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Abstract—We explore several different singular surface inte-
gral equation formulations. These formulations are specifically
designed for time-harmonic scattering by a perfect electric con-
ductor and are obtained by choosing non-conventional boundary
unknowns.

Index Terms—Boundary element method, electromagnetic
scattering, surface integral equations.

I. INTRODUCTION

Electromagnetic scattering by a perfect electric conductor
(PEC) is a century old problem. This scattering problem is
illustrated in Fig. 1, where N denotes the outward unit normal
to the surface of scatterer denoted by Σ. It is well-known that
the total electric field satisfies

N ×E = 0 on Σ (1)

and the total magnetic field satisfies N ·H = 0 on Σ. In a
typical Stratton–Chu integral equation formalism of the above
scattering problem [1] the induced surface current density N×
H is related to the induced surface charge density N · E
via the continuity equation. This approach yields an integral
equation where the surface current density is chosen as the
boundary unknown. In this contribution, we explore integral
equation formulations with other boundary unknown(s).

Throughout the paper, we assume that all fields are har-
monic in time with a suppressed exp(−iωt) time factor. Fur-
thermore, we use tensor notation with the Einstein summation
convention and assume that the incident E-field

inc

E satisfies the
vector Helmholtz equation.

II. INTEGRAL EQUATION FORMALISM

Let the coordinates of a point in the three-dimensional
Euclidean space be denoted by Zi or simply by Z. The
covariant ambient basis are then derived from the position
vector R via

Zi =
∂

∂Zi
R(Z) (2)

and the covariant metric tensor is given by Zij = Zi ·Zj .
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Fig. 1. (Color online) A typical scattering geometry is shown. The scatterer
is bounded by the surface Σ with the unit normal vector N .

It is well-known that the E-field in a source-free region is
divergenceless and satisfies the vector Helmholtz equation. In
the tensor notation, the Laplacian may be written as ∇j∇j
and thus, the vector Helmholtz equation is written as(

∇j∇j + k2
)
E = 0, (3)

where ∇j = Zjk∇k and ∇k denotes the covariant derivative.
In order to derive an integral representation of the E-field,
we introduce a free-space Green’s function G. The Green’s
function satisfies

(∇i∇i + k2)G = −δ(P̃ − P ), (4)

where δ(P̃ − P ) denotes the Dirac delta function and the
position vectors of a source point and a field point are given by
P = R(Z) and P̃ = R(Z̃), respectively. To obtain an integral
representation of the E-field, we multiply (3) by G(P̃ ,P )
and (4) by E(Z), then take the difference between the two
equations. After integrating the resultant equation via Gauss’s
theorem, we obtain
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E (Z̃)−
∫

Σ

[
G
∂E

∂N
−E

∂G

∂N

]
dS = E(Z̃), Z̃ /∈ PEC, (5)

where ∂/∂N = N i∇i denotes the normal derivative with
respect to the source coordinates. Finally, taking the limit as Z̃
approaches the surface and accounting for the Green’s function
singular nature [2], we obtain
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E −−
∫

Σ

[
G
∂E

∂N
− (N ·E)N

∂G

∂N

]
dS =

1

2
(N ·E)N , (6)

where −
∫

denotes the Cauchy principal value integral and the
tangential components of the E-field vanish because of the
boundary condition (1). Notice that (6) contains three scalar
equations. Thus, if we choose N · E (surface charge) and
∂E/∂N as the boundary unknowns, then we will have more
unknowns than equations. To remedy this situation, either the
number of equations must be increased by one or the number
of unknowns must be decreased by one. We discuss both of
these approaches below.

A. Increasing the Number of Equations

We can increase the number of equations by noticing that
if the E-field is divergenceless, then R ·E satisfies the scalar
Helmholtz equation [3], [4]. Thus, after applying Green’s
second identity and taking the limit as Z̃ approaches the
surface, we obtain

R ·
inc

E −−
∫

Σ

[
G
∂ (R ·E)

∂N
− (R ·E)

∂G

∂N

]
dS =

1

2
(R ·E) .

(7)
The normal derivative of R ·E can be related to the surface
charge and the normal derivative of the E-field; namely,

N i∇i (R ·E) = N i (∇iR) ·E + R ·
(
N i∇iE

)
= N ·E + R · ∂E

∂N
. (8)

Substituting (8) into (7) and using (1) yields the desired
additional equation; namely,

−
∫

Σ

[
G

(
N ·E + R · ∂E

∂N

)
− (R ·N) (N ·E)

∂G

∂N

]
dS

= R ·
inc

E −1

2
(R ·N) (N ·E) . (9)

Notice that (II-A) contains one scalar equation and thus,
together with (6), we have four scalar equations that we
can solve for the four scalar unknowns; namely, N · E and
∂E/∂N .

The above coordinate invariant singular integral equation
formulation is analogous to the formulation presented in [3],
[4]. However, in [3], [4] the singular behavior of the Green’s
function was removed via a clever subtraction of an auxiliary
function.

B. Decreasing the Number of Unknowns

We can decrease the number of unknowns by relating the
normal component of the normal derivative of the E-field to
the surface charge on Σ. The desired relationship is

N · ∂E
∂N

= (N ·E)W, (10)

where W is the mean curvature. The derivation of (10) is built
upon the work presented in [5], [6] and is outside of the scope
of this paper. To apply (10) to (6), we decompose the normal
derivative of the E-field into normal and tangential parts, i.e.,

∂E

∂N
=

(
N · ∂E

∂N

)
N +

(
Sα · ∂E

∂N

)
Sα, (11)

where Sα=1,2 are the surface covariant basis, i.e., two vectors
tangential to Σ. Putting (10) into (11) and the resultant into
(6) yields

−
∫

Σ

{[
WG− ∂G

∂N

]
(N ·E)N +G

(
Sα · ∂E

∂N

)
Sα

}
dS

=
inc

E −1

2
(N ·E)N . (12)

Notice that (II-B) contains three scalar equations and three
scalar unknowns; namely, the surface charge N · E and the
tangential components of the normal derivative of the E-field,
(Sα · ∂E∂N )α=1,2. Thus, we can obtain the boundary unknowns
directly from (II-B).

If the mean curvature is different from zero, i.e., W 6= 0,
then another formulation is possible. Putting (10) directly into
(6) yields

−
∫

Σ

{[
G− 1

W

∂G

∂N

](
N · ∂E

∂N

)
N +G

(
Sα · ∂E

∂N

)
Sα

}
dS

=
inc

E − 1

2W

(
N · ∂E

∂N

)
N . (13)

In (II-B), we can choose the normal and tangential compo-
nents of the normal derivative of the E-field as the boundary
unknowns. In other words, after discretization we can numer-
ically solve (II-B) for N · ∂E/∂N and (Sα · ∂E/∂N)α=1,2

via well-known methods such as the Galerkin’s method [7] or
the Nyström method [8].

III. CONCLUSIONS

We derived three alternative singular surface integral equa-
tion formulations for electromagnetic scattering by a per-
fect electric conductor. These formulations were obtained by
choosing non-conventional boundary unknowns. We showed
that the number of the scalar integral equations needed in each
formulation depends on the choice of the boundary unknowns.
These formulations show an interesting interplay between the
normal component of the E-field and its the normal derivative.
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