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This document contains supplementary material to the paper Acoustic streaming around
a sphere – the main text. Starting from solution to the first order in ε primary flow in
a compressible Newtonian fluid due to a sphere executing rectilinear oscillations in the
z-direction given in the main text, the various special limits of: potential flow - small
viscosity, thin boundary layer; Stokes flow - low frequency, thick boundary layer; large
sphere - flow near a flat place and the case of a incompressible fluid with an infinite speed
of sound are recovered.

1. Solution of the primary flow

Details of reduction of the general solution of the primary flow due to the rectilinear
oscillation of a sphere in a compressible Newtonian are given in this document.

At small vibrating amplitudes of the sphere, all quantities in the continuity and Navier-
Stokes equation

∂ρ

∂t
+∇ · (ρ v) = 0, (1.1a)

∂(ρ v)

∂t
+∇ · (ρ v v) = −∇p+ µ∇2v +

(
µB +

1

3
µ
)
∇(∇ · v). (1.1b)

are linearised about their equilibrium values in terms of the small parameter, ε defined
by: ε ≡ |∇ · (ρ v v)|/|∂(ρ v)/∂t| ∼ U0/(af) << 1, that measures the ratio of the non-
linear inertial term to the explicit time derivative. With the constant reference density
ρ0, and pressure, p0 and noting that the reference velocity is zero, we have

ρ = ρ0 + ε ρ1 + ε2 ρ2 + ..., p = p0 + ε p1 + ε2 p2 + ..., v = ε v1 + ε2 v2 + ... (1.2)

To order ε, we have the equations that govern the primary flow

∂ρ1
∂t

+ ρ0∇ · v1 = 0, (1.3a)

ρ0
∂v1

∂t
= −∇p1 + µ∇2v1 +

(
µB +

1

3
µ
)
∇(∇ · v1). (1.3b)

With harmonic time dependence in all primary flow quantities with: ρ1(x, t) ∼ ρ(x)e−iωt,
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p1(x, t) ∼ p(x)e−iωt and v1(x, t) ∼ u(x)e−iωt the order ε equations (1.3) become

−iωρ+ ρ0∇ · u = 0, (1.4a)

−iωρ0u = −∇p+ µ∇2u +
(
µB +

1

3
µ
)
∇(∇ · u). (1.4b)

For small amplitude acoustic waves, we assume the equation of state: ∇p(x) = c20∇ρ(x)
where c0 > 0 is the constant speed of sound in the fluid. The pressure, p can thus be
eliminated from (1.4) to give (Hahn et al. 2013)

[(k2T /k
2
L)− 1]∇(∇ · u) +∇2u + k2Tu = 0, (1.5)

with transverse, kT and longitudinal, kL wave numbers defined by

k2T ≡ i
ρ0ω

µ
and k2L ≡ ω2

/[
c20 −

iω

ρ0

(
µB +

4

3
µ
)]
. (1.6)

The solution of the order ε equation (1.5) due to the oscillatory motion of the sphere
along the z-direction with velocity amplitude, U0 can only depend on the vector U0 and
the position vector x with the origin at the centre of the sphere (Landau & Lifshitz
1970). Symmetry consideration implies that the solution of (1.5) has the general form

u(x) = ur(r) cos θ er + uθ(r) sin θ eθ (1.7a)

=

{
−2

r
h(r) +

dφ(r)

dr

}
U0 cos θ er +

{
1

r

d

dr

(
rh(r)

)
− φ(r)

r

}
U0 sin θ eθ (1.7b)

where the functions ur(r) and uθ(r) are only functions of the radial distance, r from the
centre of the sphere and er and eθ are unit vectors in the direction of increasing radial
and polar coordinated relative to the z-direction. The zero divergence transverse and
irrotational longitudinal parts of u(x) are represented by the components in h(r) and
φ(r), respectively.

Equation (1.5) has the same mathematical form as that of the equation that governs
the propagation of linear elastic waves in a solid where u is the material displacement.
The solution of (1.5) can be represented as the Green’s function (Stokelet) and a dipole
field, so explicit solutions for the velocity components are (Klaseboer et al. 2019):

uθ(r)

U0
= C1

a

r

[
1 +G(kT r)

]
eikT r + C2

a

r
G(kLr) e

ikLr (1.8a)

ur(r)

U0
= 2 C1

a

r
G(kT r) e

ikT r + C2
a

r
[1 + 2G(kLr)] e

ikLr (1.8b)

with G(x) ≡ i/x− 1/x2. The functions h(r) and φ(r) defined in (1.7) are given by

h(r) = −C1 a G(kT r) e
ikT r, φ(r) = −C2 a G(kLr) e

ikLr. (1.9)

The constants C1 and C2 that satisfy the no-slip boundary condition, ur(a) = U0 and
uθ(a) = −U0 are:

C1 = − [1 + 3G(kLa)]

[1 +G(kTa) + 2G(kLa)]
e−ikT a, C2 =

[1 + 3G(kTa)]

[1 +G(kTa) + 2G(kLa)]
e−ikLa. (1.10)

2. Small viscosity limit, thin boundary layer: potential flow

If viscous effects are small, we expect a very thin boundary layer. From (1.6), a
vanishing viscosity corresponds to the limit |kTa| >> |kLa| and hence eikT r << 1 for
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r > a due to the imaginary part of kT . From (1.10) we find

lim
kT a→∞

C2 =
1

1 + 2G(kLa)
e−ikLa

and (1.8) becomes:

lim
kT a→∞

u = eikL(r−a) a

r
U0

[
cos θ er +

G(kLr)

1 + 2G(kLa)
sin θ eθ

]
. (2.1)

If in addition, kLa → 0, we recover the potential flow solution for the fluid velocity
around a sphere moving at a constant velocity:

lim
kLa→0 ; kT a→∞

u =
a3

r3
U0

[
cos θ er +

1

2
sin θ eθ

]
. (2.2)

3. Large radius: flat plate limit

If the radius of the sphere, a, is very large, there are two locations of special interest:
the front of the sphere at θ = 0 and the side of the sphere at θ = π/2.

Consider first the side at which cos θ = 0 and sin θ = 1. From (1.7) we then find
u = −uθ(r)ez since U0 = −U0ez. And setting r/a→ in (1.8), we find

uθ(r)

U0
= C1e

ikT r[1 +G(kT r)] + C2e
ikLrG(kLr). (3.1)

For a large sphere, |kLa|, |kTa| >> 1, so G(kLr), G(kT r)→ 0 and C1 → −eikT a and the
velocity becomes:

lim
|kLa|,|kT a|→∞ ; θ=π/2

u = −eikT (r−a)U0. (3.2)

In the time domain, this is equivalent to the well-known Stokes oscillatory boundary
thickness equation (Stokes 1851; Schlichting 1955): u = −U0e

−ky cos(ωt − ky), with
k =

√
ωρ0/(2µ), the real part of kT = (1+i)

√
ωρ0/(2µ), and y = r−a being the distance

from the a flat surface. Thus, the solution at the side of the sphere tends towards the
Stokes vibrating boundary layer theory for a flat plate when the radius of the sphere is
large enough.

The solution in front of the sphere at θ = 0, in the large a or flat plate limit with
U0 = U0ez, the velocity in (1.7) becomes u = ur(r)ez and with a/r → 1, we have:

ur(r)

U0
= 2eikT rC1G(kT r) + C2e

ikLr[1 + 2G(kLr)]. (3.3)

Again with G(kLr), G(kT r) → 0 for a large sphere, |kLa|, |kTa| >> 1, we have the
limiting solution

lim
|kLa|,|kT a|→∞ ; θ=0

u = eikL(r−a)U0 (3.4)

which is a plane sound wave propagating out of the oscillating plate as could be expected.
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4. Infinite sound speed: (oscillatory) incompressible Stokes flow limit

The incompressibility of the fluid implies that c0 → ∞. In this case, we can take the
limit of |kLa| → 0 while keeping |kTa| finite. As such, we have

lim
|kLa|→0

C1 = −3G(kLa)

2G(kLa)
e−ikT a → −3

2
e−ikT a,

lim
|kLa|→0

C2 =
1 + 3G(kTa)

eikLa[2G(kLa)]
→ − (kLa)2

2
[1 + 3G(kTa)].

(4.1)

Introducing (4.1) into (1.8) we have

uθ(r)

U0
= −3

2

a

r

[
1 +G(kT r)

]
eikT (r−a) +

1 + 3G(kTa)

2

a3

r3
, (4.2a)

ur(r)

U0
= −3

a

r
G(kT r) e

ikT (r−a) + [1 + 3G(kTa)]
a3

r3
. (4.2b)

This solution is identical to the solution given by Landau & Lifshitz (1987), where
the velocity was written as u ≡ ∇×∇× [fL(r)U0], then ur(r) = −(2/r) dfL(r)/dr and

uθ(r) = (1/r) dfL(r)/dr+d2fL(r)/dr2. They showed that dfL(r)
dr = aL

(
1
r −

1
ikT r2

)
eikT r+

bL
r2 . This corresponds to our solution with aL = 3iae−ikT a/(2kT ) and bL =
−[1 +G(kTa)]a3/2. It is also consistent with the solution of Eq. (9) of Riley (1966).

In order to get back the Stokes limit, we have to take the limit |kTa| → 0 as well. Note
that

lim
|kT a|→0

[1 +G(kT r)]e
ikT r = 1/2− 1/(k2T r

2),

lim
|kT a|→0

G(kT r)e
ikT r = −1/2− 1/(k2T r

2),

lim
|kT a|→0

[1 + 3G(kTa)]eikT a/eikT a = [−1/2− 3/(k2Ta
2)]/eikT a = −1/2− 3/(k2Ta

2)

(4.3)

Then the velocity components become:

uθ(r)

U0
= −3

4

a

r
+

3

2k2T r
2

a

r
− 1

4

a3

r3
− 3

k2Ta
2

a3

r3
= −3

4

a

r
− 1

4

a3

r3
, (4.4a)

ur(r)

U0
=

3

2

a

r
+

3

k2T r
2

a

r
− 1

2

a3

r3
− 3

k2Ta
2

a3

r3
=

3

2

a

r
− 1

2

a3

r3
(4.4b)

which is the velocity field for a sphere moving in Stokes flow. Note that in the above
results, terms with 1/k2T cancel each other exactly out.

5. Steady acoustic streaming flow field and the primary flow field

Included in the Supplementary Material is a movie file of animations of the primary flow
fields corresponding the numerical examples given in the main text and the corresponding
steady acoustic streaming flow fields.
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