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solid particle of arbitrary shape in an electrolyte of any composition provided the thickness of the elec-
trical double layer is “infinitely” thin compared to the particle size and the particle has uniform surface
potential. The familiar derivation of this result that is a simplified version of the original Smoluchowski
analysis in 1903, considers the motion of the electrolyte adjacent to a planar surface. The theory is decep-

Keywords: tively simple but as a result much of the interesting physics and characteristic hydrodynamic behavior
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Smoluchowski theory around the particle have been obscured, leading to a significantly incorrect picture of the fluid velocity
Thin double layer profile near the particle surface. This paper provides a derivation of this key theoretical result by starting
Electrophoretic hydrodynamics from Smoluchowski’s original 1903 analysis but brings out overlooked details of the hydrodynamic fea-
Electrophoresis tures near and far from the particle that have not been canvassed in detail. The objective is to draw
Electrophoretic mobility together all the key physical features of the electrophoretic problem in the thin double layer regime to

provide an accessible and complete exposition of this important result in colloid science.
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1. Introduction

A well-established method to characterize the state of charge
on colloidal particles in electrolyte is to deduce the so called zeta
(¢) potential, of colloidal particles by measuring the electrophoretic
velocity, U, due to a constant applied electric field, E. The ratio
between these two quantities is the electrophoretic mobility, u.
The Smoluchowski formula [1-4] for the mobility takes the form'

U= (ef/mE = pE 1)

where € = ¢, is the product of the permittivity of free space, &
and the relative permittivity of the solvent, &, and # is the shear vis-
cosity of the electrolyte. This result is applicable to particles with a
uniform ¢-potential and to particles of any shape so long as the
Debye length, 1/x of the electrolyte (of any composition) is negligi-
ble compared to the characteristic dimension, a of the particle, that
is, in the thin double layer limit given by xa — oc. These conditions
have been subject to recent detailed experimental verification, see
for example Bakker [5].

The derivation of the Smoluchowski result (1) given in many
standard textbooks and monographs on the subject (for example
[6-11]), is based on analysing the tangential flow of the thin layer
of fluid adjacent to a planar charged surface that contains the elec-
trical double layer. A conclusion of this analysis is that the tangen-
tial fluid velocity varies monotonically from zero at the planar
surface to the electrophoretic velocity, U just outside the double
layer. Beyond that, the fluid velocity assumes the constant value,
U relative to the surface. The magnitude of fluid velocity is there-
fore predicted to be always less than the electrophoretic velocity.
Furthermore, the analysis does not make contact with known gen-
eral results about the velocity field outside the double layer [12].
However, a recent investigation of the electrophoretic velocity field
around a spherical particle [13] that is based on the general theory
of Overbeek [14], shows that the tangential velocity always has a
maximum at some intermediate distance from the sphere for all
values of xa. The value of this maximum exceeds the elec-
trophoretic velocity, U that is attained many Debye lengths from
the sphere surface and has magnitude that is larger than the elec-
trophoretic velocity. As xa increases, this maximum velocity
approaches a limiting value that is (3/2) times the Smoluchowski
value (1).

In characterizing the state of charge using electrophoresis, one
generally also studies variations of the mobility with ionic strength
and with the concentration of potential determining ions. Compar-
ison with such data will generally require the construction of mod-
els to describe how the particles develop a surface charge. This may
include consideration of a Stern layer, surface conductivity and
perhaps particle porosity. Theories of such detailed modeling are
well established in the literature [6-11].

The aim of this paper is to undertake a consistent analysis of the
electrostatic and velocity fields near and far from the particle sur-
face. Although most of the features have been considered mainly in
the fluid mechanics literature, we endeavour to give an exposition
that suits readers of the colloid community who may not have a
strong background in fluid mechanics.

The starting point is the same as Smoluchowski’s original 1903
analysis of the electrophoretic problem in the thin double layer
limit but we take into account details in the spatial variation of
the electrostatic potential and the velocity field near and far from
the particle that has a uniform ¢ potential. This allows us to draw
together all the key physical features of the electrophoretic prob-
lem in the thin double layer regime to provide a complete and
accessible exposition of the Smoluchowski theory and to fill in

! Smoluchowski worked in CGS units where € = g&; (SI) = & /4m (CGS)
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details omitted in Smoluchowski’s original papers [1-4]. The dis-
cussion will include insight as to why the electric field can be
assumed to be tangential to the surface but has a different magni-
tude to the applied field when the particle can have any shape and
why the mobility is independent of the dielectric properties of the
particle.

The standard derivation of the Smoluchowski results will be
reproduced in the next section to recapitulate a number of open
questions about this approach. Technical results needed for this
development are given in the appendices and a glossary of symbols
is provided for easy reference.

2. The Smoluchowski result
2.1. The standard derivation

The common derivation of the Smoluchowski result presented
in textbooks and monographs [6-11] considers a planar surface
with a uniform ¢-potential adjacent to an electrolyte. The applied
electric field, E, assumed to be parallel to the surface, drives a tan-
gential flow of the electrolyte because the double layer adjacent to
the surface is not neutral. Within the double layer the charge den-
sity, p and electrostatic potential,  vary only in the direction nor-
mal to the surface with p and y related by the Poisson equation. In
the reference frame in which the surface is stationary, the elec-
trolyte just beyond the double layer is assumed to move with the
constant electrophoretic velocity, U parallel to the surface but in
the direction opposite to the applied field, E, assuming without loss
of generality that the surface is positive.

The flow of the electrolyte is described by the Stokes equation:
n V?u — Vp = —pE for the fluid velocity, u and pressure, p with a
body force, —pE that accounts for the effect of the applied electric
field on the net charge in double layer. The planar geometry is
depicted in Fig. 1 in which the tangential, t and the normal, s coor-
dinates are defined. By symmetry, the pressure does not vary in the
tangential direction and the velocity is tangential so it is only nec-
essary to consider the Stokes equation for the tangential velocity,
u;(s) that depends solely on the normal coordinate, s:

d*u,  d*y
it a5t
where we have used the Poisson equation: p = —e(d*y/ds?) to
express the charge density, p in terms of the electrostatic potential,

2

E. @)

A first integral of (2) with the condition that far from the sur-
face, s — oo, du,/ds — 0 and dy//ds — 0, gives

du, . dy
o =€ g 3)

An immediate consequence of (3) is that if the potential gradient,
dy/ds is monotonic, then so is the tangential velocity gradient,

du,/ds.
A second integral from s = 0 to oo then gives
N ulg =nl-U-0]=€eEy]g = €E[0 -] (4)

since the tangential fluid far from the surface is (—U), the negative
of the electrophoretic velocity and ¢ = ¢ at the surface s = 0. This
then gives the Smoluchowski formula for the electrophoretic veloc-
ity (1) as found in standard textbooks?.

2 In original articles in French, Polish and German [1-4], Smoluchowski derived (1)
in a slightly different manner. He started off with the Stokes equations with an
electric body force: #V2u — Vp = —pE (written in our notation). He then subtracted
the osmotic pressure from the total pressure and argued that the resulting pressure
made a negligible contribution. Integration over the other terms resulted in the
electrophoretic velocity.
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u=-U E In Fig. 2, we show a sphere, S of radius, a in an applied electric
—> > field, E in the z-direction. The sphere has a uniform {-potential and
"""""""""""""""""" the extent of the thin electrical double layer around the sphere is
’I\S u=0 t—> indicated by the dotted sphere, S* of radius, a*. A portion of the

ST 7777777

Fig. 1. The planar geometry of the charged surface with surface potential {
(assumed > 0) and the adjacent electrical double layer in the standard derivation of
the Smoluchowski result in an applied electric field, E. The indicated fluid velocity,
u is in the reference frame in which the surface is stationary. The local co-ordinates
s and t are, respectively, normal and tangential to the surface. The outer edge of the
electrical double layer is indicated by the dashed line.

2.2. Questions relating to the standard derivation

This standard derivation of the Smoluchowski result has a num-
ber of unresolved issues:

1. Is the assumption that the applied field being tangential to the
surface valid for particles of any shape in the thin double layer
limit?

2. Is the field just outside the double layer equal to the applied
field, E for a particle of any shape? And if not, why is the Smolu-
chowski theory still valid?

3. Why is the electrophoretic velocity and hence the mobility
independent of the dielectric properties of the particle?

4. The standard derivation implies that the fluid velocity
approaches the constant electrophoretic value, U monotonically
just outside the double layer. However, this behavior does not
agree with the general theoretical result that the fluid velocity,
relative to the particle, should approach the electrophoretic
value, U with an inverse distance cubed law [12].

5. Recent theoretical results [13] based on the Overbeek model of
electrophoresis [14,15] show that the tangential velocity always
attains a maximum value outside the double layer that exceeds
the electrophoretic value, U. However, this velocity maximum
does not exceed (3/2)U and its occurrence is a general conse-
quence of the fact that a particle in electrophoretic motion
experiences zero net force. Is the observed maximum in the
tangential velocity in disagreement with the standard deriva-
tion of the Smoluchowski result in which the velocity near
the surface is monotonic?

In the next section, we resolve these issues by analysing the fluid
velocity field outside a spherical particle in the thin double layer
regime in exactly the same way as Smoluchowski. By considering
a sphere, it allows us to keep the mathematical details simple
and explicit, although the physical principles and conclusions can
readily be extended to particles of general shape.

3. Mobility of a sphere in the thin double layer limit

In this section we derive the expression for the electrophoretic
velocity in the thin double layer limit that not only gives the mobil-
ity, but also the corresponding form of the velocity field in the fluid
beyond the extent of the electrical double layer around the parti-
cle. To make the development explicit, we will consider a solid
spherical particle with a uniform {-potential. In the thin double
layer limit, we follow the original 1903 approach of Smoluchowski
[1] by focusing first on the fluid flow near the surface and within
the electrical double layer that has a net charge. However, we go
beyond the Smoluchowski analysis by matching this result to the
velocity field outside the double layer where the electrolyte is neu-
tral. In this manner, we provide clarity and resolution to the vari-
ous points about the standard Smoluchowski derivation raised in
the preceding section.
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sphere surface and the associated electrical double layer is given
in the inset of Fig. 2 with the indicated local coordinates tangent,
t and normal, s = (r — a) to the surface.

3.1. Electric field outside the electric double layer

Outside the double layer, the electrolyte is neutral and so the
electrostatic potential, ¢ in r > a*, obeys the Laplace equation:
V2¢ =0 with the condition that ¢ — —Ercos 6, as r — oo, where
0 is the polar angle measured with respect to the z-axis (see
Fig. 2). In the thin double layer limit, we can regard the solid sphere
and its electrical double layer inside the sphere of radius a* as
effectively neutral so that by Gauss’ Law, the normal component
of the electric field at r = a* vanishes. This then results in the
boundary condition: 8¢/8r =0 at r = a*.

From Appendix A, we see that the potential and the electric field
outside the double layer, r > a*, have the form

0*3
¢ = —Ercos6 (1 + ﬁ) (5a)
*3 *3
E=-V¢=Ecosbh (1—ar—3) n,—Esin0(1+%) n, (5b)

where n, and n, are unit vectors in the direction of the spherical
coordinates r and 6. Therefore, the electric field at the outer edge
of the double layer, r = a*, is

E(r=a*)=—(3/2)Esindny, = —E'n,. (6)

In other words, the field at the spherical surface S™ just outside the
electrical double layer, defined by r = a*, is tangential to the sphere
since the field there only has a n, component. The magnitude of this
tangential field, E* = (3/2)Esin 6, defined in (6), varies with posi-
tion, 0 along the surface of the sphere and has a maximum of
(3/2)E at 0 = /2. The tangency of the electric field follows from
the boundary condition: d¢/dr = 0 at r = a*, which expresses the
fact that the normal component of the field is zero. This reflects
the assumption that the surface S*, being just outside the double
layer, encloses zero net charge. As this is the only electrical property
assumed about the material enclosed by S*, the result of this deriva-
tion is therefore independent of the dielectric property of the
sphere.

3.2. Velocity field inside the electric double layer

We now consider the velocity field near the sphere surface,
inside the electrical double layer by focusing on a small segment
of the sphere at angular position, 6 as shown in Fig. 2. As seen from
the previous subsection, the electric field at the outer edge of the
electric double layer at the local normal coordinate, s is tangential
to the surface with magnitude, E* given by (6).

In the frame of reference in which the surface is stationary, we
can integrate the tangential component of the Stokes equation as
in the standard derivation of the Smoluchowski results in Sec-
tion 2.1 to obtain the velocity, U at the edge of the double layer as

U* = —(et/n)E". (7

Note that U* and E* will in general vary with the angular position of
the surface element. For a sphere, we see from (6) that
E* = (3/2)Esin6 and so the magnitude of U* can be up to (3/2)
times larger in magnitude than the Smoluchowski velocity,
U = (e¢/n)E.
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Fig. 2. A solid sphere with radius a and uniform (positive) {-potential in an external
electric field, E. The sphere surface is denoted as S. The extent of the thin double
layer is indicated by the dotted spherical surface, S* with radius, a*, with
(a —a) < a. Inset: A portion of the surface at angular position, 6 with local
coordinates that are tangent, t and normal, s to the surface. At the outer limit of the
double layer at normal coordinate, s* (dashed line), the fluid velocity is —U" (in the
reference frame in which the surface is stationary) and the electric field, E*, is
tangential to the surface (see text for details).

The result in (7) has been discussed by Anderson [16] in the
context of a slip velocity at the outer edge of electrical double
layer, but he did not consider details of how the fluid velocity
changes from near the particle surface, inside the double layer to
the region outside the double layer and beyond.

3.3. Velocity field outside the electric double layer

In the reference frame in which the sphere is stationary, the
electrophoretic velocity is the fluid velocity far from the particle.
To find this in the far field, we have to determine the velocity vari-
ation outside the electrical double layer that is consistent with the
velocity at r = a* given by (7). In addition, the system, comprised of
the sphere and its surrounding electrical double layer, moves at a
constant velocity under electrophoretic motion and moreover
experiences no net external force. These are the physical condi-
tions that determine the velocity, u and pressure, p in @* <1 < c©
that obey the Stokes equation without a body force:
7 V?u— Vp =0, together with the incompressibility condition:
V.-u=0.

From Appendix B, we find that the required solution for the
velocity and pressure in this frame of reference with a vanishing
radial velocity at a* is

0*3 . 0*3
u:UcosG(l—r3)nr—Usm9(1+2r3) ny (8a)
p=0 (8b)
F,=0 (8c)
Vxu=0. (8d)

The zero net force condition: F; = 0 that can be verified by integrat-
ing the stress tensor, see B, gives the limit u — —Uk as r — oo,
which is the electrophoretic velocity as given by the Smoluchowski
formula (1).

The solution (8) has the unique property that the pressure is
identically zero. Such a flow is generally referred to as a zero pres-
sure, zero vorticity (or curl free) Stokes flow.

3.4. Remarks

There are a number of similarities and differences between the
standard derivation of the Smoluchowski results as given in Sec-
tion 2 and the derivation in this Section. In particular, the present
treatment resolves issues about the standard derivation that were
raised in Section 2.2.

https://reader.elsevier.com/reader/sd/pii/S0021979720301776...431B8EB574F161F1A5C2676E2EC2A6CD046D3BA822DEBE2EABADD570B3

e Both derivations lead to the same expression for the elec-
trophoretic velocity for a particle in the thin electrical double
layer limit (1), though the present derivation addresses key
physical aspects of the problem from the region near the surface
to well outside the electrical double layer.

e In the standard derivation of the Smoluchowski result, an
equilibrium electrostatic potential whose magnitude decays
monotonically away from the surface will imply that the
tangential component of the fluid velocity varies from zero
at the solid surface and increases monotonically to a con-
stant fluid velocity at the outer edge of the electrical double
layer. This velocity is the Smoluchowski value (1) and the
fluid retains this constant value far into the bulk electrolyte.
The magnitude of the velocity is always smaller than the
Smoluchowski value. In contrast, the present derivation
shows that the tangential fluid velocity increases from zero
at the solid surface to a value at the outer edge of the elec-
trical double layer that varies with the position on the
sphere surface. In particular, at the equator of the sphere
at 6 = /2 the fluid velocity at the edge of the double layer
is (3/2) times the Smoluchowski value and then it decreases
towards the Smoluchowski value far from the sphere from
higher values 3.
By analysing and matching the flow field inside the electrical
double layer with that outside the electrical double layer, we
establish that the velocity field associated with electrophore-
sis decreases towards the Smoluchowski value with a 1/r3
decay [12] rather than with 1/r, as in say the velocity field
surrounding a steadily sedimenting particle. The physical rea-
son is that in electrophoresis, the hydrodynamic drag force
counteracts the electrical body force in the fluid rather than
an external force (such as gravity) acting on the sphere. This
faster decay of the velocity field has important implications
on the hydrodynamic interaction between particles undergo-
ing electrophoresis: since the decay is now 1/r3 the hydrody-
namic interaction between neighboring particles is much
weaker.

o The zero force condition on a particle in electrophoretic motion
also means that the pressure outside the double layer is identi-
cally zero and the flow is irrotational, in contrast to the flow
associated with say a sedimenting sphere. So the velocity field
around a sphere undergoing electrophoresis corresponds to a
special case of zero pressure, irrotational Stokes flow and is
quite peculiar.

e The velocity field outside the double layer appears to have a
“slip velocity” boundary condition given by (7) at r = a*, just
outside the electrical double layer. This should not be confused
with the traditional “slip plane” in the equilibrium theory of the
electrical double layer where the {-potential is defined and
where continuum electrostatics and hydrodynamic boundary
conditions are applied [11].

e By considering a sphere, we see explicitly why the electric field
is tangential to the surface in the thin double limit because out-
side the double layer, at the radius a*, the particle and the dou-
ble layer, when taken together, enclose no net charge within
the sphere of radius a*. However, this tangential field is not
equal to the applied field, E but has a magnitude that varies
with the position on the surface and can be up to (3/2) times
larger than E.

3 Smoluchowski, in his 1903 paper [1], also mentioned the electrophoretic velocity
of a sphere in his §8. He gave the classical formula for the electric potential in his Eq.
(18) resulting in a (3/2)E term on the equator of the sphere and then gave, without
further proof, the electrophoretic velocity in his Eq. (19) corresponding to our Eq. (1).
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4. Comparison with finite xa results and generalizations
4.1. Finite ka results for a sphere

Recently the Overbeek theory of electrophoretic motion of a
spherical particle [14,15] has been used to calculate the spatial
variation of the fluid velocity, pressure and vorticity for a range
of ka values [13]. For comparison with the present large xa results
we will adopt the Henry [17] approximation that uses the linear
Debye-Hiickel result for the equilibrium electrostatic properties
of the double layer. We note that ion convection effects are omitted
in the Henry approximation and also in the Smoluchowski approx-
imation. However, the Henry approximation is valid for all values
of xa, albeit limited to low ({-potentials. Nonetheless, it contains
the essential information related to variations in xa that is of inter-
est here.

In the Overbeek theory, where the applied field, E = EK is along
the z-direction, the electrophoretic fluid velocity relative to a sta-
tionary sphere has the form:

u = u,(r) cos 0 n. — uy(r) sin 6 ny, )

with just r and 6 components and their magnitudes only vary with
the radial coordinate, r. We show variations of these components
scaled by the Smoluchowski velocity: u,(r)/U and u,(r)/U as func-
tions of the scaled distance from the sphere surface:
s/a= (r—a)/a in the inner region, within the electrical double
layer, in Fig. 3 and in the outer region over the scale of the sphere
in Fig. 4.

Consistent with the Henry theory, we use the Debye-Hiickel
potential at a planar surface: y(s) = {exp(—«s) in (3) to give an
expression for the inner solution of the tangential fluid velocity rel-
ative to the surface within the electrical double layer

u(s) = U [1 —exp (—(xa)[(r — a)/a))]. (10)

where U is the Smoluchowski velocity (1). This inner solution holds
for the standard derivation of the Smoluchowski formula.

1.75 I ot
nner solution ——=—- ===
us(r)/U Outer solution
I T T ——
1.25 Henry —— ——
1.00 fooeeneccocetiiiissesseesescecsscscesceccscrene
300 ,ee°* )
_.-' Standard plate Smoluchowski
DR | =100 o
0.50 Tangential velocity
0.25
(r—a)/a
0.00
0.00 0.02 0.04 0.06 0.08 0.10

Fig. 3. A comparison of the tangential velocity near the particle surface from
different derivations of the Smoluchowski result at large values of ka as indicated.
Results of the standard derivation of the tangential velocity, u,(r)/U at a planar

surface, given by (10) are shown as dotted lines (- -, - - -). Results of the present
derivation of the tangential velocity, u,(r)/U around a sphere, given by the inner
solution (11) are shown as dashed lines (- - -, — — —). The outer solution for the

tangential velocity (12) is shown as the solid red line (—). Results from the Henry
theory, valid for all values of r are shown as solid lines (—, —). The velocity maxima
for xa=100,300 are at (r—a)/a=0.048,0.019 or equivalently at
K(r —a) = 4.8,5.7, respectively, with the corresponding maximum values of u,/U
of 1.40, 1.46. The locations of 1/(ka) in each case are indicated by vertical dashed
lines.
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Fig. 4. The (a) (upper) tangential velocity, u,(r) and (b) (lower) radial, u.(r) velocity,
see (9), around a sphere in electrophoretic motion according to the Henry model
[13,17] for the indicated values of ka. Shown also are the outer solutions (8) and the
Stokes solution for a solid sphere with U, = —(2/3)U, see B.

On the other hand, if we follow the present derivation of the
inner solution outlined in Section 3 for a sphere, the tangential
fluid velocity, u,(r) relative to the surface within the electrical dou-
ble layer (inside the surface S*) would take the form

ug(r) = (3/2)U [1 — exp (—(xa)[(r — a)/a))]. (11)

A number of features are of note in the results for the elec-
trophoretic velocity components relative to a stationary sphere
(9) given in Figs. 3 and 4:

1. The Henry results in Fig. 3 show that the tangential velocity
near the surface of the particle, relative to the Smoluchowski
velocity, U, has a maximum that becomes more pronounced
as ka increases. For instance, at a large value of ka = 100, the
maximum value of the tangential velocity, u, is 1.40U and is
located at (r—a)/a=0.048 or at k(r—a)=4.8 and at
ka = 300, the maximum value of u, is 1.46U and is located
at (r—a)/a =0.019 or at k(r — a) = 5.7. The maximum, for
xa > 1 is located at about 5 or more Debye lengths from
the surface. Beyond the maximum, the velocity is higher than
the electrophoretic velocity and approaches this value from
above at a large distance from the particle. In contrast, the
standard plate Smoluchowski predicts the tangential veloc-
ity, u, is always less than the electrophoretic velocity, U.
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Also from Fig. 3 and (10), we can see that with the standard
plate Smoluchowski result, the tangential velocity attains
09U (within 10% of the Smoluchowski value) at
K(r — a) = 2.4, whereas from Fig. 4a at xa = 100, the tangen-
tial velocity of the sphere is within 10% of U (u, = 1.1U) only
at a much larger distance from the surface at
(r — a)/a = 0.58 that is equivalent to x(r — a) = 58. In other
words, the standard plate derivation underestimates signifi-
cantly the range and extent of the deviation of the tangential
velocity from the Smoluchowski value in the vicinity of the
particle surface.

. Over the length scale of the a few particle radii, shown in

Fig. 4, for a range of xa values, the maximum in the tangen-
tial velocity always exists (Fig. 4a) but is not larger than 3/2
times the Smoluchowski value, U. Beyond the maximum, the
tangential velocity is always larger than the electrophoretic
velocity that pertains to the particle size.

. The fundamental physical reason for the existence of this

velocity maximum is the requirement that a particle in elec-
trophoretic motion experiences zero net force as it travels at
constant velocity. Hence, the velocity decays as 1/r3. Apply-
ing continuity of mass then results in the observed maxi-
mum. For a detailed technical exposition, see Appendix F
of [13].

. For xa > 1, there are 2 distinct regions: (i) an inner region,

a <r<a*and (ii) an outer region, r > a*, as can be seen in
Fig. 3 where a* is around the position of the maximum of
u,/U that extends a few Debye lengths from the sphere
surface.

. The velocity in the inner region (a < r < a*) is well described

by the result derived here for the sphere (11), whereas the
standard Smoluchowski inner solution (10) does not capture
the behavior in the inner region.

. In the outer region (r > a*), the magnitude of the tangential

velocity has the limiting form given by (8) and (9), with
a~a* for ka>1

a3

uy(r)/U—1+ 273

Ka — oo,

(12)

and approaches the Smoluchowski value (1) from above as
T — oo.

. For ka > 1, we see from Fig. 3 that the simple inner (11) and

outer (12) solutions derived here provide a quantitatively
accurate picture of the velocity at all locations.

. As seen in Fig. 4a the limiting value of uy(r) as r — oo is the

electrophoretic velocity that varies from the Hiickel limit of
(2/3)U for small ka to the Smoluchowski limit of U for large
Ka given by (1).

Both the tangential velocity, uy(r) (Fig. 4a) and the radial
velocity, u,(r) (Fig. 4b) lie between the outer solution (12)
and the Stokes solution for a solid sphere with
U, = —(2/3)U, given by (B.4) in B.

The normal velocity, u,(r) as well as its derivative, du, /dr are
small at the outer edge of the double layer. In particular, the
velocity inside the double layer indeed has a very small
radial component and thus justifies the assumption that
the flow is predominantly tangential near the surface at
large xa. However, the transport of fluid and ions in the tan-
gential direction needs to be included in order for the well-
known mobility maximum as a function of the { potential
[18] to occur [19].

The magnitudes of the pressure and the vorticity are only
significant inside the double layer, thatis a < r < a*. Outside
r > a*, the pressure and vorticity are exponentially small, see
[13] for more details.

4.2. Arbitrarily shaped particles

We now generalize our derivation of the electrophoretic veloc-
ity of a sphere in the thin double layer limit to particles of arbitrary
shape (as in Fig. 5) with a constant {-potential and give a physically
perspicuous exposition of the theoretical treatment given by
Morrison [12].

Outside the thin electrical double layer, the electrolyte is
neutral, so the electrostatic potential, ¢ that is generated by the
presence of the particle in an applied electric field E = EK in the
z-direction must satisfy the Laplace equation: V2¢ = 0. Far from
the particle, ¢ — —Ez. The surface, S* that is just outside the thin
electrical double layer around the particle encloses the charged
particle and the thin diffuse layer of neutralizing counter-ions
and co-ions and is therefore electrically neutral. Therefore, the
normal component of the electric field vanishes on S*, that is,
8¢/0n =0 on S* (8/6n indicating the normal derivative). These
conditions are sufficient to determine the electrostatic potential,
¢ outside the thin double layer. In particular, the tangential electric
field, E* at S* for a particle of arbitrary shape can be determined
from ¢.

Turning now to the velocity field, u in the reference frame in
which the particle is stationary. Far from the particle we have
the condition u — —U_Kk as r — oo, but the value of the constant
velocity, U, remains to be determined. At the surface S* the normal
velocity is approximately zero in the thin double layer limit. As for
the tangential velocity, U* on S*, it must be proportional to the
electric field there according to (7).

As the electrophoretic problem is linear in the applied electric
field, E, all transport properties must be proportional to E. So out-
side the thin double layer we seek a solution of the velocity
expressed in terms of a scalar function, ® where u = V® so that
the above velocity boundary conditions for ® are: ® — —U,z as
r — oo, and 8®/9n = 0 on S”. From the incompressibility condition:
V -u =0, the velocity potential, ® obeys the Laplace equation:
V20 =0.

Now we see that the electrostatic potential, ¢ and the velocity
potential, ® both satisfy the Laplace equation and have analogous
boundary conditions. Thus in the thin double layer limit, the lin-
earity property of the electrophoretic problem means that the local
electric field and the local velocity outside the double layer are
proportional to each other. This is a considerable simplification.
Since u = V® is also a solution of the Stokes equation in the
absence of a body force, we have found the unique solution of

Fig. 5. A schematic illustration of a general shaped particle with a uniform ¢-
potential ({ > 0) on its surface, S in an applied electric field E and the resulting
electrophoretic velocity, U. The tangential electric field, E* and the corresponding
tangential fluid velocity, U* (in the reference frame that the particle is at rest) at the
outer edge of the electrical double layer at surface, S are shown at a general point
on the surface.
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the hydrodynamic problem. It also follows that the velocity field is
irrotational since Vx u =V x VO = 0.

From the Stokes equation we deduce that the pressure, p is a
constant because

Vp =V = V>V = nVV*® = 0. (13)

The constant pressure can be set to zero without loss of generality
since the pressure is arbitrary up to an additive constant.

The above discussion about the electric and velocity potentials
around a particle of any shape with a thin electrical double layer
can be summarized as follows:

Electric potential Fluid potential
V=0 Vo =0
2 . a0 . (14)
£=0 (onS") 2—=0 (onS")
lim ¢=—-Ez }im O=-U,z

where S” is the surface just outside of the thin double layer and thus
very close to the ‘real’ surface S. Both the electric and the fluid
potentials obey the same governing equation and boundary condi-
tions on any shaped object with boundary S*. The electric field, E* on
S*, which is tangential to the surface, and the apparent slip velocity,
U" just outside the double layer are proportional to each other
according to (7). The same proportional relationship must hold
between the applied field, E and the velocity at infinity, U, in
(14). And therefore the Smoluchowski result (1) follows: U, = U.

Consequently, the velocity field around a particle with arbitrary
shape in the thin double layer limit can be found by solving the
Laplace equation for the electrostatic potential, ¢ and the velocity
potential, ® that are coupled by boundary conditions at the particle
surface given by (7) and (14). A more formal and systematic treat-
ment of the thin double layer limit that considers the subtleties of
a thin double layer and local curvature has been given by Yariv
[20].

The fluid dynamics of such a system under electrophoresis is
thus indeed quite ‘unusual’ [13]. This discussion about particles
with thin double layers is similar to the analysis by Morrison
[12], except for the fact that Morrison did not assume that the
pressure outside the double layer is zero, but instead used the Ber-
noulli equation for pressure: p ~ u? which is inconsistent with a
viscous dominated, low Reynolds flow in electrophoresis. In fact,
as demonstrated in C, the zero pressure condition is related to
the fact that a particle in electrophoretic motion experiences zero
net force.

For smaller values of ka, the double layer becomes thicker and
the condition ®/8n = 0 in (14) breaks down, because the normal
velocity a S” is no longer zero.

5. Conclusions

In this paper, we revisited the derivation of the Smoluchowski
expression for the electrophoretic mobility that is valid in the so-
called thin double layer limit in which the thickness of the electri-
cal double layer is small compared to the characteristic dimension
of the colloidal particle. This result is valid for any electrolyte com-
position as long as the particle has a uniform ¢{-potential.

By using a sphere as an explicit example, we demonstrate how
the flow field close to the particle surface, within the electrical
double layer, couples to the flow field outside the extent of the
double layer. Whereas the standard derivation of the Smolu-
chowski result implies that the fluid velocity increases monotoni-
cally from zero, relative to the surface, to the electrophoretic
velocity U just outside the double layer, results of our present anal-
ysis (11) and (12), substantiated by detailed numerical results [13],

https://reader.elsevier.com/reader/sd/pii/S0021979720301776..5431B8EB574F161F1A5C2676E2EC2A6CD046D3BA822DEBE2EAB4ADD570B3

show that the fluid velocity actually attains a maximum at the
outer edge of the double layer and then decreases towards the
electrophoretic velocity U far from the particle (see Figs. 3 and
4). This velocity maximum approaches (3/2)U as ka — oo.

Arguments are presented to show that the results for a sphere
apply equally to particles of any shape as long as the double layer
is thin and the particle ¢-potential is uniform. Although in the thin
double layer limit, the electric field is tangential to the surface just
outside the double layer with magnitude E* that varies with the
position on the surface, the magnitude of E* is not that of the
applied field E = EK, that is E* # E.

In fact, the velocity field, u outside the double layer can be
expressed as the gradient of a velocity potential: u =V® [12]
and as a result both the pressure outside the double layer and
the force on the particle are identically zero. In the reference frame
in which the particle is stationary, u — —UK far from the particle
(r — o0), and the velocity decays as 1/r* towards this limit. Just
outside the double layer where the tangential electric field has
magnitude E°, the fluid has a tangential slip velocity, U*, where
U* and E* are related by the formula in (7).

Although there are a number of theoretical studies of the
electrophoretic mobility in the literature in the thin double layer
limit that take into account other effects such as ion transport and
surface conductivity, see for example [10,21-23], they all took
the approach of eliminating the pressure by taking the curl of the
Stokes equation and avoided the need to consider details of the
velocity field. Indeed, in the O’Brien-White formulation of the elec-
trophoresis of a sphere [18], the calculation of the electrophoretic
mobility does not require explicit evaluation of the fluid velocity.
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Appendix A. A neutral sphere in a constant electric field

The variation of the electric field, E = —V¢, around a neutral
sphere of radius, a, placed in a constant uniform electric field far
away from the sphere in the z-direction: E_, Kk, can be found by
solving the Laplace equation: V2¢p=0 with
¢ — —E,z= —E, rcos0, as r — oo, far from the sphere. At the sur-
face of the neutral sphere with a zero surface charge density, we
have the boundary condition: ¢/8r =0 at r = a.

In spherical polar co-ordinates, r, 0 and ¢, the solution for the
potential is ¢ = —E, cos0[r+a®/(2r?)] and the corresponding
electric field is [24]

a? a
E=E,cosf (1 _r_3) n.—E,sing <1+—) n,

7 (A1)
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where n, and n, are unit vectors in the direction of increasing radial,
r and angular, 0 directions.

At the surface of the sphere, r = g, the electric field is tangential
to the surface and varies with the polar angle, 0 as

E(r = a) = —(3/2)E. Sin 0 1y = Eyyng. (A2)

The negative sign indicates that the tangential field, E:ng points in
the direction of decreasing 0 (see Fig. 2). The magnitude of the tan-
gential field at the sphere surface varies with position as sin 6 with
an absolute maximum magnitude that is (3/2) times that of the
constant applied field, E...

Appendix B. A sphere in a constant velocity field

The velocity field, u, and pressure, p, in an unbounded incom-
pressible Newtonian fluid with density, p, shear viscosity, #,
around a sphere of radius, a, placed in a uniform flow field: U, k,
can be found by solving the Stokes equation in the absence of a
body force:

nVu-vp=0
V-u=0

(B.1a)
(B.1b)
in the low Reynolds number regime: Re = paU,,/n < 1 (i.e. neglect-
ing inertial effects).

The general solution of (B.1) with the sphere located at the ori-
gin satisfying the condition u — UK, as r — oo, is in Cartesian
coordinates [25,19]:

(k x) 3a®
u="U, B12 +Bzz3x+U 1+B12——3223k (B.2)

where x is the position vector, r = |x|. Equivalently, the solution can
be expressed in spherical polar coordinates

u=u.(r,0) n, + uy(r,0) ny
= Uw.cos6 (1+Bi¢+B %),

(B.3a)

~Ussind (1+B: £~ B, &) my
p= ’Z—f B,U., cos 0 (B3b)
F, = —4nna B,U, k (B.3¢)
Vxu= 3a BU, sinfn, (B.3d)

22

and the hydrodynamic force, F;, exerted on the sphere is found by
integrating the stress tensor: —pl + #[(Vu) + (Vu)'] over any sur-
face that encloses the sphere using (B.2). The constants B; and B,
are determined by the boundary conditions specified on the sphere
surface. Note that only the constant B, is present in the pressure,
the force and the vorticity, (V x u).

B.1. Standard Stokes result
At a stationary solid sphere surface, the normal and tangential
components of the fluid velocity vanish: u,(a,6) = 0,uy(a,6) =0,

the constants are: B; = —3/2 and B, = 1/2 and we have

u=U, cose(l —%Jrz,,) n,

(B.4a)
Uy, sme( —3—‘}—‘;’—:3) n,

p= —% U., cos 6 (B.4b)

F, =6nnaU, k (B.4c)

Vxu= —% Us,sin6n, (B.4d)

431B8EB574F161F1A5C2676E2EC2A6CD046D3BA822DEBE2EAB4ADD570B3

where both the pressure, p and V x u decay as 1/r?, while the
velocity perturbation from the uniform flow decays as 1/r.

B.2. Imposed tangential velocity

If the tangential velocity on the impenetrable sphere in the 6-
direction is prescribed as:

up(a,0) ng = —(3/2)U, sin 6 ny, (B.e)
the constants are: B; = 0 and B, = —1, thus giving

a . a
u="U,cos6 (1 - r_3) n, —U,sinf (1 5 3) ng (B.6a)
p=0 (B.6b)
F,=0 (B.6¢)
Vxu=0. (B.6d)

With this tangential boundary condition, the sphere experiences no
hydrodynamic drag force and is vorticity-free. This is referred to as
the zero pressure or irrotational (or curl free) solution of the Stokes
equation. The velocity perturbation now decays as 1/r3.

Although the solution for the velocity, u in (B.6) has the same
form as that for a sphere in an inviscid fluid governed by potential
flow [25], the underlying physical assumptions embodied in these
two cases are at the opposite ends of the spectrum. Whereas (B.6)
is a result that holds in the limit of zero Reynolds number where
inertial effects are negligible relative to viscous forces and the
pressure, p is zero, the potential flow result, in contrast, accounts
fully for inertial effects but omits effects due to viscosity with
the pressure being given by the Bernoulli equation: p =} pu?. This
result can be summarised by noting that an irrotational Stokes flow
is potential flow.

Appendix C. The relationship between zero pressure and zero
force

The force F on a particle in Stokes flow can be obtained by inte-
grating the stress tensor over any surface, Sp that encloses the par-
ticle [26]

_ A Y
F_/SO [‘p‘s'ﬁ”(ax,*ax,)] n,ds. (1)

We have seen that if the velocity, u can be expressed as the gradient
of a potential: u = V@ then the pressure is zero, p = 0. Thus we can
write for this force:

F=nfs, [+ 5n ds
=nf, [dz;‘; + &% |n ds (C2)
—anso dxdx n;dS=0

where Sy is a sphere around the particle with a very large radius, Ro.
Then the last equality follows from the fact that for any potential
function that dies out faster than 1/r? from a particle, the double
differentiation in the integrand means that as Ry — oo, the decrease
in the integrand will be faster than the R2 growth in the surface area
of So-

Appendix D. Glossary of symbols

a radius of a spherical charged colloidal particle or typical length
scale of an particle of arbitrary shape
a* radius of a spherical surface that encloses the particle and its
neutralizing diffuse layer ionic cloud.
E constant external applied electric field in the z-direction = Ek
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E* magnitude of the tangential component of the electric field
just outside the electrical double layer at the surface, S*

n.,ng,n,
unit vector in the (r, 6, ) - (radial, polar, azimuthal) direction of a
spherical polar coordinate system centered at the sphere
p pressure
r radial coordinate of the spherical polar system
s local coordinate normal to the particle surface
S the surface of the particle
S* the surface that just encloses the particle and the neutraliz-
ing diffuse double layer
t local coordinate tangential to the particle surface
u velocity field of the fluid
U the electrophoretic velocity given by the Smoluchowski formula
(1)
U* the tangential fluid velocity at the outer edge of the double
layer at surface S™ and is related to E* by (7)
U, the constant velocity at infinity in B
& relative permittivity of the solvent
& permittivity of vacuum, 8.852 x 1072 F/m
€ = &¢&;, solvent permittivity
71 solvent viscosity
¢ the local electrostatic potential generated by the presence of
the particle in and imposed electric field
@ the fluid velocity potential: u = V@
0 polar angular coordinate of the spherical polar system, i.e.
the angle between the radius vector and the electric field
p local volume charge density
¥ equilibrium electrostatic potential in the electrical double
layer
¢ the zeta potential of the colloidal particle (assumed to be
constant everywhere on the surface)
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