · ∇ (the unit normal vector on
the surface S is n = n(x) and points out of the domain). If, for example, φ (or ∂φ/∂n) is
specified as a given boundary condition, then Eq. (23) can be solved for ∂φ/∂n (or φ). If
the surface S is discretized into N nodes, Eq. (23) can be written with respect to each node
(corresponding to a different x0), and after the surface integrals are evaluated then results in
a N × N linear matrix system to be solved numerically.

A relatively new concept, first introduced by Klaseboer et al. [13] is to replace φ(x) in
Eq. (23) by a known analytical function χ(x) that also satisfies the Helmholtz equation, so
that

c(x0)χ(x0) +
∫

S

χ(x)
∂H

∂n
dS(x) =

∫

S

∂χ(x)

∂n
H dS(x). (24)

In addition, χ(x) can be constructed to have the following properties:

lim
x→x0

χ(x) = φ(x0), (25)

lim
x→x0

∂χ(x)

∂n
= ∂φ(x0)

∂n
, (26)

so that when Eq. (24) is subtracted from Eq. (23), a fully desingularized boundary element
method will emerge [11, 18]:

∫

S

[
φ(x) − χ(x)

]∂H

∂n
dS(x) =

∫

S

[
∂φ(x)

∂n
− ∂χ(x)

∂n

]
H dS(x). (27)

Conveniently, the term with the solid angle c(x0) no longer appears in Eq. (27). In this work,
we can take

χ(x) = φ(x0) cosy + 1

k

∂φ(x0)

∂n
siny, (28)

y = k n(x0) · (x − x0), (29)

so that Eq. (27) can then be written in full as:

4πφ(x0) +
∫

S

{
φ(x) − φ(x0) cosy + 1

k

∂φ(x0)

∂n
siny

}
∂H

∂n
dS(x)

=
∫

S

{
∂φ(x)

∂n
− ∂φ(x0)

∂n

[
n(x0) · n(x)

]
cosy + k

[
n(x0) · n(x)

]
φ(x0) siny

}
H dS(x).

(30)

Note that the terms with cosy perform the actual desingularization since y tends towards
zero as x approaches x0, which cancels out the 1/r singularity caused by the Green’s
function H and its normal derivative. Also n(x0) · n(x) tends towards unity when x ap-
proaches x0. In Eq. (30) the terms with φ(x0) and ∂φ(x0)/∂n will end up on the diagonal
of a resulting matrix system after a discretisation and numerical Gaussian integration has
been performed. The term with 4πφ(x0) originates from the fact that the choice of Eq. (28)
when put into Eq. (24) will cause a contribution from the surface at infinity, which turns out
to be exactly 4πφ(x0). This term is only present for external problems (such as the ones
described in the current work) and should be omitted for internal problems.
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This framework is free of any weak, strong or hyper singularities associated with the
usual implementation of the boundary element method in dynamic linear elasticity. Simple
Gauss quadratures can therefore be employed to evaluate integrals over each element includ-
ing the previously singular ones. In the current implementation, integration over quadratic
six noded triangular elements was used with quadratic shape functions [15].

The normal derivative of (x · uT ) can be expressed in terms of the normal component of
uT and the dot product of x with the normal derivative of uT as:

∂(x · uT )

∂n
= uT · n + x · ∂uT

∂n

= uT xnx + uTyny + uT znz + x
∂uT x

∂n
+ y

∂uTy

∂n
+ z

∂uT z

∂n
. (31)

The tangential derivatives in Eq. (17) were calculated using the average of the tangential
derivatives on each neighboring element of a node. In the current implementation we used
an iterative method with an LU-decomposition framework, such that effectively only two
N × N matrix systems need to be solved (one for kT and one for kL). To start the iterative
process, an estimation for the normal component of the transversal displacement is um

T n =
uT · n is assumed (for the first iteration, m = 1 and u1

T n = 0). Then, for the next iteration,
the normal derivative of the potential is calculated as

∂φm+1

∂n
= (1 − α)

∂φm

∂n
+ α

[
u0 · n − um

T n

]
, (32)

where a relaxation factor α was used. With the boundary element method (for kL) an esti-
mation for φm+1 can now be found. Its tangential derivatives in the t1 and t2 direction can
be calculated and um+1

L is given by Eq. (17). Since on the boundary uT = u0 − uL, with
u0 = (U,0,0) prescribed, the transversal vector um+1

T can be obtained. um+1
T is then decom-

posed into its x, y and z components, and, for each component, we apply the boundary
element method (now for kT ) to get ∂um+1

T x /∂n, ∂um+1
Ty /∂n and ∂um+1

T z /∂n. To satisfy the last

Helmholtz equation corresponding to Eq. (16), the scalar x · um+1
T is given and its normal

derivative is calculated with the boundary element method (again for kT ). Since ∂um+1
T x /∂n,

∂um+1
Ty /∂n and ∂um+1

T z /∂n are already known, with the help of Eq. (31), a new estimate for

um+1
T n can be obtained. Then the iterative loop can be repeated until convergence is obtained.

There are alternative approaches to solve the system of equations, some discussion on such
solutions will be presented in Sect. 5.

5 Results

Results will now be shown for the vibrating sphere with u0 = (U,0,0) and numerical BEM
results are compared to the analytic solution of Sect. 3. In all examples, the sphere is rep-
resented by a mesh with 180 quadratic elements and N = 362 nodes. The field values were
obtained through post-processing on a 40 × 40 grid covering an area of 10a × 10a of the 3D
domain outside the sphere. In Fig. 1, we compare analytic and numerical results for uL and
uT with kLa = 2.0, kT a = 1.0. For this particular parameter set, uT is the dominant term.
The agreement between theory and numerical results is excellent. This can be seen clearly in
Fig. 2 where the average difference between the numerical solution and the analytic solution
is less than 0.13%. Another set of comparisons with kT a = 4.0 and kLa = 2.0 is shown in
Fig. 3 for which the uL component is slightly more prominent. In Fig. 4, the total field u is
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Fig. 1 Sphere with radius a vibrating in the x-direction defined by the boundary condition: u0 = (U,0,0) on
the sphere surface r = a at kT a = 2.0 and kLa = 1.0. Surface and field plot of the displacement field vector
u scaled by U . Analytical results for uT and uL are given in the top left and right images and corresponding
numerical BEM results are shown in the lower images. For this particular case uT is the dominant term. For
corresponding movies to these figures see Sect. 8

shown for both parameter sets. In Fig. 5, the total field u for a bowl-shaped oscillator with
convex and concave surfaces vibrating parallel and perpendicular to its axis of symmetry is
shown. The shape of this axisymmetric bowl-shaped oscillator is obtained by rotating the
following curve around the x-axis (see Eq. (6) in [21] and also [22] for an application in
acoustic waves)

(x/a, z/a) = (
β sin2 α + γ [cosα − 1], 2 sinα

)
, 0 ≤ α ≤ 2π, (33)

where the parameters β = 0.6, γ = 0.5, kT a = 5 and kLa = 2 are chosen in Fig. 5.
Once the (complex) displacements fields: u, uT or uL are obtained, we can make use of

the fact that when this solution is multiplied by a constant phase factor, i.e. u exp(iα), it is
also a solution of the system. This was used to reconstruct the solution in the time domain
and get the solution at different time intervals. The movie files thus created are available as
supplementary material. For a list of movie files see Sect. 8.
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Fig. 2 Same as in Fig. 1, field displacement u scaled by U along circles with radii (left) R/a = 1.1 and
(right) R/a = 2 on plane y = 0. Lines: analytic solutions; symbols: numerical solutions

In addition to the iterative solution framework discussed in Sect. 4, a direct solution
using a bigger matrix system was also investigated. One option is to solve directly for the 5
unknowns φ, ∂φ/∂n, ∂uT x/∂n, ∂uTy/∂n and ∂uT z/∂n resulting in a matrix system which
is 5N × 5N in size (where N is the number of nodes), here we still solve five Helmholtz
equations, but now do so simultaneously without iteration. Another option is not to work
with the potential representation for uL = ∇φ, but work directly with the uL vector and
its normal derivatives, this will result in a system of 9N × 9N equations. Here, we do not
recommend the above mentioned approaches for the following reasons: firstly, the matrix
system is very large, resulting in rather long computational times. Secondly, the condition
number of the 5N and 9N systems appears to be quite large resulting in spurious solutions
for the decomposed vectors (nevertheless, the field vectors of the total displacement field
appear to remain very accurate).

The advantage of the current iterative method over a full tensor description like the one
used by Rizzo et al. [8] is that our method uses N × N matrices, while they use 3N × 3N

matrices (since there are three components for the displacement and traction in 3D). The
current approach is also conceptually simpler than that of Rizzo et al. [8], since there are
no singular integrals to be considered. Moreover, with their method, one cannot get the
transversal and longitudinal components which might have important physical implications
since they travel at different speeds cL and cT as given by Eq. (6). This is apparent in
earthquake science with the clear distinction between arrival times of P waves and S waves.

6 Discussion: The Zero Frequency Divergence

One final issue worth mentioning is the appearance of a zero frequency divergence of the
decomposed displacement vectors uL and uT . Equation (18) can alternatively be written as:

ui = c1aUiju
0
j − c2a

3 ∂2

∂xi∂xj

eikLr

r
u0

j . (34)

The term with c1 is actually proportional to the Green’s function of the dynamic linear
elastic problem Uij , and the term proportional to c2 is a dipole tensor. Let us investigate the
analytical solution when the frequency ω goes to zero. By doing a Taylor expansion of eix to
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Fig. 3 As for Fig. 1 but with parameters kT a = 4.0 and kLa = 2.0. The uT and uL vectors are now compa-
rable in magnitude. For corresponding movies see Sect. 8

the second order i.e. eix = 1 + ix − x2/2 + o(x3), where x is either kT r or kLr , in the limit
of the zero frequency, kL → 0, kT → 0, and the terms in Eq. (18) can be approximated by

lim
kL,kT →0

eix
[
1 + G(x)

] = − 1

x2
+ 1

2
, (35)

lim
kL,kT →0

eixG(x) = − 1

x2
− 1

2
, (36)

lim
kL,kT →0

eixF (x) = 3

x2
+ 1

2
. (37)

The first term with c1 in Eq. (18) can now be approximated with

lim
kL,kT →0

{
eikT r

[
1 + G(kT r)

] − k2
L

k2
T

eikLrG(kLr)

}

= − 1

k2
T r2

+ 1

2
− k2

L

k2
T

[
− 1

k2
Lr2

− 1

2

]
= 1

2

[
1 + k2

L

k2
T

]
. (38)
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Fig. 4 Sphere vibrating in the x-direction, surface and field plot of the total theoretical u = uT + uL vector
field; left kT a = 2.0 and kLa = 1.0; right kT a = 4.0 and kLa = 2.0. The numerical fields are virtually
indistinguishable from those above (not shown). For corresponding movies see Sect. 8

Fig. 5 Bowl-shaped oscillator (left) vibrating in (middle) the x-direction parallel to its axis of symmetry and
(right) z-direction perpendicular to its axis of symmetry, field plot of u vector field scaled by U obtained
numerically; kT a = 5.0 and kLa = 2.0. The wave focusing effect of the bowl-shaped object can clearly be
observed, even in the case of the oscillation in the z-direction, perpendicular to the axis of symmetry of the
bowl (right). For corresponding movies see Sect. 8

It can be seen that the transversal (with eikT r ) and the longitudinal (with eikLr ) terms both
diverge with 1/k2

T , but the singularities cancel each other out when they are summed. Sim-
ilarly, the second term with c1 in Eq. (18) now becomes

lim
kL,kT →0

{
eikT rF (kT r) − k2

L

k2
T

eikLrF (kLr)

}

= 3

k2
T r2

+ 1

2
− k2

L

k2
T

[
3

k2
Lr2

+ 1

2

]
= 1

2

[
1 − k2

L

k2
T

]
. (39)
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Again, the transversal and longitudinal terms both diverge with 1/k2
T but cancel each other

out. The term in Eq. (18) proportional to c2 does not diverge. The constants c1 and c2 can
also be expressed in the zero frequency limit as:

c0
1 = lim

kL,kT →0
c1 = lim

kL,kT →0

−B

DA − BC
= 3

4 + 2k2
L/k2

T

, (40)

c0
2 = lim

kL,kT →0
c2 = lim

kL,kT →0

A

DA − BC
= 1 − k2

L/k2
T

4 + 2k2
L/k2

T

. (41)

Thus in the limit of kL, kT → 0, the displacement field becomes

ui = ac0
1

[
u0

i

r
+ xixju

0
j

r3
+ k2

L

k2
T

(
u0

i

r
− xixju

0
j

r3

)]
+ a3c0

2

[
u0

i

r3
− 3xixju

0
j

r5

]
. (42)

In Eq. (42), the first two terms, u0
i /r + xixju

0
j /r3, represent a so-called Stokeslet that is a

divergence free part of the solution. The terms with k2
L/k2

T in front represent the curl free
part. The last part that is proportional to c0

2 is both divergence and curl free, which makes
the Helmholtz decomposition non-unique in the zero frequency case. Both Eqs. (11) and
(12) then revert back to the Laplacian. Even though kL and kT are both zero, their ratio in
Eq. (42) remains finite since from Eq. (6) one can obtain

k2
L

k2
T

= c2
T

c2
L

= μ

λ + 2μ
. (43)

The fact that the transversal and longitudinal part of Eqs. (38) and (39) diverge when
the frequency approaches zero poses some limitations on the proposed boundary element
framework where we separated the solution into a divergence and a curl free part. Note that
the Rizzo [8] solution does not diverge in this limit since it does not use the Helmholtz
decomposition to split u into uT and uL but works with the total displacement u and the
traction instead, however, strong singularities will show up in their method at zero frequency.
Since the divergence occurs in the Green’s function Uij , it is highly likely that any uT , uL

decomposition for an arbitrary object will exhibit the same singular behavior.
Note that this divergence is unrelated to the zero frequency catastrophe encountered in

certain numerical implementations of electromagnetic scattering (see for example Chew
[23]), since it originates there from the decoupling of the electric and magnetic field at
zero frequency, whereas in the current case the cause of the divergence is the Helmholtz
decomposition of the displacement field.

7 Conclusion

The dynamic linear elasticity problem was tackled by working with the displacement field,
u, using a Helmholtz decomposition. The transversal, uT and longitudinal, uL components
were all solved with desingularized Helmholtz boundary element methods, with one scalar
Helmholtz equation for the scalar potential, φ of the longitudinal part and three scalar
Helmholtz equations for the three Cartesian components of the transversal part plus an addi-
tional scalar Helmholtz equation to enforce the divergence free condition of uT . To minimize
the need to solve large matrix equations, this systems of 5 scalar Helmholtz equations are
solved by an iterative method.
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It was shown that this numerical approach is viable by comparing the results to that of an
analytical solution for a vibrating sphere for two different sets of parameters with ka around
unity. Theoretically it was shown that the framework will fail for very low ka numbers, since
the transversal and longitudinal part both diverge. However, the total displacement remains
well-behaved and finite. Thus the current framework works best for moderately high ka

numbers.

8 Complementary Material Description

The following movies are available as complementary material and correspond to the test
cases described in the text:

1. 01m_Theory_uTotal_kT2_kL1.mp4 shows the total displacement field u for the pa-
rameters kT a = 2.0 and kLa = 1.0. At several radii away from the sphere, the main
displacement occurs around the z-axis in the horizontal direction. The contour plots
correspond to the x-component of the u vector.

2. 02m_Theory_uTotal_kT2_kL1b.mp4 as the previous movie, but now the contour
plots are for the z-component of the u vector.

3. 03m_Theory_uT_kT2_kL1b.mp4 the same parameters as for the previous movies, but
now the transversal components uT are shown. The main transversal waves move away
from the sphere along the z-axis. The x-component is shown as a contour plot.

4. 04m_Theory_uL_kT2_kL1b.mp4 the same parameters as for the previous movies,
but now the longitudinal components uL are shown (with the x-component again as a
contour plot). The main longitudinal waves are moving along the x-axis.

5. 05m_Theory_uTotal_kT4_kL2.mp4 shows the total displacement field u for the pa-
rameters kT a = 4.0 and kLa = 2.0. Due to these higher ka numbers the wavelengths
are shorter. The contour plots are for the x-component. The overall pattern at some dis-
tance away from the sphere appears to be more ‘radial’ in nature than for the parameters
kT a = 2.0 and kLa = 1.0.

6. 06m_Theory_uTotal_kT4_kL2b.mp4 is the same as the previous movie, but now with
the contour plot for the z-component.

7. 07m_Theory_uT_kT4_kL2b.mp4 as for the previous two movies, but now the
transversal decomposed vector field uT is shown. It appears to ‘radiate’ mainly in the
z-direction.

8. 08m_Theory_uL_kT4_kL2b.mp4 as for the previous three movies, now for the longi-
tudinal decomposed vector field uL. This time the waves ‘radiate’ outwards mainly in
the x-direction.

9. 09m_Bowl_u_kT5_kL2_parallel.mp4 shows the total displacement field u for the pa-
rameters kT a = 5.0 and kLa = 2.0 when a bowl-shaped oscillator vibrates along its axis
of symmetry. The contour plots correspond to the magnitude of the u vector.

10. 10m_Bowl_u_kT5_kL2_perpendicular.mp4 shows the total displacement field u for
the parameters kT a = 5.0 and kLa = 2.0 when a bowl-shaped oscillator vibrates per-
pendicular to its axis of symmetry. The contour plots correspond to the magnitude of
the u vector.

The movie files are best appreciated when the player is put in the “loop” mode. The vectors
on the surface of the sphere have been suppressed in the plotting routine in order to see the
vectors in the field better.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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Appendix: An Oscillating Rigid Sphere in an Elastic Medium

In this Appendix, we sketch the derivation of the analytic solution that describes the periodic
movement of a rigid no-slip sphere of radius, a in an infinite elastic medium. This solution
is inspired by the well-known analytic solution of a similar sphere in a quiescent viscous
liquid at low Reynolds number or Stokes flow with the following governing equations for
the velocity u and pressure p: μ∇2u = ∇p and ∇ ·u = 0, with μ the viscosity of the liquid.
The solution for the velocity field, in tensor notation, is:

uStokes
i =

[
3a

4r
+ a3

4r3

]
u0

i + 3

4a2

[
a3

r3
− a5

r5

]
xi

(
xju

0
j

)
, (44)

with u0
i being the velocity of the sphere, that is, u = u0 on the sphere surface and u decays as

1/r towards infinity. Integration of the corresponding traction over the surface of the sphere
leads to the Stokes formula for the drag force on a sphere: F d = (6πμa)u0.

Equation (44) can be rewritten in a more convenient form for our analysis as:

uStokes
i =

(
3a

4

)[
δij

r
+ xixj

r3

]
u0

j +
(

a3

4

)[
δij

r3
− 3

xixj

r5

]
u0

j (45a)

≡
(

3a

4

)
GStokes

ij u0
j −

(
a3

4

)
∇

(
∇ 1

r

)
· u0. (45b)

The term: GStokes
ij ≡ [ δij

r
+ xixj

r3 ] is a Stokeslet or the Green’s function for Stokes flow

whereas the second term: ∂2

∂xi ∂xj
( 1

r
) = ∇(∇ 1

r
) is the dipolar Green’s function of the Laplace

equation: ∇2φ = 0.
Now we observe that the dipolar term: ∇(∇ 1

r
) is a solution of the governing equation for

static linear elasticity:
[

k2
T

k2
L

− 1

]
∇∇ · u + ∇2u = 0, (46)

so analogous to Eqs. (45a), (45b) we seek a general solution of Eq. (46) of the form

uLE
i = c1 a GLE

ij u0
j − c2 a3

(
∂2

∂xi∂xj

1

r

)
u0

j , (47)

where c1 and c2 are constants to be determined and GLE
ij is the Green’s for the static linear

elastic equation

GLE
ij ≡

[
δij

r
+ xixj

r3

]
+ k2

L

k2
T

[
δij

r
− xixj

r3

]
. (48)

We find the constants c1 and c2 using the boundary condition at r = a: uLE
i = u0

i which
leads to

uLE
i = u0

i = u0
i

[{
1 + k2

L

k2
T

}
c1 + c2

]
+ xixj

a2
u0

j

[{
1 − k2

L

k2
T

}
c1 − 3c2

]
at r = a. (49)
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The second term in square brackets must be zero and the first term in square brackets must
then be equal to 1. Thus solving for c1 and c2 results in:

c1 = 3k2
T

4k2
T + 2k2

L

, (50)

c2 = k2
T − k2

L

4k2
T + 2k2

L

. (51)

This approach can be extended to the dynamic linear elastic case by taking a linear com-
bination of the Green’s function for dynamic linear elasticity and a term proportional to the
Helmholtz dipole ∂2

∂xi ∂xj
(

exp(ikr)

r
)u0

j . For dynamic linear elasticity, the vector u represents the
velocity amplitude of a vibrating sphere that is a constant in the frequency domain. After
some algebra, this approach leads eventually to Eq. (18).
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