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We investigate the statistical-mechanical basis and the numerical accuracy
of the Smoluchowski-Poisson-Boltzmann (SPB) approximation for describ-
ing ion diffusion in non-uniform electrolytes. The many-particle generalized
Smoluchowski equation is formally reduced to a hierarchy of coupled n-
particle equations. A closure relation, called the Instantaneous Relaxation
Approximation (IRA), is used to decouple the equation for the one-particle
self-propagator. Introducing also a mean field approximation (MFA), we
recover the SPB equation. The accuracy of the IRA and MFA is quantita-
tively assessed for a model system consisting of two parallel uniformly
charged plates with an intervening solution containing point ions in a dielec-
tric medium. This is done by comparing diffusion propagators, survival
probabilities and mean first passage times obtained by (1) solving the many-
particle generalized Smoluchowski equation by the stochastic dynamics
simulation technique (2) numerically solving the one-particle Smoluchowski
equation with the exact (simulated) equilibrium potential of mean force, and
(3) analytically solving the SPB equation. The IRA is found to be a useful
approximation, whereas the MFA can lead to substantial error for systems
with strong Coulomb coupling, as in the case of polyvalent counterions.
Provided with a realistic potential of mean force, the one-particle Smolu-
chowski equation thus yields an accurate description of ion diffusion in non-
uniform electrolytes.

1. INTRODUCTION

The electric double layer, consisting of an ionic solution in contact with a
charged interface, emerges as a central feature of many problems in colloid
science, electrochemistry and biophysics. Since the pioneering work of Gouy [1]
and Chapman [2], a vast literature has accumulated concerning the derivation,
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accuracy and application of the Poisson-Boltzmann (PB) equation and other theo-
ries of the equilibrium ion distribution in the double layer. For a recent review,
see Carnie and Torrie [3]. Although of considerable importance, the dynamic
properties of the double layer have received much less attention [4].

In this paper, we focus on the self-diffusion of the counterions making up the
diffuse part of the electric double layer. This problem has been approached in two
fundamentally different ways. Historically, the first approach was the association
theory [5], which postulates the existence of bound and free counterions with
zero mobility and bulk mobility, respectively. This phenomenological approach is
still widely used to interpret experimental data. A more realistic picture of the
dynamic consequences of the long-range Coulomb interaction is provided by the
Smoluchowski approach. Here Smoluchowski’s diffusion equation [6]

0
5; Js(rs t11e) = Do V - [(V — R £,(r; £]¥o)] (M

for the space-time evolution of the self-propagator f(r; ¢|r,) is extended by sub-
stituting for the external force K (a uniform gravitational field in Smoluchowski’s
original application) the equilibrium solvent-averaged mean force acting on a
counterion located at r. When the mean force is evaluated in the Poisson-
Boltzmann approximation we shall refer to equation (1) as the Smoluchowski—
Poisson—Boltzmann (SPB) equation. The SPB approach, which was pioneered in
the double layer context by Lifson and Jackson [7], has proven successful in
explaining counterion self-diffusion [8-10] and spin relaxation [11, 12] data from
polyion solutions.

The aim of this paper is to investigate some of the statistical-mechanical
approximations inherent in the SPB equation. Starting from a many-particle
generalized Smoluchowski equation, we identify the further approximations that
are needed to obtain the SPB equation. These are (1) an assumption of instanta-
neous response of the surrounding counterions to the motion of the tagged
counterion and (2) a neglect of the equilibrium pair correlation among the
counterions. (In a uniform electrolyte solution, approximation (1) corresponds to
the neglect of the relaxation effect [13].) We then assess the effect of each of these
approximations for a model system consisting of two parallel charged plates with
an intervening solution containing the counterions, see figure 1. This is accom-
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Figure 1. A schematic picture of the model system with the mobile ions, considered as
point charges, in between the uniformly charged walls.
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plished by solving the many-particle generalized Smoluchowski equation by the
Stochastic Dynamics simulation technique and comparing the resulting self-
propagator with that obtained (1) by numerically solving the Smoluchowski equa-
tion, equation (1), with the exact simulated mean force and (2) by analytically
solving the SPB equation. Comparisons are also made of mean first passage times
and survival probabilities, formally obtained by integrating the self-propagator
over time and/or space.

2. THE GENERALIZED SMOLUCHOWSKI EQUATION

Our point of departure will be the N-particle generalized Smoluchowski equa-
tion which governs the time evolution of the probability density F(r¥; t|r}) for
the configuration of the N counterions

i=1

a N
5; F(r"; t|rg) =Do'z A\ {ViF(’N; t[l'g)

N
+ ﬁvi[ul(ri) + Zl uy(r;, rj):IF(’N; t| "3])}- (2)

i=1

For definitions of the quantities appearing in equation (2); see Appendix A.

Equation (2) may be derived from the Liouville equation and certain well-
defined approximations [14-17]. These are as follows: (1) the relaxation of ionic
and solvent momenta and of solvent configuration is fast compared to the time-
scale for relevant changes in the ionic configuration, (2) the potential energy of
interaction,

N
ug(ry) + Z/ uy(r;, 1)), (3)
i=1

and its derivatives vary negligibly over the ionic momentum correlation length,
Do(mP)*?, and (3) the solvent-mediated dynamic coupling between the ions and
with the walls may be neglected. Although these approximations do not appear to
have been rigorously justified for aqueous electrolytes, simple numerical estimates
tend to be reassuring. In this study, however, we shall not be concerned with the
accuracy of these approximations. Rather, we shall examine the further approx-
imations that are needed to derive the SPB equation from equation (2).

The first step in our formal derivation of the SPB equation is the reduction of
the N-particle generalized Smoluchowski equation, equation (2), to a correspond-
ing equation for the one-particle self-propagator f(r; t|r,). As defined in Appen-
dix A, f,(r; t|r,) dr is the probability of finding, at time ¢, the tagged ion to within
dr of r, given that it was initially at ry. Using the time dependent distribution
functions defined in Appendix A, we perform this reduction in Appendix B. The
result, equation (B 11), may be expressed in the physically perspicuous form

é
7 S5 tlro) = DoV - {[V + BVau(r; t[ 1)1 f(r; tvo)}, C))
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with a time dependent potential of mean force w(r; t|r,) given by

Va(r; 1) = Vauy(r) + jdr'[Vuz(r, ) lg(r, 5 t]ro) fo(r'; t] 1) (5)

In these equations, r refers to the position of the tagged particle and ¥ to the
position of any of the N — 1 untagged particles. The self-propagator f(r; t|r,)
and the distinct propagator fy(r'; t|r,) are generalizations to finite nonuniform
systems of van Hove’s space-time correlation functions [18]. The definitions and
general properties of these propagators and of the time dependent pair correlation
function g(r, ¥'; t|t,) can be found in Appendix A.

Taken together, equation (4) and the corresponding equation (B12) for the
distinct propagator constitute the lowest level of a hierarchy of coupled n-particle
generalized Smoluchowski equations (n =1, 2, ..., N), which all can be derived
along the lines of Appendix B. In order to obtain the self-propagator f(r; t|r,), it
is necessary to solve the coupled equations, equations (4) and (B 12), subject to an
approximate closure which expresses the pair correlation g(r, ¥'; ¢|r;) in terms of
known functions. Such a closure has the effect of decoupling the one-particle
level from the two-particle level of the hierarchy. If, in addition, we approximate
the distinct propagator in equation (5) by some known function, then also the self
and distinct one-particle equations decouple and it suffices to solve equation (4).

The time dependence in the potential of mean force w(r; ¢|r,), as exhibited in
equation (5), reflects the finite time required for the N — 1 untagged ions to fill
the ‘correlation hole’ at r,, left by the tagged ion. As a consequence, the tagged
ion experiences a retarding force which tends to slow down the evolution of the
self-propagator. The analogous phenomenon in uniform systems is the so-called
relaxation effect [13], which is usually pictured as a dynamic asymmetry in the
ion atmosphere around the tagged ion.

The second step in our derivation of the SPB equation is the introduction in
equation (5) of the Instantaneous Relaxation Approximation (IRA), defined by

g(r) r/; tl rO)fd(r,; tl rO) = geq(r) rl)feq(r,)) (6)

where g (¥, ') and f, (') are the usual equilibrium pair correlation and singlet
distribution functions.

It is clear from Appendix A that g(r, ¥'; t|v,) fo(r'; £|¥y) dr is the probability
of finding, at time t, any one of the N — 1 untagged ions to within dv’ of r
(irrespective of the configuration of the remaining N — 2 untagged ions), given
that the tagged ion is simultaneously at r and with the initial configuration of the
untagged ions averaged over the conditional equilibrium probability density with
the tagged ion fixed at r,. Consequently, equation (6) is exact in the two limits
t =0 and t— o0. It would be numerically accurate at all times if the tagged ion
were to diffuse much more slowly than the untagged ions. The time taken for the
untagged ions to develop an equilibrium correlation with the tagged ion would
then be short compared to the time required for significant displacements of the
tagged ion.
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When equation (6) is inserted into equation (5), we find that the potential of
mean force in the IRA is simply the exact equilibrium potential of mean force,
Weq(N), given by

Ve (r) = Vu, (r) + J dr'[Vu,(r, ¥)]geq(r, ¥)feq(F)

=BV In fou(m), (7

where the last equality follows from the lowest member of the equilibrium
Bogoliubov—Born—Green—Yvon hierarchy [3]. Consequently, the IRA self-
propagator evolves towards the correct equilibrium distribution. (This 1s
expected, since equation (6) is exact in the limit t— o0).

The other statistical-mechanical approximation needed in our derivation of
the SPB equation is a mean field approximation (MFA), according to which the
equilibrium pair correlations are neglected by setting {3, 19]

Zeg(rs ¥) =1 (8)

in equation (7). As a consequence, the potential of mean force becomes identical
to the mean potential

wye AN = u,y(r) + jdr’uz(r, ) fUFA) (9)

where fﬁ’f]FA(r) satisfies the integral equation (7) with g (r, ¥) = 1. In the MFA,
the tagged ion is thus considered as diffusing in the mean potential resulting from
statistical averaging over all the N ions. The consequences of the MFA for equi-
librium properties have been studied in detail in references [3], [19] and [28].

3. THE SMOLUCHOWSKI-P0OISSON—BOLTZMANN EQUATION IN
PLANAR GEOMETRY

The model system which we have chosen as testing ground for the SPB
equation consists of two parallel uniformly charged plates located at 2 = + b with
an intervening solution containing point ions of charge Ze imbedded in a homoge-
neous dielectric of relative permittivity ¢, (see figure 1). The charge of the point
ions is opposite in sign to that of the plates, so that the system as a whole is
electroneutral. In a system such as this, which contains only counterions, it is
possible to set the ionic radius to zero. The effects of the two statistical-
mechanical approximations (IRA and MFA) in the SPB equation can thus be
investigated without interference from finite ion size effects, i.e. all correlations
have a purely electrostatic origin. An additional advantage of the absence of
coions is the existence of an analytic solution to the SPB equation for this system

[20].
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Each plate carries a fixed uniform surface charge density 6. The permittivity
is taken to be the same on either side of the plate, so that dielectric image forces
do not occur. The singlet and pair potentials are then

u,(2) = constant; —b <z <, (10)

(Ze)®
dnege v — |

(11)

ul(r) r’) =
The mean electrostatic potential
Y(2) = (Ze)™! jdl"uz(f, ) feo(r) (12)

is approximated by the solution [21, 22] of the Poisson—Boltzmann equation
subject to the appropriate boundary conditions

Y(z) — Y(0) = 2ky T In cos (kz). (13)
Ze

The reciprocal Debye length, k, is obtained by solving the transcendental equa-
tion

| Zeo | b

b b))y =—""— 14
kb tan (xb) Yot ke T (14)
on the interval 0 < kb < 7/2.
In the IRA equation (4) reads
0
5 fs(r; ter) = DOV ) {[V + ﬂvweq(r)]fs(r; tIrO)}' (15)

Now from the symmetry of our model system, it is clear that a one-point function
such as w,,(r) can depend only on the z coordinate. The operator on the right-
hand side of equation (15) can therefore be split into one part which involves only
the cylindrical coordinates p and ¢ and another part which involves only the z
coordinate. As a consequence, the diffusion parallel to the plates (the lateral
diffusion) is statistically independent from the diffusion perpendicular to the
plates (the transverse diffusion). (This is not true when time dependent pair
correlations are taken into account.) In the IRA, therefore, equation (15) may be
decomposed into two separate diffusion equations; one describing the evolution
of the lateral self-propagator

LA _Dy | 0 ...
at fs(P>t|Po)— p ap I:P ap fs(P,”Po):|, (16)

where p is the perpendicular distance (parallel to the plates) from the z-axis, and
the other describing the evolution of the transverse self-propagator

0 0 5
3, 3 t1z0) = Do E {[5 + ﬂw'eq(z):lfs(z; t|20)}, (17)

where the prime signifies differentiation with respect to z.



06: 05 16 April 2011

Downl oaded By: [University O Ml bourne] At:

Ion diffusion at charged interfaces 1111

Since the system is laterally unbounded, the solution to equation (16) is
simply the Green’s function for two-dimensional free diffusion

o= po)z]_

18
4Dyt (18)

1p; tlpo) = (4nDyt)~ ! exp [

If, in equation (17), we also invoke the MFA, with w.(2) replaced by Zey(z)
from equation (13), we arrive at the SPB equation for our model system
0 0 0
= f(z; tlz9) = Dy — | — — 2k tan (k2) |f(2; t]20) ¢ (19)
ot 0z {| 0=

In Appendix C we show that the solution to equation (19), with impenetrable
boundaries at 2 = 1 b and with a delta-function initial condition, is

fs(zy tlzo) —_ E cot (Kb) se02 (KZ) + bi COs (KZO)
2 cos (K2)

X Z (00, 0da un(K20)un(K2) + (1 = 8, 0qa)Val(K20)v,(K2)]
n=1

. exp {—[(nm/2)* — (<b)}(Dy t/67))

20
[(n/2)* — (kb)) 20
where 6, 494 = 1 (0) if 7 is odd (even). Furthermore
u,(xz) = tan (xz) cos (%?) — % sin <%E) , 21 a)
2,(kz) = tan (k2) sin (nTnbz_) + ;—:b- cos (n?nbi> (21 b)

Since kb < m/2, the exponentials in equation (20) decay with time and in the limit
t— oo only the first term, corresponding to the equilibrium distribution f,,(2),
remains. In the limit kb = 0, equation (20) reduces to the well-known [23] propa-
gator for one-dimensional free diffusion between reflecting boundaries.

4. STOCHASTIC DYNAMICS SIMULATION

The starting point for the Stochastic Dynamics simulations is the extended
Langevin equation for the ionic momenta p(t)

d
a2 p(t) = —¢pit) + Ri(t) + K(rY5 ). (22)

The effects of the solvent are contained in the dissipation coefficient &, in the
random force Ry(t) and in the dielectric screening of the ionic interactions. The
time dependence of the ionic force K,(r¥; ¢) is only implicit through the coordi-
nates r¥ and it is evaluated from the potential model in equations (10) and (11)

N
K, 1) = —VI(™) = =V, Y u,(r;, 1) (23)
=1

j=
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Equation (22) can be formally integrated to obtain

1) — ro = (m)~ (P — P(B) + (m& ™" f dt'[R(t) + K(r¥, )], (24)

0

where the index 7 has been dropped. This is still an equation of motion in phase
space. However, for a time ¢, which is long compared to the momentum correla-
tion time ¢~!, we can neglect the first term on the right-hand side of equation

(24) and obtain [24]

t

r(t) — 1o = (m& ™" J di'[R() + K(r¥; )] (25)

0

Equation (25) is a stochastic differential equation, which has a solution in the
form of a probability density function W(r"; ¢|r)). In fact it represents N equa-
tions coupled through the force K(r";1). If we restrict ourselves to short times,
but still large compared to &1, then K(rV; t) is approximately constant and the N
equations decouple to give

r(t) — ry — K(Y; 0)t/mé = (mé) ™! J‘t dt’ R(t). (26)
o

Applying Chandrasekhar’s lemma [25] to equation (26) leads to the desired prob-
ability density function

W(r; t]to) = (4nDg 1) >* exp [—|1(¢) — 1o — Kt/ml|*/4Dq 1] (27)

with Dy = kT/mé and K = K("; 0). (The same symbol, e.g. F or W, will be used
to denote different functions, identified by their arguments.)

We will now show that W is also a solution to the generalized Smoluchowski
equation, equation (2). Let us, in analogy with what we did in order to arrive at
equation (26), replace the potential term in equation (2) with a constant K as is
legitimate for short times. Equation (2) then factorizes and we have

0
Ey F(r; t|rg) = DoV - {(V — BK)F(r; t]ry)} (28)
with
( tlro)_ HF(rntIrOl (29)

It is simple to show that equation (27) is a solution to the Smoluchowski equa-
tion. Thus the two routes, equations (2) and (25), are identical (W = F) and
which way to proceed is purely based on numerical considerations. It seems,
however, that the stochastic approach is conceptually simpler and more suitable
for numerical computations.

The right-hand side of equation (26) can be interpreted as a random displace-
ment due to collisions with the solvent molecules and we can rewrite equation
(26) as

r(t + At) — r(t) = Ar(z, At) = Arg(Ar) + K(Y; 1) At/mé. (30
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The random displacement Arg has, in the limit of infinite dilution, a gaussian
distribution with the first and second moments equal to

(ArgY =0 (31a)
{|Arg|*> = 6D, At. (310)

We now assume that Arg has the same statistical properties at finite concentra-
tions as in an infinitely dilute system, which is consistent with the neglect of the
inertial term in equation (24), see also [24]. This means that neither the friction
coefficient nor the random force distribution are affected by the extra force
K(¥; 1). It is then straightforward to solve equation (30) with a time step At small
enough so that K(r¥; t + Af) = K(rV; 1), but still Az > 7', The latter require-
ment has a formal character, since it is related to the mass of the Brownian
particle, which is without significance in the diffusion limit. Simulations with
time steps of 0-1 and 0-2 ps were within the statistical fluctuations identical and
we used the larger value in all simulations presented here. Periodic boundary
conditions were applied in the two directions parallel to the charged walls. To
guarantee that the flux across the walls is zero (perfect reflection), an ion was
allowed to move perpendicularly only if its new position was confined between
the walls. This condition leads to the correct equilibrium distribution, as can be
verified from the principle of detailed balance.

The electric force acting on an ion was evaluated using the minimum image
convention, that is, it was allowed to interact with all ions within a parallelepiped
centred on itself. Due to the long range character of the electrostatic force and the
limited number of particles explicitly treated (usually 50 counterions), one has to
include a correction from the charges outside the simulation box. This can in
principle be done self-consistently, that is the originally unknown distribution is
approximated by the distribution obtained from an initial simulation. A second
simulation will then give an improved distribution, which in turn can be used to
approximate the exact one and so on. This approach has some drawbacks: it is for
example not obvious that it will converge and it is rather time-consuming. In the
present simulations we have approximated the distribution outside the box with
the corresponding Poisson-Boltzmann distribution. This approach has been
extensively tested in [19], where also a more detailed account is given.

5. CALCULATIONS

In this section we present a quantitative assessment of the accuracy of the SPB
approximation in describing counterion diffusion in the model system of figure 1.
The effects of the two statistical-mechanical approximations, instantaneous
response (IRA) and neglect of equilibrium spatial correlation (MFA), inherent in
the SPB propagator, will be examined separately. This can be done by comparing
(1) the exact (within the model) SD propagator, obtained from stochastic
dynamics simulations as described in §4, (2) the IRA propagator, obtained by
numerically solving equation (17) with the exact (simulated) mean force, as
described in Appendix D, and (3) the analytic SPB propagator, as given in §3,
which involves both the IRA and the MFA. The simulations, as well as other
calculations, were done with the following parameter values: 7T = 293K, ¢ =
80-36, b = 10-5 A (except figure 9), Dy =2 x 107°m?s™ ' and |6]| = 0224Cm~2
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(corresponding to one elementary charge per 71-4 A2). The counterion valency
was Z =1 or 2 as indicated, corresponding to xb = 1-3655 and kb = 1:4599,
respectively.

The self-propagator f(p, @, 2; t|po, @0, 20) obtained from the simulation
may be regarded as the solution to equation (4). Because of the translational
symmetry of the model system, this propagator can depend only on the lateral
displacement Ap = [(x — x0)* + (v — y¢)*]*/?
and 2,. In general the transverse and lateral diffusion processes are coupled but

, and on the transverse coordinates 2

one may define a purely transverse propagator by averaging over the lateral
displacement. For our model system, then,

foz; t]z0) =J d(Ap) f(Ap, z; t]zo). (32)

0

All propagators will be presented in discretized form. Thus f(2; t]|2y) is
replaced by P(k; t|k,), which gives the probability of finding the tagged ion in
the kth z-interval at time t, given that it was located in k¢ initially. With an
interlamellar spacing of 21 A and an interval width of 1A, k runs from 1 to 21
(k =1 and 21 being adjacent to the charged walls). The transverse IRA propaga-
tor was obtained by first solving equation (17) with a grid spacing of 0-1 A and
then converting the resulting propagator to the coarser 1A grid used in the
figures. The discretization error was found to be negligible. The discretization of
the transverse SPB propagator was performed analytically as described in Appen-
dix C.

The lateral diffusion is characterized by the discretized propagator
P(l, m; t{m,), which gives the probability that the tagged ion at time ¢ has suf-
fered a lateral displacement of [ radial units, while its initial and final transverse
coordinates were in the intervals my and m, respectively. The radial interval width
is taken to be 1 A (I=1,2,...), while the z-interval is 3-5A so that m runs from 1
to 6 (m = 1) and 6 being adjacent to the charged walls).

5.1. Lateral propagators

As noted in § 3, the IRA and SPB lateral propagators are both independent of
the transverse coordinate and given by the free-diffusion Green’s function, equa-
tion (18). This is a consequence of the symmetry of the model system, which
ensures that the (exact) mean force has no lateral component. However, the
evolution of the simulated lateral propagator is expected to deviate from equation
(18) due to the dynamic correlations associated with the time-dependent mean
force in equation (4).

Figure 2 shows the simulated propagator P(l, m; t|m) for monovalent
counterions as a function of the square of the lateral displacement. Firstly, we
note the almost perfect Gaussian behaviour; the propagators are well described
by equation (18) but with an effective diffusion coefficient which is lower than D,
by up to 15 per cent. This retardation is analogous to the well-known relaxation
effect in uniform systems. The second point to note about figure 2 is that the
effective diffusion coefficient is time-dependent, i.e. a finite time, of the order
100 ps, is required for the dynamic correlations to be fully manifested. This time
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Figure 2. The logarithm of the simulated lateral propagator P(l, m; t| m) for monovalent
counterions as a function of (/ —4)®. The straight lines drawn correspond to the
logarithm of the Green’s function, equation (18), with different values of the diffu-
sion coefficient, D (given below in units of 107°m?s ™ !). To separate the graphs a
constant ¢ has been added. (@) t =32ps: O, m=1, ¢ =%-, D=184; +, m=2,
c=0,D=191; x, m=3, c=—%4 D=194 (b) t=64ps: O, m=1, c=1,
D=174; +,averageform=2andm=3,c=0,D=187.(c)t=128ps, D =170
and 1-77 respectively. Otherwise as in ().
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may be thought of as a relaxation time for the ionic atmosphere; it should be
closely related to the time taken for an ion to diffuse a distance equal to the radius
of its ‘correlation hole’. Since the counterions accumulate near the walls, this
correlation length should be about 6-8 A (the charge density on each wall corre-
sponds to one elementary charge per (8.4 A)%). With a diffusion coefficient of
2 x 1072m?s7 !, this yields a relaxation time of about 100-150 ps, in reasonable
agreement with the simulations.

In analogy with uniform electrolyte solutions, where the relaxation effect
increases with concentration, one expects the lateral diffusion to be maximally
retarded near the charged walls where the local counterion concentration is
highest. This expectation is borne out by the simulation data in figure 2. From
the slopes we thus estimate a diffusivity reduction of ca 15 per cent within 3-5A
of the charged walls (where a counterion resides about 75 per cent of the time),
compared to ca 8 per cent in the remainder of the system. In view of the large
concentration difference between these regions, the observed z-dependence in the
lateral diffusion may seem surprisingly weak. However, since the inter-lamellar
separation is of the same order of magnitude as the correlation length, also
counterions midway between the walls are dynamically correlated with those
residing near the walls.

5.2. Transverse propagators

In the case of the transverse counterion diffusion, all three calculated propaga-
tors (the exact SD propagator and the approximate IRA and SPB propagators)
will, in general, be different. Any deviation between the SD and IRA propagators
can be traced to dynamic correlations, as in the case of lateral diffusion, whereas a
difference between the IRA and SPB propagators reflects static correlations via
the equilibrium mean force in equation (17). The discretized transverse propaga-
tor, P(k; t|ky), presented in this subsection refers to reflecting boundary condi-
tions at the charged walls. This propagator evolves towards the equilibrium
distribution. In the limit t— o0, the SD and IRA propagators should thus coin-
cide, whereas the SPB propagator should exhibit the known [19] deficiencies of
the PB approximation for this system, viz. a too high counterion concentration in
the midplane (2 = 0) region.

Figures 3-5 illustrate the transverse self-diffusion of monovalent counterions;
in figures 3 and 4 we have plotted discretized propagators P(k; t|k,) as functions
of k at fixed time, whereas in figure 5 we plot P(k; t|k,) as a function of time for
given k and k. It is seen that the SD, IRA and SPB propagators agree remark-
ably well for monovalent ions. Where deviations do occur, they are due mainly to
static correlations. This is most clearly seen in the z-interval adjacent to the
charged wall (k = 1) and at long times.

Since the IRA is exact in the two limits t =0 and t— o (cf. §2), we can
expect to see effects of dynamic correlations only at intermediate times. Except
for the small differences between the SD and IRA propagators in figures 4 (b) and
5(b), there is no indication in figures 3-5 of significant dynamic correlations. In
figure 5(a) the SD and IRA P(1;¢|1) propagators are seen to coincide at all
times. This may be understood on the basis that, at long and intermediate times,
dynamic correlations retard to roughly equal extent the counterion fluxes away
from and towards the charged wall. On the other hand, at short times, the ion has
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Figure 3. The transverse propagator P(k; t}1) for monovalent counterions as a function
of k at three different times: (a) t = 2ps, (b) t = 32 ps, and (c) ¢t = 1024 ps. Symbols:
SD (x), IRA (----), SPB ( ). The standard deviations are about 1 per cent
(SD) and 0-2 per cent (IRA).
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P(k:2psi11)

(a)

P(k;32ps|11)

1 11 21
®

Figure 4. The transverse propagator P(k; t|11) for monovalent counterions as a function
of & at two different times: (@) t =2 ps, and (b) t = 32ps. Figure ¢ shows the
equilibrium distribution P, (k). Symbols as in figure 3. The bars show one standard
deviation (68-3 per cent confidence limit) for the simulated values.
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Figure 5. The transverse propagator P(1; t|k,) for monovalent ions as a function of time
for three different initial positions ky. Symbols as in figure 3. The bars show one
standard deviation for SD.
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moved a short distance compared to its correlation length, which results in minor
effects of dynamic correlations. However, even the propagator P(21;t|1) reveals
no significant relaxation effect. (This point is further discussed in §5.3.)

Figures 6 and 7 illustrate the transverse self-diffusion of divalent counterions.
As expected, static correlations are more important than for monovalent ions.

P(k;10psi1)
5 1
k
T T T
1 11 21
(a)
P(k;160ps! 1)
4
54\
k
T hi T
1 11 21
()
P(k:5nsl1)
543
X
T T
1 1M1

The transverse propagator P(k; t|1) for divalent counterions as a function of &

at (a) t = 10ps, (b) t = 160 ps, and (¢) t = 5000 ps. Symbols as in figure 3.
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However, dynamic correlations are still negligible; the SD and IRA propagators
are virtually identical.

An alternative to the plots in figures 5 (a) and 7 is shown in figure 8, where we
have plotted the quantity [1 — P(1;¢|1)]/[1 — P(1)] as function of time. This

P(1:t11)

2log t/5ps
T i
5 10

Figure 7. The time dependence of the transverse propagator P(1; t|1) for divalent
counterions. Symbols as in figure 3.

7 1-R4M _
fx‘”
——’(/
*log t/ps
: 1
s 10
(a)
P(1;t11)
1 = 1_&41)
2
.
x X .o %-°
| T Loy
2
log t/5ps
5 10
(2]

Figure 8. Transverse counterion diffusion as illustrated by the time dependence of
(1 — P(1; ¢t 1)]/[1 — P, (1)] for (a) monovalent and (b) divalent ions. Symbols as in
figure 3.
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quantity is zero initially and evolves towards unity. At very short times, where
P(1, t|1) is virtually unaffected by electrostatic interactions, the SD and IRA
curves exceed the SPB curve in figure 8. This is simply due to the larger value of
1 — P (1) in the MFA. However, at longer times there is a cross-over and the SD
and IRA curves evolve more slowly than the SPB curve, due to the deeper
electrostatic potential well in the presence of static correlations.

5.3. Absorption statistics

In some applications one is primarily interested in the statistics of counterion
diffusion from one spatial region to another rather than in the, hitherto discussed,
decay of an initial delta-function towards the equilibrium counterion distribution.
The former process may be studied theoretically by introducing an absorbing
boundary condition at some point where the tagged counterion loses its label. For
the transverse counterion diffusion in our model system, for example, we can
define the survival probability, Q(z|z,, 24), that a counterion, initially located at
Z¢, has not yet reached (and become absorbed at) z, at time ¢. Choosing the left
wall (at z = —b) as reflecting and the absorbing boundary at —b < z, < b, we can
express Q(t|z,, 2,) as an integral over the transverse self-propagator, f,(z;t|z¢),
subject to the corresponding boundary conditions

Za

O(t|zo, 20) = f dz f(z; t| =) (33)
-b
The mean first passage time (MFPT), t(z,|z2,), is the average time taken for a
counterion, initially located at 2, to reach z, for the first time. This quantity is
obtained by a further integration as

a

©(z4] 20) = j dt O(t| 20, 2,). (34)
0

The discretized versions of the absorption probability and the MFPT can be
obtained directly from a simulation (SD). In the IRA, when the transverse propa-
gator obeys equation (17), the propagator and the absorption probability can be
calculated numerically as described in Appendix D. The MFPT, however, can be
calculated without the need to solve equation (17). By combining equations (17),
(33), (34) and the boundary conditions and then performing the integrations in
equations (33) and (34) in a formal way, one obtains the simple formula [26, 27]

zZA z
(z4]20) = DLO J dz exp [Puwy(2)] J \ dz’ exp [—Bw (z1)]. (35)
zo -
Using this result and the simulated (exact) potential 0.,f mean force, w,(2), we
calculated the IRA MFPT by summation over 0-1 A z-intervals. The SPB
absorption probability and MFPT, finally, were obtained from the general ana-
lytical results of [20].

Figure 9 shows the transverse MFPT 1(z| —b) as a function of —b < 2 < 0 for
monovalent and divalent counterions. The initial position is within 0-5 A of the
left wall (z = —5). (In contrast to the other data presented in this paper, figure 9
refers to a system with b = 13 A.) The close agreement between the SD and IRA
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Figure 9. The MFPT 1(z{2,) with —b < 29 < —b + 0-5A for (a) monovalent and (b)
divalent counterions. Symbols as in figure 3. System parameters as elsewhere,
except b = 13 A.

results implies that dynamic correlations are unimportant for this MFPT. Static
correlations are of minor importance for monovalent ions, for which the SPB
result deviates by less than 20 percent. For divalent counterions, however, the
reduced well depth in the PB potential causes the SPB approximation to (0} —b)
to fall short by a factor of 4.

Figure 10 shows the temporal decay of the survival probability OQ(t{z,, z,4),
and of its logarithm, for monovalent counterions. The initial position is within
0-5 A of the left wall and the absorbing boundary is at the midplane (24 = 0). One
sees again that there is virtually no effect of dynamic correlations on the counter-
ion diffusion -out of the potential well. The decay of the survival probability is
seen to be exponential, except during an initial phase of ca. 200 ps. This fact may
be exploited in simulations of the MFPT. Rather than extending the simulation
to times that are long compared to the MFPT (which may mean up to 10”7 s for
divalent ions), one can terminate the simulation as soon as the exponential decay
in figure 10 is established and then evaluate the remainder of the integral in
equation (34) analytically. This procedure may reduce the computer requirements
by more than an order of magnitude.
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_Qlt |-b,0)

25 5
)

Figure 10. Time dependence of (@) the survival probability O(t]|z,, 2,) and (b) its
logarithm for monovalent counterions. 2, =0 and —b <z, < —b + 0-5A with b =
10-5A. Symbols: SD (- -+ ), IRA (-——-), SPB ( ).

The insignificant effect of dynamic correlations on the transverse counterion
diffusion, as evidenced by figures 9 and 10, may be contrasted with the 15 percent
reduction of the effective lateral diffusion coefficient (figure 2). This difference
can be understood as follows. The MFPT 1(0| —b) measures the time required
for a counterion to escape from a well depth of several 2T in the equilibrium
potential of mean force. This process may be decomposed into two stages: a
transient initial phase, when the position of the tagged ion becomes essentially
equilibrated, followed by a quasi-steady-state phase, during which the tagged
particle density slowly leaks out of the system at the absorbing boundary without
significantly disturbing the equilibrium distribution. This quasi-steady-state
phase, which corresponds to the exponential region in figure 10, makes the over-
whelming contribution to 7(0| —b). As a consequence 7(0| —b) becomes essen-
tially independent of dynamic correlations, which only affect the transient initial
phase.

The MFPT t(—5|0) for diffusion into the potential well, on the other hand,
should show some effects of dynamic correlations. While we have not calculated
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MFPTs, 1(2|b), from simulations compared to MFPTs obtained from equation (34) with
O(t| —b, —z¢) from IRA. The quotient 14,/Tz 4 reflects the effect of dynamic correlations.

3o(A) Tsp(ps) Tira(PS) Tsp/Tira
8 37-6 32-3 1-16
6 169 158 1-07
4 438 426 1-03
2 837 829 1-01
0 1299 1334 0-97

this MFPT, a related trend can be seen in figures 4(b) and 5 (b) where the SD
propagator evolves more slowly than the IRA propagator. Relaxation effects
should also be apparent in 17(z| —b) for z in the neighbourhood of the charged

wall; the contribution from the transient initial phase is then not negligible. Such
a behaviour is illustrated by the ratio of the SD and IRA MFPT’s in the table.

6. CONCLUSIONS

In this work we have investigated the statistical-mechanical basis and the
numerical accuracy of the Smoluchowski-Poisson—Boltzmann approximation for
describing ion diffusion in nonuniform electrolytes. Our main conclusions are as
follows.

The many-particle generalized Smoluchowski equation may be formally
reduced to a diffusion equation for the one-particle self-propagator. This equa-
tion contains a time-dependent generalization of the equilibrium potential of
mean force. Two approximations, expressible in terms of well-defined one- and
two-particle distribution functions, are needed to derive the SPB equation. These
are an Instantaneous Relaxation Approximation (IRA), corresponding to the
neglect of dynamic correlations (or the relaxation effect), and a Mean Field
Approximation (MFA), corresponding to the neglect of static correlations.

In the investigated model system, the effective diffusion coefficient for lateral
displacements of monovalent counterions is reduced by up to 15 per cent due to a
relaxation effect (dynamic correlations). This reduction depends rather weakly on
the distance from the charged walls.

The transverse diffusion of mono- and divalent counterions out of the well in
the equilibrium potential of mean force is virtually unaffected by dynamic correl-
ations but is sensitive to the well depth. For this mode of diffusion the IRA is
thus an excellent approximation; as long as an accurate equilibrium potential of
mean force is used, the dynamical behaviour is faithfully described in the IRA.
The MFA (i.e. the Poisson-Boltzmann approximation) should be useful for
monovalent ions, but can lead to substantial error in the dynamical description of
polyvalent ions.

This work was supported by grants from the Swedish Natural Science Rea-
search Council. One of us (Bo Jonsson) also wants to acknowledge a Visiting
Fellowship at the Australian National University, Canberra.
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APPENDIX A

Time dependent distribution functions

We consider a collection of N identical classical solute particles without inter-
nal degrees of freedom. The system is in thermal equilibrium at a temperature 7.
The solvent-averaged hamiitonian of the system is

H*, Y = 3 f‘ + v, A
i=1
where r¥ denotes the 3N particle coordinates r,, r,, ..., ry and p" denotes the 3N
particle momenta p,, p,, ..., Py- The potential energy of the system in the
configuration r" is
N

ety = Z uy(r;) + Z z uy(r;, 1)) (A2)
i= i=1 j=1
where the prime signifies exclusion of the j = 7 term. The singlet potentials u(r;),
which include the effects of confining boundaries, produce a spatially nonuniform
average particle density at equilibrium.

Let F(r"; t|r}) be the specific N-particle probability density in the canonical
ensemble. Then F(r"; t{r}) dr¥ is the probability of finding, at time ¢, the N
distinct particles (labelled 1, 2, ..., N) to within dr" of the configuration r¥, given
that they were in the configuration rj at t = 0. It follows that

fdr”F(r tledy =1. (A3)

Furthermore,

N
s 01e) = [] 6(ri — ro0), (A4)

i=1
and

exp [— BV ()]

F(rY; o0 |e5) = Fo (') = , (A5)
f ar¥ exp [— BV ()]
where = (kg T) 1.
The reduced specific n-particle probability densities are defined through
Fors t|ed) = jdr”"’F(r";tlra'); n < N. (A 6)

F(r*; t|r}) dr" is the probability of finding, at time 2, n distinct particles (labelled
1, 2, ..., n) to within dr" of the configuration r", irrespective of the present
configuration of the remaining N — n particles, but conditional on the specified
initial configuration of all the N particles. From equations (A 3)—(A 6), it follows
that

jdr”F(r ) =1, (A7)

" 0| ) = H 3(r; ~ o)), (A8)
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Jdr”"‘ exp [ BV (rM)]

F(r'; oo |rg) = F (1) = (A9)

f dr¥ exp [— V()]

The equilibrium specific n-particle correlation functions Go(r") are defined
through

F o (r") = G o(r ]‘[ F(r); n<N (A 10)
i=1

F4(r;) dr; is the probability of finding, at equilibrium, the ith particle to within dr;
of r; and G ((F")F,(r;) dr; is the conditional probability of finding, at equilibrium,
the 7th particle to within dr; of r;, given that the other n — 1 particles are in the
configuration "~ ! (and irrespective of the configuration of the remaining N — n
particles). Clearly, G (r;) = 1.

We consider now a two-component system consisting of one tagged particle
and N — 1 untagged, but otherwise identical, particles. For this system, we have
the following relation between the specific (F) and generic (f) probability den-
sities

) N—1)! . )
fe e,y = D e ey, o, @At

(N—-1—mn)
where r" and r] ! refer to generic configurations on the left-hand side and to
specific configurations on the right-hand side. Here, and in the following, n* = 0
or 1 and 0 < n < N — 1. In analogy with equation (A 10), the equilibrium generic
(n* 4+ n)-particle correlation functions geq(r"', r") are defined through

n+n*

feaP™, ) = goo(r™, 1) ]__[ Jeq(T). (A12)

Combination of equations (A 10)—(A 12) yields a relation between the specific (G)
and generic (g) correlation functions

o (N —1)! .
geg(r", 1M = I gy Geo(r", 1. (A13)

Noting that

1

Seg(r", 1) = N_1-mi

fdr”“"‘feq(r"’, ! (A14)

and integrating equation (A 12) with n = N — 1, we obtain

1 X N-1 .
N1 Jdr”‘l‘”geq(r", Y T fea(m) = geo(r, ). (A15)

i=n+1

This relation will be used in the following.
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We now define reduced generic (n* + n)-particle probability densities with the
initial configuration of the N — 1 untagged particles averaged over the specific
conditional equilibrium probability density with the tagged particle fixed at its
initial position r§;

(N—1—mn)!
x F(e", e ejrd, g™ Y

1 [~ N—-1
- N—-1 * N—1
= (N—1—n)! Jdro 8ealrd, 1o )iI:ll feq(rOi)}

. (N — 1)! I Pty
f(r > r 5 tlrg) = ——) fdrg ! Geq(r?)‘) rg’ 1) l_[ Feq(rOi)
i=1

x F(r™, "yt oY), (A 16)
The initial condition follows from equations (A 8), (A 15) and (A 16)

FO, 075 01r8) = 60" — r)geq(rs, v [ 1 fogrd, (A17)
i=1
with the convention §(r" — r3) =1 for »* = 0. Similarly, from equations (A9),

(A11), (A 12), (A15) and (A 16) we get

n+n*

f(rn*a rn; 00 l rz)k) = geq(rn*9 rn) I_I feq(ri)' (A 18)
i=1

The normalization condition follows from equations (A7), (A11l), (A15) and
(A 16)

N (N —-1!
artrreT, e ) = ——. A19
f 7 = N (A19)
The self-propagator f.(r*; t|t¥) is obtained by setting n* =1 and = = 0.
According to equations (A 17)-(A 19), it obeys the following relations

£(r*; 0]rg) = o(r* — r3), (A 20)
F(r*; oo | 1g) = foo(r), (A21)
f drf(re; ) = 1. (A22)

Similarly, we obtain for the distinct propagator fy(r; ¢|rg), corresponding to
n*=0andn =1,

Fa(t; 0118) = goo(r§, 1) fe(D), (A23)
fa(r; 0 |r8) = foo(®), (A24)
Jdrfd(r;t[rg)zN—l. (A25)

The self- and distinct propagators just defined constitute the generalizations of
van Hove’s self- and distinct space-time correlation functions to nenuniform
systems.
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The pair propagator f(r*, r; t|r¥) is obtained by setting n* =xn =1. The
quantity f(r*, r; ¢|r§) dr* dr is the probability of finding, at time ¢, the tagged
particle to within dr* of r* and any one of the N — 1 untagged particles to within
dr of r, irrespective of the configuration of the remaining N — 2 untagged par-
ticles, and with the initial configuration of the N — 1 untagged particles averaged
over the conditional equilibrium probability density with the tagged particle fixed
at r§ . From equations (A 17)~(A 19) it follows that

FOO5 85 0008 = 0(r* — 15)geq(rs, 1) fog(M), (A 26)
F%, 5 00 [1E) = £ (F)geq(r*, 1) feg(1), (A27)
fdr* jdrf(r*, r ) =N-—1. (A 28)

Finally, we define time dependent (or ‘nonequilibrium’) generic (#* + n)-
particle correlation functions g(r", r"; ¢|r¥) through

n+n*

FO7 e e ey = g, v e ed) [] £ t]ed). (A29)
i=1

13

This is the time dependent generalization of equation (A 13). Clearly, g = 1 for
n + n* < 1. From equations (A 17), (A 18) and (A 29) it follows that

. oS, 1"
g(r",r";0|r3)=,,i“(¢—)—, (A30)
l—I geq(rg ’ ri)
i=1
g(r, 1" o[ rg) = g (r”, 1. (A31)

From equations (A 29)—(A 31), we obtain for the time dependent pair correlation
function (n* =n = 1)

FO* v t1eg) = £00%; [ r§)g(r*, v; e[ v3) fo(r; t]vf), (A32)
gty r; 0[rd) =1, (A33)
g(r*, r; 00| rf) = g (r*, r). (A34)

APPENDIX B

Derivation of generalized Smoluchowsk: equations

The N-particle generalized Smoluchowski equation, equation (2), may also be
expressed as a continuity equation

a N
EF(rN; t]r§)+.ZV,--Ji(rN; t|ry) =0, (B1)

i=1

with the fluxes

N
Ji(rN') i) = _Do{ViF(rN; t|r§)+ ﬁvil}ﬁ(ri) + Z’ uy(r; rj):|F(rN; try } (B2)

i=t
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Since the system is closed, the boundary conditions are

ﬁ(ri).Ji(rN;tlr(P)J) =0) i=1)2)"')N) (B3)

rionS
where A(F;) is the outward-pointing normal unit vector at a point r; on the bound-
ing surface S.

We shall now derive the generalized Smoluchowski equation obeyed by the
self-propagator f(r*; t|r§) defined in Appendix A. Consider the set of operators

s 1 N-1 % JN-1 Nt N—1-n,
= G| et ) [ a1
n=0,1,...,N—1, (B4)

which, according to equations (A 6) and (A 16), effect the transformations
P F(Y; t|vg) = f(r%, 15 1] 18). (B5)

From equation (B 4), we see that the following recursive relation is obeyed
P":(N—l—n)"ﬁ,,ﬂjdr. (B6)
Operating on equation (B 1) with 130 and using equation (B 5), we get
% Fr%; t]eg) + V- Pod*(e¥; ¢|rg) + NZSPO Vo e ) =0.  (B7)

Using, in turn, equation (B 6), the divergence theorem and the boundary condi-
tions, equation (B 3), we can get rid of the sum in equation (B 7) as follows
N-1 N-1
Y PV d(N iy =(N-1)7! Z Py J dr;V, - d,(r"; t|rg)
i=1 i=1 v
N-1
=(N-1D"'Y P f do f(r) - Ji(r"; ¢ rg)
i=1 s

=0. (B8)

Furthermore, from equation (B 2) we have
Py I*(rY; t[ 1)) = ——DO{V*fs(r*; t]e) + BLV*u (r*)]f(r*; ¢|rd)

1

+ﬁ/§

1

Po[V*u,(r*, r)]F(@™; t|r} } (B9)

Using equations (B5) and (B6), the last term of equation (B9) may be trans-
formed as follows
N-1
Z Po[V*u,(r*, ri)]F(rN; t|rg)
i=1
N-1

=N-1D'Y J dr; [V*u, (%, 1)1PF(rY, 1] )

i=1

= Jdr [V*u,(r*, D] F(r*, r; t]rd). (B10)
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Combining equations (B 7}-(B 10) and using equation (A 32), we arrive at the
desired result

 J6%; 1178) = Dy V* {V*fs(r*; £188) + BLV*uy (P15 t[13)

+ ﬂ[f dr[V*u,(r*, D]e(r*, r; t[ed) fa(r; tl"é‘)}fs(l'*; tlrﬁ)}- (B11)

A similar derivation leads to the generalized Smoluchowski equation for the
distinct propagator. The result is

0
5 Jor t1r8) = DoV - {Vfd(l'; t1¥8) + BIVu (D] fu(r; 2| ¢F)
+ ﬁ[f dr'[Vu, (v, Dle(r, r; t[r8) folr'; tl"?)‘)]fd(f; t[rg)

+ ﬁ[f de*[Vu,(r*, Dg(r*, r; t|r5) f(r*; tlfg):lfd('; tlré‘)‘)}-

(B12)
ArpPENDIX C
Solution of the planar Smoluchowski—Poisson—Boltzmann equation
Introducing the dimensionless variables
¢ =kz, (Cn
1=Kk’Dyt (C2)
and the dimensionless propagator
F&5 11 €0) = kTHLE; t1&o), (C3)
the SPB equation for planar geometry, equation (19), becomes
C 7 t1e) == | (2 - 2 an € )& w1é0) (C4)
- -7 =—|{== ; .
or 7o TS0 T g | \ag T 2 R e Tlee
The walls at £ = + kb are impenetrable, so the boundary conditions are
Fi=xb; 71 &o) + 2 tan (kb) fi( —xb; ] &) =0, (C5a)
Ficb; ©1 &) — 2 tan (xb) filkch; 71 &) =0, (Csb)

where prime denotes differentiation with respect to £. Furthermore, we have the
initial condition

FE; 0]&) = 8(& — &) (C6)
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We attempt a solution of the form

J(E; Tl Eo) = BT (). (C7)
Substitution into equation (C 4) yields
Y@ =@ @ . .,
Y = _E(ﬁ) 2 tan & 0 2sec” &= —(4 1), (C8)

where we have denoted the separation constant by — (42 — 1). The time depen-
dent part of the solution is obtained immediately from equation (C 8) as

Y(z) = exp [— (A% — D7) (C9
The spatial part is the solution to the second-order ordinary differential equation
E"(&) —2tan E E(E) + [A2 =1 — 2 sec? &] E(¢) = 0. (C10)
By introducing the new dependent variable
(&) = cos ¢ E(E) (C11)
we can transform equation (C 10) into normal form, lacking the first derivative,
¥'(€) + [A2 — 2 sec® ] ¥(&) = 0. (C12)

As can easily be verified, the general solution to equation (C 12) is
y(&) = aftan & cos (&) — 4 sin (A&)] + B[tan & sin (AE) + 4 cos (A&)], (C13)

where o and f are constants to be determined from the initial and boundary
conditions.
The boundary conditions on y(&) follow from equations (C 5), (C7) and (C 11)

3'(—Kb) + tan (kb)y(—kb) = 0, (C14a)
y'(kb) — tan (kb)y(kb) = 0. (C14b)

Inserting y(¢) and y'(&) from equation (C 13) into equation (C 14), we find
a(l — A%) cos (Akb) — B(1 — A2) sin (Axb) = 0, (C15a)
a(1 — 42) cos (Akb) + P(1 — A%) sin (Axb) = 0. (C15b)

From equation (C9), it is seen that the solution A2 = 1 corresponds to the time
independent equilibrium distribution, which is given by

Feal€) = 3 cot (xb) sec? & (C16)

in accordance with equation (13). The remaining non-trivial solutions of equation
(C15) are obtained by requiring the determinant of the coefficients of a and f§ to
vanish. This leads to the eigenvalue equation

sin (2xb4,) =0 (C17)
with the solutions

do= X =12, ... (C18)
2kb
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On substituting the eigenvalues, equation (C 18), back into equation (C 15), we
find

a=0; neven,} (C19)

B =0; nodd.

When this result is combined with equations (C7), (C9), (C11), (C13) and
(C16), we get

Ful&; T1 &) = % cot kb sec? &
+sec € ) [0, 0aa % (&) + (1 = 8, oaadBvan(E)] exp [— (47 — 7], (C20)
n=1

where J, ,qa = 1 if n is odd and 0 otherwise and where

u, (&) = tan & cos (4,&) — 4, sin (4, &), (C21a)
v,(6) = tan £ sin (4, &) + 4, cos (4, ¢). (C215)
Using equation (C 18), we obtain the orthogonality relations
fxb
dé u (Eu, (&) = 8, kb(A2 — 1); n odd, (C22a)
J—kb
fxb
dé v, (E)v, (&) = 8, kb(A2 — 1); n even, (C22b)
J—Kb
(kb
d¢ u,(&)v, () = 0. (C22¢)
J—kb

The coefficients «, and f, in equation (C20) are determined by the initial
condition, equation (C 6), which yields

1 cot kb sec? & 4 sec ¢ Z [0, 0da % un(E) + (1 — 6, qaa) B va(8)] = 0(E — &p).

n=1

(C 23)

Multiplying equation (C 23) by cos ¢ u,(¢) (m odd) or by cos £ v,,(£) (m even) and
integrating over ¢ using equation (C 22), we obtain

__ €08 Eoun(&o)

= 1) (C 24 a)
B = %%5)&) (C24b)
Substitution into equation (C 20) then leads to the final solution
F&; 1) =% cot kb sec? & +’—€1ZCC_(:)SS_66_°
x "i[a,,, et Eun(®) + (1 — 6, saon(Eo)un(@] 22 [(;(f = Dt o)

For the purpose of comparison with propagators obtained by way of stochastic
dynamics simulations, it is desirable to discretize equation (C 25). Let the {-range
be divided into intervals of equal width A" = kA, numbered from left to right. If
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P(k; 1| kg) is the probability of finding the tagged counterion in the kth interval at
7, given that it was in the kgthinterval initially, then

—xkb+ koA’ . —xb+kA’ .
J d&o feal0) d¢ £.(&; 71 &o)
P(k, T|k0) - —kb+ (ko — 1A’ —xb+(k=1)A" . (C 26)

—Kkb+koA’ .
j déO feq(éo)
—xb+ ko~ 1)A’

Inserting equations (C16) and (C25) and performing the integrations, we
obtain

Z [611, odd Un(kO) Un(k)

1
) =41 T
PUk; | ko) = 3 cot ()W) + Zm5a= 2

exp [— (47 — D1]
(a—-1 ’

+ (1 = 8, 0aa) Vilko) V (k)] (C27)

where
U, (k) = sec (—xb + kA’ cos [A,(—xb + kA")]
—sec [—«kb + (B — 1)A’] cos [4,(—kb + (R — DA)], (C28a)
V (k) = sec (—kb + kA’) sin [A,(—kb + kA")]
—sec (—kb + (k — DA") sin [4,(—kb + (kR — 1)A)], (C28b)
W(R) = tan (—xb + RA’) — tan (—kb + (k — DA’). (C28¢)

ApPENDIX D

The Smoluchowski difference equation

In this appendix we describe a numerical algorithm for solving a discretized
version of the Smoluchowski equation for diffusion perpendicular to the plates,
equation (17). This is necessary when the equilibrium mean force, —w, (), is not
known analytically, but rather specified numerically as a set of averages over finite
intervals.

The diffusion space, —b < & < b, is discretized by introducing N + 1 equidis-
tant grid points 2, = —b + kA, k=0, 1, 2, ..., N. The space is thus divided into
N intervals, each of width A = 2b/N. Similarly, the time coordinate is discretized
by introducing equidistant grid points ¢, = [Az, [ = 0, 1, 2, ... The self-propagator
on this lattice of grid points will be denoted by f(k, I).

The spatial derivatives occuring in equation (17) are approximated by the
following central finite-difference formulas

i ] _f(k+l,l)—f(k—1,l)

62 fs(z’ t) . - 2A > (D 1)

0? fR+1,D=2f(k, D) +f(k—1,D

ngS(z’t) z‘hnz A2 ’ (D2)
5 "R+ Dfk+1,D)—w(k—-1f(k—1,1
2 @ )| =L DIEELIWEZDIRELD  py)
2 zi, 1l 2A
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These expressions are to be used only at the internal grid points, k=1, 2, ...,
N — 1. The boundary points, 2 = 0 and & = N, will be treated separately. The
time derivative is approximated by the forward finite-difference formula

SR I+ ) —fk D
= v .

0
PRAGHR (D4)

2k, 11

On substituting equations (D 1)~(D 4) into equation (17), we obtain the difference
equation

flR, L+ 1) = o[l —3fAw'(k — D] f(k—1, D + [1 - 2a]f (%, ])
+o[l + Ak + D]f(k+1,0); k=1,2,...,N—1, (D5)
where we have introduced the dimensionless parameter

Dy At
AZ

o . (D6)

il

In order to obtain acceptable statistics in simulation data, one usually forms
averages over finite intervals. For comparative purposes, it is therefore convenient
to define

P(k, Z)EJZk dz f(=z;t); k=1,2,..., N, (D7)

2k—1

which is the probability of finding the tagged particle in the kth z-interval at time
t;. Similarly, we define

W’(k)Efﬂ dzw'(z); k=1,2,..., N. (D8)

Zk—-1
These integrals will be approximated by

Pk, [) = Af (R, D), (DY)

W'(k) = Aw'(k). (D 10)

Substituting equations (D 9) and (D 10) into equation (ID5), and introducing
matrix notation, we have

P(l + 1) = TP({), (D11)

where P(l) is a column matrix with elements P, = P(k, ), k=1, 2, ..., N. The

element Ty, of the N x N transition matrix T gives the probability for a tran-

sition from the k'th to the kth interval to occur in a time interval Af. A compari-

son of equations (D5) and (D11) reveals that T is tridiagonal with nonzero
elements

Tywor=ofl —$pW(k—1)7;, k=2,3,...,N, (D12 a)
T =1— 24; k=23, ..., N—1, (D 12b)
Texer=o[l +3W(k+1]; k=1,2,...,N—1. (D12¢)
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The two elements T, and Ty, are not given by equation (D 12); they must be
determined from the boundary conditions. To do this, we first note that conser-
vation of probability requires that

T ot T+ Typ k= 1. (D13)

With both boundaries reflecting, there can be no flux of probability across either
zg or zy . Hence, we must have Ty, = 0 and Ty, y = 0. From equation (D 13), it
then follows that

Ty =1-T,, (D 14a)
Tow=1—Ty_1 x- (D 14 b)

Finally, we have the initial condition
P(0) = 5kko - (D 15)

The algorithm is stable for « <1 and the discretization error can be made arbi-
trarily small (at the expense of increasing the computing time) by decreasing the
grid spacings.

The case with one reflecting and one absorbing boundary can be handled in an
analogous way by altering a few elements in the transition matrix. With a reflec-
ting boundary at 2, and an absorbing boundary at zy,, we have N, z-intervals of
width A = 2b/N. Equation (D 12) still applies if N is replaced by N, and if the
upper limit in (D 12¢) is taken as N, — 2. In addition to equation (D 14 a), we
now have

Ty,-1,n04a=0 D16a)
Ty, =0. (D 165)

The discretized survival probability, Q(/| ks, N ), is obtained by summation as
Na
O(|ky, N =Y Pk, D). (D17)
k=1

To compensate for the error introduced by letting, in equation (D 16), the entire
N 4th interval be absorbing, we calculate the corrected quantity

Ocorlll ko, Ng) =[Ol ko, Ny + QU1 ko, N4+ 1D)]. (D 18)

With the grid spacing used in our calculations, the error in this procedure is
negligible.
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