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A direct formulation of electromagnetic scattering based only on scalar Helmholtz equations is
given. The solution, expressed as coupled non-singular boundary integral equations for the field
components, provides the benefits of the reduction of dimensionality. For perfect conductors, con-
sideration of induced surface current densities, central to standard methods, is not required. This
approach has utility in high aspect ratio electromagnetic problems, surface plasmon spectra and dis-
persion force calculations of complex nano structures as near and far field values are given with equal
precision. Extension to dielectric scatterers and elastic wave propagation in solids is immediate.

The foundations in the theory of wave propagation
based on Maxwell’s electromagnetic equations [1] and
Navier’s equation for elastic waves [2] were laid in the
19th and early 20th century. The classic analytical so-
lution of the benchmark problem of the scattering of
an electromagnetic plane wave by a single sphere uses
two Debye potentials [3–6]. However, extending this ap-
proach that represents the Debye potentials as series ex-
pansions in orthogonal special functions to more com-
plex geometries is not practical. On the other hand, the
boundary integral method of solving elliptic partial dif-
ferential equations developed by Green [7] while attrac-
tive because it reduced problems in 3D space to solving
2D problems on surfaces, was before its time and had to
await 135 years for the development of suitable compu-
tational hardware and software [8, 9].

Today’s technological needs that require general so-
lutions of Maxwell’s equations, ranging from accurate
radar telemetry to controlling electromagnetic shielding
in modern microelectronic packages to surface plasmon
and dispersion force calculations are supported by the
well-developed and mature engineering field of compu-
tational electromagnetics [10–12]. The theoretical basis
of most computational methods rests on first finding the
induced surface current densities on the boundaries. The
electromagnetic fields, that are the quantities of physi-
cal interest, are then calculated subsequently from the
induced surface current densities [13–16].

In this Letter, motivated by the general applicability
of the combination of the boundary integral method with
the elegant compactness of the Debye potential represen-
tation of the solution of electromagnetic wave equations
by two scalar functions that satisfy the Helmholtz equa-
tion, we have developed a unified formulation of wave
propagation that is applicable to both the Maxwell equa-
tions of electromagnetic waves and the Navier equation
for elastic waves. This method works with the field vari-
ables directly so that in contrast to current electromag-
netic computational approaches, it does not require the
calculation of surface current densities as an intermedi-

ate quantity. In both electromagnetic and elastic prob-
lems, the solution is given in terms of the solution of
scalar Helmholtz equations for components of the actual
physical fields - electromagnetic or strain. Furthermore,
using a recently developed analytical desingularization
method [18] that has also been applied successfully to
fluid mechanics problems [19] and to the Laplace equa-
tion in potential flow [20], the singular behavior of the
Green’s function [21] can be removed entirely. Conse-
quently, higher order surface elements can be easily used
to represent boundaries more accurately and the bound-
ary integrals can be evaluated using standard quadrature
to confer high numerical accuracy with fewer degrees of
freedom.
Electromagnetic scattering by perfect conductors – We

illustrate the concept of our unified formulation of wave
phenomena with the example of electromagnetic scatter-
ing by a perfect electrical conductor (PEC). The case of
dielectric scatters or elastic waves only require an exten-
sion of the same basic concepts.

In the frequency domain with harmonic time depen-
dence exp(−iωt), the propagating electric field E in a
source free region is given by the wave equation:

∇2E + k2E = 0, ∇ ·E = 0 (1)

where k2 = ω2εrε0µrµ0. The condition ∇ ·E = 0 means
that the two independent components of E in eq. (1) [22]
are found by specifying the incident field, Einc and im-
posing the usual boundary conditions on the surface, S
of the perfect electrical conductor, namely that the tan-
gential components of E must vanish. Currently, this is
achieved by finding the induced surface current density,
J on the PEC in terms of the incident field, Einc by
solving the surface integral equation [13–16]

4πi

ωµrµ0
n(x0)×Einc(x0) =

n(x0)×
∫
S

G(x0,x){J(x) +
1

k2
∇(∇ · J(x))dx} (2)

where n(x) is the surface outward unit normal vector at
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x and G(x0,x) = exp(ik|x0−x|)/|x0−x| is the Green’s
function that gives rise to an integrable singularity in the
surface integral at x = x0. Eq. (2) is the essence of the
current state of the art in computational electromagnetic
applications for PEC in which the Rao-Wilton-Glisson
(RWG) basis functions [23] are used to represent the sur-
face current density, J and enable eq. (2) to be solved.
The scattered field is then calculated from J .

In spite of the above well established standard of solv-
ing Maxwell’s equations, this approach is not ideal or
optimal. It is highly desirable from physical and peda-
gogical points of view to be able to calculate the scattered
field directly without the intermediate step of having to
first calculate the induced surface current density by solv-
ing eq. (2) and then use that to calculate the scattered
field. More seriously, an inherent limitation of this ap-
proach is that the numerical accuracy of field values near
the surface is adversely affected by the singular nature of
the integral relation between the surface current and the
field. Also the use of the RWG basis functions for the sur-
face current density requires the surface of the scatterer
to be represented by planar triangular elements so that
any extension to high order surface elements becomes
more complex. Finally for small particles of dimension
a, such as in nanoscale problems, the 1/k2 term in eq. (2)
poses numerical challenges for small ka.

We now develop a formulation of the scattering prob-
lem that works directly with the field quantities without
the use of surface currents and thereby avoids all the
issues canvassed above. First we observe that since E
obeys the Helmholtz equation, the condition ∇ · E = 0
can be replaced using a vector identity for (x · E), where
x is the position vector, to recast eq. (1) as (see Electronic
Supplement [13])

∇2E + k2E = 0 (3)

2(∇ ·E) ≡ ∇2(x · E) + k2(x · E) = 0 (4)

In other words, the constraint ∇ · E = 0 can be re-
placed by a Helmholtz equation for the scalar function
(x · E) [24]. Thus the standard Maxwell equation for
the scattered electric field E, eq. (1), is now replaced by
4 scalar Helmholtz equations:

∇2pi(x) + k2pi(x) = 0, i = 1..4 (5)

where the scalar functions pi denote one of the 3 compo-
nents of E or (x · E).

The 3 scalar equations that originate from eq. (3) fur-
nish 3 equations between the 6 unknowns, namely: Eα
and ∂Eα/∂n, (α = x, y, z). Eq. (4) between (x ·E) and
∂(x ·E)/∂n provides one more relation between Eα and
∂Eα/∂n since: ∂(x·E)/∂n = n·E+x·∂E/∂n. The elec-
tromagnetic boundary conditions on the continuity of the
tangential components of E and the normal component
of the displacement field: εrε0E, provide the remaining
equations to determine E and ∂E/∂n completely.

To formulate the boundary integral equations for the
common problem of scattering by a perfect electrical con-
ductor (PEC), it is more convenient to work in terms
the tangential, Et = (Et1, Et2) = n × E, and nor-
mal, En = n · E, components of the electric field at
the surface. There are 4 unknowns to be determined,
namely: En, ∂Ex/∂n, ∂Ey/∂n, ∂Ez/∂n because the tan-
gential components of the electric field must vanish on
the surface of a PEC (see Electronic Supplement [13] for
details). The number of unknowns to be found is the
same as for the classic solution of the scattering prob-
lem by a PEC using a pair of Debye potentials in which
the 2 unknown functions and their derivatives have to be
found [3–6]. However, in the Debye potential approach,
the electromagnetic boundary conditions are expressed
as combinations of the two potentials and components of
their gradients on the surface of the PEC and give rise
to equations that are not straightforward to solve.

The boundary integral formulation of the solution of
the Helmholtz equation, eq. (5), based on Green’s Second
Identity [7, 21], provides the following relation between
pi(x) and its normal derivative ∂pi/∂n ≡ n(x) · ∇pi(x)
at points x and x0 on the boundary, S with outward unit
normal n(x) and G ≡ G(x0,x) [18]∫
S

[pi(x)− pi(x0)g(x)− ∂p(x0)

∂n
f(x)]

∂G

∂n
dx =∫

S

G[
∂pi(x)

∂n
− pi(x0)

∂g(x)

∂n
− ∂pi(x0)

∂n

∂f(x)

∂n
]dx (6)

where the requirement on f(x) and g(x) is that they
satisfy the Helmholtz equation with boundary conditions:
f(x) = 0,n · ∇f(x) = 1, g(x) = 1,n · ∇g(x) = 0 at
x = x0 on the surface, S [18]. Thus if pi (or ∂pi/∂n)
is given then eq. (6) can be solved for ∂pi/∂n (or pi)
in a straightforward manner because both integrands are
regular and consequently the integrals can be evaluated
accurately by quadrature [13, 18].

The advantage of the boundary integral formulation,
eq. (6), is the reduction in the dimension of the prob-
lem since it is only necessary to solve for unknowns on
the boundary where the physical boundary conditions are
prescribed. With the removal of all singular behavior and
without the need to represent surface current densities,
it becomes very easy to use higher order surface elements
to evaluate the surface integral. This can provide orders
of magnitude of improvement in the numerical results
for the same number of degrees of freedom [18]. And
once the field quantities are known on the boundary, val-
ues in the 3D solution domain, even at locations close
to the boundaries can be obtained easily and accurately
since the boundary integral equation has been desingu-
larized [13, 18].
Elastic waves – The propagation of elastic waves in

an isotropic medium that avoids hypersingular dyadic
Green’s functions can be formulated for the displacement
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FIG. 1: The scattered electric field (arrows) on and near the
surface of a perfect conducting sphere of radius, a, and the
induced surface charge density, qe (color scale), for a unit
incident electric field in the x-direction, propagating in the
z-direction with ka = 10. See supplementary material [13]
for the phase variation of these quantities. (Color on-line)

field, u in the frequency domain Navier equation [2]

c2t∇2u + ω2u + (c2l − c2t )∇(∇ · u) = 0 (7)

with “divergence free”, ct = [E/(2ρ(1 + σ))]1/2 and “ir-
rotational”, cl = ct[2(1− σ)/(1− 2σ)]1/2 wave velocities
defined in terms of the Young’s modulus, E, Poisson’s
ratio, σ and material density, ρ. Using the Helmholtz
decomposition, the displacement can be written in gen-
eral as the sum two vector fields: u = ul+ut that satisfy

∇2ut + k2tut = 0, ∇ · ut = 0 (8)

∇2ul + k2l ul = 0, ∇× ul = 0 (9)

with kl = ω/cl and kt = ω/ct.
The equation for ut can be treated as eq. (1) for the

electric field E and be cast as a problem of 4 scalar
Helmholtz equations for the 3 components of ut and the
scalar function (x · ut).

For the equation with ul, we can use a vector identity
to replace the vector condition∇×ul = 0 by a Helmholtz
equation of the vector function (x×ul) constructed from
the displacement field because of the identity

2(∇× ul) ≡ ∇2(x× ul) + k2l (x× ul) = 0. (10)

This formulation of propagating waves in elastic media
replaces the scalar condition: ∇ · ut = 0 and the vector
condition ∇ × ul = 0 by a scalar or vector Helmholtz
equation respectively and works directly with the dis-
placement field without the use of dyadic Green’s func-
tions [17].

FIG. 2: The scattered electric field (arrows) on the surfaces
of 3 identical perfect conducting spheres of radius, a, and
the induced surface charge density, qe (color scale), for a unit
incident electric field in the y-direction, propagating in the
x-direction with ka = 1.0 and hij is the distance of clos-
est approach between each pair of spheres. See supplemen-
tary material [13] for the phase variation of these quantities.
(Color on-line)

Numerical examples – Owing to the ubiquity of scat-
tering problem involving perfect electrical conductors
(PEC) we will illustrate the utility of our method by
considering 3 examples: i) the Mie scattering by a PEC
sphere of radius a that has an analytical solution [3–5]
and we also show that our methods is robust in the limit
ka → 0; ii) the scattering from 3 PEC spheres in which
2 are very close together to illustrate the stability of our
method for problems with very different length scales as
a consequence of the absence of singular kernels in our
formulation; and iii) the scattering by axisymmetric and
general 3D PEC objects for which the characteristic di-
mensions vary by about a factor of 10. Quadratic ele-
ments are used in all cases to represent the surfaces. In
the supplementary material [13], we show animations of
the variation of the electric field and the induced sur-
face charge density over one cycle of the incident field.
See [13] for details of numerical implementations.

In Fig. 1, we show the induced surface charge density
(that is proportional to the normal total electric field)
and the scattered electric field at the surface of a PEC
sphere of radius, a at ka = 10. These surface quantities
are difficult to calculate using the conventional formula-
tion of electromagnetic scattering because of singularities
of the Green’s function. In contrast, the present formu-
lation removed all such singularities and works directly
with the physical fields. In the electronic supplement [13]
we also see that the radar cross-section that depends on
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FIG. 3: The scattered electric field (arrows) and the induced
surface charge density, qe (color scale), on the surface of (up-
per) a long needle [13] with semi-major axes, a, b and unit
incident electric field polarized parallel to the z-direction and
travelling perpendicular to the long axis in the positive y-
direction at ka = 5 and kb = 0.5, and (lower) an ellipsoid
with semi-major axes a, b, c and unit incident electric field po-
larized in the y-direction and travelling in the x-direction at
ka = 1, kb = 3 and kc = 9. See supplementary material [13]
for the phase variation of these quantities for the needle and
different perspectives of the ellipsoid. (Color on-line)

the far field quantities can be obtained to comparable
precision results obtain by direct implementation of the
infinite series solution of Mie [25]. Furthermore, in the
limit ka → 0 our approach reproduces known analytical
results without numerical problems [13].

In Fig. 2. we show the induced surface charge density
and the scattered electric field around 3 identical PEC

spheres. The absence of singular terms in our formula-
tion means that closely spaced surfaces will not cause
degradation of numerical precision.

In Fig. 3. we show the induced surface charge density
and the electric field at the surface of a long thin nee-
dle [13, 26] PEC conductor with an aspect ratio 10 and
a 3D ellipsoid with aspect ratio 1:3:9. Our formulation
can readily handle scattering by such high aspect ratio
bodies.

Conclusions – We gave a formulation of the propa-
gation of electromagnetic and elastic waves using the
boundary integral method that is completely free of sin-
gularities that have been one of the inherent difficulties of
boundary integral methods [18–20]. For electromagnetic
scattering, the integral equations are expressed only in
terms of the surface electric field rather than the induced
surface current density. Both near and far field values
are obtained with comparable precision. As the physical
problem contains no singularities, the present exposition
is more satisfactory from aesthetic and pedagogic view
points. Being able to avoid calculating the surface cur-
rent density, there are no numerical problems associated
with the long wavelength, k → 0, limit. For perfect con-
ductors, the normal component of the electric field is one
of quantities that emerges naturally from the boundary
integral solution. Generalisation to dielectric scatterers
is straightforward with the present approach. One needs
to set up boundary integral equations for the tangential:
Et = (Et1, Et2) = n × E, and normal: En = n · E
components of the electric field as well as their normal
derivatives on both sides of the surface, then the solution
follows after enforcing the continuity of the tangential
components, Et = (Et1, Et2) of the electric field and of
the normal displacement field, εrε0En.

Due to the practical importance of electromagnetic
scattering, considerable progress has already been made
in developing fast numerical algorithms for the tradi-
tional formulation of this problem. In contrast, only
rather elementary numerical schemes have been used to
demonstrate the key physical features of the theoretical
framework developed in this Letter. Therefore there is
considerable scope for developing efficient algorithms to
improve the numerical efficiency of the present new phys-
ical approach.
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