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We present measurements of the thickness as a function of time of liquid films as they are squeezed
between molecularly smooth mica surfaces. Three Newtonian, nonpolar liquids have been
studied: octamethylcyclotetrasiloxane, n-tetradecane, and n-hexadecane. The film thicknesses
are determined with an accuracy of 0.2 nm as they drain from ~ 1 gm to a few molecular layers.
Results are in excellent agreement with the Reynolds theory of lubrication for film thicknesses
above 50 nm. For thinner films the drainage is slower than the theoretical prediction, which can
be accounted for by assuming that the liquid within about two molecular layers of each solid
surface does not undergo shear. In very thin films the continuum Reynolds theory breaks down,
as drainage occurs in a series of abrupt steps whose size matches the thickness of molecular layers
in the liquid. The presence of trace amounts of water has a dramatic effect on the drainage of a
nonpolar liquid between hydrophilic surfaces, causing film rupture which is not observed in the

dry liquids.

I.INTRODUCTION

It is almost 100 years since Reynolds' published his
analysis of hydrodynamic lubrication due to a thin macro-
scopic film of liquid confined between two moving solid sur-
faces. This theory is based on a simplification of the Navier—
Stokes equations of continuum hydrodynamics by exploit-
ing the special geometry of thin films. The utility of this
theory still stands today and many extensions and applica-
tions of the original analysis may be found in text books on
hydrodynamic lubrication theory.?

Apart from obvious engineering applications, the Reyn-
olds theory has also been used to explain the rate of drainage
of thin films of liquid between solid, liquid, or vapor surfaces
{for reviews see Refs. 3-5). This is an important factor in
determining the coagulation of colloids, the coalescence of
liquid emulsions, and the collapse of foams. A corollary of
this is the use of measurements of the drainage rate to obtain
information on the surface forces, e.g., van der Waals and
electrical double layer forces, which drive the drainage of
thin films. By assuming that the hydrodynamic behavior of
the system is adequately described by the Reynolds theory it
is possible to deduce the form of the surface forces from the
time dependence of the drainage process. The early work in
this area, initiated by Derjaguin and co-workers, and by
Scheludko and co-workers, has appeared in a number of re-
views.*® Hough and Ottewill have recently used a similar
method to deduce the surface forces from the drainage of the
liquid film between a rubber sphere and a glass plate.’

In this paper we introduce a method of measuring the
time evolution of the drainage of a liquid film between two
molecularly smooth mica surfaces. It is based on the appara-
tus developed by Israelachvili'® which has hitherto been
used to make static measurements of surface forces, and has
the ability to measure film thicknesses from a few pm down
to zero with a resolution of ~0.1 nm. We therefore have a
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near-ideal experiment in which to test the Reynolds theory
of drainage right down to the thinnest films.

Surface force measurements made with this apparatus
have shown that continuum theories of van der Waals and
electrical double layer forces are no longer valid for very thin
films,''~'3 where it becomes necessary to take into account
the molecular nature of the intervening liquid. In particular,
the monotonic separation dependence of these surface forces
becomes an oscillatory function of separation, and the peri-
od of the oscillations matches the molecular size of the li-
quids. The exact separation at which these forces become
oscillatory depends on the properties of the liquid as well as
that of the surfaces. These deviations from the predictions of
continuum theory are referred to as solvation effects and the
oscillatory forces as solvation forces.

In previous studies of the drainage of thin films the hy-
drodynamics has always been described by the macroscopic
continuum Navier-Stokes equations or the Reynolds the-
ory. Thus the question arises as to the limits in which hydro-
dynamic equations can be applied. Clearly for sufficiently
thin films the concept of a continuum liquid with a well de-
fined viscosity must become inappropriate. The present
work is the first attempt to address this and other related
questions.

As an initial application of the experimental technique
{Sec. II) and the theoretical background needed to analyze
the experiments (Sec. III and Appendices), we have chosen
to study three simple, nonpolar, Newtonian liquids: octa-
methylcyclotetrasiloxane (OMCTS), n-tetradecane, and n-
hexadecane. In a parallel study, Israelachvili has used the
same apparatus and a slightly different technique to measure
the viscosities of n-tetradecane and aqueous electrolyte solu-
tions in thin films.'* Extensions of either method to study
other liquids would be straightforward.

For the liquids we have considered, the only surface
forces present are relatively weak and short-ranged van der
Waals and solvation forces. Our results, presented in Sec. IV
and discussed in Sec. V, show that in such cases the Reynolds
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description of the drainage process appears to be very accu-
rate down to film thickness of about 50 nm, and no departure
from the bulk value of the liquid viscosity is detected. For
thinner films (down to about 5 nm) the observed rate of film
drainage is slightly slower than that predicted by theory.
This discrepancy can be accounted for empirically by the
assumption that very thin regions of the liquid near the mica
surfaces do not undergo shear. We emphasize that our re-
sults do not prove the existence of such immobile layers of
liquid; this is merely a simple-minded yet convenient para-
metrization to account for experimental observations. Final-
ly, when the film is less than about ten molecules thick, the
continuum model breaks down. A description of the drain-
age of such thin films must await a microscopic model for the
flow behavior of a collection of molecules near a solid bound-
ary.

Il. THE EXPERIMENT

We have used the surface forces apparatus developed by
Israelachvili,'® to measure the drainage of liquid films on a
very fine scale. In this apparatus, illustrated schematically in
Fig. 1, two thin sheets of molecularly smooth mica are glued
to cylindrical lenses of fused silica. The lenses are mounted
with the mica sheets facing each other and the cylindrical
axes at right angles, so that they meet at a point. If the radii of
the cylinders are equal and their separation is much less than
the radius R, the distance between the surfaces is equivalent
to that between a sphere and a flat plate. Typically we have
RZ1cmand DS 1um,soD /RS 107 throughout our ex-
periment.

The minimum separation between the mica sheets is
measured by an optical interference technique. A silver coat-
ing of reflectivity = 95% is applied to the outside of each
mica sheet, i.e., the side adjacent to the silica lens. When
white light enters the system, only certain wavelengths,
which satisfy an interference condition depending on the op-
tical thickness between the silver layers, are transmitted. A
spectrometer splits the transmitted light into its component
wavelengths, and fringes of equal chromatic order" are
viewed at the spectrometer exit. Measurements of fringe
wavelength allow the separation D to be computed, where

discrete
wavelengths

¢ 2 .
cylindrical TR - back-silvered
lenses . mica sheets

I cantilever spring

driven }

white
light

FIG. 1. Schematic diagram of the experimental arrangement. Optical inter-
ference “fringes of equal chromatic order” (Ref. 15) are used to measure the
separation between two mica sheets glued to crossed cylinders of silica. The
end of the cantilever spring remote from the lens can be moved up or down
at a constant speed, or (equivalently) held fixed while the upper lens is
moved using a piezoelectric transducer. For further details see Ref. 10.

D =0 refers to the mica surfaces in molecular contact,
which is established by bringing the surfaces together in a
nitrogen atmosphere before filling the apparatus with liquid.
The observed fringes are extremely sharp because of multi-
ple reflections and the exceptional smoothness of the silver
layers deposited on mica, and in practice it is possible to
measure D with a resolution of 0.1 nm.

For the dynamic measurements required here, we have
used a video camera at the spectrometer exit to film the
movement of the fringes, together with a clock recording.
The wavelength at any instant can subsequently be measured
from the video recording using a Video Micrometer (Colora-
do Video Inc. model 305}, and thus the separation D (¢ ) can be
computed as a function of time. Separations measured in this
way have a slightly larger error, about + 0.2 nm for the
results presented in Sec. IV.

As shown in Fig. 1, one of the mica-covered lenses is
mounted on a cantilever spring, whose deflection is used to
measure the force exerted on that mica surface as it ap-
proaches the other. The cantilever spring and both surfaces
are immersed in the liquid being studied. The end of the
spring away from the lens can be moved at a constant speed
relative to the other lens, either by a synchronous motor
driving a micrometer whose motion is reduced by a differen-
tial-spring mechanism, or by a piezoelectric ceramic trans-
ducer. However, the progressive deflection of the spring due
to hydrodynamic and surface forces means that the lens it-
self does not move at a constant speed. The equation describ-
ing its motion is discussed below.

Experiments were carried out on three organic liquids:
octamethylcyclotetrasiloxane (OMCTS), n-tetradecane, and
n-hexadecane. The first was obtained from Fluka, Purum
grade, and the other two from Sigma (99%). All liquids were
distilled twice under N, at reduced pressure. Some P,0O, was
placed in the experimental apparatus to scavenge any water
dissolved in the liquids, because even trace amounts of water
have been found to have a dramatic effect on the equilibrium
force between mica sheets in organic liquids.'"'*'® In one
experiment, discussed in Sec. IV D, the P,O, was removed to
see how the presence of water affects the drainage of
OMCTS.

Ill. THE EQUATION OF MOTION

For the sake of brevity only a condensed description of
the theory is given here, most of the detail being relegated to
the Appendices.

In Appendix A, we calculate the hydrodynamic force
F,, between crossed cylinders of radii R, and R, immersed in
a liquid of viscosity 77, with stick boundary conditions at the
cylindrical surfaces. If the cylinders are separated by a dis-
tance D and one of them is moving along a line normal to
both surfaces, the other experiences a force [Eq. (A16)]:

g, _ _Sm1RuRodp. al

D dt
Here Ry = [4(1/R, + 1/R,)] " is the harmonic mean and
R; = (R, R,)"/?is the geometric mean of the cylinder radii.
Positive values of Fj, correspond to repulsion. For R,
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=R,=R, Fy = — (6 R*/D)(dD /dt), which has the
appearance of a Stokes drag on a sphere [(677 R ) X veloc-
ity], amplified by a geometric factor (R /D).

A simple force balance between the surfaces gives

Fy + Fg = Fy,, (3.2)

where F is the surface force and Fy the restoring force of the
cantilever spring. This can be written as
6m Ry Rg dD
Dit) dt
Although the expression for the hydrodynamic force is
strictly only valid when the relative velocity of the surfaces
dD /dtis constant, for a sufficiently slow approach this pseu-
do-steady approximation will suffice. The second term in
Eq. (3.3) is the Derjaguin'’ expression for the surface force
F between crossed cylinders with E,(D ) being the interac-
tion free energy per unit area between parallel planes. This
expression for the surface force is valid for R;>D which is
the regime of experimental interest in this paper. In this con-
nection it is interesting to observe that in all previous appli-
cations of the drainage method to measure surface forces,
the surfaces were always assumed to be parallel planes so the
force between the surfaces had the form 7R * Fp(D) where
F,(D)is the force per unit area between flat surfaces and 7R *
is the constant area of contact. For drainage under nonre-
tarded van der Waals interactions the parallel plane approxi-
mation would predict that D (¢) is proportional to (¢, — ),
whereas the use of curved surfaces and the Derjaguin ap-
proximation would predict that D(t) is proportional to
(t. — t)'/?, where ¢, is the time at which the surfaces come
into contact, D (¢,) = O [cf. Eq. (3.12)]. Indeed the use of the
parallel plane approximation may lead to an erroneous form
for the deduced interaction if the surfaces are not strictly
flat.

+ 27 Rg) Ep(D (t)) = KA (¢). (3.3)

We have assumed that any surface forces present are
unaffected by the relative motion of the surfaces and are thus
taken to be the equilibrium forces. This is valid provided the
relative velocity is sufficiently slow compared to the charac-
teristic relaxation times of the mechanisms that give rise to
the surface forces. For instance, when steric interactions are
present the relatively long time required for the rearrange-
ment of macromolecules may give rise to velocity dependent
visco-elastic effects which are not present in equilibrium
force measurements.

The right-hand side of Eq. (3.3) is the restoring force due
to the spring, F, which is proportional to the instantaneous
deflection A (¢} of the spring from its equilibrium position
multiplied by the spring constant K. We take 4 > 0 when the
spring is bent outward by a repulsion between the surfaces,
as shown schematically in Fig. 2.

In writing down Egs. (3.2) and (3.3) we have ignored
inertial or acceleration effects. A simple calculation indi-
cates that acceleration effects are smaller than one part in 10*
in comparison with the hydrodynamic force. That is, the
system is strongly overdamped. We have also omitted sepa-
ration-independent Stokes type frictional drag forces. The
magnitude of such forces would be of the order 675 R (dD /
dt) which is smaller than the hydrodynamic force due to

position of
undeflected spring

JIXG

deflected spring

FIG. 2. Deflection of the cantilever spring by a distance A when there is a
hydrodynamic and/or surface force between the two mica sheets.

lubrication effects by a factor (D /R ) S 10™%.

We note from Eq. (3.3) that the hydrodynamic force
increases as the product R R, while the surface force is
linear in R ;. Thus the relative importance of the three terms
in Eq. (3.3) can be controlled by suitable adjustment of the
spring constant and the cylinder radii.

To complete the description of the system, we have the
geometric constraint (see Fig. 2), valid at all times z,

Lt)+A4(r)—D(t)=L(0)+4(0)—D(0), (3-4)
where L (¢) is the displacement of the end of the spring rela-

tive to some arbitrary datum. Without loss of generality we
choose the constant L (0) + 4 (0) — D {0) to be zero, so that

A@t)y=Dt)— L) (3.5)
From Eq. (3.3) we see that the initial spring deflection is
—6mp Ry R; 1 dD 2 Rg

40)= K D) dr li—o ' K

Ep(D(0))-

(3.6)

The driving function L (t) could be any single-valued

function, for example sinusoidal.'* However, in the experi-

ments reported here we have restricted ourselves to constant
velocity drives, so L (z) has the form

L(t)=L(0)+ Vt
=D(0)—A(0)+ V1, (3.7)

where V is the driving speed. We choose V' <0 when the
surfaces are being driven towards each other.

Figure 3 illustrates various types of driving function
that have been employed in our experiment, and the corre-
sponding response of the surface separation D (¢ ). For most of
the data presented below, the initial separation D (0) 2 200
nm, whereas the surface forces acting (van der Waals and
solvation forces) are negligible for separations D= 20 nm.
(Electrical double layer forces could be of longer range, but
they are immeasurably small in the nonpolar liquids studied
here). Hence, there is a considerable distance regime in
which the surface force term may be omitted from Eq. {3.3).
Under these conditions, solutions to the equation of motion
can be derived for the various types of driving function. This
is done in Appendix B.

When a surface force term is included in Eq. (3.3), itis no
longer possible, in general, to obtain a solution in closed
form. The equation is then solved numerically using a
fourth-order Runge-Kutta method to calculate D (¢) for a
given surface force Fg(D). In the nonpolar liquids studied
here, the only force acting at large separations is the contin-
uum van der Waals attraction
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FIG. 3. Illustration of the various types of movement employed in these
experiments. In each case the dashed line shows the drive function L (¢ ) and
the solid curve the response of one surface with respect to the other. (a)
Flying start. The spring is driven at a constant speed V <0 (surfaces ap-
proaching), starting at a time 7 < 0. The spring deflection at time zero, 4 (0},
is given by Eq. (3.6). If the spring were infinitely rigid the surfaces would
come into contact (D =0) at time t* = L (0)/( — V). (b} Standing start.
Spring driven at constant speed V' <0, starting from rest at <0. (c) Limited-
time run, inwards. The spring is driven inwards during the interval 0 < t < ¢,
and is held stationary otherwise. L _ = D(0) 4 V1, is the final position of
the spring. (d) Limited-time run, outwards. As for (c), except that the speed
V>0, i.e., the surfaces are driven apart.

F, Rod 3.8

vdW 6D2 H ( ‘ )

where A4 is the Hamaker constant. At small separations, the

interaction becomes an oscillatory function of the separa-

tion. For the purpose of this study we model! this oscillatory
effect as an additional term

Fow = — Rg Be™ P’ cos(2mD /&,) (3.9)

in which the parameters B, £, £, are obtained by fitting to
equilibrium force measurements. Thus we set

+ Be 7% cos (2;:D)]

2

(3.10)

FSZFsolv+deW:-RG 6D2

as an empirical form of the surface force, which can readily

be incorporated in the numerical routine to compute the
drainage curve D (t).

In passing, we note that in the absence of surface forces
thesolution [Eq. (B11)] predictsthat D (¢ }»0only asymptoti-
cally in the limit +— o, because the viscous drag Fy (D)
~ 1/D. However, with an attractive van der Waals force of
the form (3.8), the surfaces come into contact {D =0) at a
finite time. At sufficiently small separations we can neglect
the right-hand side of Eq. (3.3) since the restoring force of the
spring becomes much smaller than the other terms Fj
~1/D and Fs ~1/D”. The equation becomes

R, R R A
6mi Ry Ro dD(t) | Red _ (3.11)
Dit) dt 6D (r)
which has the solution
A 172
D)= |—=——t. — 1} , (3.12)
187 Ry,

t, being the time at which the surfaces come into contact,
Di,)=0.

IV. RESULTS

A. Octamethylcyclotetrasiloxane (OMCTS)

This liquid, a low molecular weight relative of the sili-
cone oils, has previously been studied in equilibrium surface
force measurements.' '8 As discussed above, the results
show an oscillatory function of distance with a periodicity
approximately equal to the molecular diameter 0.=0.8 nm.
The magnitude of the force has been found to be rather vari-
able from one experiment to another, depending on trace
amounts of impurities at the mica-liquid interface. For this
reason static measurements of the surface force were made in
the same experiment as the dynamic measurement, i.e., us-
ing the same mica sheets and liquid sample. Figure 4 shows
the results, together with an empirical force law of the form

b vdw

F/R (mN/m

D (nm)

FIG. 4. The equilibrium surface force between two mica sheets in OMCTS,
measured in the same experiment as the drainage results of Figs. 5-7. Open
circles are measurements made along those parts of the force curves having
negative slope; arrowheads indicate points measured at force minima (Ref.
11). The continuous curve is an approximate empirical fit of the form (3.10),
F/R(@mN/m) = — [14/6D? 4+ 172¢ - ®/°7% cos(2eD /0.75)] (D in nm); the
dashed curve shows the continuum van der Waals attraction alone.

J. Chem. Phys., Vol. 83, No. 10, 15 November 1985

Downloaded 17 Jul 2006 to 128.250.49.72. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



D. Y. C. Chan and R. G. Horn: Drainage of thin liquid fims

(3.10) with the parameters 4 =1.4x107%° J,)'! B=172
mN/m, and &, = £, = 0.75 nm. This is not a perfect descrip-
tion of the measured force, but it is adequate for the present
purpose of computing the theoretical drainage curve.

To compare our experimental results for the dynamic
approach of the mica surfaces in OMCTS with the theoreti-
cal prediction, we also need to know the value of the experi-
mental constant

6mn Ry Rg
a4a=—"—2.
K
In principle all of the quantities 7, K, and Ry, R,
=2(R, R,)*’*/(R, + R,), where R, and R, are the radii of
the two mica cylinders, are known: the spring constant K is
calibrated by measuring the deflection when small weights
are placed on the spring, R, and R, are determined from the
shape of the fringes of equal chromatic order viewed in the
spectrometer, and we use a literature value for . In practice,
however, there are errors in each of these measurements,
estimated as 5% in K, 5% ineachof R, and R,, and 1% in
(arising chiefly from the uncertainty in temperature), which
compound to an uncertainty of ~20% in the value of a.

Alternatively, the value of a appropriate for a particular
experiment could be established directly by the method sug-
gested in Appendix B 3. There it is shown that for a “limited-
time” run [Fig. 3(c})] in the regime D 2 20 nm where surface
forces can be neglected, the surface separation measured
after the drive is stopped at time ¢, obeys the equation

D(it)y—L_ =[DUJ—Lw]ex{
D) D) |

(4.1)

L
e
a

(4.2)
where L = D(0) + V¢, is the final value of the driving
function. Thus a plot of In{{D(¢r)—L_]/D(t)} against
(t — t,) should give a straight line with decay time a/L .

Figure 5 shows results plotted in this way, for a set of
runs in which the mica surfaces were driven towards each
other using the piezoelectric ceramic transducer (at V
= — 23.4nm/s for t, = 5s), starting at various separations
from D (0) = 1000 down to 100 nm. The data are well fitted by
stright lines, and the decay times for each case give a value
a=(54+4+0.1)X10"7 ms (Table I). No systematic vari-
ation of a is observed, which indicates that the viscosity 7
does not depart measurably from its bulk value, at least
down to a few tens of nm.

The experimental constant established in this way is to
be compared with the value calculated from the measured
values R, =(2.24+0.1) cm, R, =(4.34+0.2) cm, K = (86
+ 4)N/m, and 7 = (2.35 + 0.02) cP"? for the temperature
21.5 4+ 0.3 °C at which this experiment was carried out.
These data give @ = (4.6 + 1.0)X 10~ m s, a range which
includes the above value. Clearly, however, the use of Eq.
(4.2) gives a more accurate determination, and in what fol-
lows the value @ = 5.4 X 1077 m s is used to compute all the
theoretical curves appropriate for this experiment.

The complete limited-time piezoelectric transducer-
driven drainage runs D (¢ ) are shown in Fig. 6. Having estab-
lished the value of a by the procedure described above,
which uses only those data obtained after the drive was

5315

In (DIt} - L)/ D(t)]

1
0 5 10 15

t-t, (sec)

FIG. 5. Data (open circles) obtained from limited-time drainage runs in
OMCTS, after the driven is stopped at ¢ = ¢,. Equation (4.2} predicts that
the functionin{[D (t) — L_ /D (t )} should decay exponentially in this re-
gime, with decay time a/L_, where « is the experimental constant
6y R; Ry /K. The different lines were measured at different separations
(see Fig. 6), line {a) being at the largest separation and having the shortest
decay time. The values of L _, decay time and « for each line are given in
Table 1.

stopped, and knowing the drivingspeed V' = [L , — D(0}}/
t,, there are no further adjustable parameters used to gener-
ate the entire set of theoretical curves. The agreement with
experiment is extremely good throughout, though not quite
perfect at small separations. This region is examined in more
detail below.

The alternative method of driving the surfaces using a
constant speed motor was not so successful for limited-time
runs, because of small but measurable imperfections in the
drive function L (z) when the motor is started and stopped.
However, the motor does have the advantage of a much larg-
errangein L (¢ ), and so could be used to generate the types of

TABLE 1. Values of the final drive position L _, the decay time /L, and
hence the derived value of the experimental constant @ = 67y R; R, /K,
for each of the lines shown in Fig. 5.

L Decay time a
Line (nm) (s) (X107 ms)
a 874.8 0.63 5.5
b 668.1 0.82 5.5
c 439.5 1.22 5.36
d 238.1 2.25 5.36
e 79.1 6.70 5.30
f 39.5 13.5 5.33
g — 64 — 84 5.4
h — 325 - 17 5.5
54401
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FIG. 6. A set of limited-time drainage runs in OMCTS, in which the sur-
faces were driven towards each other for Ssat ¥ = — 23.4 nm/s. Labels a—
h correspond to the lines shown in Fig. 5, which were derived from these
data for t>5 s. Dashed lines show the drive functions; continuous curves
show the response D (¢ ) predicted by the Reynolds drainage theory with the
experimental constant @ = 5.4 1077 m s (Table I). The excellent agree-
ment indicates that the viscosity (incorporated in a) maintains its bulk value
right down to very thin liquid films.

drainage run shown in Figs. 3(a) and 3(b}, in which L (¢} con-
tinues without limit. The results of a “standing start” run in
OMCTS are shown in Fig. 7(a), together with the theoretical
curve. Once again we see excellent agreement with experi-
ment for DX 50 nm, but at smaller separations the liquid
film drains more slowly than the theoretical prediction.

This small but measurable discrepancy can only be ac-
counted for by some effect which tends to increase the hy-
drodynamic drag

6m R, Rg 112
D dt

at small separations. One possibility is that the effective radii
are increased by elastohydrodynamic flattening, but we
show in Appendix C that this effect is negligible at the low
speeds encountered in this experiment. Otherwise, one could
postulate that 7 is not equal to its bulk value in very thin
films, or that F; is no longer proportional to speed and in-
versely proportional to distance. The first suggestion is very
plausible, and indeed has been made several times before, at
least for polar liquids.®?*->* However, in the absence of a
microscopic explanation for an enhanced viscosity near a

F, = - (4.3)

200 T T T T
\ OMCTS
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FIG. 7. Results of a standing start drainage run in the same OMCTS experi-
ment with @ = 5.4 X 107" m s. The drive speed (dashed line}is — 20.5 nm/
s. Figure 7{a) shows the first 22 s of the response. Open circles are the experi-
mental points; the continuous curve is the Reynolds theory. The shaded
region is enlarged in Fig. 7(b), in which the curved labeled (a) is the same as
in Fig. 7(a), and curve (b) is the predicted drainage for a shear plane located a
distance Dg = 1.3 nm out from each surface. A further enlargement is
shown in Fig. 7(c), in which it is seen that at small separations the drainage
occurs in a series of steps of ~0.75 nm, which corresponds to the molecular
diameter of OMCTS. Theoretical curves (a) and (b), corresponding to those
in Fig. 7(b), show the same feature although the times at which the steps
occur do not match the experimental results. Curve (c) is the predicted
drainage for a van der Waals surface force alone, and curve (d) is for no
surface force (both with D = 0).

solid surface, we choose to make a much simpler suggestion:
that there is an “immobile” region of liquid adjacent to each
solid surface. Let this layer be of thickness D, so our postu-
late is that the stick boundary conditions apply at a distance
D, out from each surface. In this case the hydrodynamic
force becomes

_ 6 Ry Rg aD

(D—2D,) dt
This very simple-minded approach has two advantages.
First, it introduces only one adjustable parameter with
which to fit the experimental results, and second, it leaves
the viscosity 7 independent of separation. If (D ) were not a
constant, it would appear inside the square bracket in Eq.

H =

(D>2D,). (4.4)
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{AJ), and a complete reanalysis of the hydrodynamic force
would be required.

We emphasize that this is merely an empirical model
which we will use in an attempt to fit the experimental data.
Even if successful, we will not have proven that this model is
physically correct, or that other models could not be equally
successful {(and remain equally unproven!).

The data of Fig. 7(a) for D<50 nm are replotted on an
enlarged scale in Fig. 7(b), to show more clearly the discrep-
ancy between experiment and the unadulterated Reynolds
theory. Incorporation of the modified hydrodynamic drag
term [Eq. (4.4)] in Eq. (3.3) gives a very satisfactory fit to the
experimental points for D > 6 nm, if we set D¢ = 1.3 nm. At
larger distances the two theoretical curves merge. Thus
allowance for a very thin immobile region of liquid next to
each solid surface—less than two molecular diameters
thick-—gives an excellent description of the experimental re-
sults as the liquid film drains right down to D=6 nm.

In Fig. 7(c) we examine the drainage for D<10 nm in
more detail. The experimental data show that for DS 5 nm
the drainage becomes irregular: the surfaces move closer in
abrupt steps of ~0.75 nm then remain almost stationary for
a period before the next step. This step size corresponds to
the diameter of the OMCTS molecule, and we know that the
molecules tend to be arranged in layers near the smooth mica
surface.!' The surfaces approach as if the liquid is being
squeezed out layer by layer, although we cannot establish the
exact mechanism by which this occurs.

Inclusion of an oscillatory force law (3.10) produces the
same feature in the theoretical drainage curves shown in Fig.
7(c), as seen by comparing the curves labeled a {oscillatory
surface force), ¢ (van der Waals attraction only), and d (no
surface force). The existence of a repulsion between the sur-
faces at certain separations (Fig. 4) does have the effect of
slowing down their approach, and to this extent the stepwise
drainage can be considered to be a result of the oscillatory
surface force, which is itself a reflection of the layering of
molecules in very thin films. However, the steps observed in
the experiment occur much later than those predicted by the
theory, and the inclusion of an immobile region only goes a
little way towards improving this situation (curve b ).

Clearly we are in a regime where we must consider the
liquid as a collection of molecules, and continuum hydro-
dynamics should not be expected to remain valid. For this
reason we make no attempt to seek any closer agreement
between our experiment and any continuum theory. That
goal must await the development of a microscopic descrip-
tion of the drainage of liquid films which are only a few
molecular diameters thick.

The force barriers {Fig. 4} increase markedly as D de-
creases, and in fact prevent the surfaces from coming closer
than D~2.9 nm in this experiment. Thus we never get the
surfaces close enough to encounter the putative immobile
region at D = 2D, = 2.6 nm, and the restriction D > 2D, on
Eq. (4.4) is never violated.

B. n-Tetradecane

The equilibrium force between mica surfaces in tetrade-
cane has similar characteristics to that in OMCTS: at short

range it is an oscillatory function of distance, superimposed
on a monotonic van der Waals attraction.* The periodicity
of the oscillations is only 0.40 nm, corresponding to the
width of a linear alkane molecule. This force can be approxi-
mated by Eq. (3.10) with the parameters 4 = 1.0X 1072°J,
B =49 mN/m,and £, = £, =040 nm.

Figure 8 shows the results of a “flying start” drainage
experiment in tetradecane. Although the viscosity of this
liquid, 7 = 2.27 cP,?® is comparable to that of OMCTS, the
radii of the mica surfaces were smaller in this experiment
and so the constant « = 8.4 107% m s was significantly
smaller than for the OMCTS results presented above. As a
consequence, thedeflectionof thespringd (¢} =D (¢} — L (¢}
was smaller. In Fig. 8{a} we see that the Reynolds theory
{with no immobile region, D3 = 0} again fits the experimen-
tal results very well at large separations, but predicts too fast
a drainage rate for D & 50 nm. This region is amplified in Fig.
8(b), and a second theoretical curve is shown: that obtained
with D¢ = 0.7 nm. Once again we find that the experimental
measurements are accounted for reasonably well by simply
assuming that a thin layer of liquid, less than the thickness of
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\\
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FIG. 8. Results of a flying start drainage run in n-tetradecane, with
a = 8.4 107 % m s. Figure 8(a} shows the first 22 s, with the drive function
(V= — 13.5 nm/s} and the predicted response. The shaded region is en-
larged in Fig. 8(b}. Here curve (a), which corresponds to the curve shown in
Fig. 8{a), is for Dy = 0 and curve (b} is for D = 0.7 nm. Figure 8{c} shows
the drainage at small separations.
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two molecules of n-tetradecane lying parallel to each sur-
face, remains immobile.

Results for the drainage in very thin films, D < 10 nm,
are reproduced in Fig. 8(c). Just as in OMCTS, we can see
that the final stages of drainage occur in discrete steps, which
is qualitatively but not quantitatively accounted for by in-
cluding an oscillatory surface force law in the theory. The
time taken to move in by one step of ~0.4 nm is significantly
longer than the time it would take merely to push the sur-
faces over the repulsive force barrier at that separation: there
is also some dynamic barrier (greater than expected from
continuum hydrodynamics) to be overcome.

C. n-Hexadecane

The surface force measured in hexadecane (unpublished
results) is comparable to that in tetradecane, and is approxi-
mated by Eq. (3.10) with the parameters 4 = 1.0 X 10 >°J,
B =62mN/m, and £, = £, = 0.40 nm. The viscosity is 3.35
cP,?® and in the experiment whose results are presented in

200 T T T T
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- -4
€
£ 100t 1
a -
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FIG.9. A standing start drainage run in #-hexadecane, witha = 7.4 10~*
m s and drive speed — 16.2 nm/s. The continuous line in Fig. 9(a}, labeled
{a) in the enlargements 9(b) and 9(c), is for Dy =0; curve (b) is for
Dg = 0.7 nm. Note that at 1~ 19 s the hexadecane film thins to D= 1.0 nm,
whereas the simple shear-plane model used to generate curve (b) would not
allow the surfaces to come closer than 2D = 1.4 nm.

Fig. 9, the constant & was 7.4 X 10 " ®*ms.

Similar conclusions are to be drawn from the hexade-
cane drainage measurements. Figure 9(a) shows that the
Reynolds theory works well for D 2 50 nm; below that {Fig.
9(b)] the inclusion of an immobile region of thickness
[SB:D-S'] = 0.7 nmaccounts for the slower drainage which is
measured; and stepped drainage is discernible in very thin
films, D = 2 nm [Fig. 9(c)].

There is one noteworthy feature of the hexadecane re-
sults, which is that the surfaces come in to a separation
D~1.0 nm after 19 s. Obviously they could not do this if
there really was a completely immobile layer of 0.7 nm on
each surface. This experiment provides us with a salutory
reminder that our model, which seems to provide a satisfac-
tory account of the results beyond D ~ 5 nm, is too simple to
explain what really happens in the thinnest films.

D. The effect of water in OMCTS

As mentioned in Sec. II, trace amounts of water can
have a dramatic effect on the surface force measured in or-
ganic liquids.'"'*'®¢ Water is only slightly soluble, perhaps to
a few hundred parts per million, but even at these levels it
changes the picture dramatically. What matters is the
chemical activity of the water, in other words the fraction of
saturation, rather than the absolute amount. This is easily
varied by equilibrating the liquid with an atmosphere con-
taining water vapor at a certain activity (relative humidity or
fraction of saturated vapor pressure).

Asdiscussed by Christenson,'® the effect of ~ 50% satu-
ration of water in OMCTS is to reduce the outermost repul-
sive barriers in the oscillatory force curve {Fig. 4) so that the
surfaces come more easily in to D ~ 3 nm before encounter-
ing any significant repulsion. As the level of water ap-
proaches 100% saturation, any force barriers closer to
D =0 also vanish, and the surfaces come into molecular
contact. The reason for this is that water is preferentially
adsorbed on the hydrophilic mica surface, and when two
curved surfaces are close enough, water condenses to form a
liquid bridge between them. This is accompanied by a very
strong attraction between the surfaces (F /R ~ — 400 mN/
m) which pulls them into contact.'®

The effect of this on the drainage of OMCTS films is
shown in Fig. 10. At 0% water the drainage curve is similar
to that shown in Fig. 7, discussed in Sec. IV A. At approxi-
mately 509 water the surfaces come in more easily to a
separation of D~ 3 nm, but stop there. When the OMCTS is
saturated in water (250 ppm),'” the surfaces come into con-
tact very abruptly from D =10 nm. This occurs in a time
shorter than 0.02 s (less than one frame of the video record-
ing).

These results clearly show the importance of the surface
force in determining the drainage behavior of thin films.
They also illustrate an important practical point: that the
drainage of organic liquids between hydrophilic surfaces is
altered radically by the presence of water. For example, a
suspension of hydrophilic particles in a nonpolar liquid
would flocculate very rapidly in the presence of water, lead-
ing to a high floc volume.*®
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FIG. 10. The effect of trace amounts of water on the drainage of OMCTS
between hydrophilic mica surfaces. Open circles show results when the at-
mosphere above the liquid was exposed to P,Os to scavenge any water pres-
ent, and are comparable to those shown in Fig. 7. The filled circles were
measured with the atmosphere at approximately 50% relative humidity,
and the crosses measured when it was saturated in water vapor. In the last
case, the mica surfaces jump very abruptly into molecular contact from a
separation of D~ 10 nm (Ref. 16). (In this figure the continuous lines are
drawn through the experimental points; they do not represent any theoreti-
cal predictions.)

V. DISCUSSION

The three Newtonian liquids studied here have all (when
free of water) shown comparable behavior in their drainage
between smooth solid surfaces, which gives us added confi-
dence in making the following remarks.

First, from the evidence displayed in Figs. 5 and 6 and
discussed in Sec. IV A, we may conclude that the liquid vis-
cosity does not deviate measurably from its bulk value in
films down to D~ 50 nm thick. There have been reports of
substantially increased viscosities in films of up to 100 nm
thick,>?°~?* though Derjaguin®>*2 has pointed out that these
have only been observed in polar liquids. In studies of polydi-
methylsiloxanes (chemically similar to OMCTS) Derjaguin
et al.*” found no variation from the bulk viscosities down to
20 nm films, and Israelachvili'* has found no variation in
tetradecane or aqueous electrolyte solutions at any thick-
ness. Askwith er al.** reported a constant viscosity for hexa-
decane in squeeze films down to 9 um thickness, but noted
that their films stopped thinning at D ~2 gm, and spoke of a
“plastic solid” layer at each surface, of ~ 1 um thick. Fuks?®
had earlier reached the same conclusion. Evidently we see
nothing of that kind in the present experiment.

In thinner films, S0 DX 5 nm, the Reynolds theory
continues to give an excellent description of the experimen-
tal results provided that: (i) the appropriate equilibrium force
acting between the solid surfaces across the liquid in ques-
tion is included in the equation of motion, and (ii) a small but
distinct enhancement of the liquid viscosity is considered.

To say that there is an enhancement of viscosity in thin
films implies that the viscosity of the liquid does not have its
bulk value right up to the surface, in other words that it is a
(nonconstant) function of distance from the solid interface.
Unfortunately our experiment gives no direct information
on what this function might be, because we do not measure
the velocity profile within the liquid film. The best we can do
is to establish an effective viscosity at a particular thickness
of the entire film, that is to find 74(D ), with 54—, the
bulk viscosity, as D— o0 . In describing Figs. 7, 8, and 9 we
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have shown that our results are consistent with a model in
which the liquids studied have a constant viscosity (equal to
the bulk value) everywhere except in a region of thickness Dg
adjacent to each solid surface. In these regions the liquid is
immobile (in a sense to be discussed further below), or infi-
nitely viscous. It turns out that the value of Dg need only
correspond to a couple of molecular layers to describe our
results quite accurately. Other forms of the viscosity profile,
for example a well-defined thicker film of higher-than-bulk
but still finite viscosity, or a viscosity which decays continu-
ously from a high value at the surface to its bulk value, could
probably be just as successful in fitting our results. However,
we have chosen not to play with such models because there is
no feature of our measurements, or any theoretical basis that
we know of, which commends them to us.

At this stage we should note that Dy is not determined
very precisely, because almost equally good fits to our data
could be obtained using slightly different combinations of
the driving speed V and the value of Dg in the numerical
routine which generates the theoretical drainage curve.
Varying V by ~ 1% (which is the experimental error in es-
tablishing this quantity when using the motor drive) can give
a spread of values of D from about 0.8-1.5 nm for OMCTS,
and from 0.5-1.0 nm for the two alkanes. Therefore we do
not attach great significance to the precise value of Dy in the
model we have used. We do, however, find it reassuring that
Dy is a small number, only 1-2 molecular layers. It seems
plausible that the flow behavior of a liquid is modified in
some way by structuring of the liquid within a few molecular
diameters of a solid boundary, particularly since we know
from solvation force measurements that the equilibrium dis-
tribution of molecules is affected out to four or five diameters
from each surface.'! We find it more difficult to believe that
any modified structure of a nonpolar liquid should extend
for tens or hundreds of nanometers.

Even a very thin immobile region can have a discernible
effect on the effective viscosity of a substantially thicker film.
By comparing Eqs. (4.3) and (4.4), it can be seen that in our
simple model

D
D)j=—"—ro 5.1
Nea (D) b_, " (5.1)

or

New — 7 2Dg

= - . (5.2)
7 D —2D;

Thus the enhancement of the viscosity, which gives a good fit
to our results, is 10% at D = 29 nm and 1% at D = 263 nm
in OMCTS. In tetradecane and hexadecane the correspond-
ing film thicknesses are 15 and 141 nm. Of course it is only
possible for us to arrive at these estimates because our mica
surfaces are molecularly smooth, making it possible to define
(as well as measure) their separation with a precision finer
than the thickness Dg. Were they rougher than this, as most
surfaces are, the above discussion hinging on the difference
between D and D — 2D would depend critically on how
D = Owas determined. In the present experiment D = 0 cor-
responds to the mica surfaces in molecular contact in a nitro-
gen atmosphere. We also note that here we are determining
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the effective viscosity by measuring a hydrodynamic drag
force which varies as (1/distance). The difficulties would be
exacerbated in measurements of quantities with stronger dis-
tance dependences, such as drainage between flat plates (fall
time under constant load ~ 1/D ?) or flow through capillaries
(1/R ).

Colloid scientists and biophysicists who study electro-
kinetic behavior of small particles (including vesicles and
cells) often tacitly make an assumption which corresponds to
the model discussed here, by speaking of a “shear plane” or
“slipping plane” at which the zeta potential is measured.*”
The solvent—usually water—is supposed to have a constant
viscosity up to the shear plane, but the shear plane need not
coincide with the surface. The consensus of opinion seems to
be that the shear plane is never more than a few tenths of a
nanometer from the surface (however that might be de-
fined!),?*-*" so there would not be more than one or two layers
of water molecules which do not flow according to hydrody-
namic expectations.

Debye and Cleland®' invoked a similar model to ac-
count for deviations from Poiseuille’s law in their measure-
ments of flow of n-alkanes through a porous glass {although
they also allowed slipping at the solid boundary). They found
that their results were compatible with having a thickness
Dy equal to the width of a single hydrocarbon chain.

Measurements of the self-diffusion of water in polymer
solutions and colloidal systems using NMR techniques sug-
gest that there may be a couple of layers of water molecules
adjacent to the polymer or colloid “surface” which do not
diffuse freely.***’ This observation may also be related to the
presence of immobile regions in shear flow next to a solid
boundary.

We do not suggest that molecules of liquid are truly
immobile near the solid surface. To account for the present
results we need only imagine that the component of velocity
parallel to the surface is hindered or restricted on the time
scale of this experiment. The velocity normal to the surface
need not be affected, and the molecules next to the surface
can be exchanging rapidly with those away from it. Further-
more, we must note the evidence of Fig. 9(c}, in which it is
seen that after a certain time the solid surfaces in hexadecane
approach to a separation less than 2D, which would be im-
possible if these regions really were completely immobile
(even in the sense described above).

In very thin films, D = 5 nm, the liquids drain in a series
of abrupt steps each corresponding to the thickness of a mo-
lecular layer. Qualitatively, this stepwise approach of the
surfaces can be understood in terms of the surface force. As
the two mica sheets approach, they encounter a series of
repulsive barriers of increasing height (Fig. 4) which have the
effect of holding them almost stationary at certain separa-
tions, which are multiples of the molecular layer thickness."'
Quantitatively, however, this is not the full story. The drain-
age of the liquid occurs even more slowly than predicted (by
continuum hydrodynamics) when the surface forces are in-
cluded. In other words, in films only a few molecular layers
thick, the liquid does not flow as if it has a simple viscosity
equal to the bulk value. This of course is no surprise: we
already know that the continuum models for the surface

D.Y. C. Chan and R. G. Horn: Drainage of thin liquid films

force have broken down,'' so the continuum description

should not be expected to hold for the drainage of such thin
films.

The fact that in this regime the liquid drains slower than
the continuum prediction is at least consistent with the idea
that resistance to shear flow increases within a few molecular
layers of a solid surface, as assumed in the simple model of an
immobile region discussed above. Perhaps the ordering of
molecules into layers impedes rather than facilitates their
shear. Or the proximity of the solid surfaces may prevent
molecules from moving around each other, by restricting
their motion in a direction normal to the surfaces. Whatever
the correct microscopic explanation, hopefully it will not
only describe the drainage in the very thinnest films, but also
supplant the crude “immobile region” model used to ac-
count for the apparent enhancement in viscosity of films up
to 50 nm thick, and so provide a satisfactory description of
the entire drainage process.

Israelachvili'® has recently made comparable measure-
ments using the same apparatus, but employing an oscilla-
tory driving function L (t)=L,+ 4,¢*". He studied
aqueous electrolyte solutions and n-tetradecane, and in both
cases reached the conclusions that the liquid viscosity had its
bulk value even in very thin films (down to D~5 nm) and
that there was no measurable displacement of the shear
plane from the surface. This is in contrast to our results, and
it is not evident why we should differ on this point. The
reason may lie in the fact that his measurements become less
accurate for very thin films, or possibly be due to the differ-
ence in shear rates encountered in the two experiments.
From Eq. (A12) we can estimate the maximum shear rate in
our tetradecane experiment as 60 s ' at D = 100 nm, 730
s~ 'at 10nm, 1230s~'at 5nm, and 1830s™ ' at 2.5 nm. The
shear rate in Israelachvili’s experiment on the same liquid
would have reached 200s ™' at D=~ 5 nm. It seems surprising
to us that the immobile regions should suddenly appear
when the shear rate is increased by a factor of only 6.

We end this section by discussing a consequence of these
observations for the measurement of surface forces using the
Israelachvili apparatus. It is clear that in very thin films, the
interval between “steps” inwards can become quite long,
perhaps minutes [Fig. 7(c)]. This is the time scale over which
our usual measurements of the surface force, supposedly
equilibriumm measurements, are made, and thermal drifts
make it difficult in practice to increase these times. Clearly, it
would be possible to make a measurement before the liquid
has actually drained to its equilibrium thickness, and so the
slow drainage could cause us to overestimate the force at a
given distance. The difficulties due to liquid drainage will be
worse in a liquid of high viscosity.™*

VI. CONCLUSIONS

The Reynolds theory of hydrodynamic lubrication gives
a very satisfactory description of the drainage of nonpolar
liquids between molecularly smooth mica surfaces down to
film thicknesses of ~ 50 nm. No variation of the liquid vis-
cosity from its bulk value is measured in this regime. In thin-
ner films there is an apparent steady enhancement of the
viscosity, which is accounted for empirically by allowing the
plane of shear to be about two molecular layers away from
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the solid surface (towards the liquid). However, we do not
claim that this simple-minded picture is a realistic model for
very thin films. As the solid surfaces come closer to contact,
the continuum description breaks down, and the liquid
drains in a series of abrupt steps, each corresponding to a
molecular layer. We suggest that the ordering of molecules
of the liquid into layers next to the smooth solid surfaces
increases their resistance to shear. A proper account of this
effect would hopefully also explain the apparent enhance-
ment of the viscosity which is measured out to D~ 50 nm.
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APPENDIX A: THE HYDRODYNAMIC FORCE

Consider a general curved surface moving in the direc-
tion normal to a planar surface as illustrated in Fig. 11. Let
the local distance between the surfaces be a prescribed func-
tion H (x, y). We shall assume that the surfaces are sufficient-
ly rigid so that any deformations of the surfaces due to sur-
face forces and hydrodynamic stresses are negligible. A
more detailed examination, given in Appendix C, shows that
this assumption is justified.

When the local radii of curvature are large in compari-
son with the distance of closest approach between the sur-
faces, the flow of liquid at low Reynolds number in the re-
gion between the surfaces may be described by the
lubrication approximation.' In this approximation it is as-
sumed that locally, the flow is similar to that between paral-
lel plates. That is, the lateral component of the velocity field
is large and derivatives in the direction normal to the plane
are dominant. In this limit, the momentum equation for the
velocity field v of a viscous liquid of shear viscosity 7 is
approximated by

2

1N =V, P, (A1)
where v = (v, v,) and V, = [%(d/Ix), §(d/3y}]. To lead-
ing order, the pressure P is only a function of x and y.

Using the stick boundary conditions v, = Oatz = Oand
z = H(x, y), Eq. (Al) can be integrated with respect to z to
give

vT=2Lz[z—H(x,y)] v, P (A2)

7

If we combine this result with the equation of continuity

dv,
(A3)

dz
together with the boundary conditionv, = 0atz = 0, we can

integrate once more with respect to z to give
1

= —Vyvy,

b= ——— Vr{[§2 —42H (x, )]V P). (Ad)
Y
Do, b d
W Y
. Ui -
_ / / I DG,

FIG. 11. Coordinate system between a curved surface and a flat plate.

At the curved surface z = H (x, y), v, is equal to the velocity
of the moving surface dD /dt, hence

abD 1

dt 129
This is a partial differential equation for P(x, y) when the
shapefunction H (x, y)and the velocitydD /dt areprescribed.

For the geometry of two cylinders of radii R; and R,
whose axes are aligned along the orthogonal y and x axes,
respectively, the distance between the surfaces of the cylin-
ders in the vicinity of the point of closest approach is given by

Vo [Hx, p)Vy Pix, y)]. (AS5)

H(xy)—D+—xz—+L2~+0(-—1— —1—) (A6)
’ 2R, 2R, R RZ)
For identical cylinders R, = R, = R, we have
2
Hx,y)=H{(r)=D 4+ —, A7
(x, ¥) (r) R (A7)
where 7 = x? + y°. For this case Eq. (AS5) becomes
ab _ 1 14| gy 2P0 (’)] , (A8)
dt 129 r dr dr

and using the condition thatdP /drisfiniteat r = 0, it may be
integrated to give

P(r}:P(oo)—677{fi—1; w;sa(ss)
~ Plw) - 222, (A9)
(r) dt

Here P () is the ambient pressure at »— . We note from
Eq. {A9) that the pressure is only a function of position via
the function H (r), i.e., P(r) = P (H (r})).
Putting Eqs. (A9) and (A7) into Eq. (A2) enables us to
calculate the shear rate
dvr(rz) 3
9z H3(r)
The shear rate is greatest at each surface,z = Oand z = H (r),
where
dvr(rz=0,H) , _ 3r dD
oz (D+ /2R dt
This has its maximum value at » = (2RD /3)"/?, at which
aUT . 1 (3)5/2 R'2 dD
0z lmex  2\2/) D3 dr’
For nonidentical cylinders (R, #R,) Eq. (A5) reads

[2z — H(r)] 912 (A10)
dt

(A11)

(A12)

+§; [H3(x,y) %;—’1)” . (A13)

As with the case of identical cylinders, we seek a solution of
the form P(x, y) = P(H (x, y)), and assume the ansatz* [see

Eq. (A9)]
3Ry dD
Pix,y)=P(H(x,y))=P —_——
(x, ) =P (H (x, p)) = P(e0) Hom,y) di
with R, being a constant to be determined. Combining Egs.
(A6), (A13), and (A14) we find R, to be the harmonic mean
of R, and R,,

(A14)
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L:_l_(_l_+L> (A15)
R, 21\R, R,
Since the solution given by Egs. (A14) and (A15) obeys the
differential equation (A 13) and all the boundary conditions,
it is the unique solution for Reynolds flow between a plane
and a general curved surface characterized by local principal
radii of curvature R, and R,

The hydrodynamic force Fy in the normal direction
between the surfaces due to viscous dissipation may be ob-
tained by integrating the total stress on the plane surface*®

Fy =f_ dxf,:dy [P(x,y)—P(oo>—2’7 aUzLo

oz
1 dD
= —6mp R, R, ——,
T Ry GDdt

where R, = (R, R,)"/? is the geometric mean.

(A16)

APPENDIX B: SOLUTION TO THE EQUATION OF
MOTION IN THE ABSENCE OF SURFACE FORCES

As discussed in the text (Sec. ITI), surface forces can be
neglected for D 2 20 nm. The equation of motion (3.3) can
then be analyzed for the various types of driving function
illustrated in Fig. 3, as follows.

1. Surfaces driven together with “flying start”

In this situation [Fig. 3(a)] the surfaces have been set in
motion at some earlier time # < 0. The driving function is

L{t)=D({0)—A4(0)+ 1, (B1)
where V' <0 and

A0)= -2 4 (B2)
D (0) dt t=o0
in which we have set
6rn R, R,
a=—.
K

This parameter, with dimensions [L7], incorporates all of
the quantities which remain fixed in a particular experiment.
Equation (3.3), together with Eq. (3.5) and (3.7) becomes

(B3)

_a dDz)

=D(0)—D(t)—A(0)+ It B4
D) ar (0) (£)—4(0) (B4)
We change to the new dependent variable
D(0)
= — 3 B5
yix) D) (B3)
where
x=20, (B6)
a

and introduce the dimensionless constants

. — 6y Ry R; Iz/ _ an (B7)
K D?(0) D2(0)
and
540 _ _ a dbj (BS)
D(0) D¥0) dt li—o

Note that both ¥ and & are positive, since V<0 and dD /

dt < 0 when the surfaces are being driven together. Equation
{(B4) then becomes the linear differential equation

X _ g [yx +6 — 1] yix), {B9)
dx

whose solution is

yix)=e 1" Blx + yx*/2 [1 + f ol — Bs— v572 ds]. (B10)
0
This can be rewritten as

R . 7 \172 N
y(x) = 1 = 8°/2y] {1 + (__;_) elll — 8172y
2y

X [erf (%27%62—\) + erf(g)” ,
where

and

(B11)

_D)—-4(0) _ L(0)
S -V -V
is the time at which L (¢) = 0 [see Fig. 3(a)]. The error func-
tion appearing in Eq. (B11) is

t*

(B13)

erf(z) = 2 f e~ dx

T YO
and we have used the identity erf{l — z) = — erfiz).

2. Surfaces driven together, with “standing start”

If the surfaces are at rest before the driving function is
switched on at 7 = 0, we see from Eq. (B2) that

A0)=0 (B14)
and from Eq. (B1),
L{it)=D0O)+ Vt (B15)

with ¥ < 0 [see Fig. 3(b)]. The analysis of the previous section
carries over, with [from Eq. (B8)] § = 0 in the results (B10)-
(B12).

3. Surfaces driven together for a limited time

Another possible driving function is illustrated in Fig.
3(c), in which the remote end of the spring is driven inwards
{V <0) during the interval 0<¢<¢,, and is held stationary for
t<0Oand >t Thus L (r) has the form

L{t)=D(0)+ V1, 0<i<y,, (B16a)
=DO0)+Vt,=L_, t>¢t,. (B16b)
The equation of motion (B9) becomes
-dl: 1 —-[1—yx]y, O<x<x,, (B17a)
dx
=1—[1=wx]1y, x>x,, (B17b)
where
X, = DO L. (B18)

a
The solution is [cf. Eq. (B10)]
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y(x):e—x+7/x2/2 |:1+J e:—r:!/zds]’ O<x<xs, (B19a)
0
= e M y(x,)et + (1/A ) — *™)|, x>x,, (B19b)

where

A=1—yx, =1+

Dazﬁ))] [Dc(cO) t‘] B 11; (T)) - 1B20)

Let us examine the solution for x>x_, i.e., after the drive
is switched off: this will be found useful in Sec. IV. After
rearranging Eq. (B19b) we find (for L  #0)

1 ( 1 ) —Ax—x,)
x} — — = X;)——])€ .
yix) y yix;) "
Substituting from Egs. (BS), (B6), (B18), and (B20) gives

D)=L, _D)=Le sy

D) D) '
Thus, for L >0, the quantity [D(¢) — L, ]/D (t)decreases
exponentially towards zero with the decay time a/L . The
analysis is still valid for L _ < 0, but now the solution grows
indefinitely, i.e., D (£ }—0 as t— .

To solve the special case L_ = 0, we go back to the
original equation (B17b) and put 1 — yx, =0, so

(B21)

(B22)

dy/dx = 1. (B23)
The solution is
yx) =plx,) + x — x; (B24)
or
t—1
1 1 . (B25)

D) D) a

4. Pulling surfaces apart for limited time

Figure 3(d) illustrates the case in which the surfaces are
pulled apart during the time interval O<z<¢,. We have

L(t)=D(0)+ V1, O<et,, (B26a)
=D0O)+ Vt,=L_, t>t, (B26b)
with ¥ > 0. From Eq. (B7) we now have y < 0. Writing

. 12 172
8= (__Z) L (ﬁ’.f> (B27)
2 DO\ 2
the solution to Eq. (B26a) can be expressed as
2 1 1 1 1
yix)=e *7F* [1 - —F(—-—)] +—F(/J’x + —)
B \28 B 28

O<x<x,, (B28)
where

F(z)= e—ff e ds (B29)

0

is Dawson’s integral.

The solution to Eq. (B26b) follows that of the previous
section. Since ¥ <0 in Eq. (B20), L  is always positive, and
we have [from Eq. (B22)]

L, —Dit) _ L, —Di) o~ \Laral =t t>1.. (B30)
Dit) D)

o
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APPENDIX C: ELASTOHYDRODYNAMIC FLATTENING

If the solid surfaces are not perfectly rigid, they can be
deformed by a nonuniform distribution of pressure between
them. Such nonuniform pressure can arise from two sources:
hydrodynamic pressure and surface forces. The first effect is
called elastohydrodynamic deformation, and has been ex-
tensively studied in the lubrication literature®*’; the second
has been called the soft-contact problem, and studied by
Hughes and White.*® Both are very difficult to solve exactly,
because a nonuniform pressure distribution causes a defor-
mation which changes the surface profile, which in turn
modifies the original pressure distribution. To write a solu-
tion in closed form requires integral equations, which can
generally only be solved numerically for a particular case.

No attempt has been made to compute the surface defor-
mation in the presence of an oscillatory solvation force. We
have observed experimentally'’-'? that perceptible flattening
of the surfaces occur under large repulsive forces, typically
for F/R2 1 mN/m, which occurs at D=3-4 nm in the
OMCTS experiment reported here. This effect causes us to
overestimate the true value of F /R in the neighborhood of
repulsive maxima, because we still divide the measured load
F by the undistorted radius R.

To estimate the importance of elastohydrodynamic flat-
tening in the present experiment, we do not solve the prob-
lem completely, but calculate the amount by which the cen-
tral part of the surface, i.e., at the point of closest approach,
would be displaced elastically by the hydrodynamic pressure
distribution Eq. (A9). This is given by

_21=0) [ (pii— Pl
8D == L[P(r) P())dr, (C1)

where ¢ is Poisson’s ratio and E is Young’s modulus of the
solids. Putting

3R dD
Pr)—P = ——_—T C2
) =Plee) D +7/2R) dt (2

in this expression leads to the result
_ 372

5D = ——3’”7(1 "2)(2) L (C3)

4 E D dt
(This result was quoted incorrectly in Ref. 11, by a factor

25/ 2.)

For our experimental system, E /(1 — o°)is estimated as
10'° N/m?.2%*° Using other data appropriate to the OMCTS
experiment shown in Fig. 7, we find this first-order estimate
of the central displacement gives D = 0.007 nm at D = 50
nm, and 0.05 nm at D = 5 nm. We conclude that elastohy-
drodynamic flattening can safely be ignored in this system.
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