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In this paper we compare three methods for deducing the effective pair potential that 
describes the double-layer interaction between colloidal particles in a concentrated dispersion. 
The structure factors and small-time behaviour of the intermediate scattering function predic- 
ted by these models are compared with results obtained from laser and neutron-scattering 
experiments. 

1. INTRODUCTION 

The study of the structure of colloidal suspensions has a long history which dates 
back to Langmuir,’ who put forward the idea that the electrostatic or electrical 
double-layer interactions between colloidal particles are responsible for giving rise to 
long-range structures or order in such systems. Kirkwood and Mazur2 made the 
first attempt to treat colloidal particles as an effective one-component ‘“fluid’ in 
which the colloidal particles interact via pair potentials (of mean force) which de- 
pend on the properties and ionic composition of the solvent. Using the 
Debye-Huckel expression for the double-layer interaction, they produced 
colloid-colloid pair correlation functions which resemble those found between atoms 
in a simple monatomic fluid. Their results demonstrated that the repulsive double- 
layer interaction between the colloidal particles can be responsible for the observed 
structure in colloidal systems. 

Recent experimental advances in light- and neutron-scattering techniques, to- 
gether with the application of modern concepts of liquid-state physics, have seen 
a revival of interest in the subject. In modelling the properties of a dispersion as 
an effective one-component fluid of colloidal particles, computer-simulation 
techniques 3, or the integral equation methods - of liquid-state physics have been 
used. However, both of these approaches require, as input, the form of the inter- 
action potential between the colloidal particles. The remaining task, therefore, is to 
construct the colloid-colloid interaction potential in terms of the physico-chemical 
properties of the particles and the composition of the dispersion medium such as pH, 
electrolyte concentration etc. 

In the conventional treatment of the interaction between colloid particles, the 
colloidal system is assumed to be in osmotic equilibrium with a large electrolyte 
reservoir of known fixed composition. The screening of the electrostatic interaction 
between the particles is controlled by the ionic strength of this reservoir. However, in 
order to maximize the electrostatic repulsion, colloidal systems are often treated with 
ion-exchange resins to remove all excess electrolytes. The concentration of added 
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66 ELECTRICAL DOUBLE-LAYER INTERACTIONS 

electrolytes is then controlled by the addition of known amounts of salt. As a conse- 
quence, the properties of the electrolyte reservoir which is supposed to be in equili- 
brium with the system are left undetermined, although in principle they can be deter- 
mined by equilibrium dialysis. The theoretical analysis outlined in this paper is 
developed with a view to circumvent this problem. The basic idea is to regard the 
colloidal system as a collection of ions and colloidal particles of known valence and 
number concentration. The solvent is taken to be a dielectric continuum. The next 
step is to exploit the obvious asymmetry in charge and size between the ions and 
colloidal particles and formally regard the colloidal particles as a ‘solute’ in a ‘solv- 
ent’ of small ions. Using the McMillan-Mayer picture, we can obtain the free energy 
of a configuration of the system in which the colloidal particles have been held fixed 
but the small ions have been averaged over all allowed positions. Obviously some 
approximations must be made to effect this average. The resultant free energy of this 
configuration of colloidal particles is the N-body colloid-colloid potential of mean 
force. In general this is a many-body potential. However, within our approximation 
scheme this many-body potential of mean force can be written as a sum of pair 
interactions between the colloidal particles. This effective pair potential turns out to 
be dependent on the concentration of colloidal particles and it is the appropriate 
potential to employ if one wishes to regard the colloidal system as an effective one- 
component system. The usefulness of the effective pair potential will be tested 
against measurements on polystyrene dispersions based on dynamic light scattering 
and neutron scattering. 

The idea of treating a colloidal system as a highly asymmetric electrolyte com- 
prised of ions and colloidal particles has been used to model the dynamical pro- 
perties of dense colloidal sy~terns .~*~O The analyses were made in the linear 
Debye-Huckel limit, which is only capable of yielding ‘limiting-law’ behaviour. 
However, because of the high charge on the colloidal particles, the weak interaction 
assumption implicit in the Debye-Hiickel treatment cannot be applied to the 
colloid-colloid interaction. The equilibrium properties of highly asymmetric electro- 
lytes have been investigated by integral equation 1i and Monte Carlo methods 
for a charge asymmetry of up to 20 to 1. 

2. THE EFFECTIVE PAIR POTENTIAL 

By modelling a colloidal dispersion as a highly asymmetric electrolyte, we have 
obtained an analytical expression for the effective pair potential which describes the 
double-layer interaction between the colloidal particles. l4 As mentioned in the 
Introduction, this result is applicable to situations in which the composition of the 
colloidal system is known but the properties of the electrolyte reservoir that is in 
osmotic equilibrium with the dispersion remain undetermined. (As a consequence, 
coventional double-layer theory cannot be applied.) In the original derivation l4 the 
effective pair potential was obtained from an asymptotic analysis of the 
Ornstein-Zernike equations for the colloid-colloid, colloid-ion and ion-ion pair 
correlation functions. By replacing the ion-ion and ion-colloid direct correlation 
functions by their limiting forms which are valid for large separations, one readily 
obtains simple analytic expression for the effective colloid-colloid pair potential. 
The same result can be obtained from a derivation based on the McMillan-Mayer 
formalism for studying solutions. Here the colloidal particles are regarded as 
‘solutes’ in a ‘solvent’ of small ions.’ The colloid-colloid potential of mean force 
was obtained by averaging over all configurations of the ions. This averaging process 
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B. BERESFORD-SMITH AND D. Y. C. CHAN 67 

is achieved by invoking the same approximations for the ion-ion and ion-colloid 
interaction as in the Debye-Hiickel theory of electrolytes. 

Our expression for the effective pair potential between two colloid particles, each 
having a charge (zoe), at a distance r apart is14 

where E is the dielectric constant of the solvent and K is defined by 

h e 2  
rc2 = - C niz: 

EkT i 

The summation in eqn (2.2) is to be taken over all species of counterions necessary 
to balance the colloidal charge as well as over all species of added salt (mean con- 
centration ni, valence zi). In the absence of added salt, where the system is made up 
of colloidal particles and counterions (a limit which has no counterpart in conven- 
tional double-layer theory), eqn (2.2) becomes 

where z1 is the valence of the counterions and nl, the concentration of counterions, 
is related to the concentration of colloidal particles, no, by the electroneutrality 
condition 

nOzO + n,zl = 0. (2.4) 
Thus we can see from eqn (2.4) or its generalization in the presence of added salt 
that the screening parameter K in Uef f  will be a function of the number density of 
colloidal particles. In the limit of low concentration of colloidal particles or swamp- 
ing added salt, K will only be determined by the added salt concentration. 

To obtain an appreciation of the relative magnitudes of contributions to IC from 
the counterions and from the added salt, let us consider a colloidal dispersion of 8% 
volume fraction of spherical particles of 160 A radius, each carrying 840 elementary 
charges (this corresponds to a surface charge density of 4.2 pC cmP2) with univalent 
counterions (see later). Let there be loe3  mol dm-3 of 1 : 1 added salt. From eqn 
(2.2) the screening parameter for Ueffcan be written as 

K 2  = dountenon + K?dded salt. (2.5) 
For the above data we find 

Kzoun terion/K?dded salt = 3 * 3. 
In a previous paper l4  the colloid-colloid structure factor and pair distribution 

function were obtained by solving the multicomponent Ornstein-Zernike equation 
for the asymmetric electrolyte in the hypernetted-chain approximation. By treating 
the colloidal particles as an effective one-component system an effective pair poten- 
tial was obtained from the colloid-colloid pair distribution function by inverting the 
one-component hypernetted-chain equation. The effective pair potential so obtained 
was in very good agreement with the result given by eqn (2.1) and (2.2). The 
colloid-colloid pair correlation functions calculated according to eqn (2.1) and the 
hypernetted-chain approximation are also in good agreement with the corresponding 
quantities obtained by a Monte Carlo simulation of the asymmetric 1 : zo electro- 
lyte. 
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68 ELECTRICAL DOUBLE-LAYER INTERACTIONS 

In deriving eqn (2.1) we have assumed that the particle radius is small compared 
with the mean interparticle spacing and with IC- l .  Moreover, the linearity assump- 
tion in treating the ion-colloid interactions imposes the condition (zoz1e2/ekTa) < 1 
where a is the distance of closest approach between a colloidal particle and a coun- 
terion. For systems where the above assumptions do not hold we propose the follow- 
ing generalization to the effective pair potential given by eqn (2.1). s 

We model the colloidal dispersion as a multicomponent electrolyte in which the 
ions and colloidal particles all interact via r -  coulomb potentials. The Ornstein- 
Zernike equations for the pair distribution functions gij(r) = 1 + hij(r) have the 
form (ij,k = 0,1,2 . . .) 

From eqn (2.7) we can write down a formal one-component equation for the 
colloid-colloid correlation function (component 0) 

l o0 (k )  = ~ i : ( k )  + no ~:\(k) h",,(k) (2.8) 
where the Fourier transforms are defined by (f= h or c) 

y ( k )  = $ j: dr r sin ( k r ) f ( r ) .  

The effective colloid-colloid direct correlation function ZfL(k) is related to the direct 
correlation in eqn (2.7) by 

C"'o"0 = zoo + c";f [I - E*]-  20 (2.10) 

(2.1 1)  

( E * ) i j  = ( n p j ) f  Eij(k), i ,j  = 1,2,. . . (2.12) 

(2.13) 

where the column matrix to has elements 

(C"0)i = nf Eio(k), i = 1,2, . . . 
and the matrix 

The effective pair potential is then defined by 

Veff(r) = - k T  lim cedf,(r). 
r-+ OD 

To obtain coo(r) via eqn (2.10) we replace the ion-ion direct correlation functions 
cij(r) by their asymptotic forms 

(2.14) 

which is reasonable for univalent ions. We obtain the ionsolloid direct correlation 
functions cio(r) by solving the Ornstein-Zernike equation 

hio(r) = cio(r) + 1 nj J ci& - sl)hjo(s)ds + no S cio(lr - s()hoo(s)ds (2.15) 
j =  1 

using eqn (2.14) together with 

hio(r) = - 1, r < a (2.16) 
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B. BERESFORD-SMITH AND D .  Y.  C. CHAN 69 

The assumptions embodied in eqn (2.14)-(2.17) are identical to those needed to 
derive the Poisson-Boltzmann equation for the potential distribution near charged 
interfaces. The use of eqn (2.18) assumes that as far as determining c .  ( r ) is * con- 
cerned, the remaining colloidal particles are treated as a uniform jellium. This is the 
simplest way to handle the last term in eqn (2.15) while maintaining electroneut- 
rality. For later reference we shall call this the jellium approximation. With the 
substitution 

eqn (2.15H2.18) are equivalent to solving the differential equation 

with boundary conditions 

Y - 0 ,  r + O  (2.21) 

(2.22) 

where cp = 4na3no/3. The effective pair potential determined from eqn (2.13) still has 
the same functional form as eqn (2.1) but with the constant (zoe)2 replaced by a 
constant which is a function of a, zo and K ,  and hence the volume fraction of 
colloidal particles. 

3. THE CELL MODEL 

An alternative approach to evaluating the double-layer interaction in concentrated 
dispersions is to deduce the properties of the ‘fictitious’ electrolyte reservoir which 
would be in osmotic equilibrium with the colloidal system in terms of the compo- 
sition of the system. Conventional double-layer theory can then be applied to deter- 
mine the pair interaction. The properties of the electrolyte reservoir can be deter- 
mined using a cell model for the dispersion. l6 In this model each colloidal particle is 
assumed to be in the centre of a spherical cell of radius rs (47tr?Yt0/3 = 1) with one 
particle per cell. The cell also contains the average number of counterions and added 
electrolyte ions so that it is electrically neutral. 

The potential distribution within the cell is assumed to be given by the 
Poisson-Bol tzmann theory : 

where the ionic composition of the electrolyte reservoir is given by {nk}. The con- 
centrations {$} can be determined from the conditions that (i) the ionic compo- 
sition within the cell is known, (ii) the cell is overall neutral and (iii) there is no 
surface charge density at the cell boundary. In general, {nk) has to be determined by 
numerical iteration.16 We note, however, that the cell model approach cannot be 
applied to ‘salt-free’ dispersions comprised only of colloidal particles and 
counterions. 

If one further assumes that the exponential factor in eqn (3.1) may be linearized, 
the quantities {np) may be determined analytically. In this linear approximation the 
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70 ELECTRICAL DOUBLE-LAYER INTERACTIONS 

result for the effective screening parameter for the ‘fictitious’ electrolyte reservoir is 

where rc2 is given by eqn (2.2). Thus we see that our expression for the effective pair 
potential Ueff  given by eqn (2.1) is equivalent to the interaction between two point 
charges (zoe) in an electrolyte which has a screening parameter given by K .  

From the above observation one might expect the non-linear version of the cell 
model to give better agreement with experimental measurement. However, as we 
shall see in the next section, this does not appear to be the case. 

4. COMPARISON WITH SCATTERING MEASUREMENTS 

STRUCTURE FACTOR 

The structure of a dispersion can be probed by scattering measurements. The 
relevant experimental quantity is the colloid-colloid structure factor 

where goo(r) is the colloid-colloid pair correlation function. The scattering vector, k ,  
is related to the scattering angle, 8 by the usual formula 

( 4 4  

where II  is the wavelength of the radiation in the dispersion medium. 
For a potential of the form given by eqn (2.1) the structure factor, S(k),  obtained 

by solving the one-component Ornstein-Zernike equation in the hypernetted-chain 
approximation is, in general, found to be in good agreement with that obtained by 
Monte Carlo simulations l 7  for almost all values of k.  However, when the height of 
the first peak in S(k) is large (ca. 2) the hypernetted-chain approximation tends to 
underestimate this peak height by ca. 15%. Nevertheless, there is still good agree- 
ment with regard to the location of the peak position. These observations are very 
similar to those found for one-component plasmas. 

While light-scattering studies have been carried out on numerous systems, few of 
these are sufficiently well characterized to permit detailed comparison with theory. 
One notable exception is the light-scattering data of Brown et al. on dispersions of 
polystyrene spheres. These particles carry 500 elementary charges and a mean radius 
of 230 A. The system was treated with ion-exchange resin to remove all excess electro- 
lyte, leaving only univalent counterions. In fig. 1 a comparison between the experi- 
mental and theoretical structure factors is shown. The theoretical results are ob- 
tained by solving the one component Ornstein-Zernike equation in the hypernetted- 
chain approximation using the effective pair potential in eqn (2.1). The system was 
taken to be salt free but the particles only carry 235 instead of 500 elementary 
charges. However, since the presence of small amounts of added 1 : 1 electrolyte (ca. 

mol dm-3) can significantly affect the theoretical results there is a fair amount 
of leeway in obtaining a fit between theory and experiment. Indeed the quality of fit 
is comparable to those obtained using different theoretical 6, 2o 
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2.0 

1.5 

1.0 

0.5 s 

1 .o 

0.5 

0 

I I I ' 1  

2 .o 4 .O 6.0 8.0 10.0 

krs 

Fig. 1. Structure factor for a dispersion of polystyrene spheres, radius 230 I$,  at particle num- 
ber concentrations: (a) 8.46 x 1 O I 2  ~ r n - ~  and (b) 1.67 x 10l2 ~ m - ~ .  ( 0 . 0 )  Experimental 
points ; l 9  (-) calculated according to eqn (2.1) and (2.2) for a particle charge of 235 (see 

text). 

It has been observed experimentally that the location (kmJ of the first peak in 
S(k) is related to the particle number density by the simple empirical result l 9  

km,, rs = 4.6 (4.3) 
where rs = ( 3 / 4 ~ n ~ ) ' / ~ .  In our calculations this product is 

k,,, rs = 4.4 (4-4) 
which is almost identical to the value obtained by an analysis based on Bragg 
diffraction assuming the colloidal particles are in a body-centred cubic lattice.2 

Another comparison between theory and experiment is afforded by recent 
neutron-scattering experiments on dispersions of polystyrene spheres. Here the 
particles are of radius a = 160 A and carry 840 elementary charges. The dispersion 
was treated with ion-exchange resin to remove excess electrolytes, but subsequently 
sodium chloride was added to the dispersion to make up added salt concentrations 
of mol dm-3. An effective one-component pair potential of the form given 
by eqn (2.1) was used to calculate the structure factor. The screening parameter K 
was calculated according to eqn (2.2). However, because of the high charge and Ka 
(ca. 3) values of these systems, the pre-exponential factor in eqn (2.2) was replaced 
by 

(zoe)2 + A 2 .  (4.5) 
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72 ELECTRICAL DOUBLE-LAYER INTERACTIONS 

Fig. 2. Structure factor for a dispersion of polystyrene spheres, radius 160& with 
mol dmP3  added sodium chloride and 840 elementary charges per particle. Points, ex- 

perimental data [ref. (22)] (-) calculated according to the jellium model (see text). Volume 
fraction: (a)  2, (b) 8 and (c) 13%. 

3 .o 

2 . 5  

2 .o  

h 

2 1 . 5  

1 . o  

0.5 

0 2 .o 4 .O 6.0 8.0 10.0 
k r s  

Fig. 3. Structure factor calculated according to three different forms of U"': (a) as obtained 
from conventional double-layer theory assuming IC is determined only by added salt (- 
--); (b) as above but with K determined by cell model (--); (c) as obtained from the 

jellium model (- - --). The particle volume fraction is 8%, all other data as for fig. 2. 
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The coefficient A in eqn (4.5) is obtained by using the jellium approximation de- 
scribed in section 2. In fig. 2 a comparison is given for the structure factor obtained 
by using the jellium approximation and the hypernetted-chain approximation and 
that obtained by small-angle neutron-scattering studies.22 In fig. 3 are shown the 
structure factors obtained from the present theory, the cell model and from a model 
which assumes that the screening parameter is determined solely by the added salt 
(i.e. neglect the contribution of the counterions to the screening). These results il- 
lustrate the need to account for the contribution of the counterions to the screening 
length in the effective colloid-colloid pair potential. In view of the comments in 
sections 2 and 3 the disagreement between the experiment and the cell model is 
unexpected. 

From the discussion so far, it is clear that it is fairly easy to obtain good fits to 
the structure factor especially if a theory has an adjustable parameter. Indeed, even a 
hard-sphere model with a suitably chosen hard-sphere radius can provide a 
reasonable fit to S(k) .  However, a more stringent test can be provided by examining 
temporal correlations. 

THE INTERMEDIATE SCATTERING FUNCTION 

From dynamic light-scattering experiments it is possible to extract the small-time 
behaviour of the intermediate scattering function G(k,t) .  When hydrodynamic in- 
teractions between colloidal particles are negligible, an acceptable approximation at 
low volume fractions, we have the result23 

where 
(4.8) 

Here we see that the quantity Q(k) is given in terms of the colloid-colloid pair 
correlation function goo(r)  and the effective pair potential, V f f ( r ) .  In fig. 4 we see 

B(k) = (no/kT) J goo(r)( 1 - cask r)(k V)2 Uefl(r)dr. 

h 

.y, 
0, 

6.0 

4.0 

2 .o 

0 2.0 4.0 6 .O 8.0 10.0 
krs 

Fig. 4. Comparison of experimental values [ref. (19)] (-) and theoretical predictions(-) of Q(k)  
for the system described in fig. l(a). 
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that the same input data that were able to give a reasonable fit to S(k) in fig. 1 
predict quite different forms for the function Q(k).  In particular, the theoretical Q(k) 
contains a fair amount of structure with a dominant peak in the same position as the 
main peak in S(k).  This observation is in agreement with that found for the one- 
dimensional harmonic lattice for which an exact analytic solution for S(k) and Q(k)  
have been obtained.23 

A possible source for the disagreement between theory and experiment may 
perhaps be found in the magnitude of Q(k). The experimental values of Q(k) were 
obtained by a truncated cumulant analysis in which the intermediate scattering func- 
tion, G(k,t) ,  is assumed to have the form 

ln[G(k,t)/S(k)] = 1 - T(k)t + +Q(k)[r(k)tI2. (4.9) 
In the original analysislg it was noted that this assumption was expected to be 
accurate for small Q(k) (< 0.5), but for larger Q(k) the truncation in eqn (4.9) will 
introduce systematic errors. 

5. DISCUSSION 

In this paper we have outlined and compared approximate methods for deter- 
mining the effective pair potential which characterises the electrical double-layer 
interaction between particles in concentrated colloidal systems. The input data re- 
quired are the particle number concentration, the particle charge and the amount of 
added salt in the dispersion. These are quantities that experimentalists should deter- 
mine in the process of characterising their system in order to eliminate unknown or 
fitting parameters in a comparison with theory. 

From earlier work, as well as from the results given here, it is clear that a 
knowledge of the structure factor alone does not provide very stringent constraints 
on the theoretical model. However, when combined with temporal measurements 
there appear to be disagreements which require clarification. 

We thank Prof. R. H. Ottewill for allowing us access to his data on neutron- 
scattering measurements. 
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