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The form of fluctuating hydrodynamic forces has been derived recently [R.B. Jones, Physica 105A 
(I 98 1) 3951 from the stochastic fluid equations of Landau and Lifshitz. We show by general physical 
arguments as well as by a direct calculation that such forces do not exist in the classical limit. 

1. Introduction 

The physical origins of the Van der Waals interactions between macroscopic 
bodies are to be found in the fluctuating electromagnetic fields generated by the 
translational, vibrational, rotational and electronic orbital motions of the constit- 
uent molecules of the bodies. The presence of one body in the vicinity of another 
alters the disposition of the fluctuating electromagnetic field and the subsequent 
changes in the energy associated with the field can be meaningfully defined as a 
distance-dependent interaction energy between the bodies. The quantitative 
evaluation of this dispersion interaction can be made by quantum field theoretic 
techniques’) or equivalently by a semiclassical method*) whereby the classical 
(continuum dielectric) field equations are solved in the geometry defined by the 
two bodies in the presence of a random electromagnetic field K(r)epio’. Equiv- 
alence of the methods is achieved by requiring K(r) to have the property 

(K(r)K(r’)) = 2k”(w) coth sT6(r - r’)l, (1.1) 

where c “(CD) is the imaginary part of the dielectric response of the body and (. . .) 

denotes the usual statistical average. For a fuller discussion of this equivalence see 
Landau and Lifshiftz3). By evaluating the resultant electromagnetic stress tensor 
on the surface of one of the bodies and integrating over all frequencies w, the 
dispersion force #‘n exerted on that body by the other is obtained’s’). 

* Present address: Department of Physical Chemistry, University of Melbourne, Parkville, Victoria 
3052, Australia. 
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There are in real systems other fluctuating fields of a non-electromagnetic 

nature, e.g. flow fields, in the case of a fluid material or elastic displacement fields, 

in the case of an elastic solid. The question arises as to whether these fluctuations 

can give rise to a net force between bodies by analogy to the dispersion force. 

Dzyaloshinski et al.‘) have suggested that acoustic fluctuations in the liquid film 

(thickness L) that separates two semi-infinite half spaces can give rise to a 

(hydrodynamic) force per unit area between the surfaces, 

(1.2) 

The constant of proportionality in the above expression was expected to be a 

number of order unity-its precise value was not, however, determined. Since the 

Van der Waals interaction for a similar system has the same functional form as, 

and comparable magnitude to, the result in eq. (1.2), it is important to determine 

the exact magnitude of any fluctuation forces of non-electromagnetic origin. 

Recently, Jones4) had analysed the nature of hydrodynamic fluctuations in a 

fluid using the random field formalism as applied to the Navier-Stokes equations. 

An expression for the pressure field near a rigid plane boundary generated by these 

acoustic fluctuations was derived and an approximate calculation of the net force 

exerted on a sphere by the plane boundary was performed. This study indicated 

that these hydrodynamic fluctuation forces might indeed be numerically very 

significant in interfacial phenomena. The important geometry of plane parallel 

half spaces separated by a liquid was not considered by Jones. It is the aim of the 

present paper to address ourselves to that problem. 

Before we proceed, several philosophical reservations should be discussed. 

Firstly, the nature of these non-electromagnetic fluctuations is not completely 

analogous to their electromagnetic counterparts. The electromagnetic field equa- 

tions are linear while the electromagnetic stress tensor is a quadratic function of 

the field variables. As we shall see below, the classical hydrodynamic field 

equations are quadratic while the hydrodynamic stress tensor is a linear function 

of the field variables. Indeed, it is precisely the non-linearity of the field equations 

which provides the net hydrodynamic fluctuation force as Jones4) has shown. This 

fundamental lack of correspondence does not allow for an easy method of 

calculation of hydrodynamic fluctuation forces as is available in the electro- 

magnetic case, namely, the normal mode (via the dispersion relation) formalism 

of Van Kampen et al.‘). 

A more fundamental question arises as to exactly what part of the energy of 

the system we are calculating when we pursue the acoustic fluctuation formalism 

of Jones4). Hydrodynamic fluctuations are collective motions in which kinetic 

energy is dissipated, therefore in a classical system, such effects must be contained 

in the momentum integration of the phase space integral for the partition 
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functions. However, for a system with velocity-independent potentials the momen- 
tum part of the phase integral has no separation or distance dependence which 
can give rise to a net average force on the bodies in the system. We expect, 
therefore that the hydrodynamic fluctuation formalism of Jones4) should yield a 
zero value for the coefficient in (1.2). To what extent the formalism fulfils this 
expectation is outlined below. 

2. Formalism 

Hydrodynamic fluctuations in a Newtonian fluid are governed by the stochastic 
equations of Landau and Lifshitz6) 

5 + v - (pu) = 0 ) 

(2.1) 
(2.2) 

where heat transfer effects have been neglected for simplicity, and u(r, t), p(r, t), 
p(r, t) are the velocity, pressure and density, respectively, q and c are shear and 
bulk viscosities. Stochastic fluctuations in the fluid are described by the random 
stress tensor S which has the Gaussian stochastic properties 

(2.3) 

+ Re ([(CO) - &(o)6vi3kr]6(r - r’)d(w - a’), (2.4) 

where (. . .) denotes an equilibrium ensemble average and * the frequency Fourier 
transform 

f(w) = 
s 

dt eiwtf(t) (2.5) 

The random stress tensor S may be regarded as the driving force for the fluid 
motion. The force exerted on any solid body by the fluid can be computed in the 
usual way from the stress tensor a6), 

a=~[~u+(~u)T]+[(r-~~)(P.u)-p]l, (2.6) 

where ( )T denotes the transpose and / the unit tensor. In view of eq. (2.3) it is 
easy to see that the non-linear term in eq. (2.1) must be considered in order to 
obtain a non-zero contribution to the average stress tensor (a) from hydro- 
dynamic fluctuations. 
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In this paper, we follow Jones’ treatment4) of the non-linear term in eq. (2.1). 
We seek a solution of eqs. (2.1) and (2.2) in the form of a power series in the 
random stress S: 

(2.7a) 

(2.7b) 

(2.7d) 

where (n) denotes a term of order n in S. The equilibrium solutions corresponding 

to S = 0 are u co) = 0, p(O) = p. (constant), p(O) = p. (constant) and g(O) = -po/. 
Assuming local equilibrium, p and p can be related by 

P (1) = pp’l’ ) (2.8) 
p(2) = c;p + ~opu)p('), (2.9) 

where Co = (dp/i?p)~‘* is the adiabatic velocity of sound and b, = i(ll’p/dp’), the 
second virial coefficient. Combining eqs. (2.1), (2.2) and (2.7)-(2.9) we have to 

order 1 in powers of S, the linearized equations 

I ap(I) 
v .v’l’+--- =o 

c; at . 
TO second order, we have 

47I&‘*‘+(q/3+[)P(V .u(2’)- QP-Po~ 

= POU 
(I). Vu(l) + i a(P”‘““‘) 

c; at ’ 
I ap 

v - d2) + ~ ~ = poci at 
_L& v . (p’l’u’l’) + h, a(p;f(‘)) 

POCO 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

From eqs. (2.10) and (2.11) the first order solutions u(r) and p(l) will be linear 
in the random field S, and because of the stochastic nature of the random field, 
eq. (2.3), the averages (u(i)) and (p”)) vanish. Since the stress tensor u is linear 
in u and p, (a(‘)) also vanishes. Thus the first non-vanishing term of d which 
depends on S and hence gives rise to fluctuation forces is dc2). Consequently, we 
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shall require averages of the second order terms (u@)) and (p(*)). By taking the 
average of equations (2.12) and (2.13) we see that averages of the products of first 
order terms, namely (v%(‘)), (p%(‘)) and (p(‘)p(‘)) are required. These averages 
can be related to the Green’s function of the linear Navier-Stokes equations with 
the usual stick boundary conditions at any solid boundaries4). The ensemble 
average of the second order equations, (2.12) and (2.13) can be expressed as a 
pair of ‘static’ equations 

rj0V2Y(r) - VP(r) + H(r) = 0, (2.14) 

V * V(r) = 0, (2.15) 

where 

(t?*)(r,o)) = s(o)V(r), (2.16) 

(PC*+, 0)) = d(o)W), (2.17) 

and q0 E ~(w = 0) is the low frequency shear viscosity. The Cartesian components 
of the ‘external’ force density H(r) are defined by 

(2.18) 

-cc 

where the subscripts i, j = 1, 2, 3 denote the three Cartesian coordinates or 
components. The dyadic Green’s function is the solution of (y = 1,2,3,4) 

where 

G,- 

G*, 

G3Y 

G4Y 

= 

. 6 lY 

6 2Y 

6 3Y 

0 
. 

6(r -r’), 

(2.19) 

(2.20) 

(2.21) 

A detailed derivation of the above results is given in ref. 4. 
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3. The two-wall problem 

We consider hydrodynamic fluctuations in a fluid confined between two solid 
half-spaces located at z = 0 and at z = L. Due to the translational invariance in 
the transverse (x-y) direction, we seek a solution of eq. (2.19) in the form 

d*k elk ‘(S-S’)~~‘bB(z, z’; k, o) , (3.1) 

with s = (x, y) and k = (k,, k,.). By defining the dimensionless quantities 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

where 

$=k* iwpo 
V(O) ’ 

!x= -A/{. 

(3.10) 

(3.11) 

The boundary conditions for these differential equations are 

5, U,,, FY = 0, at z = 0, L, (3.12) 

which correspond to the usual ‘stick’ boundary conditions. 
The solution of eqs. (3.6k(3.12) proceeds as follows. Eq. (3.7) for 3, is not 

coupled to the other functions and can be solved. However, the function V, makes 
no contribution to H(r) in this problem and therefore need not be considered 
further. To solve the remaining coupled equations we begin by differentiating 
equation (3.8) with respect to z and then eliminate the functions oY and (c?~~/c?z) 
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using eqs. (3.6) and (3.9) to obtain an equation for @,,, 

+ i(kJ,, + k,6,)]6(z - z’) , (3.13) 

(3.14) 

with solution 

tiy = C e-m2 + D em(z-L) 

e -m(z-2’1 

+2m(l --cc) WA, + Q2,) - ma,, sgn(z - 01, (3.15) 

where C and D are constants of integration. This result is then substituted into 
eq. (3.8) to give a differential equation for 5 which can be readily solved. The 
expression so obtained for 5 will contain two further constants of integration in 
addition to C and D. These four constants can be determined by applying the 
boundary conditions oY, pY = 0 at z = 0, L where oY is obtained from eq. (3.9). 

The above process is straightforward to execute but the algebraic manipulations 
involved are extremely long and tedious. It turns out that for the particular 
geometry considered here, the only non-zero component of H(r) is the z- 
component, H,(z) which is only a function of z. The only contribution to Hi 
is from G33. The final expression for H,(z) is 

cc m 

,oOkT do 
H3(z)=- ~ 

s s 

m2 
dkk- (4 +mB) Y 

n2 1(m) 1 -a(q’-m’)(q -m/?)Z’ 
-cc 0 

where 

p=1+ 
a(q2 - m2) 

m2 3 

(3.16) 

(3.17) 

(3.18) 

Y = (1 - e-‘@) ePqL sinh q(2z - L) + (1 - e-‘@) eemL sinh m(2z - L) 

(1 - ee(‘“+q)L) e-(q+m)L’2 sinh $4 + m)(2z - L) 

(e-4L _ e-“L) e-(q+mw/z sinh f(q - m)(2z - L) , (3.19) 
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and both q and m are taken to have positive real parts. In the limit L-too we 
recover Jones’ result for a single wa114). 

Before we analyse the results for some simple cases, we should recall the 
limitations of the present method of studying hydrodynamic fluctuations. The 
Navier-Stokes equations represent a continuum description of fluid motion. As 
such they are only appropriate for describing low frequency and long wavelength 
phenomena, that is, fluid motions that vary slowly over molecular dimensions and 
are slow on a molecular timescale. Consequently, we need to exercise some care 
in interpreting our results which have been derived on the tacit assumption that 
the Navier-Stokes description remains valid in the limits [o/--+ co, k + co. 

To calculate the average hydrodynamic fluctuation force exerted on either 
half-space that confines the fluid, we only consider the contribution from the 
second order term of the stress tensor (ac2’). As mentioned earlier, the first order 
term (a”‘) vanishes. The averaged stress tensor (a(‘)) is given in terms of the 
averaged second order fluctuations in the velocity, (u”‘) and pressure, Q’2’) 
which are defined by eqs. (2.6), (2.14E(2.17). In the present two wall problem, the 
sole non-zero component of the force density H(r) is the z-component H3(z) which 
is only a function of z. Therefore, the solution of eqs. (2.14) and (2.15) is 

V(r) = 0, (3.20) 

Wz) - = f&(Z). 
dz 

(3.21) 

3.1. Incompressible &ids 

Consider the case of an imcompressible fluid for which C,+ co. We shall further 
neglect dispersion effects and take I](O) = g,, (const) the low frequency viscosity. 
The force density becomes 

where 

Y, = Y(Co+co) 

= (1 -,-2kL)e- qL sinh q(2z - L) + (I - em’@) e-kL sinh k(2z 

- 2(1 - e -(q+ k)L) e-‘q+k)L/2 sinh gk + q)(2z - L) 

- 2(emkL - e-9”) e&4+k)LIZ sinh f(k - q)(2z - L) , 

(3.22) 

(3.23) 
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.9Jm = qc,-+ co) 

= e-k+Wr. _ (!!!!je-d _ e-kL)] 

_e-C~+W+(~)(e-G-e-*L)]. (3.24) 

The o-integral in eq. (3.22) can be evaluated by changing the contour to a large 
semi-circle in the upper half of the complex frequency plane. This procedure is 
possible because the integrand of the o-integral is a Green’s function (see eq. 
(2.18)) and by the usual causality argument, the integrand is an analytic function 
of o in the upper half plane. It is easy to show that for the integral in eq. (3.22), 
the integrand behaves like l/o as o +ia, thus the o-integral can be evaluated 
to give 

m 

H3(z) = g 
s 

dk k3 
sinh k(2z - L) 

sinhkL ’ 

0 

(3.25) 

Using this result in eq. (3.21) we find 

m 

P(z)=p,+~ dkk* 
s 

cash k(2z - L) 

sinh kL ’ 

0 

(3.26) 

where PO is a constant of integration. The force per unit area or disjoining pressure 
exerted on the surface at z = L say, is 

17(L) = P(z = L) - !‘m, P(z = L) (3.27) 

=S1(3). (3.28) 

The second term on the rhs of eq. (3.27) represents the pressure exerted on the 
‘back’ of the plate. The function [ (3) = Z;=, n -3 = 1.202 is a Riemann c-function. 
We note that in an incompressible fluid, the hydrodynamic fluctuation force is a 
repulsion and has exactly the same functional form as that for Van der Waals 
interaction but is independent of the material properties of various media. From 
eq. (3.28) we see that the hydrodynamic disjoining pressure has an ‘effective 
Hamaker constant’ of x 0.9kT whereas the Hamaker constant for, say, a 
silica-water-silica system is x 2kT. It appears, therefore, that hydrodynamic 
fluctuations are rather important in determining colloidal stability in incom- 
pressible fluids. 
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3.2. Compressible fluids 

We can examine the effects of compressibility on hydrodynamic fluctuation 
forces by keeping C,, finite. We can evaluate the u-integral in eq. (3.16) in the same 
manner as we did for eq. (3.22). That is, we can replace the contour along the real 
axis by a large semi-circle in the upper half of the complex frequency plane. This 
procedure is possible because the o-integral is a Green’s function (see eq. (2.18)) 
and by the usual causality argument, the integrand is an analytic function of w 
in the upper half plane. It is straightforward to show that for the integral in eq. 
(3.16), the integrand vanishes exponentially as w-+ico. As a consequence the 
w-integral is identically zero! In other words, when compressibility effects are 
included, H,(z) is identically zero and the net hydrodynamic fluctuation force 
vanishes. 

4. Discussion 

The rather dramatic consequence of compressibility effects may be attributed 
to the assumption of incompressibility. The ‘incompressible fluid’ is really a low 
frequency idealization of the behaviour of fluids; at sufficiently high frequencies, 
all fluids become compressible. Also, as mentioned earlier, the Navier-Stokes 
equations, which are used here to describe the hydrodynamic fluctuations, are 
themselves only valid for describing low frequency phenomena. Thus within the 
framework of a continuum description it is not possible to be more positive about 
the nature of hydrodynamic fluctuations, never the less we expect that a better 
treatment of the high frequency behaviour of fluid motion will not alter our 
conclusion about nature of hydrodynamic fluctuation forces. 

It is interesting to note, however, that within the present continuum description, 
a non-zero hydrodynamic fluctuation force may be obtained in a compressible 
fluid if quantum effects are included. To see this, we recall that if quantum effects 
are allowed, the r.h.s. of eq. (2.4) has to be multiplied by the factor 
(Ao/2kT)coth(ho/2kT)3). With the inclusion of this term, the integrand of the 
o-integral for H3(z) will no longer be analytic in the upper half plane but will 
contain an infinite number of poles along the imaginary frequency axis at 

2kT 
w,=i---n, 

h 
n=l,2,... (4.1) 

These poles correspond to the singularities of coth(ho/2kT). As a consequence, 
the o-integral will not be zero but will be given by an infinite sum of terms 
evaluated at imaginary frequencies from the residues at these poles. This is 
analogous to the imaginary frequency sum in the general formula for Van der 
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Waals forces’g2) and the contributions from these terms are of the order 
exp( - 2k7’L/C,,). At separations larger than molecular dimensions, these terms 
are negligibly small. In contrast with similar terms in electromagnetic fluctuations, 
such quantum contributions are negligibly small even at separations comparable 
to molecular dimensions because of the very small ratio of the speed of sound to 
that of light. (Strictly speaking, a proper treatment of quantum effects should also 
include quantum corrections in the field equations (2.1) and (2.2)) 

There is one further fundamental difference between hydrodynamic and electro- 
magnetic fluctuations. In the latter case, the expression for the correlation formula 
for the random electromagnetic field (see eq. (1.1)) is proportional to 
(h/2kT) coth(hw/2kT) as distinct from the (hw/2kT) coth(ho/2kT) dependence 
for the random hydrodynamic stress tensor when quantum effects are included. 
As a consequence, in the final expression for Van der Waals forces, there is a 
contribution from the pole at o = 0 from the coth function-the so-called n = 0 
term’.2). In the hydrodynamic problem, such a term does not arise because of an 
extra factor of w multiplying the coth function. This is the basic mathematical 
reason why the average hydrodynamic force vanishes for a compressible Ruid in 
the acoustic fluctuation formalism- a result which can be foreseen on more 
physical grounds from the arguments of section 1 above. 

References 

1) I.E. Dzyaloshinski, E.M. Lifshitz and L.P. Pitzevskii, Advan. Phys. 10 (1961) 165. 

2) E.M. Lifshitz, Sov. Phys. JETP 2 (1956) 73. 

3) L.D. Landau and E.M. Lifshitz, Statistical Physics, Course of Theoretical Physics, Vol. 5, 2nd 

edition (Pergamon, London, 1969). 

4) R.B. Jones, Physica 1OSA (1981) 395. 

5) N.G. van Kampen, B.R.A. Nijboer and K. Schram, Phys. Lett. 26A (1968) 307. 

6) L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6 (Pergamon, 

London, 1959). 


