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A model is presented whereby a system of two interacting electrical double layers can minimise 
its electrical free energy at all distances of separation. The surface charge on each particle is des- 
cribed in terms of surface site equilibria which maintain constant chemical potential of potential 
determining ions. The ability of the system to react (i.e. buffer) to changes in the interparticle 
medium during approach, depends on the surface site dissociation constants, the point of zero charge 
of the surface and the ionic strength. It is shown that essentialIy perfect regulation, i.e. essentially 
infinite buffer capacity, is observed with systems such as AgI for which the potential of the single 
double layer is given by the Nernst equation ; for such a system the usual assumption of interaction 
at constant potential is sensibly correct. For systems where the activity of potential determining 
ions is set at a value far removed from a surface dissociation constant the interaction is well approxi- 
mated by constant charge interaction. The interaction with regulation involves solving a set of 
transcendental equations for self consistent values of surface charge and potential at all separations 
for any given set of bulk parameters. It is a general treatment that replaces constant charge and 
constant potential assumptions and is applicable to oxide colloids and amphoteric biosurfaces in 
particular . 

INTRODUCTION 

In using the formalism of the Deryaguin-Landau-Verwey-Overbeek theory to 
calculate the stability of lyophobic colloids it has been necessary to assume that 
constant charge or constant potential is maintained on either or both surfaces during 
collision.' Certain surfaces where the charge is due, for example, to strong acid 
sites may indeed need to be considered in terms of interactions at constant charge. 
There is as yet no criterion for selecting the extent to which such an assumption is valid, 
nor is there a criterion for determining a priori whether constant charge or constant 
potential interaction may be more appropriate for many other important colloidal 
systems. 

There has been a somewhat uncritical acceptance of the assertion that constant 
surface charge interaction is more appropriate to coagulation of AgI or hydrous 
oxide colloids. While Frens and Overbeek 24 did show that perturbation of bulk 
electrolyte composition resulted in relatively slow restitution of the equilibrium 
potential of a Ag/AgI electrode, there is as yet no direct measurement of the ability 
or otherwise of particles to adjust ion populations at the surface and in the inter- 
particle fluid during collision. 

The reason that one is forced to choose between constant charge and constant 
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potential is that until recently there has been no explicit relationship available for the 
charge and potential in an interacting system. The present paper represents an 
extension of the method of Ninham and Parsegian (N.P.) in which the electrostatic 
potential between two surfaces is regulated during approach by those equilibria at the 
surface that are responsible for the development of the surface charge itself. 

The solid/liquid interface is considered to develop a surface charge as a result of 
surface equilibria involving potential determining ions (p.d.i.) which give rise to 
positive, negative, and for some systems, neutral surface sites. It is considered that 
the approach of the two identical t surfaces is sufficiently slow that electrochemical 
equilibrium is maintained at all times during collision. This is not an assumption of 
" constant potential " ; indeed it will be shown that if conditions are such that 
regulation of the surface potential and charge is limited, then both charge and poten- 
tial will change significantly during the interaction or if conditions are favourable for 
regulation then changes in charge and potential will be minimal during interaction. 

The N.P. model as extended herein to a general amphoteric surface involves 
surface equilibria that are controlled by the chemical potential of p.d.i. in bulk solu- 
tion. 

It is a general treatment and it is not necessary to specify the nature of the p.d.i. 
However for the purposes of comparing the theoretical result with experiment, it is 
convenient to specify that Hf and OH- are p.d.i., as, for example, Fe,O, etc. or 
organic colloids with amine, carboxylate, sulphonate etc. surface groups. 

GENERAL FORMALISM 

We consider the regulation of the electrostatic potential between surfaces bearing 
ionizable groups and we generalize the N.P. model to include amphoteric surfaces, 
i.e. ones where equilibria can generate nett positive or nett negative sites depending on 
the activity of p.d.i. in the bulk solution. In the interest of mathematical simplicity 
we will not include the effect of divalent ions. In view of the existence of the N.P. 
treatment we will omit here most of the mathematical steps and concentrate on the 
method used. For more detailed treatment and the inclusion of divalent ions, the 
reader is referred to the original paper.5 

We consider initially a planar halfspace of the amphoteric substance in contact 
with a solution of 1 : 1 electrolyte whose bulk pH may be controlled. The reactions 
at the surface are, 

AHZ+AH+H+ (K+) 
AH+A-+H+ (K-) 

where AH;, AH and A- represent positive, neutral and negative surface sites res- 
pectively, the relative concentrations of which are determined by the hydrogen ion 
concentration at the surface, H,, i.e. 

[AHIH, = [AHi]K+ 
[A-IH, = [AHIK- 

where K+ and K- are the effective acid ionization constants for the above equilibria. 
The validity of eqn (1) and (2) is examined below. 

The chemical potential of a species i can always be written as 
pi = pP+RTln Ci+kTlnyl 

where the last term represents the concentration dependent part of the free energy of 
?The case of interaction of dissimilar double layers under conditions of regulation has been 

considered and will be published at a later date.6 
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interaction of species i with its environment. Any concentration independent terms 
are grouped in the constant p;. This equation may be taken as a definition of the 
activity coefficient yi. 

Consider the species AH, AH;, A- involved in the surface reaction given by eqn 
(1) and (2). The interaction of a molecule of the charged species can be divided into 
two parts: an electrostatic interaction with the local potential caused by all the 
charges on the surface and in the electrolyte, and a dispersion interaction with its 
neighbouring molecules. The uncharged species will only have the dispersion 
contribution. The local electrostatic potential can, with no loss of generality, be 
considered, as by Levine and Smith,lo to be the sum of the macroscopic potential 
(determined by the Poisson-Boltzmann equation) and a fluctuating term which ac- 
counts for the local deviations from the average behaviour. We write 

PAH; = ,U;H+ +kT In [AH:]+e+o+kT In y.+ 

pA: = p~-+kTln[A-]-el l /o+kTIny- 
PAH =  pi^ + kT ln[AH] + kT In yo 

where the terms involving y+, y--, yo represent the dispersion interaction energy and the 
fluctuating " local " part of the electrostatic energy. Equilibrium requires 

PAH+PH+ = PAH+ 
PA- +PH+ = PAH 

where 
pH+ = &+ +kT In [H'],+kT In YH+ 

is the chemical potential of the p.d.i. These equations may be arranged to give 

where the constants KY and K? are 

K :  = exp[-(piH+Pi+ -piH:)/kT] 
KZ = exp[-(&+ + p i +  -p&+)/kTJ. 

In general the ratios of activity coefficients are not independent of [A-1, [AH;], 
[AH] and [H+],. To calculate the functional dependence of these ratios on the relevant 
concentrations, we would need a statistical theory of surface activity coefficients for 
high concentrations, and such a theory is not available. 

First, we are interested in elucidating qualitatively 
the physics of interaction of amphoteric surfaces. To do this in the absence of a 
theory of surface activity coefficients, all that is required is that the ratios of activity 
coefficients remain sensibly constant as the surfaces approach each other so that the 
ratios of concentrations of species involved in a reaction can be given by an effective 
dissociation constant. Since the ratio of activity coefficients is of the order unity, and 
pK" E 3-8 then pK w pK" for each reaction. 

Secondly, sound physical arguments can be invoked to show that y+=:y-='y0. 
The layers of surface sites may be considered to be sandwiched between a dielectric 
half space and the electrolyte half space. Calculations of the electrosqtic interaction 
between charged species in the surface layer show that such interactions are very 

Two points should be made. 
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strongly screened by image forces in the dielectric and the electrolyte. Thus the 
contribution from the local electrostatic potential (with the macroscopic potential @o 
subtracted out) to the interaction energy of a charged species is very much reduced 
from that of a coulomb type interaction. The dispersion energy contribution will 
then be a large part of the total interaction energy. Further, since all the species 
AH;, AH, A- are basically the same molecular unit, their polarizabilities and there- 
fore their dispersion interaction energies with species on neighbouring sites will be 
largely independent of their charge. 

These arguments imply that the interaction energies of the surface species are to a 
large degree independent of the species and are approximately functions of the density 
of surface sites only. Therefore, the activity coefficients will be approximately equal. 
The activity coefficient of the p.d.i. near the surface is, of course, a function of the 
surface concentration H, of the p.d.i., which in turn is determined by the surface 
potential. As we shall show later, t,bo is roughly constant in an equilibrium approach 
and thus H, does not change too dramatically during such an approach. Since 
activity coefficients are moderately insensitive functions of concentration, the surface 
activity coefficient of the p.d.i. at infinite separation should be a good approximation 
to the surface activity coefficient during approach. 

Such arguments justify, then, the use of effective dissociation constants 

K , =  -- y o  K 2  
Y - Y H +  

to describe the surface equilibrium during approach. It should be noted that 
experiments on stable colloid systems 

If there are N, sites per unit area of surface at which the reactions may occur then 
the charge density on the surface go is given by 

where 

yield this effective dissociation constant. 

go = N,e(8+ -0-) (3) 

[AH,+I - -- [AH:] 

[A-I - [A-1 

[AH] +[AH:] + [A-]  - N ,  

[AH] + [AH:] + [A -1 - -x- 
e+ = 

e, = 

(4) 

( 5 )  

are the fractions of the total surface density of sites ionized positively and negatively. 
The quantity co is the experimental (titratable) surface charge for simple systems that 
do not involve site binding by indifferent ions. The more complex system has been 
considered elsewhere.' 

From eqn (l) ,  (2) and (3), 

The surface charge gives rise to an electrical double layer which modifies the ion 
concentrations in the solution. If H and C are the bulk concentrations of hydrogen 
ion and inert positive ions in solution, then 

[HI = H exp( -e@/kT) 
[C] = C exp( -e$/kT) 
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are the concentration in solution where the electrostatic potential is $. 
potential t,b0 we have 

so that the surface charge may be written 

For a surface 

H,  = H exp( - et,bo/kT) (9) 

(10) 

c+ = [H+]+[C] (1 1) 
c- = [OH-] + [negative inert species] (12) 

c+ = c exp( - et,b/kT) (13) 
c, = c exp( + e$/kT) (14) 

c = H + C .  (1 5 )  

( H / K + )  exp(-e$olkT) -(K-lH) ________- exp(+e$olkT) 
60 = 

Nsel + ( H / K + )  exp( - e$,/kT) + (K- /If) exp( + et,ho/kT)' 
If we define the total concentrations of positive and negative species as 

then 

where 

The charge density at a point in the solution where the potential is $ is given by 

N0e 
1 0 3  

p = ---(C+-C-) 

(16) 
Noec 

= -- [exp( - e$/kT) - exp( + e$/kT)]. 

All concentrations are measured in units of mol ~ r n - ~  and No is Avogadro's Constant. 
1 0 3  

The potential and charge density are related through the equation 
V2$ = - 4 n p / ~ .  

For an isolated surface 
EzkT 
2ne 

c=- sin h( et+bo /2k  T) 

where 
z2 = 8nNOce2/lO3~kT. 

For given bulk concentration, H and C, eqn (10) and (18) constitute a transcen- 
dental equation for t,ho. Thus t,ho can be varied by adjustment of the bulk pH and 
inert electrolyte concentration. 

In what follows we shall ignore the possibility of Stern layer formation at the 
surface. The mechanism of regulation will not be drastically altered by the inclusion 
of the Stern layer and since we are interested, here, in the important aspect of regula- 
tion only, it is not necessary at this stage to model the surface region with a more 
sophisticated theory. 

We wish to examine the surface potential as a function of separation as we bring 
two of these surfaces together from infinity. We set up an axis system with the z axis 
perpendicular to the surfaces and the origin at the left-hand surface. The surfaces 
are at z = 0, 2L. From the symmetry of the problem we need solve eqn (17) only in 
the region 0 < z < L, subject to the boundary conditions 
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Using eqn (16) Poissoii's equation (17) in this axis system becomes 

The substitutions 
4 = exp(-el$I/2 k n  (23) 

4 L  = exp(-elk.IP kT) (24) 
(where $L is the midplane potential) and the boundary conditions (20) enable us to 
solve eqn (22) in the N.P. form 

where cd(x ;  k)  is a Jacobi elliptic function with argument x and modulus k. 
Using the fact that 

d sn(x; k )  
')dn2(x; k )  dx 

- cd(x; k )  = ( k 2 -  

(where sn and dn are Jacobi elliptic functions) the boundary condition (21) may be 
written 

From (25) 

Eqn (lo), (27) and (28) constitute a single transcendental equation to be solved for 4L. 
Thus t,b0 and oo may be found self consistently as functions of the separation 2L, for 
given bulk concentrations H and C. 

From eqn (10) and (27) it can be shown (see Appendix I) that the following 
asymptotic results are obtained : 

0 0  -0 
~0+~~~2.303(kT/e) (PH-PHp,c)  

i.e. as L+O (for fixed K )  

where pH,,, is the bulk pH corresponding to the point of zero charge which will be 
identical to the pH of the isoelectric point if indifferent electrolyte only is present. 
The P.Z.C. is related to surface equilibrium constants by 

That t j 0  is given by a Nernst equation at zero separation has been noted earlier by 
Frens and O~erbeek .~  

PHPZC = !KPK++PK-). 

RESULTS 
In order to examine the effect of regulation on the surface charge and potential 

it is necessary to seIect values of K+ and K-, the surface dissociation constants ; N, is 
taken as 5 x 1014 site cm-2 following earlier work. While the preceeding is general 
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for any p.d.i. it has been set up in terms of Hf and OH- as p.d.i. oxides. It is appro- 
priate to consider two classes of oxides for which ApK, i.e. (pK,-pK+), is small 
(e.g. TiOz, Fe,O,, A1203), and, for which pK is large (e.g. SiO,, sulphonated lattices). 
Again since it is important for comparison purposes to keep K constant while changing 
the pH over a wide range, the following two cases have been selected: 

(A) pH,,, = 7 pK+ = 5.5, pK- = 8.5; 
(B) pH,,, = 7, pK+ = 4, pK- = 10. 

The variation in t+bo with separation for mol dm-3 electrolyte (1 /K = 96 A) 
for these two cases is shown in fig. 1A and B. The simultaneous variation of go as a 
function of separation is shown in fig. 2 for several values of the potential of a single 
double layer and for the two ApK values of 3 and 6. 

> 
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I;: 
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IOOmv- 
I 

80 mV- 

(A) 

50 100 I50 

l2OinV - 
lOOmV -- 
80mV -- 
SO mV- 

50 - 

I 1 I I 
50 100 150 

separation/A 
FIG. 1 .-Variation of the total double layer potential ( $o) with distance of separation of two surfaces 
having points of zero charge at pH 7 for (A) ApK = 3 and (B) ApK = 6. The potentials shown at the 

right on each curve are the potentials at infinite separation. 

Finally the effect of changing K on the variation of $o with separation is shown in 
fig. 3 for 

In order to illustrate the difference between the present regulation mechanism and 
that appropriate to a constant charge system, +o as a function of L has been computed 
for constant charge conditions. In fig. 4 the dashed lines represent the change in 

and mol dm-3 supporting electrolyte for the case of ApK = 3. 
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surface potential for interaction at constant charge (the charge being fixed at the value 
at infinite separation). The solid lines represent the same system under regulation, 
imposed by pK+ = 3 and pK- = 9 and pH,,, = 6,  at ionic strength. mol 

10- 1 50 too 200 

separationlA 

FIG. 2.-Variation of the surface charge (uo)  with distance of separation of two surfaces having points 
of zero charge at pH 7 for ApK = 3 (solid lines) and ApK = 6 (dashed lines). The potentials shown 
at the right on each curve are the potentials at infinite separation. The ionic strength is mol 

dm-3 in each example. 

DISCUSSION 
The present model of a system of two interacting double layers differs from earlier 

models in that surface site dissociation via K+ and K ,  provides a mechanism whereby 
chemical potentials can be maintained constant during interaction. The surface 
regulation model is not a constant surface potential model but one in whxh the 
boundary conditions on the gradient and magnitude of the potential are determined 
self-consistently by the relationship between surface charge and potential given by 
eqn (10). 

Physically, surface regulation is a feed back mechanism involving the following 
for the case of, say, two positive surfaces; as the double layers come together the 
potential begins to rise, thereby decreasing the surface concentration of hydrogen ions. 
Dissociation of AH; groups occurs to maintain equilibrium so that go the surface 
charge now decreases which from eqn (10) results in a decrease in surface potential. 
In general terms, the feedback mechanism is able to work because of the buffer 
capacity of the surface and regulation will minimise changes in surface potential at the 
expense of surface charge ; the surface charge must be zero at zero separation. The 
regulation effect is demonstrated quantitatively in fig. 1 and 2, where it can be seen 
that neither charge nor potential is constant during interaction. Considering the 
change in potential with separation (fig. 1 and 3) it can be seen that ApK exerts an 
important effect on regulation so that as ApK increases the ability of the surface to 
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enforce regulation decreases. This is better illustrated by considering the results of 
fig. 5 where the magnitude of the nett surface charge is plotted against the surface pH 
i.e. -log [HI, or pH,. From eqn (9) 

' I  7 
0 50 100 150 

1501 

I 
I I 

separationlA 

Frc. 3.-Variation of the total double layer potential ($a) with distance of separation of two surfaa 
having points of zero charge of 7 and for (A) ApK = 3, lW4 rnd &r3 ionic strength and (B) ApK = 

6, mol dm-3 ionic strength. 

Three cases are shown viz. ApK = 6, 3 and the limit of zero where pK+ = pK- = 
pHPz:. The region of pH, around the pH,,,, where oo is an insensitive function of 
pH,, incPeases as ApKincreases. Since regulation depends on the degree to which go 
can respond to changes in $o, then as shown in fig. 1A and B the smaller the ApKthe 
better the regulation. For any ApK as ~ ~ - 0  (i.e. L40) $o is unable to be regulated. 
Similarly as $o at infinite separation goes to zero the proportional change in @o increases. 
Again for small and/or for L40 for any $o the system is in the flat-insensitive 
region of fig. 5. 

At large values of { J/o I where pH, >> pK_ (or pH, % pK,) as seen in fig. 5, the 
surfaces are aimost fully charged and again cro is an insensitive function of t,h0 (or pHJ 
and regulation will be poor. In this case, the system IIQW approaches constant charge 
conditions until small values of separation where a. must decrease directly to zero. 
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separation /A 
FIG. 4.-Comparison of the change in total double layer potential (#*) during interaction under 
constant charge conditions (dashed lines) and under regulated interaction (solid lines). The ApK, 

ionic strength and point of zero chosen are 6, 1W3 mol dm-3 and pH 6 respectively. 

PH* 
FIG. 5.-Variation of the surface charge (uo) with surface pH [as defined by eqn (9)] for three values 

of ApK of 6, 3 and 0. The point of zero charge is taken as pH 7. 

An important consequence of regulated interaction is that when the system can 
regulate, +o is kept remarkably constant during approach when compared with 
interaction, as shown in fig. 4, at constant surface charge. Thus, comparing the 
electrostatic free energy of repulsion for constant charge and the regulated case it can 
be shown that the system minimises its energy best under regulated approach.* This 

* Regulation involves maintenance of equilibrium at all distances of approach and is necessarily 
the lowest energy interaction. 

1-34 
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is shown in fig. 6, where the electrostatic free energy of interaction (V,) is plotted as a 
function of distance of separation for regulated approach, constant potential approach 
and constant charge approach. The constant potential case is in fact perfect regula- 
tion as was stressed by Verwey and O~erbeek.~ This can be established from eqn (l), 
(2) and (9), since it follows that 

(29) 
As discussed above, regulation depends on the ApK for any given pH. The case of 
ApK = 0, i.e. pK+ = pK- = pH,,, = 7 of fig. 5 is not perfect regulation. For this 
hypothetical case the fraction of neutral (AH) surface sites is 3, i.e. finite and as 
discussed by Levine and Smith the In term of eqn (29) approaches zero as the 
fraction of neutral sites approaches zero. 

$o = (2.30 kT/e)(pH,,, - pH) - (kT/2e) ln([AH f /A-1). 

l \  . 

-.- 0 50 I00 
separation/A 

FIG. 6.-Comparison of the electrostatic free energy of interaction ( VR) as a fraction of separation 
for interaction at constant charge (Vi), constant potential (Vt) and under regulation (Vpg) imposed 
by ApK 3 (dashed lines) and ApK 6 (solid lines) at points of zero charge of 7. In all cases, the ionic 
strength is mol dm-3. The potentials shown at the right of each set of curves are the potentials 

at infinite separation. 

However, even in the case where there are no neutral sites, e.g. the AgI/H20 
interface, if $o is finite the In term cannot be zero. For this case of charged sites only 
the In term will be close to zero and at all distances the surface potential will be 
essentially the Nernst potential. Since we have shown that for any system the 
asymptotic value of the surface potential at L = 0 is the Nemt  potential then a 
system of no neutral sites is a very close approximation to constant potential. In 
other words, any system that obeys the Nernst equation at infinite separation will 
conform closely to a constant potential interaction. 
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The regulated approach analysis of double layer penetration has two important 
limits, viz. for systems where the Nernst equation is sensibly obeyed at infinite separa- 
tion then approach is sensibly at constant potential. In addition if Il/o is such that 
the $o-ao relationship is essentially insensitive to changes in +o, the approach is 
essentially constant charge interaction until very small distances. 

The fundamental assumption in the classical D.L.V.O. constant potential inter- 
action or the present N.P. regulated interaction is that equilibrium is maintained at all 
separations. This is obeyed if the two interacting surfaces come together at a rate 
that is less than the rate of attainment of equilibrium. If the system cannot regulate 
during the time of collision a constant charge interaction is appropriate. If particles 
cross a coagulation barrier that is due to a constant charge interaction, the surfaces of 
particles in the aggregate will then have time to regulate their surface potentials and 
peptization under regulation will occur. 

If the potential energy barrier under constant charge conditions is of the order of or 
just greater than the average kinetic energy of the particles then the velocity of 
approach may become slow enough that a change during collision from constant 
charge to regulated interaction is possible, The potential energy barrier under 
regulated interaction is lower than that under constant charge approach and instability 
which would not be predicted under constant charge approach may be observed. 

APPENDIX 
We wish to determine from eqn (27) the behaviour of the surface charge and the surface 

potential in the limit of small separation (L-0). Using the series expansions for the elliptic 
functions,* we see that, to leading order in the argument : 

sn(u; k) = u+8(u3) 

cd(u; k)  = 1+O(u2) 
dn(u ; k )  = 1 + O(u2). 

Therefore the right hand side of eqn (27) tends to zero as L-0 that is, the surface charge a. 
tends to zero. Hence from eqn (10) 

Yo = 2.303 kT/e (pH,,,-pH). 
For a detailed asymptotic analysis of the small separation regime the reader is referred to the 
original paper.5 
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