
A Simple Algorithm for the Calculation of the Electrostatic Repulsion 
between Identical Charged Surfaces in Electrolyte 

I. INTRODUCTION 

The colloid scientist is often required to calculate 
the electrical double-layer interaction between charged 
surfaces in order to compare theory and experiment. 
For example, recent experimental measurements of 
forces between charged surfaces in electrolyte (1) are 
of sufficiently high precision to require the most precise 
calculation of the electrostatic repulsion in a variety 
of electrolyte solutions and boundary conditions (e.g., 
constant surface charge or constant surface potential). 

The traditional calculation of the double-layer 
interaction is involved. It requires the analytic solution 
of the nonlinear Pois son-  Boltzmann equation between 
parallel half spaces in terms of elliptic functions and 
the subsequent numerical solution of a complex 
transcendental equation. Not surprisingly, this has led 
to the extensive use of tables (2, 3) which are available 
for only selected values of the surface charge or 
potential and electrolyte concentrations and valences. 
This restriction means that in most practical cases, one 
must interpolate from the tables. In spite of the 
complexities and inconveniences, the tables remain 
in common use. 

This note attempts to present a fast numerical 
procedure which is capable of computing the electro- 
static interaction across symmetric electrolytes with 
high precision for any of the commonly encountered 
boundary conditions. 

II. THE METHOD 

For simplicity, we will discuss the numerical pro- 
cedure for a 1:1 electrolyte between identical, charged, 
plane-parallel interfaces. The planar Poisson-Boltz- 
mann equation for the scaled potential Y (e*/kT) in 
a 1:1 electrolyte solution of number concentration n is 

day 
- sinh Y, [2.1] 

dX 2 

where X (Kx) is the scaled distance measured from 
the midplane (Fig. 1) and 

87me ~ 
K ~ = [2.2] 

ekT 

A first integration yields 

dY 
- Q Sgn (Ym), [2.3] 

dX 

where we define the variable Q by 

Q = (2(cosh Y - cosh Ym)) 1j2, [2.4] 

where Ym is the scaled midplane potential. Equation 
[2.3] satisfies the zero-derivative boundary condition 
at X = 0 (Fig. 1). We note that 

dQ _ sinh Y 
dY Q 

Fle; 

From Eqs. [2.3] and [2.5] we derive the differential 
equation 

d X _  Ym) -11-1 '2 .  

The midplane in terms of these variables is the point 
(Q = 0, X --- 0). If we know what value of Q (=Q~) 
corresponded to the surface of charge, then for a given 
value of the reduced midplane potential Ym, we can 
solve Eq. [2.6] from Q = 0 to Q = Qs by a suitable 
numerical technique (e.g., a fourth-order Runge-  Kutta 
method (4)). Thus we determine Xs = r,L/2, the scaled 
distance from the midplane to the surface of charge 
corresponding to the given value of Ym. Repeating this 
procedure for a set of suitably chosen values of Ym 
(see below) will generate a set of corresponding KL/2 
values. The electrostatic pressure at each value of L is 
simply calculated from the corresponding Ym value by 

P(L) = 2nkT(cosh Ym - 1). [2.7] 

The interaction free energy per unit surface area Ep(L) 
can be computed from 

Ep(L) = I~ P(L')dL' [2.8] 

using a numerical quadrature formula (see below). The 
interaction free energy for spherical surfaces Esp(L) 
with radii al and a2 at separation L can be computed 
by a similar numerical quadrature directly from the 
pressure, Eq. [2.7], if the Derjaguin approximation is 
invoked: 

E~p(L) ~ a12~rata2+ a2 IL dL'Ep(L') 

- ax2~ra~a2+ a2 I] dL'(L' - L)P(L'). [2.9] 
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FIG. 1. The potential profile between identical planar 

double layers. 

This result should be a good approximation for Kay, 
Ka~ ~> 10. There are some finer points to the calcula- 
tion of these integrals and the choice of Ym values to 
which we return in Section III. 

It remains to indicate how the surface Q value, viz., 
Q~, is determined. This is dependent on the type of 
boundary conditions invoked. 

(i) Constant Surface Potential Y~ 

In this case, Q~ is calculated directly from definition 
[2.4] with Y = Ys, 

Q~ = [2(cosh Y~ - cosh Ym)] 1/~. [2.10] 

(ii) Constant Surface Charge o- 

At the right-hand surface we have the boundary 
condition 

d Y  4~re 
- - -  . ~ r .  [ 2 . 1 1 ]  

dX  ek T 

From Eq. [2.3], we see immediately that 

47re 
Q~ = ~ Io-I. [2.12] 

(iii) Surface Charge Regulation 

When the surface charge is determined by the 
adsorption of a potential-determining ion onto specific 
surface sites, neither charge nor potential remains 
constant during interaction (5-7). Both Eqs. [2.10] 
and [2.12] still hold but o- and Ys are not determined. 
To determine Q~ an extra equation is therefore 
necessary. Applying the mass-action principle to the 
surface adsorption process leads to another relation- 
ship between surface charge and surface potential. 
For example, for a surface weak-acid dissociation, 
we have (5) 

1410-°. 
eN~ - ~ - I  = Kae-Y% [2.13] 
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where Ns is the surface density of acid groups and 
K~ is the dissociation constant. Equations [2.10], 
[2.12], and [2.13] are sufficient to determine Q~ (and 
c~ and Ys) for a given Ym- 

III. OPTIMIZATION OF NUMERICAL 
QUADRATURE ACCURACY 

In a constant potential interaction the scaled mid- 
plane potential varies smoothly from zero at X = ~ to 
Y~ at X = 0. Clearly, one must choose the Ym values 
from between these limits1; the smallest Y,~ value 
corresponding to the largest distance, Lmax, say. The 
numerical quadrature required to obtain the interac- 
tion free energy can be performed only over the range 
L to Lma x. By ensuring that the smallest Ym value is 
such that KLmax >~ 3, we can perform the tail of the 
integration from Lmax to infinity analytically since the 
pressure P(L)  can be assumed to decay exponentially 
for L ~ Lmax. 

If we decide on a total of N points (L, Ym) between 
(~,0) and (0,Y0, then the simplest choice of the Ym, 
viz., equally spaced values of Ym, will produce 
unequally spaced ( L , P ( L ) )  values. With this choice of 
Ym values, only a very unsophisticated quadrature 
formula (e.g., trapezoidal rule) can be used to evaluate 
the integrals in Eq. [2.8] or [2.9]; and, for accuracy, 
we would need to choose a very large value of N 
(~100). This can be avoided by choosing the value of 
Ym SO that the pressure values are equally spaced 
between zero and P~nax (given by Eq. [2.7] with Ym 
= Y0- After an integration by parts, we can rewrite 
Eqs. [2.8] and [2.9] as 

Po L) Ep(L) = (L ' (P ' )  - L )dP '  [3.1] 

and 

_ 7rala2 rDi "(L' (L ' (P ' )  - L)2dP '. [3.2] Esp(L) 
aa -1- a2 )o 

Because the points have been chosen so that the 
P values are equally spaced, we can use a much more 
accurate quadrature rule (e.g., an Adams extrapolation 
formula (4)). This enables us to use much fewer points 
to achieve comparable accuracy. 

The method outlined above is easily generalized to 
the case of a general electrolyte solution containing 
mixtures of ions of different valence. Stern layer 
models can also be incorporated with some straight- 
forward modification of the surface boundary condition 

1 For constant charge and regulated interactions the 
magnitude of the midplane potential Ym can increase 
indefinitely. However, by the time Ym has increased 
to Ys(o~) (the value of the surface potential at infinite 
separation) we have KL ~ 1. Thus Ys(~) provides a 
suitable scale on which to choose Ym values for these 
types of interaction. 
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which determines Qs. As a computational algorithm, 
the method possesses the advantages of speed, 
accuracy, and simplicity. A Fortran subroutine is 
available from the authors. 
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