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a b s t r a c t 

The problem of the fictitious frequency spectrum resulting from numerical implementations of the boundary 

element method for the exterior Helmholtz problem is revisited. When the ordinary 3D free space Green’s func- 

tion is replaced by a modified Green’s function, it is shown that these fictitious frequencies do not necessarily 

have to correspond to the internal resonance frequency of the object. Together with a recently developed fully 

desingularized boundary element method that confers superior numerical accuracy, a simple and practical way 

is proposed for detecting and avoiding these fictitious solutions. The concepts are illustrated with examples of a 

scattering wave on a rigid sphere. 
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. Introduction 

Recent studies of the boundary integral formulation of problems in
ime domain acoustic scattering [1] , wave propagation in periodic struc-
ures [2] , dynamic elasticity using the Helmholtz decomposition method
3] and direct field-only formulation of computational electromagnet-
cs [4–6] , all rely on finding accurate and efficient methods of solving
he scalar Helmholtz equation. In this regard, it is timely to re-visit the
oundary integral method of solving the Helmholtz equation. 

It is well-known that the solution of the Helmholtz equation for ex-
ernal problems obtained by the boundary integral method, BIM, (or
ts numerical counterpart: boundary element method BEM) can become
on-unique at certain frequencies (similar problems can occur for multi-
ly connected domains [7] ). At these so called fictitious [8] or irregular
9] frequencies, the non-physical solutions that arise are said to corre-
pond to the internal resonance frequencies of the scatterer. Although
here are established methods, most notably due to Schenck [10] and
o Burton and Miller [11] that have been developed to eliminate such
ctitious solutions, these methods require numerical tools beyond the
IM. For instance, the solution of Schenck requires additional numeri-
al algorithms such as least squares minimization and that of Burton and
iller leads to hypersingular integral equations [12–15] . Here we show

hat these fictitious solutions, when they do occur, and their correspond-
ng frequencies in the BIM context depend not only on the shape of the
∗ Corresponding author at: Department of Chemical Engineering, The University of

E-mail address: qiang.sun@rmit.edu.au (Q. Sun). 

ttps://doi.org/10.1016/j.enganabound.2019.06.021 

eceived 29 January 2019; Received in revised form 21 May 2019; Accepted 11 Jun

955-7997/© 2019 Elsevier Ltd. All rights reserved. 
bject but also on the choice of Green’s function so that these frequen-
ies do not necessarily occur at the corresponding internal resonance
requencies of the object. This observation together with the fact that
ecently developed desingularized BIM can give sufficiently high preci-
ion that the solution is unaffected by such fictitious solutions until the
requency is within about 1 part in 10 4 of a fictitious value. We shall
emonstrate how this can be exploited to detect the presence of a fic-
itious solution. Furthermore, the fictitious frequency spectrum can be
hanged by using different Green’s functions in the BIM. Taken together,
hese developments provide a practical way to detect and eliminate the
ffects of the fictitious solution without additional numerical effort or
djustable parameters beyond the toolkit of the BIM. 

The introduction of a modified Green’s function also poses a number
f interesting but unanswered questions that can provide stimulus for
urther theoretical development. 

To provide physical context to our discussion on how the fictitious
olution arises in the solution of the Helmholtz wave equation using the
oundary integral method, we consider the example of the scattering of
n incident acoustic wave by an object with boundary S in an infinite
edium. In the external domain, assumed to be homogeneous, scattered

coustic oscillations are described by the Helmholtz scalar wave equa-
ion in the frequency domain: 

 

2 𝜙 + 𝑘 2 𝜙 = 0 , (1)
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here 𝑘 = 𝜔 ∕ 𝑐 is the wave number, 𝜔 the angular frequency and c the
peed of sound. The (complex) acoustic potential, 𝜙, is related to the
cattered velocity: 𝒖 = ∇ 𝜙. Since Eq. (1) is elliptic, the Green’s function
ormalism can be used to express the solution as that of a boundary
ntegral equation [16,17] 

( 𝒙 0 ) 𝜙( 𝒙 0 ) + ∫𝑆 

𝜙( 𝒙 ) 
𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 ) 

𝜕𝑛 
d 𝑆( 𝒙 ) = ∫𝑆 

𝜕𝜙( 𝒙 ) 
𝜕𝑛 

𝐺( 𝒙 , 𝒙 0 |𝑘 ) d 𝑆( 𝒙 ) , (2)

here 

( 𝒙 , 𝒙 0 |𝑘 ) = 

𝑒 𝑖𝑘𝑟 

𝑟 
(3)

s the 3D Green’s function with 𝑟 = ‖𝒙 − 𝒙 0 ‖ and 𝜕 / 𝜕 n ≡n ·∇ is the nor-
al derivative where the normal vector n points out of the domain, and

hus into the object. The position vector x in Eq. (1) is located on the
oundary S . If the observation point x 0 is located outside the object (i.e.
ithin the solution domain), the solid angle 𝑐 = 4 𝜋, if x 0 is located inside

he object (i.e. outside the solution domain), 𝑐 = 0 , and if x 0 is located on
he surface, S , of the object and that point on S has a continuous tangent
lane, then and only then 𝑐 = 2 𝜋, otherwise the value of the solid angle
 is determined by the local surface geometry at x 0 . 

The advantages of using Eq. (2) over other methods such as using fi-
ite difference in the 3D domain are the obvious reduction in the spatial
imension by one and that it is relatively easy to accommodate com-
licated shapes without deploying multi-scale 3D grids. Also the Som-
erfeld radiation condition at infinity [18] is automatically satisfied by
q. (2) . 

For the simple example of the scattering of an incoming plane wave
pecified by 𝜙inc = Φ0 𝑒 

𝑖 𝒌 ⋅𝒙 (with Φ0 a constant and ‖𝒌 ‖ = 𝑘 ) by a rigid
bject, the velocity potential, 𝜙 of the scattered wave can be found by
olving Eq. (1) . The condition of zero normal velocity on the surface is
quivalent to the boundary condition on S : 𝜕 𝜙∕ 𝜕 𝑛 = − 𝜕 𝜙inc ∕ 𝜕 𝑛 . In this
ase, the right hand side of Eq. (2) is known so this equation can be
olved for the velocity potential, 𝜙( x 0 ), with x 0 on the surface. 

We now demonstrate using this example of a Neumann problem
here 𝜕 𝜙/ 𝜕 n is given on the surface S , that there exists certain values
f 𝑘 = 𝑘 𝑓 , at which the solution 𝜙 of Eq. (2) is no longer unique. This
ccurs at those frequencies k f whereby a non-trivial function f can exist
o satisfy the following homogeneous equation: 

( 𝒙 0 ) 𝑓 ( 𝒙 0 |𝑘 𝑓 ) + ∫𝑆 

𝑓 ( 𝒙 |𝑘 𝑓 ) 𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 𝑓 ) 
𝜕𝑛 

d 𝑆 = 0 . (4)

onsequently Eq. (2) will admit a solution of the form 𝜙 + 𝑏𝑓 on the sur-
ace S , where b is an arbitrary constant and f , the fictitious solution, also
atisfies the integral equation with zero normal derivative on S . Thus
he fictitious frequency, k f and the corresponding fictitious solution,
 ( x | k f ) are the eigenvalue and eigenfunction of Eq. (4) , respectively.
he existence of fictitious frequencies in boundary integral methods for
elmholtz equations was already identified by Helmholtz in 1860 [19] ,
ho said on page 24 (see also page 29 of his book [20] ), while discussing

he integral equation, Eq. (2) : 

...aber für eine unendlich grosse Zahl von bestimmten Werthen von k
für eine jede gegebene geschlossene Oberfläche Ausnahmen erleidet.
Es sind dies nämlich diejenigen Werthe von k , die den eigenen Tönen
der eingeschlossenen Luftmasse entsprichen. 

This text was more or less translated directly by Rayleigh [21] in his
ook: 

For a given space S there is .... a series of determinate values of k , cor-
responding to the periods of the possible modes of simple harmonic
vibration which may take place within a closed rigid envelope hav-
ing the form of S . With any of these values of k , it is obvious that
𝜙 cannot be determined by its normal variation over S , and the fact
that it satisfies throughout S the equation ∇ 

2 𝜙 + 𝑘 2 𝜙 = 0 . 
107 
Note that the internal resonance problem corresponds to a problem
ith 𝜙 = 0 on the surface, S and g ≡ 𝜕 𝜙/ 𝜕 n ≠0 in Eq. (2) , is given by 

𝑆 

𝑔( 𝒙 |𝑘 𝑓 ) 𝐺( 𝒙 , 𝒙 0 |𝑘 𝑓 ) d 𝑆 = 0 , (5)

hich is different from Eq. (4) . It is not immediately obvious that
qs. (4) and (5) will produce the same fictitious spectrum and in fact,
s we shall see later in Section 4 , this is not always the case. 

In theory, the fictitious solution only appears if k is exactly equal to
 f so that it is not an issue in analytic work nor if computations have
nfinite numerical precision. With the advent of numerical techniques
n the late 1960’s and early 1970’s, the boundary integral equation was
ransformed into the boundary element method (BEM). The issue of fic-
itious frequencies now resurfaced once more in the numerical imple-
entations. In the conventional implementation of the BEM [17] , the

urface S is represented by a mesh of planar area elements and the un-
nown value of 𝜙( x ) on the surface is assumed to be a constant within
ach planar element and only varies from element to element. The sur-
ace integral is thus converted to a linear system in which the values of 𝜙
t different area elements are unknowns to be solved. The practicality of
iscretization where the representation of the surface S by a finite num-
er of planer elements and round off errors in numerical computation
ean that effects of the fictitious solution begin to be important, not

nly when 𝑘 = 𝑘 𝑓 , but even when the value of k is near k f . For instance,
n a conventional implementation of the BEM, the apparent location of
he fictitious frequency, k f can be in error because of the approximation
nvolved in representing the actual surface by a set of planar elements.
hus the mean relative error can exceed 100% when k is within 1–2% of
he actual fictitious frequency (see Fig. 1 for examples of a sphere with
adius R at kR ≈𝜋 and kR ≈2 𝜋). Since the values of k f are not known a
riori for general boundary shapes, S , the accuracy of any BEM solution
f the Helmholtz equation can become problematic. 

Two popular methods to deal with this issue that are still in use to-
ay are due to Schenck [10] and to Burton and Miller [11] . Schenck
ntroduced the CHIEF method whereby the BEM solution is evaluated
t additional internal points inside the scatterer with the requirement
hat such values must vanish. This results in an over-determined matrix
ystem that requires a least square solution entailing considerable addi-
ional computational time, especially for larger systems. However, the
HIEF method does not stipulate how many CHIEF points should be used
nd where they should be placed. The Burton and Miller [11] method
nvolves taking the normal derivative of Eq. (2) , multiplying it by an ap-
ropriate complex number and then adding it to the original equation.
t is claimed that Eq. (2) and its normal derivative have different reso-
ance spectra and this therefore solves the fictitious frequency problem.
ue to the use of the normal derivative of Eq. (2) , the Burton and Miller
ethod involves having to deal with strongly singular kernels. This ap-
roach therefore has the disadvantage that it requires special quadrature
ules for higher order elements [22] . 

The issue of fictitious solutions is revisited in this article. Clearly, if
 numerical implementation of the BEM is not sensitive to the fact that
 may be close to a fictitious value k f , then the effects of a fictitious
olution will be minimized. Furthermore, the spectrum of fictitious fre-
uencies does not only depend on the shape of the object, but also on
he choice of the Green’s function. As the classical free space Green’s
unction or fundamental solution of Eq. (3) is not the only choice that
an be used, it can be replaced by other fundamental solutions, as long
s they are analytic in the external domain and they satisfy the Som-
erfeld radiation condition [23] . Thus using a different Green’s func-

ion will shift the spectrum of fictitious frequencies relative to a given
 value. Although the theoretical framework of modified Green’s func-
ions has been discussed extensively in the literature [23–27] , only very
ittle attention appears to have been paid to the actual implementa-
ion, for example, the cases of Neumann boundary condition and of
irichlet boundary condition were considered in two nearly identical
apers [28,29] . In this article we address this issue. 
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Fig. 1. Comparison of the mean error defined in Eq. (12) as a function of the frequency near a resonant values (a) 𝑘 𝑓 𝑅 = 𝜋 and (b) 𝑘 𝑓 𝑅 = 2 𝜋 obtained using the 

conventional BEM (CBIM) approach and the desingularized BEM formulation (BRIEF). When using CBIM, the sphere surface is discretised with 2000 flat elements 

(DOF = 2000); while using BRIEF, the sphere surface is discretised with 980 quadratic elements connected by 1962 nodes (DOF = 1962). In the inset of (b), we see 

that the solution obtained using the BRIEF is unaffected by the fictitious solution when kR is with 1 part in 10 4 of k f R . 
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The development of our suggestion to eliminate the fictitious fre-
uency problem in BEM solutions of the external Helmholtz equation
s organized as follows. In Section 2 , we outline how a desingularized
mplementation of the BEM that is not affected by a fictitious solution
nless k is very close to a fictitious value k f , can be used to decide if
n BEM solution has been adversely affected by the presence of a ficti-
ious component. This framework also enables us to implement higher
rder elements with ease. In Section 3 the spectrum of fictitious fre-
uencies and corresponding solutions are studied as the solution of an
omogeneous integral equation. In Section 4 , a modified Green’s func-
ion is introduced to show how it can be used to change the spectrum of
ctitious frequencies. Thus by employing the desingularized BEM, it is
ometimes easy to determine by comparing the solutions obtained from
sing the conventional Green’s function in Eq. (3) , and from a modified
reen’s function whether the solutions have been adversely affected by

he presence of a solution associated with a fictitious frequency. Some
iscussion and the conclusion follow in Sections 5 and 6 , respectively. 

. Minimize the proximity effects to a fictitious frequency 

As noted earlier, discretization and round off errors can cause the
purious solution to become important when the wave number happens
o be near a fictitious value. However, since the spectrum of fictitious
requencies is not generally known a priori , the numerical accuracy of a
olution obtained by the BEM becomes uncertain. Therefore, to amelio-
ate the fictitious frequency problem, it is valuable to have an accurate
mplementation of the BEM that will not produce a fictitious compo-
ent to the solution unless the frequency k is extremely close to an un-
nown fictitious frequency. This is provided by a recently developed
ully desingularized boundary element formulation [30,31] , a concept
hat was first introduced for the BEM solution of the Laplace equation
y Klaseboer et al. [32] . In this framework, the traditional singularities
f the Green’s function and its normal derivative in the BEM integrals
re removed analytically from the start. 

High accuracy can be achieved in this approach firstly due to the
act that all elements (including the previously singular one) are treated
n the same manner with the same Gaussian quadrature scheme. The
econd reason for the high accuracy lies in the fact that instead of using
lanar area elements in which the unknown functions are assumed to be
onstant within such elements, the unknowns are now function values
t node points on the surface, and the surface is represented more ac-
urately by quadratic area elements determined by these nodal points.
108 
n calculating integrals over the surface elements, variation of the func-
ion value within each element is also estimated by quadratic interpo-
ation from the nodal values. The numerical implementation is straight-
orward, once the linear system is set up, the usual linear solvers can
e used. The thus obtained framework is termed Boundary Regularized
ntegral Equation Formulation (or BRIEF in short [31] ). 

Here is a brief description of the desingularized boundary element
ormulation, details of which are given in previous works [30,31] . As-
ume we have a known analytic solution, Ψ( x ), of the Helmholtz equa-
ion in Eq. (1) which then also satisfies Eq. (2) as: 

Ψ( 𝒙 0 ) + ∫𝑆 

Ψ( 𝒙 ) 
𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 ) 

𝜕𝑛 
d 𝑆 = ∫𝑆 

𝜕Ψ( 𝒙 ) 
𝜕𝑛 

𝐺( 𝒙 , 𝒙 0 |𝑘 ) d 𝑆. (6)

ithout loss of generality, we can demand that this solution further
atisfies the following two point-wise conditions when x 0 is on surface
 : 

lim 

 →𝒙 0 
Ψ( 𝒙 ) = 𝜙( 𝒙 0 ) (7)

lim 

 →𝒙 0 

𝜕Ψ( 𝒙 ) 
𝜕𝑛 

= 

𝜕𝜙( 𝒙 0 ) 
𝜕𝑛 

(8)

 convenient but not the only possible choice is a combination of two
tanding waves, one with the node of the wave and the other with the
ntinode situated at x 0 , both aligned with n ( x 0 ) [30] as: 

( 𝒙 ) = cos 
(
𝑘 𝒏 ( 𝒙 0 ) ⋅ [ 𝒙 − 𝒙 0 ] 

)
𝜙( 𝒙 0 ) 

+ 

1 
𝑘 
sin 

(
𝑘 𝒏 ( 𝒙 0 ) ⋅ [ 𝒙 − 𝒙 0 ] 

) 𝜕𝜙( 𝒙 0 ) 
𝜕𝑛 

. (9) 

ubstituting Eq. (9) in Eq. (6) and subtracting the result from
q. (2) gives: 

 𝜋𝜙( 𝒙 0 ) + ∫𝑆 

[
𝜙( 𝒙 ) − Ψ( 𝒙 ) 

] 𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 ) 
𝜕𝑛 

d 𝑆 

= ∫𝑆 

[ 
𝜕𝜙( 𝒙 ) 
𝜕𝑛 

− 

𝜕Ψ( 𝒙 ) 
𝜕𝑛 

] 
𝐺( 𝒙 , 𝒙 0 |𝑘 ) d 𝑆. (10) 

he conditions from Eqs. (7) and (8) guarantee that the terms in […] on
oth sides of Eq. (10) cancel out the singularities of the Green’s function
nd its derivative by noting that 

𝜕Ψ( 𝒙 ) 
𝜕𝑛 

= 𝒏 ⋅ ∇Ψ = − 𝑘 𝒏 ( 𝒙 ) ⋅ 𝒏 ( 𝒙 0 ) sin 
(
𝑘 𝒏 ( 𝒙 0 ) ⋅ [ 𝒙 − 𝒙 0 ] 

)
𝜙( 𝒙 0 ) 

+ 𝒏 ( 𝒙 ) ⋅ 𝒏 ( 𝒙 0 ) cos 
(
𝑘 𝒏 ( 𝒙 0 ) ⋅ [ 𝒙 − 𝒙 0 ] 

) 𝜕𝜙( 𝒙 0 ) 
, (11) 
𝜕𝑛 
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Table 1 

Values of the fictitious frequency that correspond to scattering 

by a rigid sphere with Neumann boundary condition. The three 

lowest values that are the solutions to the eigenvalue equation 

at each m value given in the right most column are given to 6–7 

significant figures. 

m k f R Equation: x ≡ k f R 

1 st 2 nd 3 rd 

0 3.14159 6.28319 9.424778 tan 𝑥 = 0 
1 4.49341 7.72525 10.90412 tan 𝑥 = 𝑥 
2 5.763459 9.095011 12.32294 tan 𝑥 = 3 𝑥 

3− 𝑥 2 

3 6.987932 10.41712 13.69802 tan 𝑥 = 15 𝑥 − 𝑥 
3 

15−6 𝑥 2 

4 8.182561 11.70491 15.03966 tan 𝑥 = 105 𝑥 −10 𝑥 3 

105−45 𝑥 2 + 𝑥 4 

5 9.355812 12.96653 16.35471 tan 𝑥 = 945 𝑥 −105 𝑥 3 + 𝑥 5 

945−420 𝑥 2 +15 𝑥 4 
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Fig. 2. Real and imaginary part of the scattered potential 𝜙 at the back and 

at the front of the sphere with the desingularized boundary element method 

showing the fictitious response around 𝑘 𝑓 𝑅 = 4 . 49341 , from 𝑘𝑅 = 4 . 490 to 𝑘𝑅 = 
4 . 496 . A quadratic mesh was used with 1442 nodes and 720 elements. 
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∫  

s

s  
nd the fact that n ( x ) · n ( x 0 ) →1, when x approaches x 0 for any smooth
urface. Note that the solid angle in Eq. (10) has been eliminated, but a
erm with 4 𝜋𝜙( x 0 ) appears due to the contribution of the integral over
 surface at infinity because of the particular choice of Eq. (9) . Also note
rom Eq. (9) that Ψ is a different function for each node on the surface. It
s noted that other desingularization methods based on entirely different
oncepts exist as well in the literature [33] . 

We now consider the example of solving the scattering problem by
 solid sphere with radius R for which the spectrum of the resonant
requencies is known. A list of the values of the lower resonant frequen-
ies and the equation that generates them are given in Table 1 where
e see that two of the lowest fictitious frequencies are at 𝑘 𝑓 𝑅 = 𝜋 and
 𝑓 𝑅 = 2 𝜋. With the choice of Eq. (3) for the Green’s function, the spec-
rum of the fictitious frequencies of the external problem coincides with
he spectrum of the resonant frequencies of the corresponding internal
roblem. In Fig. 1 , we quantify the behaviour of the BEM solution for
R values in the neighborhood these 2 fictitious values in terms of the
ean square error defined by 

ean Error = 

√ ∑DOF 
𝑖 =1 

(|𝜙𝑖 
num 

| − |𝜙𝑖 
ana |)2 

DOF 
, (12)

here 𝜙𝑖 
num 

and 𝜙𝑖 
ana are, respectively, the numerical (BEM) and ana-

ytic solution at node i . The number of nodes used in the desingularized
EM, the Degree of Freedom (DOF), is around 2000. We see that the
ean squared error even in the small neighborhoods 0.94 𝜋 < kR < 1.06 𝜋

nd 1.94 𝜋 < kR < 2.06 𝜋 around the 2 fictitious frequencies is extremely
ocalized. In fact, the BEM solutions obtained by the desingularized
EM [30,31] are unaffected by fictitious solutions until the frequency is
ithin about 1 part in 10 4 of a fictitious value. The results for the con-
entional boundary integral method (CBIM) are also shown. Note that
he fictitious frequency predicted by the CBIM is significantly higher
han the known theoretical value in these examples presumably because
f the effect of approximating the sphere surface by a finite set of planar
lements. 

Similar remarks apply for the behavior of the desingularized BEM
olution in the neighborhood of the lowest 𝑚 = 1 fictitious value 𝑘 𝑓 𝑅 =
 . 49341 (see Table 1 ) shown Fig. 2 . Here we show the values of the real
nd imaginary parts of the solution of nodes at the front and at the back
f the sphere. The effect of the fictitious solution can only be discerned
n the very narrow window 4.493 < kR < 4.494 around 𝑘 𝑓 𝑅 = 4 . 49341 .
ut outside this window, there is no noticeable effect due to kR being
lose to the fictitious value, k f R . For example, if at the values 𝑘𝑅 = 3 . 140
nd 𝑘𝑅 = 4 . 490 as given in Kinsler [16] , page 518, the desingularized
EM (BRIEF) was used to solve the Helmholtz equation, the solution
ould not register as giving fictitious results. As we shall see below, if
 sweep of 10,000 frequencies from 𝑘𝑅 = 0 to 10 is performed in steps
f 0.001 one would miss many fictitious solutions (since a step size of
.001 would not be precise enough to detect all of them). 
109 
From the above results, we can conclude that the effects of resonance
re not observed until one is extremely close to the resonant frequency
n our desingularized BEM [30,31] . 

. The genesis of fictitious solutions 

In the example of acoustic scattering by a rigid scatterer that was
iscussed in the previous section, 𝜕 𝜙/ 𝜕 n on the surface of the scatterer
s specified (Neumann boundary conditions), and the variation of 𝜙 on
he surface is the unknown to be found. At certain frequencies however,
nstead of the expected 𝜙, another function say, 𝜙 + 𝑓 emerges. The fre-
uencies at which this occurs, are often said to correspond to the internal
esonance frequency of the same object. The Fredholm integral theory
as been used to explain the occurrence of the fictitious frequency and
elates the fictitious frequency to the corresponding internal resonance
requency of the object [34] . However, by working directly with the
ntegral equation that determines the fictitious solution, f , it is easy to
emonstrate the origin of the fictitious solution. 

First we use the example of scattering on a rigid sphere of radius, R ,
o demonstrate how the fictitious solution and frequency is determined
y the Green’s function and the boundary shape. For simplicity, we con-
ider the solution of the Helmholtz equation outside a sphere that has
zimuthal symmetry for which the solution on the sphere surface can
e expanded in terms of Legendre polynomials of order m, P m 

(cos 𝜃) to
ccount for variations in the polar angle, 𝜃. In this case, the fictitious
requencies for different m values are known. We consider in detail the
ctitious solution, f , and the fictitious frequency, k f for the cases with
 = 0 and 𝑚 = 1 . 

.1. Case: 𝑓 ∼ 𝑃 0 ( cos 𝜃) , a constant, 𝑚 = 0 

In this case, the fictitious solution, f is a constant, being proportional
o P 0 (cos 𝜃), on the surface of the sphere of radius, R and 𝑐( 𝒙 0 ) = 2 𝜋, then
q. (4) , at the fictitious wave number, k f , becomes: 

 𝜋 + ∫𝑆 

𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 𝑓 ) 
𝜕𝑛 

d 𝑆( 𝒙 ) = 0 . (13)

he integral of 𝜕 G ( x , x 0 | k )/ 𝜕 n , can be evaluated (see Appendix A ) to
ive 

𝑆 

𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 𝑓 ) 
𝜕𝑛 

d 𝑆( 𝒙 ) = −2 𝜋
{ 

𝑒 𝑖 2 𝑘 𝑓 𝑅 + 

1 
𝑖𝑘 𝑓 𝑅 

[
1 − 𝑒 𝑖 2 𝑘 𝑓 𝑅 

]} 

(14)

o that Eq. (13) is equivalent to 

in ( 𝑘 𝑓 𝑅 )[1 − 𝑖𝑘 𝑓 𝑅 ] = 0 . (15)
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2  
hus the spectrum of fictitious frequencies corresponding to a constant
ctitious function, f ∼P 0 (cos 𝜃), on the surface with 𝑚 = 0 is 

in ( 𝑘 𝑓 𝑅 ) = 0 or 𝑘 𝑓 𝑅 = 𝜋, 2 𝜋, 3 𝜋… . (16)

ee also the first row of Table 1 . In the external 3D domain, the ficti-
ious solution f ( x ) that emerges numerically from the BEM solution cor-
esponding to 𝑘 𝑓 𝑅 = 𝜋 is: 𝑓 ( 𝒙 ) = 𝑐 3 𝑒 

𝑖𝑘 𝑓 ‖𝒙 ‖∕ ‖𝒙 ‖, where c 3 is an arbitrary
onstant and the origin of x taken at the origin of the sphere. 

.2. Case: 𝑓 ∼ 𝑃 1 ( cos 𝜃) , 𝑚 = 1 

A similar calculation to the one given in Section 3.1 , for a fictitious
unction, f ∼P 1 (cos 𝜃), for 𝑚 = 1 leads to (see Appendix B ) 

an ( 𝑘 𝑓 𝑅 ) = 𝑘 𝑓 𝑅. (17)

he first few solutions to Eq. (17) are given in the 𝑚 = 1 row of Table 1 .
gain, these values are equal to those of the corresponding internal
igenvalue problem, yet they have been derived here purely from a
oundary integral equation perspective. Fictitious frequencies for higher
rder values of m can also be obtained in a similar manner. Table 1 con-
ains all fictitious frequencies below 𝑘 𝑓 𝑅 = 10 for a sphere. 

The above derivation that starts from the homogeneous integral
quation, Eq. (4) demonstrates the role of the Green’s function and the
oundary shape in determining the spectrum of fictitious frequencies
nd solutions for acoustic scattering by a solid sphere. We can now show
ow to modify the fictitious frequency spectrum using different Green’s
unctions. 

. The modified Green’s function 

Different forms of the Green’s function can be used to construct the
ntegral equation of the BEM as long as they satisfy the same differential
quation in the solution domain and the Sommerfeld radiation condition
t infinity as the free space Green’s function. A simple modified Green’s
unction, G mod , can be taken as 

 mod ( 𝒙 , 𝒙 0 |𝑘 ) ≡ 𝐺( 𝒙 , 𝒙 0 |𝑘 ) + Δ𝐺( 𝒙 , 𝒙 0 |𝑘 ) 
= 𝐺( 𝒙 , 𝒙 0 |𝑘 ) + 𝑐 2 𝐺( 𝒙 , 𝒂 |𝑘 ) (18)

here the origin is taken to be the center of the sphere and the vector
 corresponds to a point inside the sphere (| a | < R ) with c 2 an arbitrary
onstant. The integral equation that implements the BEM with G mod 

ecomes: 

𝜙( 𝒙 0 ) + ∫𝑆 

𝜙( 𝒙 ) 
[ 
𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 ) 

𝜕𝑛 
+ 𝑐 2 

𝜕𝐺( 𝒙 , 𝒂 |𝑘 ) 
𝜕𝑛 

] 
d 𝑆( 𝒙 ) 

= ∫𝑆 

𝜕𝜙( 𝒙 ) 
𝜕𝑛 

[
𝐺( 𝒙 , 𝒙 0 |𝑘 ) + 𝑐 2 𝐺( 𝒙 , 𝒂 |𝑘 ) ] d 𝑆( 𝒙 ) . (19)

he additional term G ( x , a | k ) although singular at the location a , does
ot create any singular behavior on the surface S , since ‖𝒙 − 𝒂 ‖ never
ecomes zero (see also Fig. 3 ). The modified Green’s function, G mod ( x ,
 0 | k ), also satisfies the Sommerfeld radiation condition at infinity. 

.1. Case: 𝑓 ∼ 𝑃 0 ( cos 𝜃) , a constant, 𝑚 = 0 with modified 𝐺 mod 

Let us now investigate how the modified Green’s function defined in
q. (18) and (19) can affect the spectrum of fictitious frequencies that
s now determined by 

 𝜋 + ∫𝑆 

[ 
𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 𝑓 ) 

𝜕𝑛 
+ 

𝜕𝐺( 𝒙 , 𝒂 |𝑘 𝑓 ) 
𝜕𝑛 

] 
d 𝑆( 𝒙 ) = 0 . (20)

valuating the integrals (see Appendix C ) then gives the equation that
etermines the spectrum of fictitious frequencies 

in ( 𝑘 𝑓 𝑅 ) + 𝑐 2 ( 𝑅 ∕ 𝑎 ) sin ( 𝑘 𝑓 𝑎 ) = 0 . (21)

hus the original fictitious frequency spectrum given by sin ( 𝑘 𝑓 𝑅 ) =
 in Eq. (16) due to the use of the unmodified Green’s function in
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ig. 4 a has been replaced by a different spectrum given by Eq. (21) in
ig. 4 b. Furthermore, the precise value of a is not critical. In fact, since
in ( k f a )/ a → k f as a →0, we can put 𝒂 = 𝟎 , that is, at the center of the
phere. In the results shown in Fig. 4 , we have taken 𝑎 = 0 and 𝑐 2 = −1 .

For 𝑚 = 0 , Eq. (21) will in general assure that the new fictitious fre-
uency spectrum obtained with the modified Green’s function, G mod will
e different from that obtained with the original Green’s function, G .
owever, there are still ways for which this may not be true. 

• Firstly, it is still possible that both sin ( k f R ) and sin ( k f a ) vanish,
that is, the original spectrum and the modified spectrum contain
common values. An example of such a case can be observed when
𝑘 𝑓 𝑅 = 2 𝜋 and 𝑎 = 0 . 5 𝑅 (thus 𝑘 𝑓 𝑎 = 𝜋 and sin ( 𝑘 𝑓 𝑎 ) = 0 ). This was
tested numerically and indeed for these parameters there is still
a spurious solution corresponding to the common fictitious fre-
quency values in the 2 spectra as illustrated in Fig. 5 . 

• A second way in which fictitious behaviour can still be observed,
is when for particular parameters of k f , R, a and c 2 , Eq. (21) is
still zero. An instance of such fictitious behavior can be observed
for the parameters 𝑘 𝑓 𝑅 = 0 . 5 , 𝑎 = 0 . 3 𝑅 and 𝑐 2 = −0 . 9624563 . The
fictitious solution for these parameters is about 100 times the
theoretical value in a numerical test. It is interesting to note that a
fictitious frequency now appears at 𝑘 𝑓 𝑅 = 0 . 5 , a frequency value
that was previously free of fictitious behavior. This is an example
of a frequency shift of the lowest fictitious behavior from 𝑘 𝑓 𝑅 = 𝜋

to a lower frequency of 𝑘 𝑓 𝑅 = 0 . 5 . However, if 𝑐 2 = −0 . 9620000
is chosen, thus only slightly different from 𝑐 2 = −0 . 9624563 , no
fictitious behavior is observed at all (see Fig. 6 ). 

• Finally, the location of the point a should not be chosen too close
to the boundary S . In order to investigate this, in Fig. 7 , the po-
tentials in front and at the back of the sphere are shown, while
the location of a of the modified Green’s function is varied from
𝑎 = 0 . 0 to 1.0. From the figure it can be deduced that a should not
be placed closer to the boundary S than roughly the meshsize. 

To conclude, for 𝑚 = 0 , the modified Green’s function approach can
ndeed remove the fictitious behavior of the solution. In the next section,
he 𝑚 = 1 case will be investigated. 

.2. The 𝑚 = 1 case 

In Section 4.1 , it was shown that for 𝑓 = constant (or 𝑚 = 0 ), the
odified Green’s function can indeed remove the fictitious solutions. A

imilar proof can now be attempted for 𝑚 = 1 . In analogy to Eq. (B.1) ,
t must now be shown that 

 𝜋𝑅 + ∫𝑆 

𝑧 

[ 
𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 𝑓 ) 

𝜕𝑛 
+ 𝑐 3 

𝜕𝐺( 𝒙 , 𝒂 |𝑘 𝑓 ) 
𝜕𝑛 

] 
d 𝑆( 𝒙 ) = 0 . (22)
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Fig. 4. (a) Results obtained with the desingularized boundary element method [30,31] with a classical free space Green’s function, Eq. (3) , with 720 six node 

quadratic elements and 1442 nodes. The real and imaginary part of the scattered 𝜙 in front of and behind a sphere with radius R due to an incident plane wave with 

wavenumber k as a function of kR . The effect of fictitious solutions can clearly be observed as sharp peaks and correspond to fictitious frequencies listed in Table 1 . 

More data points have been used near the fictitious frequencies. (b) Results using the modified Green’s function, Eq. (18) . The fictitious responses corresponding to 

𝑘𝑎 = 𝜋, 𝑘𝑎 = 2 𝜋 and 𝑘𝑎 = 3 𝜋 are now eliminated. Besides the implementation of the modified Green’s function, the parameters used are the same as those in a). 

Fig. 5. An example where the original and modified spectrum have com- 

mon values. Here 𝑘𝑅 = 2 𝜋 is fixed and a / R is varied slightly near the value 

𝑎 ∕ 𝑅 = 0 . 5 , (thus 𝑘𝑎 = 𝜋) resulting in sin ( 𝑘 𝑓 𝑅 ) = 0 and sin ( 𝑘 𝑓 𝑎 ) = 0 simultane- 

ously in Eq. (21) and the modified Green’s function framework fails. Plotted are 

the real and imaginary part of the scattered potential 𝜙 at the nodes in front 

and at the back of the sphere. In the neighbourhood of 𝑎 ∕ 𝑅 = 0 . 5 , the solution is 

still accurate up to 2% at 𝑎 ∕ 𝑅 = 0 . 499 and 𝑎 ∕ 𝑅 = 0 . 501 . The value at 𝑎 ∕ 𝑅 = 0 . 5 
is highly erroneous at 𝜙𝐹𝑟𝑜𝑛𝑡 = 1 . 51 + 𝑖 5 . 72 and 𝜙𝐵𝑎𝑐𝑘 = 1 . 60 + 𝑖 5 . 29 (for 𝑎 = 0 , 
𝜙𝐹𝑟𝑜𝑛𝑡 = 0 . 03858 + 𝑖 0 . 1443 and 𝜙𝐵𝑎𝑐𝑘 = 0 . 1230 − 𝑖 0 . 2893 ). A quadratic mesh was 

used with 1442 nodes and 720 elements. 
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Fig. 6. Fictitious behavior when for particular parameters of k f , R, a and c 2 , 

Eq. (21) is still zero. Here we have the case 𝑘 𝑓 𝑅 = 0 . 5 and 𝑎 = 0 . 3 𝑅 and the 

parameter c 2 is varied from −0 . 963 to −0 . 962 . Only when c 2 is very close to the 

“critical ” value of 𝑐 2 = −0 . 9624563 does the solution starts to degenerate. The 

value at 𝑐 2 = −0 . 9624563 has large errors at 𝜙𝐹𝑟𝑜𝑛𝑡 = 0 . 2531 − 𝑖 8 . 352 and 𝜙𝐵𝑎𝑐𝑘 = 
−0 . 7462 − 𝑖 8 . 410 . These results were obtained with a quadratic mesh with 1442 

nodes and 720 elements. 
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hus the integral 

𝑆 

𝑧 
𝜕𝐺( 𝒙 , 𝒂 |𝑘 𝑓 ) 

𝜕𝑛 
d 𝑆( 𝒙 ) (23)

ust be determined. The framework of Eqs. (C.4) , (C.6) can be adapted
mmediately, provided that we add z in the equations. With 𝑧 = 𝑅 cos 𝛼 =
 𝑅 

2 + 𝑎 2 − 𝑟 ′2 ]∕(2 𝑎 ) : 

∫𝑆 

𝑧 
𝜕𝐺( 𝒙 , 𝒂 |𝑘 𝑓 ) 

𝜕𝑛 
d 𝑆( 𝒙 ) 

= 

2 𝜋𝑅 

𝑎 ∫
𝑅 + 𝑎 

𝑅 − 𝑎 

𝑅 

2 + 𝑎 2 − 𝑟 ′2 

2 𝑎 

[ 
− 𝑅 + 

𝑅 

2 + 𝑎 2 − 𝑟 ′2 

2 𝑅 

] 
𝑒 𝑖𝑘𝑟 

′

𝑟 ′2 
[ 𝑖𝑘𝑟 ′ − 1] d 𝑟 ′ (24) 

This integral can be shown not to be equal to zero. However, a similar
alculation for x or y instead of z , shows that due to symmetry (provided
111 
hat x 0 is still situated on the z-axis): 

𝑆 

𝑥 
𝜕𝐺( 𝒙 , 𝒂 |𝑘 𝑓 ) 

𝜕𝑛 
d 𝑆( 𝒙 ) = ∫𝑆 

𝑦 
𝜕𝐺( 𝒙 , 𝒂 |𝑘 𝑓 ) 

𝜕𝑛 
d 𝑆( 𝒙 ) = 0 (25)

rom this we can conclude that, unfortunately, the fictitious solutions
orresponding to 𝑚 = 1 cannot be removed when applying our modi-
ed Green’s function in its present form. This is also clear from Fig. 4 b,
he fictitious behavior corresponding to 𝑚 = 1 is still present. A more
laborate Green’s function might still be capable of removing these fre-
uencies as well, but this is beyond the scope of the current article, in
hich we intend merely to show the proof of concept. 

. Discussion 

In both the modified Green’s function and in the CHIEF method,
 point in the interior of the domain is chosen on which an integral
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Fig. 7. Variation of the potentials 𝜙 in front and at the back of the sphere as a 

function of a / R , the parameter 𝒂 = ( 𝑎, 0 , 0) in the modified Green’s function with 

𝑘𝑅 = 𝜋 and 𝑐 2 = 1 . 0 . The results were obtained with a quadratic mesh with 1442 

nodes and 720 elements, which results in an average distance between nodes 

of about 0.05 R . This is roughly the distance where the solution starts to deviate 

from the analytical value at 𝑎 ∕ 𝑅 = 0 . 95 . The solution does not diverge, even at 

exactly 𝑎 = 𝑅, although the value is incorrect. 
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quation for G ( x , a ) is developed. The difference between the modified
reen’s function and CHIEF, however, lies in the fact that CHIEF uses

he following equation as an extra condition to the system of equations:

𝜙( 𝒂 ) + ∫𝑆 

𝜙( 𝒙 ) 𝜕𝐺( 𝒙 , 𝒂 |𝑘 ) 
𝜕𝑛 

d 𝑆 = ∫𝑆 

𝜕𝜙( 𝒙 ) 
𝜕𝑛 

𝐺( 𝒙 , 𝒂 |𝑘 ) d 𝑆, (26)

ere, the constant 𝑐 = 0 , since the point a is situated outside the domain
i.e. inside the object) in the CHIEF method. In the modified Green’s
unction approach this equation is essentially added to the ‘normal’
reen’s function. 
112 
A way to check if the solution using our desingularized boundary
lement code for a general shaped object contains a fictitious component
ue to k being close to a fictitious value is to repeat the calculation at
 very slightly different k value. If the solution differs significantly, the
olution is likely to contain a fictitious component. 

We further illustrate the concepts with some field values of 𝜙 ob-
ained by post-processing from the following equation 

 𝜋𝜙( 𝒙 0 ) = − ∫𝑆 

𝜙( 𝒙 ) 
𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 ) 

𝜕𝑛 
d 𝑆 + ∫𝑆 

𝜕𝜙( 𝒙 ) 
𝜕𝑛 

𝐺( 𝒙 , 𝒙 0 |𝑘 ) d 𝑆, (27)

here x 0 is not situated on the boundary S , but either in the solution do-
ain or inside the sphere (outside the solution domain). If no resonance

s present, the solution inside the sphere (and hence outside the solution
omain) should be 𝜙 = 0 . In for following examples we use 1442 nodes
nd 720 quadratic elements in the BEM solution. The first case is the so-
ution for 𝑘𝑅 = 2 𝜋 where in Fig. 8 we plotted the results obtained from
oth the standard BEM (with fictitious results, Fig. 8 a and that obtained
sing a modified Green’s function Fig. 8 b, where the solution inside the
phere is zero. 

A second example shows the solution for the resonance frequency
𝑅 = 4 . 49341 in Fig. 9 a. At a frequency nearby at 𝑘𝑅 = 4 . 49000 no reso-
ance behavior is observed in Fig. 9 b. This once more demonstrates the
xtreme accuracy of our desingularized BEM framework. 

A third example shows the resonance behavior at 𝑘𝑅 = 5 . 76345 and
 nearby value of 𝑘𝑅 = 5 . 76000 in Fig. 10 . Again no resonant behavior
s observed at the nearby value. 

A final example shows the solution at 𝑘𝑅 = 3 𝜋 in Fig. 11 , obtained
y using the standard method and the modified Green’s function. 

At present, the modified Green’s function can only remove solutions
ssociated with fictitious frequencies in the “breathing modes ” ( 𝑚 = 0 ),
ut these are most likely the first modes to appear with increasing k . It
ould be interesting to find other modified Green’s functions to remove

olutions associated with fictitious frequencies in all modes, but we have
ot as yet been able to develop such an approach. 
Fig. 8. Field plot of the real part of the potential 𝜙 ob- 

tained with Eq. (27) for 𝑘𝑅 = 2 𝜋: (a) with the standard 

(desingularized) BEM method where fictitious results are 

present and the fictitious solution inside the sphere (indi- 

cated by a black circle) can clearly be observed; (b) with 

the modified Green’s function, no resonance solution is vis- 

ible, the solution inside the sphere is very close to zero. 
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Fig. 9. Field plot of the potential (real part) for (a) the 

resonance frequency 𝑘𝑅 = 4 . 49341 and (b) near this fre- 

quency at 𝑘𝑅 = 4 . 49000 ; both with the standard (desingu- 

larized) BEM. In (a) the fictitious solution can clearly be 

seen inside the sphere. No resonance solution is visible in 

(b), the solution inside the sphere is zero. The plots em- 

phasize the superior accuracy of the desingularized BEM: 

if the frequency is only slightly besides a resonance value, 

the desingularized BEM still gives the correct result. 

Fig. 10. Potential (real) plot obtained by post process- 

ing for (a) 𝑘𝑅 = 5 . 76345 and (b) 𝑘𝑅 = 5 . 76000 ; both with 

the standard (desingularized) BEM. In (a) the fictitious 

solution can clearly be observed inside the sphere. No 

resonance solution can be observed in (b). The plots again 

emphasize the superior accuracy of the desingularized 

BEM and also show a graphical means to test if the solution 

exhibits fictitious behavior or not. 
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Fig. 11. Plot of the real part of the potential obtained 

by post processing for (a) 𝑘𝑅 = 3 𝜋 (with the standard, 

desingularized method) and (b) 𝑘𝑅 = 3 𝜋 with the modi- 

fied Green’s function (desingularized as well). The ficti- 

tious spherical symmetrical solution inside the sphere in 

(a), which totally overshadows the real solution has suc- 

cessfully been eliminated in (b). 
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Fig. A.12. Definition of the lengths 𝑟 = ‖𝒙 − 𝒙 0 ‖, 𝜌, and the angles 𝛼 and 𝛼/2 for 

a sphere with radius R , it can easily be seen that sin ( 𝛼∕2) = 𝑟 ∕(2 𝑅 ) and 𝑅 sin 𝛼 = 
𝜌 = 𝑟 cos ( 𝛼∕2) . 
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2  
. Conclusions 

The fictitious frequencies occurring in a BEM implementation of the
elmholtz equation were revisited. From a BEM viewpoint it was high-

ighted how these fictitious solutions appear and how they can be de-
ected. It was shown that the use of a modified Green’s function can
ndeed remove certain fictitious frequencies. To the best knowledge of
he authors, this is the first time actual numerical results have been ob-
ained with a modified Green’s function. The results presented are a
emonstration of the proof of concept. More elaborate modified Green’s
unctions might be able to remove more fictitious frequencies. If indeed
o, then this easy to implement method could be a viable alternative to
xisting methods. 

Fictitious frequencies cannot fully be avoided with the current alter-
ative Green’s function approach, but it is sometimes possible to shift
his frequency to another region of the spectrum. Thus the fictitious
requencies do not necessarily coincide anymore with a corresponding
nternal resonance frequency of the scatterer. The superior accuracy of
he desingularized boundary element method further ensures that the
ctitious behavior is limited to very narrow bands in the frequency spec-
rum. The concepts were illustrated with examples of the scattering of
 plane wave on a rigid sphere. 
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ppendix A. Fictitious frequencies for the m = 0 case 

The normal derivative of the Green’s function, 𝜕 G ( x , x 0 | k )/ 𝜕 n , can
e expressed as 

𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 ) 
𝜕𝑛 

= ( 𝒙 − 𝒙 0 ) ⋅ 𝒏 
𝑒 𝑖𝑘𝑟 

𝑟 3 
( 𝑖𝑘𝑟 − 1) . (A.1)

ithout loss of generality lets assume that the point x 0 is located
n the z-axis (see also Fig. A.12 for the definition of symbols), thus
114 
 0 = [0 , 0 , 𝑅 ] , the vectors x and n can then be presented by 𝒙 =
 [ cos 𝜃 sin 𝛼, sin 𝜃 sin 𝛼, cos 𝛼] and 𝒏 = − 𝒙 ∕ 𝑅 . Then ( 𝒙 − 𝒙 0 ) ⋅ 𝒏 = 𝑅 (−1 +
os 𝛼) . The surface element d 𝑆 = 2 𝜋𝑅𝜌 d 𝛼 can also be expressed as
 𝑆 = 2 𝜋𝑅 

2 sin 𝛼 d 𝛼: 

𝑆 

𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 ) 
𝜕𝑛 

d 𝑆 = ∫
𝜋

0 
𝑅 [−1 + cos 𝛼] 𝑒 

𝑖𝑘𝑟 

𝑟 3 
[ 𝑖𝑘𝑟 − 1]2 𝜋 sin 𝛼𝑅 

2 d 𝛼. (A.2)

ith the help of Fig. A.12 , the term (−1 + cos 𝛼) can be rewritten as:
−1 + cos 𝛼) = −2 sin 2 ( 𝛼∕2) = − 𝑟 2 ∕(2 𝑅 

2 ) . From 𝑟 = 2 𝑅 sin ( 𝛼∕2) , one can
educe 𝑅 d 𝛼 = d 𝑟 ∕ cos ( 𝛼∕2) . With sin 𝛼 = cos ( 𝛼∕2) 𝑟 ∕ 𝑅, the singular term
/ r 3 in Eq. (A.2) will be eliminated and this integral will turn into 

𝑆 

𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 ) 
𝜕𝑛 

d 𝑆 = − 

𝜋

𝑅 

∫
2 𝑅 

0 
𝑒 𝑖𝑘𝑟 [ 𝑖𝑘𝑟 − 1] d 𝑟. (A.3)

hich will finally transform Eq. (13) in: 

 𝜋 − 2 𝜋
{ 

𝑒 𝑖 2 𝑘𝑅 + 

1 [ − 𝑒 𝑖 2 𝑘𝑅 + 1 
]} 

= 0 . (A.4)

𝑖𝑘𝑅 

https://doi.org/10.13039/501100000923
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ultiplying this equation by 𝑒 − 𝑖𝑘𝑟 and rearranging leads to 

in ( 𝑘𝑅 )[1 − 𝑖𝑘𝑅 ] = 0 . (A.5)

ppendix B. Fictitious frequencies for the m = 1 case 

In Section 3.1 and Appendix A , it was shown how the fictitious fre-
uencies appear for the simplest case of 𝑓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, corresponding to
he lowest order Legendre polynomials with 𝑚 = 0 . The next least com-
licated function will be a linear function, corresponding to 𝑚 = 1 . For
implicity sake, lets take 𝑓 = 𝑧 as an example. Taking again x 0 on the
-axis will give 𝑓 ( 𝒙 0 ) = 𝑅 and with 𝑐 = 2 𝜋, Eq. (4) will turn into: 

 𝜋𝑅 + ∫𝑆 

𝑧 
𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 ) 

𝜕𝑛 
d 𝑆 = 0 . (B.1)

q. (A.2) is still valid, except that an extra term 𝑧 = 𝑅 cos 𝛼 = 𝑅 [1 −
 

2 ∕(2 𝑅 

2 )] must be included, thus Eq. (A.3) must be replaced by: 

∫𝑆 

𝑧 
𝜕𝐺( 𝒙 , 𝒙 0 |𝑘 ) 

𝜕𝑛 
d 𝑆 = − 𝜋 ∫

2 𝑅 

0 

[ 
1 − 

𝑟 2 

2 𝑅 

2 

] 
𝑒 𝑖𝑘𝑟 [ 𝑖𝑘𝑟 − 1] d 𝑟 

= − 𝜋 ∫
2 𝑅 

0 
𝑒 𝑖𝑘𝑟 [ 𝑖𝑘𝑟 − 1] d 𝑟 + 

𝜋

2 𝑅 

2 ∫
2 𝑅 

0 
𝑟 2 𝑒 𝑖𝑘𝑟 [ 𝑖𝑘𝑟 − 1] d 𝑟 (B.2) 

he first integral in the last expression is the same that appeared in
ppendix A as Eqs. (A.3) , (A.4) (except for a factor 1/ R ), the second

ntegral can be evaluated as: 

2 𝑅 

0 
𝑟 2 𝑒 𝑖𝑘𝑟 [ 𝑖𝑘𝑟 − 1] d 𝑟 = 8 𝑒 𝑖 2 𝑘𝑅 𝑅 

3 
[ 
1 − 

2 
𝑖𝑘𝑅 

− 

2 
𝑘 2 𝑅 

2 + 

1 
𝑖𝑘 3 𝑅 

3 

] 
− 

8 
𝑖𝑘 3 

(B.3) 

hus Eq. (B.2) becomes: 

∫𝑆 

𝑧 
𝜕𝐺( 𝒙 , 𝒙 0 ) 

𝜕𝑛 
d 𝑆 = −2 𝜋𝑅 

{ 

𝑒 𝑖 2 𝑘𝑅 + 

1 
𝑖𝑘𝑅 

[
− 𝑒 𝑖 2 𝑘𝑅 + 1 

]} 

+ 4 𝜋𝑅𝑒 𝑖 2 𝑘𝑅 
[ 
1 − 

2 
𝑖𝑘𝑅 

− 

2 
𝑘 2 𝑅 

2 + 

1 
𝑖𝑘 3 𝑅 

3 

] 
− 

4 𝜋𝑅 

𝑖𝑘 3 𝑅 

3 = −2 𝜋𝑅, (B.4) 

here Eq. (B.1) was used in the last equality. Multiplying by 𝑒 − 𝑖𝑘𝑅 ∕(2 𝜋𝑅 )
nd regrouping terms with 𝑒 − 𝑖𝑘𝑅 and e ikR leads to: 

 

− 𝑖𝑘𝑅 
[ 
1 − 

1 
𝑖𝑘𝑅 

− 

2 
𝑖𝑘 3 𝑅 

3 

] 
+ 𝑒 𝑖𝑘𝑅 

[ 
1 − 

3 
𝑖𝑘𝑅 

− 

4 
𝑘 2 𝑅 

2 + 

2 
𝑖𝑘 3 𝑅 

3 

] 
= 0 (B.5)

xpanding 𝑒 − 𝑖𝑘𝑅 and e ikR into cos ( kR ) and sin ( kR ) terms gives: 

os ( 𝑘𝑅 ) 
[ 
2 − 

4 
𝑖𝑘𝑅 

− 

4 
𝑘 2 𝑅 

2 

] 
− 𝑖 sin ( 𝑘𝑅 ) 

[ 
2 

𝑖𝑘𝑅 

+ 

4 
𝑘 2 𝑅 

2 − 

4 
𝑖𝑘 3 𝑅 

3 

] 
(B.6)

eparating this into real and imaginary parts: 

eal part: cos ( 𝑘𝑅 ) 
[ 
2 − 

4 
𝑘 2 𝑅 

2 

] 
= sin ( 𝑘𝑅 ) 

[ 
2 
𝑘𝑅 

− 

4 
𝑘 3 𝑅 

3 

] 

Imaginary part: cos ( 𝑘𝑅 ) 4 
𝑘𝑅 

= sin ( 𝑘𝑅 ) 4 
𝑘 2 𝑅 

2 (B.7) 

oth the real and imaginary part lead to the following condition: 

an ( 𝑘𝑅 ) = 𝑘𝑅 (B.8)

hich is the same as the internal resonance condition for 𝑚 = 1 , with
olution 𝑘𝑅 = 4 . 49341 etc. (see Table 1 ). 

ppendix C. The m = 0 case with a modified Green’s function 

The normal derivative of the additional part is: 

𝜕𝐺( 𝒙 , 𝒂 |𝑘 ) 
𝜕𝑛 

= 𝒏 ⋅ [ 𝒙 − 𝒂 ] 𝑒 
𝑖𝑘𝑟 ′

𝑟 ′3 
[ 𝑖𝑘𝑟 ′ − 1] . (C.1)

s in Section 3 assume that 𝑓 = 𝑐𝑜𝑛𝑠𝑡 (corresponding to 𝑚 = 0 ) and again
ssume that the point x 0 is located on the z-axis, the vectors x and n and
 S are defined the same as in Section 3 , while 
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𝒙 − 𝒂 = [ 𝑅 cos 𝜃 sin 𝛼, 𝑅 sin 𝜃 sin 𝛼, 𝑅 cos 𝛼 − 𝑎 ] . Thus 𝒏 ⋅ [ 𝒙 − 𝒂 ] =
 𝑅 + 𝑎 cos 𝛼. For the length r ′ the following relationship can be found:

 

′2 = 𝑅 

2 sin 2 𝛼 + ( 𝑅 cos 𝛼 − 𝑎 ) 2 = 𝑅 

2 − 2 𝑎𝑅 cos 𝛼 + 𝑎 2 , (C.2)

hile for d r ′ one finds: 

 

′ d 𝑟 ′ = 𝑎𝑅 sin 𝛼 d 𝛼 (C.3)

hus, similar to Eq. (A.2) : 

𝑆 

𝜕𝐺( 𝒙 , 𝒂 |𝑘 ) 
𝜕𝑛 

d 𝑆 = ∫
𝑅 + 𝑎 

𝑅 − 𝑎 
𝒏 ⋅ [ 𝒙 − 𝒂 ] 𝑒 

𝑖𝑘𝑟 ′

𝑟 ′3 
[ 𝑖𝑘𝑟 ′ − 1]2 𝜋𝑟 ′ 𝑅 

𝑎 
d 𝑟 ′. (C.4)

ubstituting 𝒏 ⋅ [ 𝒙 − 𝒂 ] = − 𝑅 + 𝑎 cos 𝛼 and eliminating cos 𝛼 with
q. (C.2) : 

𝑆 

𝜕𝐺( 𝒙 , 𝒂 |𝑘 ) 
𝜕𝑛 

d 𝑆 = 

2 𝜋𝑅 

𝑎 ∫
𝑅 + 𝑎 

𝑅 − 𝑎 

[ 
− 𝑅 + 

𝑅 

2 + 𝑎 2 − 𝑟 ′2 

2 𝑅 

] 
𝑒 𝑖𝑘𝑟 

′

𝑟 ′2 
[ 𝑖𝑘𝑟 ′ − 1] d 𝑟 ′

= 

2 𝜋𝑅 

𝑎 

[
1 − 

1 
𝑖𝑘𝑅 

]
𝑒 𝑖𝑘𝑅 [ 𝑒 𝑖𝑘𝑎 − 𝑒 − 𝑖𝑘𝑎 ] . (C.5) 

he last equality can be obtained easiest by splitting the integral in two
arts and using 𝜕 𝑒 𝑖𝑘𝑟 

′ ∕ 𝜕 𝑟 ′ = 𝑒 𝑖𝑘𝑟 
′ [ 𝑖𝑘𝑟 ′ − 1]∕ 𝑟 ′2 . Eq. (C.5) can be simplified

o: 

𝑆 

𝜕𝐺( 𝒙 , 𝒂 |𝑘 ) 
𝜕𝑛 

d 𝑆 = 2 𝜋𝑅 

[
1 − 

1 
𝑖𝑘𝑅 

]
𝑒 𝑖𝑘𝑅 2 𝑖 sin ( 𝑘𝑎 ) 

𝑎 
. (C.6)

q. (A.4) will now have an additional part as: 

 𝜋 − 2 𝜋
{ 

𝑒 𝑖 2 𝑘𝑅 + 

1 
𝑖𝑘𝑅 

[
− 𝑒 𝑖 2 𝑘𝑅 + 1 

]} 

+ 𝑐 2 2 𝜋𝑅 

[
1 + 

1 
𝑖𝑘𝑅 

]
𝑒 𝑖𝑘𝑅 2 𝑖 sin ( 𝑘𝑎 ) 

𝑎 
= 0 . (C.7) 

ultiplying by 𝑒 − 𝑖𝑘𝑅 ∕(4 𝜋𝑖 ) gives: 

in ( 𝑘𝑅 ) 
[
1 + 

1 
𝑖𝑘𝑅 

]
+ 𝑐 2 𝑅 

[
1 + 

1 
𝑖𝑘𝑅 

] sin ( 𝑘𝑎 ) 
𝑎 

= 0 . (C.8)

ince the common term [1 + 1∕ 𝑖𝑘𝑅 ] can never become zero (k is a real
umber), this finally simplifies to: 

in ( 𝑘𝑅 ) + 𝑐 2 ( 𝑅 ∕ 𝑎 ) sin ( 𝑘𝑎 ) = 0 . (C.9)

f this equation is satisfied for a certain wave number, k , then 𝑘 𝑓 = 𝑘 . 
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