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The classical problem of the electrophoretic motion of a spherical particle has been treated theoretically
by Overbeek in his 1941 PhD thesis and almost 40 years later by O’Brien & White. Although both
approaches used identical assumptions, the details are quite different. Overbeek solved for the pressure,
velocity fields as well as the electrostatic potential, whereas O’Brien &White obtained the electrophoretic
mobility without the need to consider the pressure and velocity explicitly. In this paper, we establish the
equivalence of these two approaches that allow us to show that the tangential component of the fluid
velocity has a maximum near the surface of the particle and outside the double layer, the velocity decays
as 1=r3, where r is the distance from the sphere, instead of 1=r in normal Stokes flow. Associated with this
behavior is that of an irrotational outer flow field. This is consistent with the fact that a sphere moving
with a constant electrophoretic velocity experiences zero net force. A study of the forces on the particle
also provides a physical explanation of the independence of the electrophoretic mobility on the electro-
static boundary conditions or dielectric permittivity of the particle. These results are important in situa-
tions where inter-particle interaction is considered, for instance, in electrokinetic deposition.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

Electrophoresis, the study of the motion of small charged parti-
cles in an electrolyte due to the influence of an applied electric
field, has a long history. In colloid and interface science, it has
found extensive applications in the characterization of particulate
dispersions, emulsions, polymeric and soft biological systems [1,2].
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Historically, it has been a century since Smoluchowski [3] pub-
lished his result for the electrophoretic mobility of a colloidal par-
ticle with a thin electrical double layer. Nearly 80 years ago,
Overbeek [4], in his PhD thesis, extended Henry’s [5] theory of
the electrophoresis of a spherical colloidal particle with low sur-
face potentials in a symmetric electrolyte to include the relaxation
effect that is important at high surface potentials. Forty years ago,
O’Brien & White [6] provided a comprehensive formulation of the
electrokinetic problem in an electrolyte of arbitrary ionic composi-
tion. By exploiting the special symmetry of a sphere in a uniform
applied electric field, E, they simplified the electrokinetic equations
to a set of coupled ordinary differential equations in the radial
coordinate, r, and developed a robust numerical scheme to solve
this system of differential equations. This development facilitated
the accurate estimation of the electrokinetic mobility of a
solid charged sphere for all practical magnitudes of the zeta
(f)-potential and the sphere radius relative to the thickness of
the electrical double layer.

Although the physical models of the electrophoresis of a spher-
ical particle considered by Overbeek [4] and by O’Brien &White [6]
are identical, the O’Brien & White [6] treatment highlighted the
dual length scale nature of the problem characterized by the Debye
length and the particle radius. When the Debye length is small
compared to the particle size, in the so-called thin double layer
regime, one encounters ‘stiff’ differential equations that can be
challenging in numerical implementations.

An important theoretical observation was made by Morrison [7]
nearly half a century ago, whereby the fluid flow field around a
particle undergoing electrophoretic motion is shown to be
irrotational, but there have been few attempts to explore the con-
sequences of this interesting phenomenon in the literature. Indeed,
a detailed description of the flow field occurring during
electrophoresis seems not to have been given to this day. In part
perhaps because it has been possible to calculate the elec-
trophoretic mobility, for instance with the O’Brien & White [6]
approach, without the need to consider details of the flow field.
As will be shown later, the velocity field around a particle in elec-
trophoretic motion is unusual in the sense that it decays as 1=r3

with the distance, r, from the particle, rather than as 1=r in the
more familiar Stokes flow [8]. Associated with the fact that the
velocity field is irrotational outside the double layer around the
particle, the pressure field decays exponentially on the scale of
the Debye length with distance from the particle rather than as
1=r2 in Stokes flow. Such behaviours of the velocity and pressure
fields have implications for electrokinetic studies at finite particu-
late concentrations where effects due to the interactions between
particles can become important [9,10].

One objective of this paper is to demonstrate the connection
between the Overbeek [4] and O’Brien &White [6] general theories
of the electrophoresis of a spherical particle. From this develop-
ment, we can make explicit the dual length-scale hydrodynamic
features associated with a particle under electrophoretic motion
and elucidate the physics principles that underpin unusual beha-
viour such as a more rapidly decaying velocity field, a vanishing
pressure field and the presence of a fluid velocity maximum near
the electrical double layer around the particle. We show that these
features, that to the best of our knowledge have not been demon-
strated previously, are all consequences of the fact that the particle
travels at the constant electrophoretic velocity under the applied
electric field that arise from the balance of the electrical forces that
drives the particle and the retarding hydrodynamic drag force.

In Section 2, the governing equations are given for a general
electrophoretic problem. A generalization to multi-valent systems
of the formally exact solution for the electrophoresis of a spherical
particle by Ohshima, Healy & White [11] is given in Section 3. The
connection between this solution and the Overbeek [4] theory,
which appears to be absent in the literature, is provided in
Section 4. In Section 5, we derive general properties of the pressure
and velocity that appear not to have been elucidated before. The
model of Henry [5] can then be seen as a simplification of the Over-
beek theory and we use it to produce numerical results that illus-
trate the unusual hydrodynamic behavior associated with the
electrophoretic motion of a sphere in Section 6. A discussion on
the force balance and its physical implications is given in Section 7
where we exhibit the cancellation between the different
contributions as described by Overbeek. This is an explicit demon-
stration of the O’Brien & White observation that the elec-
trophoretic mobility of a dielectric sphere is independent of its
permittivity and is also independent of the form of the perturbed
electrostatic potential around the sphere. The perturbed electro-
static potential governs the equal and opposite internal forces
between the particle and the deformed electrical double layer
and therefore, does not affect the net force on the particle. The
paper closes with concluding remarks about the implications of
the present findings. Relevant details of the derivations are given
in the Appendices, including a derivation of the Overbeek theory
expounded in Dutch in his PhD thesis. A glossary of symbols is
provided for convenience.

2. Governing equations

In electrophoresis, a charged colloidal particle, usually in an
aqueous electrolyte, moves with constant velocity, U under the
influence of a constant applied external electric field, E. In general,
the magnitude of the applied field is small compared to the field
within the electrical double layer around the charged particle.
The physical quantity of interest is the electrophoretic mobility,
lm � U=E, that can vary with particle size, particle charge and
the electrolyte composition and concentration. For particles of
dimension, d � 10�6 m, velocity, U < 10�4 m/s [12], an order-
of-magnitude estimate for the Reynolds number can be deter-
mined as, Re � qLUd=g � ð103Þð10�4Þð10�6Þ=10�3 � 10�4 (for water

with density qL = 1000 kg/m3 and viscosity g ¼ 10�3 Pa s). Since Re
� 1, inertial effects can be neglected such that the Stokes model
for creeping flow can be used to describe the hydrodynamics
[13,14].

The description of steady state electrokinetic phenomena also
requires specification for the velocity of the solvent, the local ion
number density and charge density as well as the velocities or
currents of ionic species that make up the electrolyte and the elec-
trostatic potential. Here, we recapitulate the model of Overbeek [4]
and of O’Brien & White [6] who derived the same governing
equations for particle electrophoresis but followed different
methods of solution.

2.1. System in an external electric field E

In the description given here, we assume that the coordinate
system is attached to the particle under consideration and thus
the flow at infinity moves in the opposite direction to the elec-
trophoretic velocity in the laboratory frame of reference. In the
presence of an external electric field, E, the local electrical chemical
potential, liðxÞ, of ionic species i with valence, zi, is related to the
total electrostatic potential, wðxÞ, and the local ion number density,
niðxÞ, by
li ¼ l1

i þ zi e wþ kT logni ð1Þ
where l1

i is the constant reference chemical potential and e is the
protonic charge. The steady state ion transport process of each ionic
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species, i, is determined by balancing the force due to the gradient
of the ionic electrical chemical potential and that due to the Stokes–
Einstein drag on the ion that is proportional to the ion velocity,
v iðxÞ, relative to the fluid velocity, uðxÞ,
ki ðv i � uÞ ¼ �rli ¼ �zi erw� kT r logni ð2Þ
where ki is the ion drag coefficient. The conservation of ionic flux
gives, in the steady state,

r � ðni v iÞ ¼ 0: ð3Þ
The local volume charge density, qðxÞ, made up of ionic species

i, is given in terms of niðxÞ by
q ¼ Ri ni zi e: ð4Þ

The Poisson equation provides the relation between the total
electrostatic potential, wðxÞ, describing the local electric field,
ð�rwÞ, the total volume charge density, qðxÞ, and the ion number
density, niðxÞ:

r2 w ¼ �q=� ¼ �ðe=�Þ Ri ni zi ð5Þ
where the solvent permittivity � � e0er is the product of the permit-
tivity of free space, e0 and the relative permittivity of the solvent, er .
Inside the particle with dielectric permittivity, �p, the potential

satisfies the Laplace equation: r2w ¼ 0.
The solvent of the electrolyte is taken to be incompressible so

that the velocity field, u, is divergence free

r � u ¼ 0: ð6Þ
The momentum equation that governs the fluid velocity, u, and

the pressure, p, is described by Stokes flow in the presence of the
electrostatic body force, (�qrw)

gr2u�rp ¼ qrw; ð7Þ
where all inertial terms have been neglected. This equation can be
derived from considering the stress tensor, see Appendix C.

2.2. No external field: E ¼ 0

In the absence of the external electric field, E ¼ 0, the system is
in equilibrium so the fluid and ion velocities vanish: u ¼ 0 and
v i ¼ 0. With other physical variables in equilibrium distinguished
by the superscript ‘0’, the ion transport equation becomes

zi erw0 þ kT r logn0
i ¼ 0: ð8Þ

The integral of this result gives the mean field Boltzmann distri-
bution for the ion number density

n0
i ðxÞ ¼ n1

i exp½�zi ew
0ðxÞ=kT� ð9Þ

with n1
i representing the uniform ion density in bulk solution

where w0 ¼ 0. The gradient of the Boltzmann distribution gives
the identity

rn0
i ðxÞ ¼ � ðzi e=kTÞ n0

i ðxÞ rw0ðxÞ ð10Þ
that is useful in casting later results in physically meaningful forms.
For instance, the momentum equation (7) at equilibrium becomes,
using (4) and (10)

rp0 ¼ �q0rw0

¼ � r2w0
� �

rw0

¼ r kT Rin0
i

� � ð11Þ

and relates the pressure gradient to the ionic osmotic gradients.
And finally, the combination of the Poisson equation with the

mean field Boltzmann distribution of ions that relate the ion
density, n0
i , to the potential, w0, gives the Poisson-Boltzmann equa-

tion that determines the equilibrium electrostatic potential, w0ðxÞ:
r2w0 ¼ �q0=� ¼ � e=�ð Þ Ri n0

i zi
¼ � e=�ð Þ Ri n1

i zi exp½�ziew
0=kT�:

ð12Þ

The equilibrium electrostatic potential, w0ðxÞ, decays exponen-
tially to zero away from the particle with the characteristic Debye
length, 1=j, where

j2 � ðe2=�kTÞ Ri n1
i z2i ð13Þ

that is determined by the ionic valence, zi, and the ion number den-
sity, n1

i , far from the particle.
It is only necessary to solve (12) to determine the potential dis-

tribution in the solvent, without the need to consider the potential
inside a dielectric particle if the particle has a specified surface
potential (that may even vary along the surface). On the other
hand, if the particle has a specified surface charge density distribu-
tion, then in general, it will be necessary to consider the potential
inside the particle in determining the potential in the solvent out-
side the particle.

2.3. The linearized electrokinetic equations

The electrokinetic transport equations are obtained by expand-
ing the governing equations as first order perturbations in the
applied external electric field, E, to all equilibrium quantities. This
is justified on account that the magnitude of the applied field is in
practice small compared to the electric field in the electrical double
layer. Hence, we can express,

p ¼ p0 þ dp ð14aÞ
w ¼ w0 þ dw ð14bÞ
ni ¼ n0

i þ dni ð14cÞ
li ¼ l0

i þ dli ð14dÞ
q ¼ q0 þ dq ð14eÞ
in which the perturbation terms dp; dw; dni; dli and dq are of the
same order as the fluid velocity, u, the ion velocities, v i, and the
applied field, E. The governing equations for the electrokinetic phe-
nomenon are obtained by retaining such first order terms in (2), (3),
(5) and (7), namely,

r � ki n0
i u� zi e n0

i rdw� kTrdni � zie dnirw0� � ¼ 0 ð15aÞ

r2dw ¼ �1
�
dq ¼ �1

�
Ri zi e dni ð15bÞ

gr2u�rdp ¼ q0rdwþ dqrw0 ð15cÞ
where (15a) can be obtained by multiplying (2) with ni, linearising
and utilising (3).

The electrokinetic problem then entails solving the coupled
equations that are linear in the perturbation quantities: u; dw; dp
and dni in (15). This set of equations is the common starting point
of the theoretical treatment of electrokinetics. Note that these cou-
pled equations only require the equilibrium electrostatic potential,
w0ðxÞ, and the ion distributions, n0

i ðxÞ, to be available but they do
not depend whether one uses, say, the full non-linear Poisson–
Boltzmann theory or the linear Debye-Hückel theory to specify
these equilibrium quantities.

The theory of the electrophoretic motion of a spherical particle
developed by Overbeek [4] and subsequently by O’Brien & White
[6] therefore have identical physical content and only differ in
the way that the equations are solved. The inherent azimuthal
symmetry of the electrophoresis of a spherical colloidal particle



848 A.S. Jayaraman et al. / Journal of Colloid and Interface Science 553 (2019) 845–863
under a uniform applied electric field in the z-direction implies
that the unknown perturbation quantities have the general form:
f ðr; hÞ ¼ FðrÞ cos h, or gðr; hÞ ¼ GðrÞ sin h, where r is the radial dis-
tance from the centre of the sphere and h is the polar angle relative
to the direction of E. Thus the problem described by (15) can be
reduced to a set of coupled ordinary differential equations for the
unknown functions of r. This is the approach adopted by Henry
and Overbeek. By further introducing ion potential functions,
O’Brien & White were able to decouple this set of ordinary differ-
ential equations in order to obtain the electrophoretic mobility:
one only needs to solve for a hydrodynamic function, hðrÞ, and N
ionic potential functions, /iðrÞ for i ¼ 1; . . . ;N for N ionic species
of the electrolyte.

In the following, we demonstrate the connection between the
Overbeek and the O’Brien & White solutions.
3. The O’Brien & White solution for a sphere

3.1. The first order equations in E

To solve the electrokinetic equations that are first order in the
applied field, E, O’Brien & White [6] streamlined the analysis by
introducing the ion potential, uiðxÞ, in the linearization of the
expression for the chemical potential (1) for the perturbed chemi-
cal potential, dli, of ion species i

dliðxÞ ¼ zi e dwþ kT ðdni=n0
i Þ � � zi e uiðxÞ: ð16Þ

To first order, the ion flux conservation condition (3) can now
be expressed in terms of ui

r � ½n0
i ðzi erui þ ki uÞ� ¼ 0 ð17Þ

to provide one equation that couples the functionuiðxÞ to the veloc-
ity field, uðxÞ.

To the same linear order, the Stokes equation for the fluid veloc-
ity, (7) becomes

gr2u�r½dp� kT Ri dni� ¼ � Ri zi e n0
i rui: ð18Þ

Now, the terms involving dp and dni can be eliminated by taking
the curl of (18) to give

gr2ðr � uÞ ¼ Ri zi e ðruiÞ � ðrn0
i Þ: ð19Þ

Thus (17) and (19) form a pair of equations that together deter-
mine ui and u. These two functions are pivotal in the O’Brien &
White solution because they are decoupled from other perturbed
quantities.

The perturbed electrostatic potential, dw, can be determined by
the linearized version of the Poisson equation (5) in the solvent
given by (15b) where the perturbed ion density, dni, and hence
the perturbed charged density, dq, can be expressed in terms of
dw and ui using (16) to give for a sphere of radius, a,

r > a : r2dw ¼ �1
�
dq ¼ ðe2=�kTÞ Ri n0

i z
2
i ½ui þ dw� ð20aÞ

r < a : r2dw ¼ 0: ð20bÞ
To first order in E, the complete electrophoresis problem is

therefore determined by solving (17), (19) and (20) for the
unknowns ui (17), u and dw together with the following boundary
conditions. More importantly, we will see that the introduction of
the ion potential ui means that the electrophoretic mobility, U=E
can be found by solving only (17) and (19) without the need to
solve (20) for the perturbed potential, dw.

Far from the particle, we have the condition that the perturbed
ion density, dni ! 0 and the electrostatic potential becomes the
potential that corresponds to the applied electric field, E, that is:
w ! dw ! �E � x. So from (16) we have the boundary conditions:

Far from the particle, jxj ! 1
dwðxÞ ! �E � x ð21aÞ
uiðxÞ ! E � x ð21bÞ
uðxÞ ! � U: ð21cÞ
The velocity field, u, in the frame of reference where the particle

is stationary must be the negative of the electrokinetic velocity, U,
that is parallel to E in the laboratory frame.

At the solid particle surface, r ¼ a, with outward unit normal n
the boundary conditions are,

continuity of dw xð Þ and � n � rdw ð22aÞ
ruiðxÞ � n ¼ 0 ð22bÞ
uðxÞ ¼ 0 ð22cÞ
since dw obeys the usual electrostatic boundary conditions, ion
fluxes into the solid particle vanish and the fluid velocity relative
to the solid surface is zero (the immobile hydrodynamic boundary
condition).

3.2. Formal solution for electrophoresis of a sphere

For a spherical solid particle with a uniform f potential in a con-
stant external electric field, E, Ohshima, Healy & White [11]
derived a formal solution of the electrokinetic transport equations
for a symmetric z : z electrolyte. Here, we generalize their solution
to an electrolyte of arbitrary composition.

In view of the boundary condition (21) on ui as jxj ! 1 and by
symmetry considerations, we can seek a solution of the chemical
potential, dli, or equivalently for the ion potentials, ui, in the form

dliðxÞ ¼ � zi e uiðxÞ ¼ � zi e /iðrÞ E cos h ð23Þ
where the origin of the coordinate system is at the centre of the
sphere, the direction of the z-axis is along E and h is the polar angle.
The new unknown ion potential, /iðrÞ is only a function of the radial
distance, r from the centre of the sphere.

The same symmetry consideration also means that the fluid
velocity, u, can be represented in terms of a function, hðrÞ, that only
varies with the radial coordinate, r, in the form

u ¼ urnr þ uhnh

¼ �2
r
h rð Þ E cos h nr þ 1

r
d
dr

r h rð Þ½ � E sin h nh

ð24Þ

where nr and nh are unit vectors in the r and h directions respec-
tively. The incompressibility condition: r � u ¼ 0 is satisfied auto-
matically by (24).

With the introduction of the ion potential function, /iðrÞ, and
the hydrodynamic function, hðrÞ, the electrokinetic transport par-
tial differential equations for ui xð Þ (17) and u xð Þ (19) become the
following coupled ordinary differential equations for /iðrÞ and hðrÞ:

L ½/iðrÞ� ¼ f iðrÞ �
zie
kT

dw0ðrÞ
dr

 !
d/iðrÞ
dr

� 2ki
zie

hðrÞ
r

� 	
ð25Þ

L ½L ½hðrÞ�� ¼ gðrÞ � e
g
1
r

X
i

dn0
i ðrÞ
dr

zi /iðrÞ ð26Þ

with L the differential operator that follows from the identity:

r2½FðrÞ cos h� ¼ d2F

dr2
þ 2

r
dF
dr

� 2F
r2

" #
cos h � L ½F� cos h: ð27Þ

The general solution of the equation

L½FðrÞ� ¼ KðrÞ ð28Þ
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has homogeneous solutions: FðrÞ ¼ r and 1=r2 and a particular
integral,

FðrÞ ¼ �1
3

Z 1

r
r � x3

r2

� 	
KðxÞ dx: ð29Þ

Notice that the differential equation for the ion potential,
/i rð Þ (25), has the gradient of the equilibrium potential, dw0=dr,
and the hydrodynamic function, hðrÞ as the inhomogeneous terms
on the right hand side. Whereas, the differential equation for the
hydrodynamic function, h rð Þ (26), has the ion potential, /iðrÞ, and
the gradient of the equilibrium ion density, dn0

i =dr, (that from

(10) is proportional to dw0=dr) in the inhomogeneous term on
the right hand side. The origin of this term is the body force,
ð�qrwÞ, in (7).

The differential equations for /i rð Þ (25) and h rð Þ (26) can be
integrated, using for example the Green’s functions of the opera-
tors L and L L, to give the following formal solutions that are cou-
pled integral equations because the functions f iðrÞ and gðrÞ are
themselves defined in terms of /iðrÞ and hðrÞ in (25) and (26):

/i rð Þ ¼ 3a
2

1� 1
3

Z 1

a
f i xð Þdx

� 	

þ 1
2r2

2r þ að Þ r � að Þ2 1� 1
3

Z 1

a
f i xð Þ dx

� 	

þ 1
3

Z r

a
r � x3

r2


 �
f i xð Þ dx ð30Þ

h rð Þ ¼ � 1
30

Z 1

r
r3 þ 5x3
� �

g xð Þ dx

þ r
18a

Z 1

a
a3 þ 2x3
� �

g xð Þ dx�
Z r

a
3ax2 g xð Þ dx


 �

þ 1
90r2

Z 1

a
5x3a2 � 2a5
� �

g xð Þ dx �
Z r

a
3x5 g xð Þ dx


 �
: ð31Þ

These solutions are generalizations of the results of Ohshima,
Healy & White [11] to a uniformly charged spherical solid particle
without restrictions on the magnitude of ratio of the sphere radius
to the double layer length, ja, the f-potential of the particle and
the electrolyte composition. The presence of the terms dw0=dr or
dn0

i =dr in f iðrÞ and gðrÞ means that these functions decay exponen-
tially with the Debye length, 1=j, and become vanishingly small
outside the electrical double layer around the particle,
jðr � aÞ 	 1, thus ensuring the convergence of all integrals.

For the electrophoresis problem, we see from (21) and (22) that
the boundary conditions on the functions /iðrÞ and hðrÞ are
d/i

dr
¼ 0; r ¼ a ð32aÞ

/i ! r; r ! 1 ð32bÞ

h ¼ 0 ¼ dh
dr

; r ¼ a ð32cÞ

h ! U
2E

r r ! 1: ð32dÞ

The uniform velocity boundary condition at infinity (21c) is
reflected in (32d) for h (see also Section 7).

The electrophoretic mobility, U=E, can be obtained from the
boundary condition on hðrÞ as r ! 1 (32d) where the coefficient
proportional to r in this limit can be obtained from (31) as

lm � U
E
¼ 2lim

r!1
hðrÞ
r

¼ 1
9a

Z 1

a
a3 þ 2x3 � 3ax2
� �

gðxÞ dx ð33Þ

whereby only knowledge of the functions /iðrÞ is required: see (26)
for the relation between g and /i. Hence, in the O’Brien & White [6]
analysis, the mobility can be found without having to solve for the
perturbed electrostatic potential, dw, or the perturbed ion density,
dni. Since the mobility lm ¼ U=E, was their primary interest, they
did not explore the details of the rather unusual features of the
velocity field, u, or the pressure.

It is easy to verify that the ion potential functions, /iðrÞ, given in
(30) satisfy the required boundary condition at r ¼ a in (32). In the
limit r ! 1; /i rð Þ becomes a sum of terms proportional to r. In the
same large r limit, the hydrodynamic function hðrÞ given by (31)
becomes the sum of a constant and terms proportional to r and
1=r2. As we will demonstrate below, this large r form of the hydro-
dynamic function hðrÞ has the physical implication that the veloc-
ity field outside the double layer is an unusual zero pressure Stokes
flow. But before we do so, let us recall some classical results relat-
ing to the velocity and pressure field around a sphere placed in a
uniform flow field at infinity.

3.3. Hydrodynamics of a sphere in uniform flow field

Before considering details of the pressure and velocity field in
the electrophoresis problem, it is instructive to recall results of
the hydrodynamic problem of Stokes flow past a sphere of radius
a in an imposed uniform velocity �Uk. For this simpler problem,
the velocity, uS, has the form, similar to (24)

uS ¼ uS
rnr þ uS

hnh

¼ �2
r
hSðrÞ cos h nr þ 1

r
d
dr

r hSðrÞ
h i

sin h nh ð34Þ

with

hSðrÞ ¼ U
2

r þ b1 þ b2

r2

� 	
ð35Þ

being the homogeneous solution of (26) with the boundary condi-
tion uS ! �Uk as r ! 1. The corresponding solution for the pres-
sure is seen to be proportional to the constant b1

pS ¼ �gUb1

r2
cos h ð36Þ

and the tangential stress on the sphere at r ¼ a is proportional to
the coefficient b2:

sS � g
1
r
@uS

r

@h
þ @uS

h

@r
� uS

h

r

� 	
¼ 3gUb2 sin h

a4
: ð37Þ

The coefficients b1 and b2 are determined by the boundary con-
dition at the sphere surface at r ¼ a where the radial velocity,
uS
r ¼ 0, because the particle is impenetrable. However, there are

three cases for the boundary condition on the tangential velocity,
uS
h, that are of special interest.

3.3.1. Zero tangential velocity: uS
r ¼ 0;uS

h ¼ 0 at r ¼ a
This is the boundary condition that corresponds to the Stokes

problem of a solid sphere with the immobile surface velocity con-
dition, the ‘classical’ Stokes flow [13,14]. This gives for r P a,

hSðrÞ ¼ U
2

r � 3a
2

þ a3

2r2

� 	
ð38Þ

pSðr; hÞ ¼ 3gaU
2r2

cos h ð39Þ

uS ¼ �U cos h 1� 3a
2r

þ a3

2r3

� 	
nr þ U sin h 1� 3a

4r
� a3

4r3

� 	
nh

ð40Þ

where we note that the pressure decays as 1=r2 and the velocity
components decay as 1=r towards the uniform flow as r ! 1.
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3.3.2. Zero tangential stress: uS
r ¼ 0; sS ¼ 0 at r ¼ a

The zero tangential stress boundary condition corresponds to
the familiar Hadamard-Rybczynski solution [15–17] for a spherical
‘bubble’. The solutions are for r P a:

hSðrÞ ¼ U
2

r � að Þ ð41Þ

pSðr; hÞ ¼ gaU
r2

cos h ð42Þ

uS ¼ �U cos h 1� a
r

� �
nr þ U sin h 1� a

2r

� �
nh: ð43Þ

As with the Stokes problem, the pressure decays as 1=r2 and the
velocity components decay as 1=r towards the uniform flow as
r ! 1.

3.3.3. Prescribed velocity: uS
r ¼ 0;uS

h ¼ 3
2 U sin h at r ¼ a

When the tangential velocity at r ¼ a is prescribed to have the
value, uS

h ¼ 3
2U sin h, at r ¼ a we have the solution for r P a,

hSðrÞ ¼ U
2

r � a3

r2

� 	
ð44Þ

pSðr; hÞ ¼ 0 ð45Þ

uS ¼ �U cos h 1� a3

r3

� 	
nr þ U sin h 1þ a3

2r3

� 	
nh: ð46Þ

Note now that the constant b1 in hSðrÞ is zero and hence the
pressure vanishes and the velocity decays faster as 1=r3 towards
the constant value at infinity when compared to the previous
two cases. From (31), we see that for jðr � aÞ 	 1, the hydrody-
namic function, hðrÞ, for the electrophoresis problem becomes a
sum of terms in r and 1=r2, just as in (44). Thus outside the double
layer, the hydrodynamic behavior is a zero pressure Stokes flow.

4. The Overbeek solution for a sphere

Some 40 years before the O’Brien & White [6] treatment of the
electrokinetic problem detailed in the preceding section, Overbeek
analysed the same theoretical model using a very different
approach in his PhD thesis. His work extended that of Henry [5],
which was published 10 years prior, and included what Overbeek
called the relaxation effect. In essence, Henry assumed that the
ionic atmosphere around the spherical colloidal particle remains
in its equilibrium spherically symmetric configuration and thus
omitted the distorting effects due to the motion of the particle
and the electrostatic interaction between the ionic atmosphere
and the applied electric field. Overbeek provided a consistent
account of this effect that is important when the f-potential of
the particle is high, say above 50 mV.

Overbeek analysed the first order electrokinetic equations (15),
detailed in Section 2, for a z : z electrolyte, but as with Henry,
worked directly to solve for the first order quantities u; dw; dni

and dp and did not introduce the ion potential, ui (16). As we shall
demonstrate, this approach is more physically perspicuous in that
it allows us to deduce rather general and unusual properties of the
velocity field associated with electrokinetic motion. With this
approach, it is possible to identify explicitly and separate the con-
tributions of the hydrodynamic forces and the electrical forces, and
observe how the terms cancel to give a zero net force thereby
resulting in a constant electrophoretic velocity for the particle,
see Appendix B for details. This analysis also provides insight into
why the mobility of a dielectric sphere is independent of its per-
mittivity or the electrostatic boundary conditions. However, the
numerical implementation of this theoretical approach [18] was
not uniformly accurate for all parameters of interest and the devel-
opment of the O’Brien & White [6] approach resolved this issue.

Here we establish equivalence between the solutions of Over-
beek and O’Brien & White and in particular give explicit expres-
sions for the velocity components and the pressure.

In addition to deriving an expression for the mobility, Overbeek
also obtained explicit expressions for the fluid velocity, u, the pres-
sure, p, and the perturbed electrostatic potential, dw, around a
spherical particle under electrophoretic motion. His solution is
written in terms of 3 functions of the radial distance, r, from the
centre of the sphere: nðrÞ;vðrÞ and RðrÞ. The mobility is expressed
in terms of the function, nðrÞ as,

lm � U
E
¼ � 2�

3g

Z 1

a
nðrÞ dr: ð47Þ

The function nðrÞ has the same role as that in Henry’s theory
although the particular form differs because of the omission of
the relaxation effect in the Henry treatment [5]. The velocity com-
ponents u ¼ urnr þ uhnh are also given in terms of nðrÞ,

urðrÞ ¼ 2�E cos h
3g

Z r

a
1� x3

r3

� 	
nðxÞ dx � 2�fE cos h

3g
�urðrÞ ð48aÞ

uhðrÞ ¼ �2�E sin h
3g

Z r

a
1þ x3

2r3

� 	
nðxÞ dx � 2�fE sin h

3g
�uhðrÞ ð48bÞ

wðrÞ � ðr � uÞu ¼ �E
g

nðrÞ sin h ð48cÞ

where w rð Þ � r� uð Þu in (48c) is the only non-zero component of
the vorticity and is along the azimuthal u-direction and we have
introduced the f-potential of the particle in defining the dimension-
less velocities, �urðrÞ and �uhðrÞ in (48). The derivation of the above
equations can be found in Appendix B.

The pressure, p, and perturbed potential, dw, are given in terms
of the functions vðrÞ and RðrÞ as follows:

p ¼ � �
Z 1

r
r2w0 dw0

dx
dx� �E vðrÞ cos h ð49aÞ

dw ¼ �E RðrÞ cos h: ð49bÞ

The first term for the pressure, p, in (49a) is the equilibrium
contribution, p0, that follows from (11) and is expressed in terms
of the equilibrium electrostatic potential w0ðrÞ.

The functions vðrÞ for the perturbed pressure, dp, and RðrÞ for
the perturbed potential dw are related to nðrÞ by

vðrÞ ¼ 2
RðrÞ
r

þ dRðrÞ
dr

� 	
dw0ðrÞ
dr

� 2 nðrÞ ð50Þ

nðrÞ ¼ RðrÞ
r

dw0ðrÞ
dr

þ 2r
Z 1

r

1
x2

dRðxÞ
dx

� RðxÞ
x3

� 	
dw0ðxÞ
dx

dx: ð51Þ

The function RðrÞ can be found by solving (15b). Overbeek
obtained RðrÞ for a symmetric z : z electrolyte using a perturbation
analysis that involved cumbersome algebraic manipulations that
did not provide much general insight. Nonetheless, we can make
the formally exact connection between the Overbeek solution
and the solution of Ohshima et al. [11] by equating the expressions
for ur in (24) and (48a) to give

hðrÞ ¼ � �
3g

Z r

a
r � x3

r2

� 	
nðxÞ dx ð52Þ

which can be used to establish, by direct substitution, the following
relation between nðrÞ of Overbeek and the hydrodynamic function
hðrÞ of Ohshima et al., see also (28) and (29)
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nðrÞ ¼ �g
�

d2h

dr2
þ 2

r
dh
dr

� 2
h
r2

" #
� �g

�
L ½h�: ð53Þ

Using (31), nðrÞ can also be expressed in terms of gðrÞ which is
defined in terms of the ion potentials, /iðrÞ, according to (26)

nðrÞ ¼ g
3�

Z 1

r
r � x3

r2

� 	
gðxÞ dx ð54aÞ

¼ e
3�

1
r

Z 1

r
r � x3

r2

� 	X
i

dn0
i ðxÞ
dx

zi /iðxÞ dx: ð54bÞ

This is a key relation that connects the function, nðrÞ in the
Overbeek theory [4] to the ion potentials, /iðrÞ in the O’Brien &
White [6] solution.

Using (26) and (27), the inverse relationship of (54a) can be
found

L nðrÞ ¼ �g
�
L ½L ½h�� ¼ �g

�
g: ð55Þ

These results are important because using (54a), the Overbeek
expression for electrophoretic mobility in (47) can be converted
to the expression for the mobility derived by Ohshima et al. in
(33) and thus demonstrate the equivalence of the two solutions.
Furthermore, from the expression for nðrÞ in terms of the derivative

of the equilibrium ion number density, dn0
i =dx in (54b) we expect

that nðrÞ decays exponentially with the Debye length, 1=j as
r ! 1. As we shall see in the next Section, this implies the exis-
tence of a maximum in the tangential component of the velocity
near the surface of the particle.

By employing the ion potential, /iðrÞ of O’Brien & White, we can
obtain, using (20) and (27), the equation for the function, RðrÞ, that
determines the radial variation of the perturbed potential, dw, see
(49b), for an electrolyte of general composition,

r > a : L ½RðrÞ� ¼ e2

�kT
Ri n0

i ðrÞ z2i ½RðrÞ � /iðrÞ� � KðrÞ ð56aÞ
r < a : L ½RðrÞ� ¼ 0: ð56bÞ

We note that the right hand side of (56a) is proportional to the
perturbed charge density, dq, see (20). Using the properties of the
L operator in (28) and (29), the formal solution of (56) is

RðrÞ ¼ r þ B
r2

� 1
3

Z 1

r
r � x3

r2

� 	
KðxÞ dx; r > a; ð57aÞ

¼ Ar; r < a: ð57bÞ
This solution satisfies the condition RðrÞ ! r as r ! 1 and the

requirement that R is finite at the center of the sphere, r ¼ 0.
Imposing the continuity of R and �ðdR=drÞ at the sphere surface,
r ¼ a, gives the constant, B

B ¼ �� �p
2�þ �p

� 	
a3 þ �I2 � �pI1

2�þ �p

� 	
a3 ð58Þ

where

I1 � �1
3

Z 1

a
1� x3

a3

� 	
KðxÞ dx; ð59aÞ

I2 � �1
3

Z 1

a
1þ 2x3

a3

� 	
KðxÞ dx: ð59bÞ

The above results establish the equivalence of the solutions of
the electrokinetic equations for a spherical particle developed by
Overbeek, O’Brien & White and Ohshima et al. Now we can use
Overbeek’s solution to deduce properties of the unusual velocity
and pressure field associated with the electrophoretic motion
without solving the equations explicitly.
5. General properties of the pressure and velocity fields

Having established the equivalence between the Overbeek [4]
and the O’Brien & White [6] theories, we can deduce some unusual
properties of the pressure and velocity field around a spherical par-
ticle undergoing electrophoretic motion. As far as we can ascertain,
these properties have not been explored in depth and this may be
because the focus has been on obtaining expressions for the elec-
trophoretic mobility.
5.1. The pressure field around a sphere

In most theoretical treatments, the pressure field was elimi-
nated early in the analysis by taking the curl of the linear order
form of the Stokes equation (18) to obtain (19).

From the solution of the pressure field, p, in the Overbeek solu-
tion (49a), it is possible to deduce general properties of the pres-
sure without knowing the explicit form of vðrÞ given by (50) that
is given in terms of the equilibrium potential, w0 rð Þ; R rð Þ and the
function, nðrÞ. The first term on the right hand side of (49a) for
the pressure, p, is simply the equilibrium contribution, p0, that is
present even if there was no applied electric field, as shown in
(11). From the relation between the function nðrÞ in the Overbeek
solution to that of Ohshima et al. [11] given in (54), we deduce that
the magnitude of nðrÞ is exponentially small outside the electrical
double layer because it is proportional to the derivative of the

ion number density, dn0
i =dx. Thus from (50), we see that vðrÞ is also

exponentially small outside the double layer which implies that
the pressure outside the double layer is zero.

Therefore outside the double layer, the hydrodynamic behavior
is described by a zero pressure Stokes flow.
5.2. The velocity field around a sphere

We can also deduce general properties of the velocity field from
the general solution given by Overbeek. Since the function nðrÞ is
exponentially small outside the electrical double layer we conclude
from (48c) that the vorticity, wðrÞ, is zero outside the double layer
and the flow field outside the double layer is irrotational:
r� u ¼ 0.

The form of the velocity field, u, outside the double layer and
the manner it approaches the electrophoretic velocity, U, in (47)
can be deduced from (47), (48a) and (48b) where the expressions
for the velocity components and the pressure and vorticity
become, in the limit jðr � aÞ 	 1

ur � �U cos h� 2�E cos h
3g

Z 1

a
x3nðxÞ dx

� 	
1
r3

ð60aÞ

uh � U sin h� 1
2

2�E sin h
3g

Z 1

a
x3nðxÞ dx

� 	
1
r3

ð60bÞ

p � 0 ð60cÞ
w � 0: ð60dÞ

These equations show that the velocity decays as 1=r3 outside
the double layer towards the uniform flow at infinity and has the
same behavior as the case of Stokes flow with a specially pre-
scribed tangential velocity boundary condition discussed earlier
in Section 3.3.3. This asymptotic behavior has been pointed out
in the literature [8] without extensive investigation. This is in stark
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contrast to the velocity decay in a classical Stokes sphere with the
familiar immobile, no-slip boundary condition where the velocity
decays as 1=r given in Section 3.3.1.

The flow field in the limit of ja ! 1 can also be calculated
analytically, since

lim
ja!1

Z 1

a
x3nðxÞ dx ! a3

Z 1

a
nðxÞ dx ¼ �a3

3g
2�

U
E

ð61Þ

where the expression (47) for the mobility U=E is used to establish
the last equality. Using this result in the Overbeek solution for the
velocity components (48) then gives the large ja or thin double
layer limiting forms for the velocity:

lim
ja!1

urðrÞ ! �U cos hþ a3

r3
U cos h ð62aÞ

lim
ja!1

uhðrÞ ! U sin hþ a3

2r3
U sin h: ð62bÞ

These limiting results have the same form as the zero pressure
Stokes flow result around a sphere with a certain prescribed tan-
gential velocity given in Section 3.3.3. This observation provides
the motivation for modeling electrophoresis in the thin double
layer limit [12,19].

Although the velocity field in (62) appears to be identical to the
results obtained for a potential flow model, this is coincidental
because the physics of the twomodels are very different. The poten-
tial flow model is valid in the limit where viscosity effects may be
neglected whereas viscosity effects dominate the hydrodynamics
in the electrophoresis problem in the low Reynolds number regime.
In zero viscosity potential flow, the pressure is non-zero but the net
force on a sphere in a uniform flow field is zero because the contri-
bution to the force due to the pressure on the up-stream half of the
sphere is exactly balanced by the pressure acting on the down-
stream half of the sphere, giving rise to the well-known d’Alem-
bert’s Paradox. On the other hand, in the zero pressure Stokes flow
that pertains in the electrophoresis problem, the pressure is zero.
Therefore, the suggestion [7] that the Bernoulli equation can be
used to conclude that the pressure varies as the square of the veloc-
ity and hence decays as 1=r6 is not consistent with the governing
equations that describe the electrokinetic phenomenon.

From the general solution of the velocity field given by Over-
beek, we can demonstrate that the radial velocity, ur rð Þ (48a),
changes monotonically from the surface of the sphere towards
infinity, but the magnitude of the tangential velocity, uh rð Þ (48b),
exhibits a maximum near the double layer. We begin by taking
the derivative of the velocity components in (48) to obtain,

durðrÞ
dr

¼ �E cos h
g

2
r4

Z r

a
x3 nðxÞ dx


 �
ð63aÞ

duhðrÞ
dr

¼ � �E sin h
g

nðrÞ � 1
r4

Z r

a
x3 nðxÞ dx


 �
: ð63bÞ

As we shall see, the magnitude of nðrÞ decreases monotonically
from the surface value jnðaÞj to zero as r ! 1. Thus the derivative
of the radial component of the velocity in (63a) does not change
sign.

On the other hand, we know that nðrÞ decays from jnðaÞj at r ¼ a
to zero exponentially fast outside the double layer whereas the
integral in (63b) is zero at r ¼ a and decays as 1=r4 as r ! 1.
Therefore, the derivative of the tangential velocity duhðrÞ=dr must
change sign, that is, the tangential velocity, uh, must have a maxi-
mum in its magnitude at some position between r ¼ a and r ¼ 1.
This behavior is qualitatively different from familiar cases of Stokes
flow results given in Section 3.3 in which the velocity profiles are
all monotonic and decay much slower as 1=r far from the sphere.

Before we offer numerical examples of these observations, we
digress to revisit the textbook derivation of the Smoluchowski
results for the mobility in the limit ja ! 1 to show an important
qualitative difference in the form of the velocity field in the limit
ja 	 1 and the velocity field near a flat surface.

5.3. Planar derivation of the Smoluchowski result

In this section we show that the textbook derivation of the
Smoluchowski results, valid in the ja ! 1, predicts a qualita-
tively different form for the velocity profile to that near a sphere
when ja 	 1.

The planar derivation of the Smoluchowski result assumes the
particle is a flat plate at x ¼ 0 with the electrical double layer
occupying the half-space, x > 0. The applied electric field is in
the z-direction: E ¼ Ek. In the frame of reference in which the elec-
trolyte is quiescent at x ! 1 and the flat plate moves with the
electrophoretic velocity, Uk, the velocity field only has a non-
zero z-component: u ¼ uzðxÞk and by symmetry considerations,
all physical quantities only vary with x.

The z-component of the Stokes equation (7) then has the from

g
d2uzðxÞ
dx2

¼ qðxÞdw
dz

¼ �E qðxÞ ð64Þ

since the z-component of the gradient of the potential is just the
negative of the applied field, E. The double layer charge density,
qðxÞ is related by the Poisson equation

d2wsðxÞ
dx2

¼ �qðxÞ
�

ð65Þ

to the potential wsðxÞ due to the charged planar surface with surface
potential f ¼ wsð0Þ.

By combining (64) and (65), we have

g
d2uzðxÞ
dx2

¼ �E
d2wsðxÞ
dx2

ð66Þ

and a first integral gives

g
duzðxÞ
dx

¼ �E
dwsðxÞ
dx

ð67Þ

since both ðduzðxÞ=dxÞ and ðdwsðxÞ=dxÞ vanish in the limit x ! 0. A
second integration with the boundary condition uzð0Þ ¼ U and
wsð0Þ ¼ f gives the Smoluchowski result for the mobility

lm � U
E
¼ �E

g
ðSmoluchowskiÞ: ð68Þ

that is applicable in the limit ja ! 1.
An important implication of this derivation is that in the large

ja limit, the electrical double layer is assumed to be unperturbed
by the applied field E so that we may take wsðxÞ as the equilibrium
potential, w0ðxÞ. And from (67) we conclude that the velocity pro-
file decays monotonically from uzð0Þ ¼ U at the surface to zero as
x ! 1, in contradiction to the conclusion we deduced in Sec-
tion 5.2 that the component of the velocity tangential to the sur-
face has a maximum in its magnitude.

This apparent contradiction arises from that fact that taking a
planar geometry at the start of this analysis is not consistent with
the physically correct model of a thin double layer around a parti-
cle of finite curvature. The important effect of particle curvature is
lost if one starts with a planar surface.

6. Visualisation using the Henry approximation

The omission of the relaxation effect limits the validity of the
Henry approximation to the regime of low surface potentials.
Nonetheless, the variations of the mobility with respect to the par-
ticle radius scaled by the Debye length, ja, is predicted correctly

Derek Chan
= ε ζ / η

Derek Chan
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and thus it can still provide useful and accessible physical insight
into many aspects of the electrophoresis problem. We therefore
use the Henry model to visualise features of the pressure and
velocity field around a spherical particle in electrophoresis.
Fig. 1. Variations of the functions vHDHðrÞa=f and �nHDHðrÞa=f in the Overbeek
solution calculated using the Henry-Debye-Hückel approximation in (73) with
jðr � aÞ, for ja between 1 and 100. The near exponential decaying behavior of these
functions is clear on the log-linear scale.
6.1. The Henry approximation

Henry’s solution [5] of the electrophoresis of a spherical particle
can now be exhibited as a simplified version of the general Over-
beek solution. Starting with (56) for the radial function, RðrÞ, of
the perturbed potential, dw, given by (49b), the Henry approxima-
tion (denoted by the superscript H) is to assume [11],

RHðrÞ ¼ /H
i ðrÞ: ð69Þ

From the derivation of (56), this approximation is tantamount
to assuming that the charge density around the particle is unaf-
fected by the applied electric field, E, that is, dq ¼ 0. Thus, (56) sim-
plifies to,

L½RHðrÞ� ¼ 0: ð70Þ
The solution that satisfies the boundary conditions (32a) and

(32b), together with the Overbeek expressions (50) for vðrÞ and
(54) for nðrÞ are, if we assume the permittivity of the solvent is
much larger than that of the particle, �	 �p

RHðrÞ ¼ r þ a3

2r2
¼ /H

i ðrÞ ð71aÞ

nHðrÞ ¼ 1þ a3

2r3

� 	
dw0ðrÞ
dr

� 3a3r
Z 1

r

1
x5

dw0ðxÞ
dx

dx ð71bÞ

vHðrÞ ¼ 3
dw0ðrÞ
dr

� 2 nHðrÞ ð71cÞ

and are identical to results derived by Henry [5]1 and Ohshima et al.
[11]. The functions nðrÞ and vðrÞ determine the behavior of the veloc-
ity, vorticity and pressure according to (48) and from (71), we can
see that they decay with the range of the electrostatic potential,
w0ðrÞ that vanishes exponentially with distance from the sphere sur-
face with the characteristic Debye length, 1=j. Finally, we note that
the results in (71) are independent of the theory used to calculate
the equilibrium potential, w0ðrÞ.

We exploit the analytical nature of the Henry solution to eluci-
date the general features of the velocity and pressure fields around
a spherical particle during electrophoresis and to study the form of
the functions nðrÞ and vðrÞ. Since Henry’s theory is valid for parti-
cles with low surface potentials, we will use the Debye-Hückel
expression for the equilibrium potential:

w0
DHðrÞ ¼ f a

e�jðr�aÞ

r
: ð72Þ

Combining (71) and (72), we find

nHDHðrÞ ¼ fj2

3

Z 1

r
r � x3

r2

� 	
a
x2

þ ja
x

� �
1þ a3

2x3

� 	
e�jðx�aÞdx ð73aÞ

vHDHðrÞ ¼ �3fa
r2

ð1þ jrÞ e�jðr�aÞ � 2 nHDHðrÞ: ð73bÞ

The superscripts ‘HDH’ denote Henry’s results using the Debye-
Hückel expression for the equilibrium potential, w0ðrÞ. The velocity
and pressure fields can then be obtained from (48). The double
integrals that arise in the expressions for the velocity components
can be evaluated numerically.
1 Unfortunately, the key results given on p. 114 of Henry’s paper has numerous
typographical errors so the expressions for nHðrÞ;vHðrÞ and RHðrÞ given here should be
used in the general expressions of Overbeek to obtain results for the Henry model.
6.2. Numerical results

In Fig. 1, we can see that the dimensionless functions:
vHDHðrÞa=f and nHDHðrÞa=f in the Overbeek solution calculated using
the Henry-Debye-Hückel approximation, decay exponentially with
the Debye length, 1=j, outside the double layer for ja between 1
and 100. These results provide graphical validation of the argu-
ments used to prove the existence of a maximum in the magnitude
of the tangential velocity. The short-ranged nature of the pressure
field that vanishes outside the extent of the double layer is
reflected by the function vðrÞ, see (49a), and the similar
short-ranged nature of nðrÞ shows that outside the double layer,
the vorticity vanishes and the velocity field becomes irrotational,
see (48c).

In Fig. 2, the velocity profiles in the dorsal plane around a
sphere at ja ¼ 10 and ja ¼ 100 under electrophoretic motion
are shown in the reference frame in which the sphere is stationary
so the fluid velocity is zero on the surface. In the upper half of the
figures, the variation of the tangential velocity, uhðrÞ, is shown as
functions of the radial distance from the sphere surface at different
angular positions. The tangential velocity at the sphere surface is



Fig. 3. The classical Stokes flow field around a sphere that corresponds to the
results in Section 3.3.1. The flow decays as 1=r towards a uniform flow field. This is
in sharp contrast to the flow field around an electrophoretically driven sphere,
where the velocity decays as 1=r3, see Figs. 2 and 4. Also observe that there is no
maximum velocity near the sphere as was observed in Fig. 2.

Fig. 4. The scaled normal, �urðrÞ, and tangential, �uhðrÞ, velocity components defined
by (48) as functions of ðr � aÞ=a for spheres of ja between 1 and 100 undergoing
electrophoretic motion. Note the maximum in the tangential velocity, �uhðrÞ.

Fig. 2. The velocity field around a sphere with ja ¼ 10 (upper) and ja ¼ 100
(lower). On the top half of each figure the instantaneous velocity is shown along
radial lines where the velocity maximum is most prominent near the top of the
sphere. In the lower half of each figure, a snapshot of the velocity field is given at
regular intervals in time (starting from the right). The rapid 1=r3 decay towards the
uniform flow is evident as the velocity is close to the uniform value when r � 2a.
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zero but attains a maximum at a short distance from the surface.
This maximum is larger than the uniform velocity at infinity. In
the lower half of the figures, a snapshot of the velocity field around
the particle is displayed and it can be seen that at r � 2a, the
velocity has almost reached its constant uniform flow value,
reflecting the faster 1=r3 decay of the velocity field towards the
value at infinity.

By way of contrast, the velocity field that corresponds to a clas-
sical Stokes problem of a sphere with the immobile boundary con-
dition of zero velocity on the surface in a uniform flow field at
infinity is given in Fig. 3. Here, the much slower 1=r decay of the
velocity field towards the uniform flow at infinity is evident and
the tangential velocity profile varies monotonically without a
maximum.

In Fig. 4, we show the scaled normal, �urðrÞ and tangential, �uhðrÞ,
velocity components defined by (48) as functions of ðr � aÞ=a for a
sphere undergoing electrophoretic motion for ja between 1 and
100. The maximum in the tangential velocity, �uhðrÞ, near the sphere
is clearly evident before it approaches the constant value at infin-
ity. In contrast, the radial velocity varies monotonically as it
approaches the constant value at infinity. The variation of the posi-
tion of the maximum, rmax, and the magnitude of the scaled tangen-
tial velocity maximum, �uh;max, with ja is given in Fig. 5. The
position of the maximum can be fitted to the empirical equation,

rmax � a
a

h i

 1:8

ðjaÞ0:79
: ð74Þ

The magnitude of the scaled tangential velocity maximum
asymptotes to about 2.25 as ja ! 1 in comparison to the value
of 1.5 as r ! 1.

As will be explained in the next section, the above general
characteristics of the velocity field outside the double layer are



Fig. 5. (Upper) Variation of the position of the maximum of the tangential velocity,
ðrmax � aÞ=a with scaled sphere radius, ja. The line is an empirical fit given by (74).
(Lower) Variation of the maximum value of the scaled tangential velocity, �uh;max ,
defined by (48), with ja.
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consequences of the balance between the electrical driving force
and the retarding hydrodynamic force that gives rise to a net zero
force on the particle and therefore a constant electrophoretic
velocity at constant applied electric fields.
7. The force balance and its consequences

A particle under steady electrophoretic motion has constant
velocity because the electrostatic driving force due to the applied
electric field on the particle and electrical double layer is exactly bal-
anced by the hydrodynamic drag forces on the particle and ions. The
net force of zero on the particle/double layer is an essential ingredi-
ent in understanding the nature of the flow outside the particle.

Both Overbeek and Henry stated that the proof of the force bal-
ance is tedious but straightforward. O’Brien & White used the
reciprocity theorem by considering an integral of the total stress
over a large surface that encloses the particle. Ohshima et al. sim-
ply noted that the force balance condition is equivalent to the
absence of a constant term in the hydrodynamic h-function. Here,
we provide a detailed derivation of the force balance condition and
discuss the physical consequences and implications.

Outside the double layer, the right hand side of the differential
equation (26) for the hydrodynamic function hðrÞ is zero and this
equation becomes

L ½L hðrÞ� ¼ d
dr

1
r4

d
dr

r4
d2h

dr2

 !" #
¼ 0: ð75Þ

This has the general solution: h ¼ c1r3 þ c2=r2 þ c3r þ c4. The
force can be obtained by integrating the stress tensor on a virtual
sphere much larger than r ¼ aþ 1=j so that it lies entirely outside
the double layer. The constant c1 must be zero, because the flow
field should remain finite when r tends towards infinity. The con-
stant c3 ¼ U=ð2EÞ ensures that the velocity at infinity is uniform
with value U. In Appendix D, it is shown that c2 does not contribute
to the force and the force depends solely on the constant c4. If the
particle experiences zero force, c4 must be zero as noted by previ-
ous workers [4,5,11]. In ‘classical’ Stokes flow, this can only happen
for a special boundary condition, see Section 3.3.

A key physical phenomenon in electrophoretic motion of a
sphere is that certain terms in the electrical and hydrodynamical
forces cancel out exactly. In Overbeek’s theory, as derived in
Appendix B, the total force on the sphere can be decomposed into
a sum of 4 terms made up of two electrical contributions, FE1 and
FE2 and two hydrodynamic contributions, FH1 and FH2 as follows:

FE1 ¼ QE ð76aÞ

FE2 ¼ �QEþ QE
3

dR
dr

þ 2R
a

� 	
r¼a

ð76bÞ

FH1 ¼ �6pgaU ð76cÞ

FH2 ¼ �QE
3

dR
dr

þ 2R
a

� 	
r¼a

þ 4p�Ea
Z a

1
n dx: ð76dÞ

Here, FE1 is the force experienced by a sphere of charge Q under
the influence of electric field E. The perturbed charge distribution,
dqðr; hÞ, creates an additional electrostatic ‘relaxation’ force, FE2, by
virtue of the asymmetric charge distribution that is a function of
not only the distance from the sphere center but also the polar
angle, h. In the Henry model with R ¼ RH , see (71), the relaxation
force, FE2, vanishes identically due to the assumption that the dou-
ble layer around the sphere maintains spherical symmetry and is
undistorted during electrophoresis. The hydrodynamic force, FH1,
is the classical Stokesian drag experienced by a sphere of radius
a in an imposed uniform flow field at infinity; FH2 accounts for
the additional electrophoretic drag due to the motion of the ions
in the electrolyte.

Since the particle moves with constant electrophoretic velocity,
the total force vanishes:

FE1 þ FE2 þ FH1 þ FH2 ¼ 0: ð77Þ
It is important to note that the terms involving R that represent

the perturbed electrostatic potential dw in FE2 and FH2 cancel out
exactly, see (49) and (76). This is the reason why O’Brien & White
[6] can obtain the electrophoretic mobility without the need to
solve for the perturbed electrostatic potential dw since its contribu-
tion to the force components in (76) cancel out when summed to
give the total force on the sphere. The consideration of different
contributions to the total force also provides a direct demonstration
of the observation that mobility does not depend on the electro-
static boundary conditions and hence is independent of the permit-
tivity of the dielectric particle [6], even though the perturbation
potential, dw through R, will depend on the particle permittivity.

At this point, it is possible to connect the decomposition of
forces by Overbeek highlighted in (76) to the U- and E-problems
of O’Brien & White [6] who considered the forces F1 and F2 on
the particle in two sub-problems as follows:

1. U-problem: Calculate the force, F1, on the particle fixed in a flow
field �U at infinity, but in the absence of an applied electric
field. The fluid velocity and perturbed potential have the limit-
ing forms: uðrÞ ! �U and dwðrÞ ! 0 as r ! 1. By virtue of the
linearity of the problem, the force will be proportional to
U : F1 ¼ aU for a determinable scalar, a. F1 will correspond to
the drag force experienced by a charged sphere moving through
the electrolyte at a velocity of U in the absence of an external
electrical field.



Fig. 6. Variation of the Stokes drag force, FH1 ¼ �6pgaU and the electrophoretical
drag forces, ½FE2 þ FH2� given in (76), scaled by FE1 ¼ QE, with sphere radius, ja. Solid
lines: Henry-Debye-Hückel model that is independent of the f-potential; O’Brien-
White model at ef=kT ¼ 2 (- - -) and 3 (���). An inset schematic illustrates the forces
acting on the sphere, balancing the direct electrical force, QE.
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2. E-problem: Calculate the force, F2, on the particle fixed in an
electric field E at infinity, but in the absence of an imposed
velocity field. The fluid velocity and perturbed potential have
the limiting forms: uðrÞ ! 0 and dwðrÞ ! �E � r as r ! 1. The
force, F2, is now proportional to E; F2 ¼ bE for a determinable
scalar, b, and describes the force experienced by a charged
sphere subject to an external electric field, but fixed in position
to prevent motion through the electrolyte.

O’Brien & White then evaluated the forces by integrating the
stress tensor over a large surface that encloses the particle and
the double layer where the only forces acting are hydrodynamic
in nature. That is, the equation of motion outside the double layer
is classical Stokes flow, without the body force term on the right
hand side of (7), but with the boundary conditions modified to take
into account the physics within the double layer.

Since we are concerned with linear electrophoresis, the super-
position of the forces calculated independently in the U and E prob-
lems give rise to the total force experienced by a particle in
electrophoresis, i.e. F1 þ F2 ¼ aU þ bE ¼ 0, fromwhich the mobility
can be obtained as lm ¼ U=E ¼ �b=a.

It can be shown (see Appendix E) that the sum,

F1 þ F2 ¼ �6pgaU þ 4p�Ea
Z a

1
n dx ¼ 0 ð78Þ

that is equivalent to the force balance condition (77). We note that
the first term on the right hand side of (78) is the Stokesian drag,
FH1 ¼ �6pgaU from (76c), whereas the second term on the right
hand side of (78) is the second term of FH2 in (76d). As we can
see in (54), the function nðrÞ can be expressed in terms of the ion
potentials, /iðrÞ, that are independent of the function RðrÞ that char-
acterizes the radial dependence of the perturbed electrostatic
potential, dwðr; h). Therefore, this is an explicit demonstration that
the mobility is independent of the electrostatic boundary conditions
and a consideration of the far field forces of hydrodynamic nature is
sufficient to deduce the mobility of the colloidal particle.

We can understand the independence of the mobility on the
electrostatic boundary conditions by noting that when considering
the particle and the double layer as a combined system, which
O’Brien & White did when evaluating the forces over the large sur-
face enclosing the particle and double layer, the direct electrical
force (76a), the relaxation force (76b) and the first term of the elec-
trophoretic drag (76d) become internal forces, describing the force
exerted by the electrical double layer on the particle and the equal
and opposite force exerted by the particle on the double layer.
These internal forces are dependent on the electrostatic boundary
conditions through the boundary conditions for RðrÞ in (57) but do
not contribute to the electrophoretic mobility.

In Fig. 6, we exhibit the variation of the different force compo-
nents in (76) with particle radius by plotting the Stokesian drag
force, FH1 and the electrophoretic force, ½FE2 þ FH2�, both scaled by
the direct electrical force, FE1 ¼ QE, as functions of ja. We consid-
ered the univalent symmetrical electrolyte, KCl for simplicity;
hence, the ion drag coefficients (2) for potassium and chloride ions
were used. The results obtained for ef=kT ¼ 2 and ef=kT ¼ 3 were
compared with the limiting, Henry-Debye-Hückel theory that is
valid at the low f-potentials where the mobility is linear in f. The
scaled forces in the Henry-Debye-Hückel theory would hence be
independent of the f-potential due to the use of (72) and Gauss’s
law to calculate the particle charge, Q. Moreover, at low f-
potentials, the relaxation force, FE2 from (76b) vanishes as the
relaxation effect scales with f3 [4] for symmetric electrolytes,
thereby justifying the omission of the relaxation effect in Henry’s
calculations [5]. At higher f-potentials, such as ef=kT ¼ 2 and
ef=kT ¼ 3, this omission may no longer be justified and the mobil-
ity was computed using the O’Brien & White program [6]. The par-
ticle charge, Q , is now calculated using the approximation for w0

provided by Ohshima, Healy & White in equation (49) of [20] that
approximates the non-linear Poisson–Boltzmann (12) solution to
higher surface potentials than (72).

We see from Fig. 6 how the magnitudes of these two force com-
ponents vary with particle size while their sum always balances
the direct electrical force, FE1 ¼ QE. At small ja, the Stokes drag
force FH1 ¼ �6pgaU becomes the dominant term in balancing the
direct electrical force, FE1 ¼ QE, but as ja increases, the effect of
the Stokes drag force diminishes as the electrophoretic force,
½FE2 þ FH2�, dominates in cancelling the direct electrical force,
FE1 ¼ QE. Note that a ‘cross-over’ of the two forces happens near
ja � 1, and the cross-over shifts towards lower ja as f increases.

Thus the zero force condition not only implies the vanishing
pressure outside the double layer, but it also severely changes
the flow pattern and thus, the range of the hydrodynamic interac-
tion. Previous works appear not to have focussed on this feature
and its implications on particle-particle interactions. The velocity
profile around a sphere in electrophoretic motion in Fig. 2
calculated using Henry’s model is substantially different from a
classical Stokes velocity profile around a sphere where
h ¼ ½r � 3a=2þ a3=ð2r2Þ�U=ð2EÞ, as shown in Section 3.3.1, with
the Stokes velocity profile (40) shown in Fig. 3. When compared
to the result for the velocity field around a particle in electrophore-
sis (60), we see that, apart from the first terms representing the
constant velocity part, the velocity decays as 1=r in a classical
Stokes flow such as in sedimentation, as compared to 1=r3 for
the electrophoresis case.

A further interesting phenomenon, from a fluid dynamics per-
spective, is the appearance of a maximum in the tangential velocity
as visualized in Section 6. This maximum is actually also a direct
consequence of the 1=r3 behavior of the flow field. A mass balance
(see Appendix F) over a half infinite sphere illustrates that the con-
tribution over the spherical part dies out for an electrophoretic
flow. Since the velocity at the surface of the sphere is zero, in order
to satisfy the continuity of material, the velocity must be greater
than U somewhere between the sphere surface and infinity, result-
ing in a maximum. Such a maximum velocity does not appear in
the velocity pattern around a Stokes flow sphere, since the velocity
decays as 1=r only and an integration of the half sphere at infinity
will still give a contribution to the mass balance.

Morrison [7] has performed a very similar analysis, but claims
that since the velocity, u is irrotational outside the double layer,
the Bernoulli equation should hold and since u � 1=r3 then
p � u2 � 1=r6. Anderson [12], in his review cites this conclusion.
However, the Anderson/Morrison Bernoulli equation assumption is



hðr

A.S. Jayaraman et al. / Journal of Colloid and Interface Science 553 (2019) 845–863 857
incompatible with the Stokes flow assumption. Even though the
flow field outside the double layer looks like a potential flow field,
it is of course a viscosity dominated Stokes flow where effects due
to inertia are negligible, whereas the Bernoulli pressure is due
solely to inertial effects with no contribution from the viscosity.
This can easily be shown, if we argue that the electrophoretic the-
ory is based on the Stokes equation as gr2u ¼ rp and r � u ¼ 0,
but since r�r� u ¼ rðr � uÞ � r2u, then this would be equiva-
lent to gr�r� u ¼ �rp. For an irrotational flow r� u ¼ 0, this
would mean rp ¼ 0 and the pressure outside the double layer
would be a constant and not given by the Bernoulli equation.
Despite this fact, the other key conclusions of Morrison [7] are
indeed valid for electrophoresis.
n

Rðr

u

u

8. Conclusions

The physical models of the electrophoretic motion of a spherical
particle considered by Overbeek [4] and later by O’Brien & White
[6] are identical although the theoretical treatments are quite dif-
ferent. The numerical difficulties of the dual characteristic length
scale the problem encountered in using the Overbeek treatment
[18] that arises when the Debye length, 1=j, is small compared
to the particle radius, a, i.e. the thin double layer regime when
ja 	 1, have been addressed by the O’Brien & White approach.
In particular, they were able to calculate the electrophoretic mobil-
ity without needing to solve for the perturbation in the electro-
static potential, the pressure or the velocity field.

In this paper, we established the equivalence between the Over-
beek treatment that solved for the velocity, pressure and electro-
static potential and the O’Brien & White approach that
circumvented the need to consider the velocity and the pressure.
From the Overbeek result, we showed quite generally that the
pressure and vorticity of the flow field vanishes exponentially fast
outside the double layer so that the hydrodynamic condition out-
side the double layer is a zero pressure, irrotational flow. As a con-
sequence, the velocity in the laboratory frame decays with distance
as 1=r3 from the sphere compared to the 1=r decay in standard
Stokes flow. The implication of this faster decay is that the tangen-
tial component of the velocity has a maximum near the sphere sur-
face close to the double layer. This unusual feature of the
hydrodyamic behavior clearly has implications when considering
situations when particles are in close proximity whereby both
electrical double layer and hydrodynamic interactions become
important [9]. But as far as we are aware, such features of the
hydrodynamic behavior have not been studied in detail. Thus it
may be fruitful to revisit the popular treatment of electrophoretic
effects in the thin double layer regime [1,12,21] that simply models
the effect of the flow inside the double layer by an effective slip
velocity.

At a pedagogical level, since the velocity field outside the dou-
ble layer is an irrotational, zero pressure Stokes flow, it is inconsis-
tent to suggest that the Bernoulli equation can be used to give the
pressure. We also note that the textbook derivation of the Smolu-
chowski results valid in the limit of ja ! 1 that considers the
particle as a flat plate will lead to the conclusion of a monotonic
tangential velocity profile due to omission of the singular but
important effect of finite surface curvature.
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Appendix A. Glossary of symbols

As far as possible the notation of O’Brien & White [6] and
Ohshima et al. [11] was adopted and SI units were employed.
Any minor differences are noted in the text when a symbol is first
defined and used.

a radius of a spherical charged colloidal particle
E constant external applied electric field vector with abso-

lute value E

e charge of a proton, 1:602� 10�19 C

Þ function used to describe the radial part of the velocity
components by Ohshima et al. [11]
k Boltzmann’s constant, 1:38� 10�23 J/K

r ; nh; nu unit vector in the ðr; h;uÞ - (radial, polar,
azimuthal) direction of a spherical polar coordinate sys-
tem centered at the sphere
p pressure

0 equilibrium pressure when E ¼ 0, defined by (11)
p
r radial coordinate of the spherical polar system

Þ function in the Overbeek theory used to describe the
radial component of the perturbed electrostatic potential
defined with: dw � �E RðrÞ cos h
T absolute temperature

xð Þ � u, velocity vector of the fluid

S; pS; hS velocity, pressure and hydrodynamic function in
Stokes flow when E ¼ 0 and in the absence of charges
w � ðr� uÞu ¼ ðr� uÞ � nu component of the vorticity in
the azimuthal direction

x general 3D position vector
er relative permittivity of the solvent
e0 permittivity of vacuum, 8:852� 10�12 F/m
� � e0er , solvent permittivity
�p particle permittivity
g solvent viscosity
h polar angular coordinate of the spherical polar system, i.e.

the angle between the radius vector and the electric field
u angle between r � h plane and the vertical plane in the

spherical polar coordinate system
nðrÞ function in the Overbeek theory, defined by (54)
vðrÞ function in the Overbeek theory, defined by (50)

zi valence of ionic species i
ki drag coefficient of ionic species i

v i xð Þ � v i, velocity of ionic species i
n1
i bulk number density of ions of type i

j � ½ðe2=ekTÞPin
1
i z2i �

1=2, Debye screening parameter
n0
i xð Þ � n0

i , equilibrium number density of ionic species i at
position x given by the Poisson–Boltzmann equation,
when E ¼ 0

dniðxÞ � dni � ni � n0
i


 � ðzie=kTÞ n0
i ðdwþuiÞ, to linear order

uiðxÞ � ui � /iðrÞE cos h
l1

i constant reference chemical potential of ionic species i

l0
i ðxÞ � l0

i � l1
i þ zi e w

0ðxÞ þ kT logn0
i ðxÞ, equilibrium electro-

chemical potential of ionic species i when E ¼ 0
liðxÞ � li � l1

i þ zi e wðxÞ þ kT logniðxÞ, electrochemical
potential of ionic species i when E – 0

dliðxÞ � dli � liðxÞ � l0
i ðxÞ ¼ �zi e ui � �zi e /i E cos h

qðxÞ � q � e
P

izi niðxÞ, volume charge density at position x
when E – 0

q0ðxÞ � q0 � e
P

izi n
0
i ðxÞ, volume charge density at position x

when E ¼ 0
dqðxÞ � dq � qðxÞ � q0ðxÞ ¼ e

P
izi dniðxÞ



2 Overbeek seemed to have defined r� with a sign difference when compared to
modern notation.
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w0ðxÞ � w0, equilibrium electrostatic potential at position x,
when E ¼ 0, given by the Poisson–Boltzmann equation

wðxÞ � w, the total electrostatic potential whereby �rw is the
total electric field that includes contributions from the
constant external field E, the field due to the charged col-
loidal particles and perturbed ion distribution

dwðxÞ � dw � wðxÞ � w0ðxÞ
f the zeta potential of the colloidal particle (assumed to be

constant everywhere on the surface)

Appendix B. The Overbeek theory

We outline the derivation of the Overbeek theory given in his
PhD thesis in Dutch [4] for the electrophoretic motion of a sphere
in an electrolyte of arbitrary composition using modern notation
and SI units. The governing equations of electrokinetics given in
Section 2 are linearized according to (14) to give a set of coupled
linear equations to first order in the perturbation quantities. Due
to the axial symmetry of a sphere in an external electric field, E,
directed along h ¼ 0, the perturbed quantities have the general
form:

df ðr; hÞ ¼ FðrÞ cos h or FðrÞ sin h: ðB:1Þ
The problem is then reduced to solving for the function FðrÞ that

is only a function of the distance, r from the center of the sphere.
The Poisson equation becomes

q ¼ q0 þ dq ¼ ��r2ðw0 þ dwÞ ðB:2Þ
where the equilibrium potential, w0ðrÞ and charge density, q0ðrÞ are
radially symmetric. The perturbed potential, dwðr; hÞ and the per-
turbed charge density, dqðr; hÞ have the form

dwðr; hÞ ¼ �E RðrÞ cos h ðB:3aÞ
dqðr; hÞ ¼ ��r2dw ¼ �E L½RðrÞ� cos h ðB:3bÞ
where we have used the L differential operator defined in (27) with
RðrÞ, an unknown function to be found. In the limit
r ! 1; dwðr; hÞ ! �E r cos h.

Similarly, using (11) for the equilibrium pressure, p0, the pres-
sure can be written as

p ¼ p0 rð Þ þ dp r; hð Þ ¼ �
Z r

1
q0 dw0

dx

 !
dx� �E P rð Þ cos h ðB:4Þ

where PðrÞ, the radial function of the perturbed pressure,
dpðr; hÞ � ��E PðrÞ cos h, is an unknown function to be found.

The perturbed pressure, dp, can be expressed in terms of dw and
dq ð¼ ��r2dwÞ by applying the divergence operator to the
momentum equation (15c) together with the incompressibility
condition: r � u ¼ 0, to eliminate the velocity, u, to give

r2dp ¼ �dqr2w0 � q0r2dw�rdq � rw0 �rq0 � rdw: ðB:5Þ
This can be simplified by noting that

rdq � rw0 ¼ @dq
@r

� dw
0

dr
ðB:6Þ

rq0 � rdw ¼ dq0

dr
� @dw
@r

ðB:7Þ

and using the L differential operator defined in (27) to give

r2dw ¼ �E L½R� cos h ðB:8Þ
r2dp ¼ ��E L½P� cos h: ðB:9Þ

Combining these results in (B.5) gives the following relation
between PðrÞ and RðrÞ
L½P� ¼ f 1ðrÞ � 2 L½R� r2w0 þ dL½R�
dr

dw0

dr
þ dR

dr
d
dr

r2w0
� �

: ðB:10Þ

The formal solution of this differential equation is, see (28) and
(29)

PðrÞ ¼ c1r þ c2
r2

þ r
Z r

1

1
x4

Z x

1
y3f 1ðyÞ dy dx: ðB:11Þ

For large r; dp r; hð Þ and thus PðrÞ must vanish and consequently
c1 ¼ 0 and later, we will also show that c2 ¼ 0 as well. The integral
in (B.11)

vðrÞ � r
Z r

1

1
x4

Z x

1
y3f 1ðyÞ dy dx ðB:12Þ

can be simplified by noting that r2w0ðrÞ ¼ 1
r2

d
dr r2 dw0

dr

� �
to give

vðrÞ ¼ dR
dr

dw0

dr
þ 4r

Z r

1

1
x2

dR
dx

� R
x3

� 	
dw0

dx
dx: ðB:13Þ

Thus the complete solution for the pressure p from (B.4) is

p ¼ �
Z r

1
r2w0 dw

0

dx
dx� eE

c2
r2

þ vðrÞ
h i

cos h: ðB:14Þ

To determine the velocity field, we take the curl of the momen-
tum equation (7) to eliminate p, and use the identity:
r�r� u ¼ rðr � uÞ � r2u and r � u ¼ 0 to give

gr�r�r� uþr� ðdqrw0 þ q0rdwÞ ¼ 0: ðB:15Þ
We now analyse the components of this equation by taking into

account the symmetry of the electrophoretic problem of a sphere.
In spherical polar coordinates ðr; h;uÞ;r� u is2

ðr � uÞr ¼
1

r sin h
� @

@h
ðuu sin hÞ þ @uh

@u


 �

ðr � uÞh ¼
1
r

� 1
sin h

@ur

@u
þ @

@r
ðruuÞ


 �

ðr � uÞu ¼ 1
r

� @

@r
ðruhÞ þ @ur

@h


 �
:

ðB:16Þ

The axial symmetry of the problem means that the azimuthal
component, uu, must be zero, and u is not a function of the azi-
muthal angle, u. Thus the vorticity w � r� u has no r or h com-
ponents, whereas the u component is

ðwÞu � wðr; hÞ ¼ ðr � uÞu ¼ 1
r

� @

@r
ðruhÞ þ @ur

@h


 �
: ðB:17Þ

Consequently, r � w has non-zero r and h components, but no
u component and sor � r � w only has au component, namely

½r �r�w�u ¼ �1
r

@2ðrwÞ
@r2

þ 1
r

@

@h
1

sin h
@

@h
ðw sin hÞ


 �( )
: ðB:18Þ

Also, r� ðdqrw0 þ q0rdwÞ is a vector with only a u compo-
nent, which is,

r� ðdqrw0 þ q0rdwÞ� �
u ¼ 1

r
@dq
@h

dw0

dr
� dq0

dr
@dw
@h

 !
: ðB:19Þ

With these results, (B.15) now transforms into:

g
r

@2ðrwÞ
@r2

þ 1
r

@

@h
1

sin h
@

@h
ðw sin hÞ


 �( )
¼ 1

r
@dq
@h

dw0

dr
� dq0

dr
@dw
@h

 !

or, after inserting expressions for q0; dq and dw from (B.2) and (B.3):
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@2ðr wÞ
@r2

þ 1
r

@

@h
1

sin h
@

@h
ðw sin hÞ


 �

¼ �E sin h
g

R
d
dr

r2w0 �L½R� dw
0

dr

" #
: ðB:20Þ

The solution of (B.20) has the form

wðr; hÞ ¼ �E
g
WðrÞ sin h: ðB:21Þ

Combining (B.20) and (B.21) gives the differential equation that
determines WðrÞ

L½W� ¼ f 2ðrÞ �
R
r

d
dr

r2w0 � 1
r
L½R� dw

0

dr
ðB:22Þ

with solution

WðrÞ ¼ c3r þ c4
r2

þ r
Z r

1

1
x4

Z x

1
y3f 2ðyÞ dy dx: ðB:23Þ

The integration constant c3 ¼ 0 since the vorticity must become
zero at infinity and later on, we will see that c4 is also zero. We
define nðrÞ as the integral:

nðrÞ � r
Z r

1

1
x4

Z x

1
y3

R
y

d
dy

r2w0 � 1
y
f 2ðyÞ

dw0

dy

( )
dy dx ðB:24Þ

that can be simplified using r2w0 ¼ 1
r2

d
dr r2 dw0

dr

� �
to give3

nðrÞ ¼ R
r
dw0

dr
� 2r

Z r

1

1
x2

dR
dx

� R
x3

� 	
dw0

dx
dx: ðB:25Þ

Overbeek noted that this function fulfills the same role as the func-
tion with the same name in Henry 4 [5].

With the full solution for wðr; hÞ now being

wðr; hÞ ¼ �E
g

c4
r2

þ nðrÞ
h i

sin h; ðB:26Þ

the only non-zero component of r� u, given by (B.17) and (B.26)
provides one equation for ur and uh:

ðr � uÞu � 1
r

� @

@r
ðr uhÞ þ @ur

@h

� 

¼ �E sin h

g
c4
r2

þ nðrÞ
� �

: ðB:27Þ

Since by symmetry, uu ¼ 0, a second equation for ur and uh is

r � u � 1
r2

@

@r
ðr2urÞ þ 1

r sin h
@

@h
ðuh sin hÞ ¼ 0: ðB:28Þ

The radial and tangential velocities have the form

urðr; hÞ ¼ R1ðrÞ cos h and uhðr; hÞ ¼ R2ðrÞ sin h: ðB:29Þ
Substituting this into (B.27) and (B.28), gives the following set of
coupled differential equations for R1ðrÞ and R2ðrÞ

rR2 ¼ �1
2

d
dr

r2R1
� �

� 2
r
dR2

dr
� 2R2

r2
� 2R1

r2
¼ 2�E

g
1
r

c4
r2

þ n rð Þ
h i

: ðB:30Þ

The solution is (as can easily be checked by back substituting):

R1ðrÞ ¼ c5
r3

þ c6 � �E
g

c4
r
þ 2
3r3

Z r

1
x3n dxþ 2

3

Z r

1
n dx

� 	

R2ðrÞ ¼ c5
2r3

� c6 þ �E
g

c4
2r

� 1
3r3

Z r

1
x3n dxþ 2

3

Z r

1
n dx

� 	
:

ðB:31Þ
3 This can easiest be done by partially integrating
R x
1 y3 R

y
d
dyr2w0

n o
dy, by which

many terms will cancel out with the terms in round brackets.
4 The function n from Henry can be recovered by setting R ¼ r þ ka3=r2 and using

r2w0 ¼ 1
r2

d
dr r2 dw0

dr

� �
. Henry’s formula is n ¼ dw0

dr þ ka3r
R r
1

1
x4 r2w0dx (page 112 of

Henry).
Aside from the constants c2; c4; c5 and c6 in Eqs. (B.14) and
(B.31), the pressure and velocity distribution are now fully deter-
mined. The constant c2 is partly determined by u, since p and u
must also satisfy the momentum equation (7) written in the form

gr�r� uþrp ¼ �qrw: ðB:32Þ
The termrðcos h=r2Þ inrp, from (B.9) and (B.11), must be com-

pensated by a term of the same form from gr�r� u, since qrw

does not contain a term proportional to rðcos h=r2Þ. The vector
gr�r� u has r and h components and with the help of (B.16),
(B.17) and (B.26), we find5:

g r�r� uð Þr ¼ g r�wð Þr ¼ �2�E
c4
r3

þ n
r


 �
cos h

g r�r� uð Þh ¼ g r�wð Þh ¼ ��E c4
r3

� 1
r

d
dr

rnð Þ

 �

sin h:

The r and h components of the term rðc2 �E cos h=r2Þ in rp are

c2 �E r cos h
r2

� �
r

¼ � 2c2 �E
cos h
r3

c2 �E r cos h
r2

� �
h

¼ � c2 �E
sin h
r3

:

Then equating terms in cos h=r2 and sin h=r2 in (B.32) gives
c2 ¼ c4.

The boundary conditions for the fluid velocity and the potential:

� as r ! 1 : ur ! �U cos h;uh ! U sin h and w0 ! 0
� at r ¼ a : ur ¼ 0; uh ¼ 0 and w ¼ f.

can be used to determine the constants: c2 ; c4; c5 and c6. From the
conditions for r ! 1, when applied to (B.29) and (B.31), we see
that R1 ! U and R2 ! �U: Thus,

c6 ¼ �U: ðB:33Þ
From the conditions at r ¼ a, we find from (B.31)

c4 ¼ c2 ¼ a
Z a

1
n dx� 3gaU

2�E
¼ 0 ðB:34Þ

where the last equality follows from the fact that the force on the
particle (see later) and thus c2 ¼ 0 ¼ c4 and

c5 ¼ �Ua3

2
þ 2�E

3g

Z a

1
x3ndxþ �Ea3

3g

Z a

1
n dx: ðB:35Þ

Finally, the complete expressions for the pressure and velocity
components are

p¼ e
Z r

1
r2w0dw

0

dx
dx þcosh

3gaU
2r2

��Ev��Ea
r2

Z a

1
ndx

� 

ðB:36aÞ

ur ¼ cos h �1þ 3a
2r

� a3

2r3

� 	
U þ 2�E

3g

Z r

1
n dxþ 1

r3

Z a

r
x3n dx

� 	�

� �E
g

a
r
� a3

3r3

� 	Z a

1
n dx



ðB:36bÞ

uh ¼ sin h 1� 3a
4r

� a3

4r3

� 	
U � 2�E

3g

Z r

1
n dx� 1

2r3

Z a

r
x3n dx

� 	�

þ �E
g

a
2r

þ a3

6r3

� 	Z a

1
n dx



: ðB:36cÞ

Overbeek then calculated separately the hydrodynamic force,
FH and the electrical force, FE.

To calculate the hydrodynamical force, FH , he divided the fluid
flow into 3 components:
5 Note again the minus sign difference in the definition of the curl operator when
compared to modern notation.
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� a pure Stokesian flow, proportional to U, corresponding to (40),
� a second flow, directly caused in the fluid due to forces of elec-
trical origin, that do not satisfy the boundary conditions on the
boundary of the fluid and the sphere (terms with v;

R r
1 ndx and

1
r3

R a
r x3ndx),

� and a third flow, proportional to
R a
1 ndx, that is not exposed to

external forces, but is combined with the second flow to satisfy
the boundary conditions at r ¼ a.

The hydrodynamic force, FH , that the flow defined by (B.36)
exerts on the sphere, is found by integrating the traction, t, or force
per unit area in the direction of h ¼ 0 over the whole surface of the
sphere, where6

t ¼ �pþ 2g
@ur

@r

� 	
r¼a

cos h� g
@uh

@r
� uh

r
þ 1

r
@ur

@h

� 	
r¼a

sin h:

Then using (B.36) and after what Overbeek called a ‘simple but
lengthy calculation’, gives

FH ¼ R p0 t 2pa2 sin h dh

¼ �6pgaU þ 4p�Ea2

3
v að Þ þ 8p�Ea2

3
n að Þ þ 4p�Ea

Z a

1
n dx

ðB:37Þ
where we have used the fact that uh ¼ 0 and @ur=@h ¼ 0 at r ¼ a. By
substituting v and n according to equations (B.13) and (B.25) this
will become:

FH ¼ �6pgaU þ 4p�Ea
3

dw0

dr

 !
a

2Rþ a
dR
dr

� 	
a

þ 4peEa
Z a

1
n dx:

ðB:38Þ
On the right hand side we see the 3 contributions to the force

1. the classical Stokesian drag for a sphere
2. the friction due to that part of the flow that is caused directly

by electrical forces, and
3. the friction due to that part of the flow that is free of external

forces and is required to satisfy the boundary conditions.

The electrophoretic drag force is combination of contributions 2
and 3.

The total electrical force, FE, on the sphere is the sum of the
forces exerted on the sphere by the applied field, E and by the addi-
tional charge density, dq

FE ¼ QE�
Z p

0

Z 1

a

Q dq
4p�r2

cos h 2pr sin h rdh dr

where Q is the total charge on the sphere and the second
term on the right hand side is the integral of pair-wise Coulomb
interactions between the sphere and infinitesimal charges,
qðr; hÞ 2pr2 sin h dh dr

� �
, over the ion cloud surrounding the sphere7

and according to (B.3),

dq ¼ ��r2dw ¼ �E
d2R

dr2
þ 2

r
dR
dr

� 2R
r2

 !
cos h:

By a simple integration, we find
6 The stress tensor is rij ¼ �pdij þ g½@ui=@xj þ @uj=@xi�. In the current case
ui ¼ Uj

U
xixj
r2 ðR1 þ R2Þ � dijR2

n o
.

7 Note that the equilibrium charge density, q0ðrÞ � qðr; hÞ � dqðr; hÞ does not exert
a net force on the sphere since the equilibrium charge distribution is spherically
symmetric—the relaxation effect arises from the asymmetry in the charge distribu-
tion within the double layer.
FE ¼ QE
3

dR
dr

þ 2R
a

� 	
r¼a

: ðB:39Þ

To express the total charge of the sphere, Q , in terms of w0 and
a, we use the fact that this charge is equal but opposite to the total
charge on the double layer. Thus,

Q ¼ �
Z 1

a
q04pr2dr ¼ 4p�

Z 1

a

1
r2

d
dr

r2
dw0

dr

 !
r2dr ¼ �4p�a2 dw0

dr

 !
r¼a

:

ðB:40Þ
Since the sphere under electrophoretic motion has constant

velocity, the sum of all forces on the sphere must be zero, thus
FH þ FE ¼ 0. From (B.38), (B.39) and (B.40) it then follows that

� 6pgaU þ 4p�Ea
Z a

1
n dx ¼ 0:

This can be rearranged to give the expression for the elec-
trophoretic mobility as,

lm ¼ U=E ¼ 2�
3g

Z a

1
n dx: ðB:41Þ

Overbeek noted that the cancellation of FE against the second
term of FH in (B.38) is no coincidence, but has essential meaning
since this part of FH is exactly caused by forces that act on the
charge in the fluid and this charge is equal and opposite to the
charge on the sphere. This formula (B.41) is thus generally valid
for the electrophoretic mobility of a sphere. We have not made
any special assumptions concerning the functional form of w0ðrÞ,
nor that of RðrÞ. The formulae of Henry and consequently those
of Hückel and Smoluchowksi, can be derived as special cases from
(B.41) and (B.25) by applying the appropriate form of the function
RðrÞ.

Using (B.41), the expressions for ur and uh from (B.36) can be
written more elegantly as:

ur ¼ 2�E cos h
3g

Z r

a
1� x3

r3

� 	
n dx

uh ¼ �2�E sin h
3g

Z r

a
1þ x3

2r3

� 	
n dx

p ¼ �
Z r

1
r2w0 dw

0

dx
dx� �Ev cos h

w ¼ r� uð Þu ¼ �E
g
n sin h

with v in the pressure from (B.13), which can be simplified using

(B.25) as: v ¼ �2nþ 2R
r þ dR

dr

� � dw0

dr . The above equations are the main
results of Overbeek’s theory as mentioned in the main text.

Appendix C. The stress tensor of an electrophoretic system

Equation (7) that describes the momentum balance in Stokes
flow with an electrostatic body force can be obtained from the fol-
lowing stress tensor in Cartesian tensor notation:

rij ¼ �pdij þ g
@ui

@xj
þ @uj

@xi


 �
þ � EiEj � 1

2
EkEkdij


 �
: ðC:1Þ

The first term is the isotropic pressure that has a hydrodynamic
and an osmotic component and the second term is the hydrody-
namic stress tensor in a Newtonian fluid of shear viscosity, g.
The last term is the Maxwell stress tensor expressed in terms of
the electric field, E. Taking the divergence of (C.1), and expressing
the electric field in terms of the electrostatic potential,
w : Ej ¼ �@w=@xj, and using the continuity equation @uj=@xj ¼ 0,
we obtain
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@rij

@xj
¼ � @p

@xi
þ g

@2ui

@x2j
� �Ei

@2w

@x2j
: ðC:2Þ

Since the total force on a fluid element must be zero, the
divergence of the stress tensor must vanish and using the Poisson
equation (5), this leads directly to (7).

Appendix D. The force on a spherical particle

In this appendix, we examine the implication on the velocity
field that follows from the fact that the force on a spherical particle
undergoing electrophoretic motion is zero. As shown in Section 7,
the hydrodynamic function, hðrÞ, that holds outside the electrical
double around the sphere is determined by (75) and has the gen-
eral solution hðrÞ ¼ c2=r2 þ c3r þ c4. The objective is to show that
the constant term c4 is proportional to the force on the sphere
whereas the other terms in hðrÞ do not contribute. The derivation
of the force requires finding the stress tensor that is expressed in
terms of the velocity and pressure. The analysis is carried out using
Cartesian tensor notation, with the summation convention over
repeating indices.

According to (24), the velocity field, ui, can be written as

ui ¼ Ej
xixj
r2

�h
r
þ dh

dr

� 

þ dij �h

r
� dh

dr

� 

 �

¼ Ej
xixj
r2

�3
c2
r3

� c4
r

n o
þ dij

c2
r3

� 2c3 � c4
r

n oh i
:

ðD:1Þ

Upon taking the gradient of the velocity field

@ui

@xk
¼ Ej c2 �3

dikxj
r5

� 3
xidjk
r5

þ 15
xixjxk
r7

� 3
dijxk
r5

� 	


þ c4 � dikxj
r3

� xidjk
r3

þ 3
xixjxk
r5

þ dijxk
r3

� 	� ðD:2Þ

we see that the term with c3 drops out since it corresponds to a uni-
form flow field. The term in c4 is the only one that contributes to the
Laplacian of the velocity field

@2ui

@x2k
¼ c4Ej �2

dij
r3

þ 6
xixj
r5


 �
¼ �c4Ej

@

@xi
2
xj
r3

� �
ðD:3Þ

because the term in c2 is proportional to r2ð1=rÞ, which is identi-
cally zero.

Outside the double layer, the Stokes equation rp ¼ gr2u and
(D.3) can be used to give the pressure, p ¼ �2gc4Ejxj=r3, and thus
the stress tensor rij outside the double layer is

rik ¼ �pdik þ g
@ui

@xk
þ @uk

@xi


 �

¼ c2 gEj �6
dikxj
r5

� 6
xidjk
r5

� 6
xkdij
r5

þ 30
xixjxk
r7


 �
þ c4 gEj 6

xixjxk
r5

h i
:

ðD:4Þ

The force on the sphere is found by integrating the traction,
ti ¼ riknk or the force per unit area, over a fictitious sphere that
encloses the particle and its double layer:

ti ¼ c2 g �6 xjEjni
r5 � 6 Eknkxi

r5 � 6 xknkEi
r5 þ 30 xjEjxknkxi

r7

h i
þ c4 g 6 xjEjxknkxi

r5

h i
:

ðD:5Þ
This can be further simplified since on the fictitious spherical

surface, the normal vector, n, and the vector, x, are parallel and
ni ¼ �xi=r, thus:

ti ¼ c2 g �18ðxjEjÞ xir6 þ 6
Ei

r4


 �
� c4 g 6 ðxjEjÞ xir4 : ðD:6Þ

Finally the force can be obtained by integrating the traction
over the whole spherical fictitious surface:
Fi ¼
Z

ti dS: ðD:7Þ

Since the force is directed along the applied electric field, E, the
integral for the force can be evaluated using
xj ¼ r cos h; xjEj ¼ Er cos h and dS ¼ 2pr2 sin h dh to give

F ¼ c4 ð8gpEÞ ðD:8Þ
where the integral of term with c2 in the traction (D.6) vanishes.

As the force on the system that comprises the particle and the
double layer must be zero as argued earlier, this leads to the con-
clusion that c4 ¼ 0, or equivalently, the h-function does not contain
a constant term. The fact that c4 ¼ 0 for an electrophoretically dri-
ven sphere leads to some very unusual fluid dynamics properties,
not encountered in classical Stokes hydrodynamics.

Appendix E. The forces in the U and E sub-problems of O’Brien &
White

O’Brien & White [6] considered the decomposition of the linear
electrophoresis problem into two sub-problems, namely the U and
the E problems as referred to in Section 7. In this appendix, the
forces for the two sub-problems will be calculated in order to ulti-
mately present a derivation for (78).

Physical quantities of relevance to the U-problem will be
denoted by the bolded superscript ‘1’ such as F1;/1

i and u1 repre-
senting, respectively, the force on the particle, the ion-potential
function and the velocity field: all evaluated in the context of the
U problem. Similarly, physical quantities evaluated in the E-
problem will be differentiated with the bolded superscript ‘2’
(not to be confused with an exponent).

E.1. The U-problem

The velocity field for the U-problem is given by modifying the
classical Stokes expression from (34) with the hydrodynamic func-

tion, h1ðrÞ, appropriate for this problem:

u1 ¼ �2
r
h1ðrÞ U cos h nr þ 1

r
d
dr

r h1ðrÞ
h i

U sin h nh: ðE:1Þ

Note that there is also a factor of U difference between (E.1) and

(34), i.e. h1 and h do not share the same units. The boundary con-

ditions of h1ðrÞ are now not the same as those for hðrÞ in (32).

Indeed, h1ðrÞ may have a constant term at infinity as F1 need not

vanish, as will be shown later. The boundary conditions for h1ðrÞ
can be written as,

h1 ¼ 0 ¼ dh1

dr
; r ¼ a ðE:2aÞ

h1 ! 1
2
r r ! 1: ðE:2bÞ

Here, (E.2a) is equivalent to the no-slip and no ion-penetration
boundary conditions and (E.2b) defines a uniform flow of �U at
infinity.

The ion-potential function in the U-problem, in analogy to the
ion-potential introduced in Section 3, is represented by
u1

i ðr; hÞ � /1
i ðrÞU cos h. Note that although u1

i and ui describe sim-

ilar physical quantities (and have the same units), /1
i and /i from

(23) do not have the same units. Both u1
i ðrÞ and /1

i ðrÞ will vanish
as r tends towards infinity since there is no applied electric field
(see Section 7). However, the boundary conditions on the surface
of the particle would be the same as those in (22).



Fig. 7. A half-sphere with radius R surrounding the electrophoretic sphere, with
radius a, moving in the horizontal direction. The half-sphere consists of a flat
surface S at h ¼ p=2 and r > a and a (half) spherical surface S0 . For an electrophoretic
sphere, the surface S0 does not give any contribution to the mass balance (provided
R is big enough), resulting in the occurrence of a velocity maximum on S. For a
‘normal’ Stokes flow sphere there is a contribution on S0 (even for very large R) and
hence no velocity maximum.
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The functionh1ðrÞwould satisfy an equation analogous to (26) as,

L ½L ½h1ðrÞ�� ¼ g1ðrÞ � e
g
1
r

X
i

dn0
i ðrÞ
dr

zi /
1
i ðrÞ ðE:3Þ

that is true since in the U and E problem decomposition, O’Brien &
White only modify the boundary conditions, and the general struc-
ture of the governing equations is left unaltered. The equation (E.3)

can then be solved for h1ðrÞ with the boundary conditions in (E.2) to

yield the following expression for the h1ðrÞ function:

h1 rð Þ ¼ � 1
30

Z 1

r
r3 � 5rx2
� �

g1 xð Þ dxþ r
2

� 3a
4

1� 2
9a

Z r

a
x3 g1 xð Þ dx



� 1
9

Z 1

a
a2 � 3x2
� �

g1 xð Þ dx
�

þ 1
60r2

Z 1

a
5a3x2 � 3a5� �

g1 xð Þ dx



�
Z r

a
2x5g1 xð Þ dxþ 15a3

�
:

ðE:4Þ
In Appendix D, it was observed that the force acting on a parti-

cle is proportional to the constant term of the hydrodynamic func-
tion as r tends to infinity. A similar calculation can be performed,
and the force F1 can be derived from (E.4) as,

F1 ¼ �6pgaU 1� 1
9a

Z 1

a
a3 þ 2x3 � 3ax2
� �

g1ðxÞ dx

 �

: ðE:5Þ

The first term in (E.5) is the Stokes drag term, whereas the sec-
ond term bears a close resemblance to the expression for mobility
in (33). The only difference is that we are now considering the
function, g1ðxÞ, which is only a part of the gðxÞ function relevant
to electrophoresis.

E.2. The E-problem

The calculations of F2 is very similar to the calculations in the
previous section used to compute F1. The velocity field is now,

u2 ¼ �2
r
h2ðrÞ E cos h nr þ 1

r
d
dr

r h2ðrÞ
h i

E sin h nh: ðE:6Þ
It is important to note that the velocity (and likewise the force)

can now be written as proportional to the applied electric field, E.

The boundary conditions for h2ðrÞ are now given by,

h2 ¼ 0 ¼ dh2

dr
; r ¼ a ðE:7aÞ

h2 ! constant; r ! 1: ðE:7bÞ
The boundary condition in (E.7a) for h2 is different from (32d)

for h. Since far from the particle, the electrolyte is at rest relative

to the particle, h2ðrÞ must be a constant term to leading order as
r tends to infinity. The ion-potential function for the E-problem
would be, u2

i ðr; hÞ � /2
i ðrÞE cos h. The boundary conditions for /2

i

would be the same as those specified for the complete elec-
trophoresis problem in (32).

The function h2ðrÞ, like h1ðrÞ, will satisfy an equation analogous

to (26) with g2ðrÞ now defined in terms of /2. The function h2ðrÞ
can thus be evaluated to yield the following result,

h2 rð Þ ¼ � 1
30

Z 1

r
r3 � 5rx2
� �

g2 xð Þ dx

� 3a
4

� 2
9a

Z r

a
x3 g2 xð Þ dx� 1

9

Z 1

a
a2 � 3x2
� �

g2 xð Þ dx

 �

þ 1
60r2

Z 1

a
5a3x2 � 3a5� �

g2 xð Þ dx�
Z r

a
2x5g2 xð Þ dx


 �
ðE:8Þ
with the force, F2, given as,

F2 ¼ 6pgaE 1
9a

Z 1

a
a3 þ 2x3 � 3ax2
� �

g2ðxÞ dx

 �

: ðE:9Þ
E.3. Superposition

Under the assumption of linear electrophoresis, the total force
acting on the particle will be F1 þ F2, which can be expressed as,

F1 þ F2 ¼ �6pgaU þ 2pg
3

Z
a
a3 þ 2x3 � 3ax2
� �

g1 xð ÞU
E
þ g2 xð Þ

� 	
dx :

ðE:10Þ
Since the problem is linear in terms of the ui function, one can
decompose, ui ¼ u1

i þu2
i . This would then imply that,

/iðxÞ ¼ /1
i ðxÞ

U
E
þ /2

i ðxÞ ðE:11aÞ

gðxÞ ¼ g1ðxÞU
E
þ g2ðxÞ: ðE:11bÞ

Hence, by comparing the second term of (E.10) to (33), we note that
it is proportional to the mobility of the colloidal particle, lm. Mak-
ing use of the expression for mobility from Overbeek (47), given by
(33) as well as the equilibrium condition, F1 þ F2 ¼ 0, we can
obtain,

F1 þ F2 ¼ �6pgaU þ 4p�Ea
Z a

1
n dx ¼ 0: ðE:12Þ
Appendix F. The velocity maximum: a direct consequence of
mass conservation

The velocity field for a sphere as presented in Fig. 2 not only
exhibited a 1=r3 behavior, but also showed a maximum in the tan-
gential velocity uh, that is most clearly observable at h ¼ p=2. We
will now perform a mass balance on a system consisting of the
sphere with radius a, a flat surface S and a hemi-spherical surface
S0 as illustrated in Fig. 7 in order to explain this maximum.

Before investigating the full solution of the velocity components
in (48a, 48b), let us first investigate their limiting form as ja ! 1.
In this limit, n in (48a, 48b) decays so rapidly, that x can be replaced
by a and then with the help of (47), the velocity (46) is recovered.
Suppose we are in a reference frame in which the sphere is moving
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with velocity U, then the flux entering the volume bounded by S
and S0 due to the moving sphere is simply pa2U. The terms in
U cos h and U sin h in (46) are not present in this frame of reference
and the total flux going through surface S (where h ¼ p=2) is:Z

S
u � n dS ¼ �

Z 1

a
U

a3

2r3
2prdr ¼ �a3Up

Z 1

a

1
r2

dr ¼ �pa2U;
ðF:1Þ

which is equal but opposite in sign to the flux generated by the
moving sphere. The total flux is thus zero as it should be. The con-
tribution on the half spherical surface S0 is zero, since

R
S0 urdS ¼ 0

when R ! 1 and ur decays as 1=R3 while the surface grows as
R2, resulting in a zero flux at large R. Thus, the contribution to the
flux only originates from the surface S. This means that the tangen-
tial velocity uh must exhibit a maximum. This maximum can easily
be calculated from (46) and is U=2 (or 3U=2 if we go back to the ref-
erence frame in which the sphere is stationary) and appears very
close to r ¼ a. In the ja ! 1 limit, the double layer has a near zero
thickness and thus the velocity decays from its maximum very
rapidly to zero at r ¼ a.

But will the same maximum velocity still occur for a general ja
value? In order to investigate this more general case, we take as the
starting point equation (48b). If we take again the frame of refer-
ence in which the sphere is moving, the flux entering the volume
bounded by S and S0 due to the moving sphere is still pa2U. The
mass flux through surface S is given byZ
S
u � n dS ¼ �

Z 1

a
ðuh � UÞ2 p rdr: ðF:2Þ

The term uh � U can be expressed as

uh � U ¼ �2�E
3g

Z r

a
n dxþ 1

2r3

Z r

a
x3 n dxþ

Z a

1
n dx


 �

¼ �2�E
3g

Z r

1
n dxþ 1

2r3

Z r

a
x3n dx


 �
;

ðF:3Þ

where (47) was used in the first equality to replace U. Then (F.2)
becomesZ

S
u � ndS ¼ 4p�E

3g

Z 1

a
r
Z r

1
n dxþ 1

2r2

Z r

a
x3n dx


 �
dr

¼ 4p�E
3g

1
2
r2
Z r

1
n dx


 �1
a

�
Z 1

a

1
2
r2n dr

�

þ � 1
2r

Z r

a
x3n dx


 �1
a
�
Z 1

a
� 1
2x

x3n dx



ðF:4Þ

where in the last equality we have used partial integration for both
double integrals. The third term in the last expression is zero, and
the second and last term cancel each other out. Then only the first
term remains asZ
S
u � n dS ¼ �4p�E

3g
1
2
a2
Z a

1
n dx ¼ �pa2U: ðF:5Þ
This is the same result as obtained before. The integral over the
surface S0 still does not give any contribution. Thus the sphere
pushes a certain flux of fluid forward and exactly the opposite
amount of fluid must leave through the surface S. This will auto-
matically lead to a maximum in the velocity uh. This looks appar-
ently obvious, but this does not always need to be the case, for
example, this is not the case for a classical Stokes flow sphere.

In summary, the special flow conditions around an elec-
trophoretic sphere, the 1=r3 behavior, cause a velocity maximum,
something which does not occur in classical Stokes flow. This
was shown here by doing a simple, (but tedious) mass balance.
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