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A simple method of constructing 3-D gradient refractive-index profiles in crystalline lenses is proposed. The
input data are derived from 2-D refraction measurements of rays in the equatorial plane of the lens. In this
paper, the isoindicial contours within the lens are modeled as a family of concentric ellipses; however, other
physically more appropriate models may also be constructed. This method is illustrated by using it to model
the 3-D refractive-index profile of a bovine lens.

1. Introduction
Nondestructive measurements of the refractive

properties of optical fibers' had been applied to deter-
mine the spatial distribution of refractive indices in
animal crystalline lenses.2 This method is based on
measuring the total refraction suffered by a light beam
as it traverses the lens as a function of the position of
the incident beam. The refractive-index profile of the
lens and the ray path are related by geometric optics.
When the lens cross section has circular symmetry and
when the value of the refractive index at the edge of the
lens is equal to the refractive index of the surrounding
medium (index matched), the solution of the integral
equation describing the ray path is relatively straight-
forward.1"2 When the lens cross section is elliptical the
ray path integral equation can still be solved for the
index matched case provided one assumes at the outset
that the lens surface is isoindicial and refractive-index
contours are concentric ellipses.3' 4 However, it is de-
sirable to derive the refractive-index profile without
assuming concentric elliptical index contours in the
first case; Moreover, for a variety of reasons, it is not
always possible to match the index of the surrounding
medium to that of the edge of the lens. As a conse-
quence a further step is necessary to obtain an estimate
of the magnitude of the refractive-index mismatch
before the lens-index profile can be determined.
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We propose a simple method of estimating the re-
fractive-index profile applicable to crystalline lenses
which exhibit symmetry about at least one axis. The
method is based on taking refraction measurements of
rays confined to the equatorial plane which is normal
to the axis of symmetry. Thus the problem of deduc-
ing the refractive-index profile in the equatorial plane
is equivalent to the circularly symmetric problem con-
sidered earlier.' A formula for estimating the refrac-
tive-index mismatch ratio from the measured data is
given so that index matching is not required. We also
outline a simple model for constructing the 3-D refrac-
tive-index profile of a lens using results of a 2-'D mea-
surement; other more elaborate models can easily be
developed. In Sec. II, we briefly review the appropri-
ate governing equations and point out the difficulties
associated with the mismatched case. A simple solu-
tion is then offered. In Sec III, we examine the accura-
cy of our method with synthetic data in the equatorial
plane generated using the parabolic profile for which
analytic solutions are available. We also demonstrate
the utility of our method by using measurements of the
refraction properties of a bovine lens in the equatorial
plane to construct a 3-D refractive-index model of the
lens. This model is then used to predict the refraction
of rays confined to the sagittal plane.

The ultimate use of this work is to construct 3-D
models of the refractive-index profile of crystalline
lenses which have aspheric surfaces. Such models are
less restrictive than schematic models of lenses which
are only applicable to paraxial analysis. One should
note that for some vertebrate lenses, for example, the
human lens,5 the lens cross section in the plane con-
taining the optical axis is significantly nonelliptical.
Fortunately, the cross section in the equatorial plane
(perpendicular to the optical axis) is circular so that it
is possible to use our method to determine the refrac-
tive-index profile in this cross section.
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Ui. Theory

Our intention is to obtain an approximate descrip-
tion of the 3-D refractive-index profile of crystalline
lenses using data obtained from 2-D measurements
made in the equatorial plane of the lenses. As a first
approximation, the anterior and posterior portions of
the lens shape may be regarded as generated by rotat-
ing ellipses sharing a common major axis but different
minor axes about the optic or z axis; see Fig. 1. Con-
sider a refraction experiment in which the ray path is
confined within the equatorial plane of the lens. The
equatorial plane is the plane z = 0 and contains the
major axis of the generating ellipse, which we take as
the y axis. Since the lens is assumed to have rotational
symmetry about the z axis, the spatial variation of the
lens refractive index is of the form n(r,z), where
r -Fx2 + y2. In the equatorial plane (z = 0) the
refractive index is only a function of the radial coordi-
nate; that is, the refractive index has the form n(r).
We suppress the second argument when z = 0. The
refraction experiment measures the deflection angle
iV(y) of a light beam as a function of the incident beam
position y relative to the axis of symmetry (the z axis);
see Fig. 1. From geometric optics, A(y) is related to the
refractive-index profile n(r) by the equation" 6

(y) = -2 cos-'(y/p) + 2yn, J r[r2n2(r)y 2 n]" 2 (1)

Here n8 is the refractive index of the surrounding me-
dium, and n(p) is the refractive index at the lens
boundary which is located at the set of points (r,z) =
(p,O). The lower limit of the integral r is a function of
y and is given implicitly by the solution of the equation

rmnm(rm) = yns. (2)

Following Pask 7 we introduce a dimensionless variable
t and a new function g(Q) defined by

nt -rn(r), (3)

n(r) - n(p) exp[g(Q)], (4)

so that Eq. (1) may be written as

,I(y) = 2sin-1 (y/p) - sin-1 (y/np) - 2y d np g'() (5)
(~2 - yl2) 2

with
n _= n(p)/n, (6)

being the ratio between the refractive index at the edge
of the lens n(p) and that of the material surrounding
the lens n. The experimentally relevant regime for
the refractive-index ratio is n 1. For n = 1, the
index-matched case, the term ... .} in Eq. (5) vanishes,
and the resulting integral equation can be inverted to
give 7

g() = 1 fP dy(y) * (7)
Jr (Y2

-~)I

This result may be verified by a direct substitution of
Eq. (7) into Eq. (5) for n = 1. Thus, given a set of
experimentally determined (y) values, the integral
equation (7) can be used to calculate the function g)

n

Fig. 1. Schematic diagram of rays in the equatorial (x-y) and
sagittal (y-z) planes: y, Y are the beam displacements; , 4I are the
emergent angles formed by the beams; n, is the refractive index of
the surrounding medium; p is the equatorial; a is the semiminor axis

for the posterior curvature in the illustrated case.

as a function of t. The refractive-index profile n(r) in
the equatorial plane may then be obtained parametri-
cally from Eqs. (3) and (4):

r = t expf-gQ)];

n(r) = n(p) exp[g()];
(8)

(9)

since n(p) = n, for the index-matched case.
For the mismatched case, n 2 1, it is possible to

remove the effects of the refraction across the lens
boundary due to the index mismatch by transforming
the experimentally determined refraction data
[y,,(y)] into an equivalent set of index-matched data
[YJ(5)] given by-() (

- A(y) - 2sin-'(y/p) -sin_(y/np)}.
(10)

(11)

The data pair [y,(y)] specifies the position and total
deflection of a fictitious ray which entered the lens
from an index-matched surrounding: ng = n(p), and
has suffered the same amount of deflection within the
lens as the ray specified by [y,4(y)]. As a consequence,
the data set [,(y)] only contains information about
the deflection of the ray within the lens due to the same
inhomogeneous refractive-index profile of the lens.

Note that y lies in the range [,p] but y is only known
over a smaller range [Op/n], since n > 1. The physical
reason for this is that because of the refraction suffered
by the light ray at the boundary of the lens due to the
refractive-index mismatch, a portion of the lens near r

p will not be sampled by the ray. However, we do
know that when y = p, A(p) = 0 because [y,(y)] repre-
sents a set of index-matched data. Thus the lack of
information over the range [p/in,p] is not serious as we
can interpolate over the range of y = [p/n,p] if the
refractive-index ratio n is close to unity. Consequent-
ly, we can use the data set [y,(y)] together with Eqs.
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(3), (4), and (7) to construct the refractive-index pro-
file n(r) in the equatorial plane.

The above analysis for the mismatched case assumes
that we already know the refractive-index ratio n 
n(p)/n,. In practice, the refractive index of the sur-
round n, can be readily measured, but a separate ex-
periment is needed to determine the refractive index at
the boundary of the lens n(p). However, if the index
ratio n is close to 1, that is, n 1 + 6, where 0 < 6 << 1, it
is possible to extract this ratio from the measured
refraction data [y,4(y)]. To do so, we return to Eq. (5)
and consider values of y = [1 - E]p, where 0< e << 1. By
expanding the right-hand side of Eq. (5) to leading
orders in e and 6 we find

(Q - ]p) = 242[1 - pg'(p)J (e +6) - C} + O(E3/2,63/2). (12)

Thus using two data values, 4([1 - ]p) and 4(p), we
can eliminate the unknown quantity g'(Q) and obtain
the following estimate of the refractive-index ratio n:

. (1-f e]p) + 2F|/,,(p)) 2 -1 (13)

Note that this extrapolation formula is derived direct-
ly from the ray path equation (5) and is independent of
the details of the refractive-index profile.

Ill. Sample Applications

A. Synthetic Data-Parabolic-Index Profile
To test the validity and accuracy of our extrapola-

tion scheme as well as to demonstrate our method of
modeling the 3-D refractive-index profile of a lens
based on data taken from a 2-D measurement, we use
the so-called parabolic-index profile to generate syn-
thetic experimental data for refraction in the equatori-
al plane. The parabolic-index profile is defined by

n(r) = noV[l - 2A(r/p) 2 ], (14)

where no and A are constants which characterize the
parabolic profile. For this refractive-index profile we
have the following exact expression for the refraction
angle A(y) as a function of the beam position y:

A(y) = r/2 - 2 cos 1'(y/p)

+ sin1l | 1-2(1 - 2A)(y/np)2 . (15)
i[1 - 8A(1 - )(y/np) 1/2j

B. Refractive-index Mismatch
In Table I we compare the accuracy of our extrapola-

tion formula of finding the refractive-index mismatch
ratio, Eq. (13), for two sets of synthetic parabolic data.
As we are interested in applying this work to the analy-
sis of crystalline lenses of various animals, the data set
A is chosen so that the refractive-index values at the
center and the edge of the lens are comparable with
those of bovine lenses. Set B is chosen to illustrate the
effects of a large refractive-index mismatch but with a
smaller range of variations in the refractive index with-
in the lens. To elucidate the effects of the size of the
sampling interval of the deflection angle, we chose ten
or twenty equally spaced points of [y,4(y)] generated

Table I. Input Data Sets for the Parabolic Index Profile [Eq. (14)] and the
Extrapolated Refractive Index at the Lens Boundary using Eq. (13) using

Ten and Twenty Data Points Corresponding to e = 0.1 and 0.05,
Respectively.

Parabolic index input data Extrapolated n(p)
Set n, n(0) n(p) E = 0.1 e = 0.05

A 1.33300 1.42000 1.35000 1.35065 1.35036
B 1.33300 1.45000 1.40000 1.40180 1.40111

using Eq. (15) over the range [,p] as our input data.
These two choices correspond to = 0.1 or 0.05, respec-
tively. Equation (13) is used to extrapolate for the
value of the refractive index n(p) at the boundary of
the lens. We see from Table I that the formula is
accurate even for fairly large values of e and . In
contrast, if one simply use the value of A(p) together
with the assumption that the refractive index near the
lens boundary is approximately constant, the error in
the estimated value of n(p) would be larger by at least
an order of magnitude.
C. Refractive-Index Profile in the Equatorial Plane

The extrapolated value of the refractive-index ratio
n is then used to construct the equivalent index-
matched data set [5,(3)] via Eqs. (10) and (11). The
integral in Eq. (7) which connects [ ,(y)] to [g()] is
calculated by first interpolating between the data
points [,(5)] using a cubic spline. The integral can
then be evaluated once the coeffcients of the spline
polynomials are determined. The error in the refrac-
tive-index profile in the equatorial plane computed by
the method given here is shown in Fig. 2 in terms of the
function

An(r) ncomputed(r) - ntrue(r) (16)

Again we see that the computed values are quite accu-
rate. The errors shown in Fig. 2 are due almost entire-
ly to the error in estimating the refractive-index ratio
n. It is clear, however, that twenty data points are
more than sufficient to provide an accurate character-
ization of the refractive index in the equatorial plane.

Considering the results using ten data points, we see
that for y/p ' 0.8 the errors for the badly mismatched
case [open symbols in Fig. 2(b)] are smaller than that
those of the nearly matched case [open symbols in Fig.
2(a)]. The reason for this is that for the badly mis-
matched data set B, the variation of the refractive
index within the lens is over a smaller range than for
the nearly matched data set A (see Table I). As the
range of the refractive-index variations within a lens
increases, the function ,(y) becomes a more sharply
peaked function. Consequently, the interpolation of
such a discrete data set by a cubic spline becomes less
accurate.

We conclude that provided there is a sufficient num-
ber of data points, the algorithm for deducing the
refractive-index profile in the equatorial plane is accu-
rate. The two main sources of error in the calculated
refractive-index values are in the estimation of the
refractive-index ratio n and in the range of variations
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Fig. 2. Error in the computed refractive-index profile An(r) de-
fined in Eq. (16) for data sets A and B given in Table I: open
symbols, ten data points, = 0.1; solid symbols, twenty data points,

e = 0.05.

in the refractive-index profile within the lens. Errors
in estimating the refractive-index ratio n may be re-
duced by minimizing the amount of index mismatch in
the experimental setup, while the second source of
errors may be minimized by taking a sufficient number
of sampling points.

D. Three-Dimensional Refractive-index Profile
Given the form of the refractive-index profile in the

equatorial plane n(r), we attempt to model the 3-D
distribution of the refractive index n(r,z) of an oblate
spheroidal lens whose boundary is generated by rotat-
ing the ellipse (y/p) 2 + (Z/af)2 = 1 about the z axis. (In
this case, we assume that the anterior and posterior
portions of the lens have the same minor axis.) Here p
and a are the semiaxes of the generating ellipse, and we
choose an aspect ratio of p/a = 1.6 (see Fig. 1). We
assume that the lens surface is isoindicial, and the
refractive-index topography can be generated by ro-
tating a family of concentric elliptical isoindicial con-
tours in the y-z plane about the z axis. In other words,
at any point P = (x,y,z) in the interior of the lens we
calculate the quantity

a' _- (rlp) + (zla), r _ (X + y) (17)

where 0 < a 2 < 1. The refractive index at P is assigned
the value n(ap). The refractive-index profile in the
equatorial plane for data set A and the index contours

0.0 0.2 0.4 0.6 0.8 1.0
r p

(a)

(b)
Fig. 3. Equatorial refractive-index profile for data set A and the
isoindicial contours of the concentric ellipse model. From the cen-
tre to the boundary the refractive-index values on the contours are

1.41, 1.40, 1.38, 1.36, and 1.35 (the lens boundary).

14
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1 0

8

B- 6-

4-
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0*
0.0 0.2 0.4 0.6 0.8 1.0

y /p
Fig. 4. Deflection angle T (in degrees) as a function of the position
(Yip) of incident meridional rays parallel to the z axis: solid sym-

bols, data set A; crosses, data set B.

constructed by this method are illustrated in Fig. 3.
The ray tracing results based on such 3-D model lenses
for meridional incident rays parallel to the z axis are
given in Fig. 4 for both sets of data.

E. Bovine Lens
We also provide some sample results to illustrate

that this method can be applied successfully to charac-
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Fig. 5. (a) Experimental measurements of the deflection angle l (in
radians) as a function of the beam position y for rays in the equatori-
al plane of a bovine lens. (b) Refractive-index profile n(r) in the
equatorial plane deduced from the data in (a). (c) Comparison of
the deflection angle angle I (in radians) as a function of beam
position Y for rays in the sagittal plane. Points correspond to
experimental data, and predicted values based on concentric ellipti-
cal isoindicial contours and the results of (b) are given by the contin-

uous line.

terize the optical properties of real crystalline lenses.
The experimental data and results summarized in Fig.
5 pertain to a bovine lens weighing 2.07 g. The radius
of the lens cross section at the equatorial plane is p =
8.65 mm, and the semiaxes of the anterior and posteri-
or portions are 5.83 and 6.75 mm. The experimental
data corresponding to a refraction of rays in the equa-

toril plane are shown in Fig. 5(a). The refractive-
index profile in the equatorial plane reduced from this
set of data is given in Fig. 5(b). The anterior and
posterior surfaces of the lens were modeled as elliptical
surfaces, and the 3-D refractive-index profiles in these
portions were constructed assuming that the isoindi-
cial surfaces are concentric ellipses. With this model,
refraction of rays-traversing from the anterior to the
posterior-in the sagittal plane was calculated by stan-
dard ray tracing methods; a comparison of the predict-
ed and experimentally measured results is given in Fig.
5(c). Given the simplistic nature of our model and the
lack of adjustible parameters, the agreement is very
satisfying.

IV. Conclusion
Although general algorithms for reconstructing 3-D

refractive-index profiles exist, they are computation-
ally expensive to implement. 8 9 While our reconstruc-
tion of the refractive-index profile in the equatorial
plane only requires rotational symmetry of the lens
about one axis, we need to use a particular model-
concentric elliptical-index contours-to describe the
3-D refractive-index profile. However, unlike earlier
work,2 we are not limited to any special model to repre-
sent the index profile. A possible elaboration is to
allow for the possibility of a family of concentric ellip-
ses with variable degrees of eccentricity. For example,
the isoindicial contours near the center of the lens may
be more circular than those near the edge of the lens.
Also, the anterior and posterior surfaces of crystalline
lenses may be better described by ellipses of different
eccentricities or indeed by geometric forms other than
ellipses. The assumption regarding an isoindicial lens
boundary may also be relaxed. The critical test of any
gradient-index lens model lies in its ability to predict
correctly the fraction of rays that traverse the lens
from the anterior to the posterior. Our sample results
on bovine lens indicate that our approach does have
the desired predictive capacity. A detailed compari-
son of 3-D gradient-index lens models, which include
some of the features discussed above, is given else-
where.10
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