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1 Solution of Maxwell’s Equations 

We give the two common forms for the solution of Maxwell’s equations for the 

electric field due to the presence of a real volume current density, j and a real volume 

charge density,  that are related by the equation of continuity. The aim is to express 

the electric field, E in terms of the current density, j [1]. This formalism is then used 

to show how scattering problems by perfect electric conductors are solved currently. 

 

In the frequency domain, the electromagnetic fields due to a real volume current 

density, j and a real volume charge density,  with harmonic time dependence       

are governed by Maxwell’s equations: 

         

            

      

      

1.1 

1.2 

1.3 

1.4 

In a linear homogeneous medium we have the material constitutive equations 

             

             

1.5

1.6 

The continuity equation relates the current density, j and the charge density,  

        1.7 

 

1.1 Electric field in terms of the current density 

We can express the electric field E in terms of the current density by taking the curl of 

eq (1.1) together with the vector identity:                 , and using eqs 

(1.2), (1.3), (1.5) and (1.7) to eliminate H and  to give 

               
 

  
        

1.8 

where k
2
 = 2. The solution of eq (1.8) can be written as  

     
   

  
                

 

  
                

 

 

  

1.9 

where the Green’s function 

        
              

      
 

 

1.10 

satisfies 

                                1.11 

 



Note that the solution in eq (1.8) requires derivatives of the current density and the 

integrand has a weak, but integrable singularity at x’ = x due to the Green’s function 

G(x, x’). In some problems, it is not possible or convenient to calculate derivatives of 

the current density, j so an alternate formulation is used. 

 

1.2 Electric field via the vector potential 

We begin with the vector potential A defined by 

      1.12 

and using this in eq (1.1) means that the most general form for the electric field can be 

expressed in terms of A and a scalar potential    

         1.13 

Then taking the curl of eq (1.12) and using eqs  (1.2) and (1.13) gives 

 

                          1.14 

The choice 

           1.15 

means that eq (1.14) simplifies to 

 

            1.16 

This has solution 

     
 

  
                    

 

 

1.17 

and the electric field then follows from eqs (1.13) and (1.15) 

                                      
 

   
        

 
   

  
                  

 

 
 

    
                       

 

  

 

1.18 

In the solution represented by eqs (1.17) and (1.18), the integral for A in eq (1.17) 

contains a weak, but integrable singularity due to the Green’s function G(x, x’) and in 

eq (1.18) derivatives of A are required to obtain E. Such derivatives are well defined. 

 

However, in many implementations, the two derivatives in eq (1.18) are applied to the 

integral for A in eq (1.17) and then a change of the order of differentiation and 

integration is made to take the two derivatives with respect to x inside the integral. 

This results in the dyadic Green’s function G(x, x’) that gives rise to a 



hypersingular integrand because it diverges as |x– x’|
–3

. This divergent behaviour is 

then interpreted mathematically as the Hadamard finite part and provides additional 

challenges in numerical implementation. 

 

This mathematical divergence has no physical basis. The weak but integrable 

singularity of G(x, x’) in the integrand of eq (1.17) means that the convergent 

properties of integral does not permit interchange the order of differentiation and 

integration when eq (1.18) is applied to calculate E, without the use of generalized 

functions to interpret the resulting divergence. 

 

2 Scattering by perfect electric conductors (PEC) 

The scattering of a given incident electric field, E
inc

 by perfect electric conductors is 

treated by finding the induced 2D surface current density, J on the surface of 

conductor S that would extinguish all fields in the interior of the conductor. Thus the 

scattered electric field, E
scat

 that originates from the induced surface current density, J 

can be obtained using eq (1.9) 

         
   

  
               

 

  
                

 

 

  

2.1 

The boundary condition on the surface of the conductor requires the tangential 

component of the total field, that is, the sum of the incident field and the scattered 

field, to vanish 

                     2.2 

From eq (1.19), this can be written as 

               
   

  
                     

 

  
                

 

 

  

2.3 

where n(x) is the unit normal vector at position x on the surface S. Thus for a given 

incident field, E
inc

, the scattering problem then involves solving eq (2.3) for the 

induced surface current density, J and then eq (2.1) can be used to compute the 

scattered field as a post-processing task. 

 

The most successful and common practical implementation of eq (2.3) is to use planar 

triangular elements to represent the surfaces, S of general 3D conducting bodies and 

the Rao-Wilton-Glisson (RWG) basis functions are used to represent the induced 



surface current density, J. The coefficients of the basis functions are found by 

inverting the linear matrix problem that results from a discretised integration of the 

surface integral in eq (2.3). 

 

3 Boundary regularised integral equation formulation of the Helmholtz equation 

The solution of the scalar Helmholtz equation           can be found by 

solving the boundary integral equation [2] 

               
        

  
   

 

         
     

  
   

 

 

  

3.1 

where x and x0 are on the boundary S and c0 is related to the solid angle at x0. The 

singularities associated with G and ∂G/∂n can be eliminated by noting that the 

function                             satisfies the Helmholtz equation and 

hence the boundary integral equation (3.1) if the functions f(x) and g(x) also satisfy 

the Helmholtz.  

 

By subtracting the boundary integral equation for (x) from that for p(x) we obtain 

the following boundary integral equation  

                 
      

  
     

        

  
   

 

          
     

  
               

      

  
            

 

 

  

3.2 

that will be free of singularities if we choose the functions f and g to have the 

properties [3] 

                                           

                                           

 

3.3 

This desingularized formulation also provides a robust way to evaluate p near the 

boundary that does not involve singularities, see [3] for details. 

 

The absence of singularities makes it straightforward to use quadrature to evaluate the 

surface integrals and to use higher order elements to represent the surface S since the 

solid angle related term c0 in the standard form of the boundary integral equation, eq 

(3.1) has also been eliminated. Such flexibility can improve the accuracy by orders of 

magnitude for the same number of unknowns [3]. 

 



In electromagnetic scattering applications, the limit k  0 is known to pose numerical 

challenges because of the 1/k
2
 term in eq (2.3). To handle this limit in our 

implementation, we write 

        
             

      
 
               

      
 

 

      
 

  

3.4 

 

where the first term on the right hand side of eq (3.4) is regular as x  x0 and 

vanishes as k  0. The second term has a 1/| x – x0| singularity. Similarly, we write 

 

       
        

  
     

 

      
 
             

      
 

             

                              
             

      
 

 
               

      
 

          
 

      
 
      

   

  

3.5 

 

where again the first term on the right hand side is regular as x  x0 and vanishes in 

the limit k  0. The second term has a 1/| x – x0| singularity. This leads us to just 

focus on removing the 1/| x – x0| singularity. 

 

To achieve this, we construct a function,                               , 

which satisfies the Laplace equation:            [4,5]. The boundary integral 

equation that       satisfies is 

                 
         

  
   

 

          
      

  
   

 

 

  

3.6 

 

where                  .  

 

Now subtracting the above equation (3.6) from eq (3.1), we obtain the new boundary 

integral equation 

      
        

  
             

      

  
      

         

  
    

 

   
     

  
                        

      

  
                      

 

 

  

3.7 

 



that will be fully regular if we choose the functions    and    to have the properties 

[4,5] 

                                          

                                          

 

3.8 

 

By using this idea, the numerical implementation will remain robust even in the limit 

   . 

 

4 Identities for propagating vector fields:           

4.1                                    

Using Cartesian tensor notation, we have 

        
  

   
 
       

 

   
         

   

   
  

   

   
    

   

   
   

    

   
 

 
 

4.1 

that, in vector notation becomes 

                   4.2 

 

If E obeys the Helmholtz equation 

          4.3 

then eq (4.2) gives 

                     4.4 

 

In other words, if E satisfies the Helmholtz equation:          , and      , 

then       also satisfies the Helmholtz equation:                  , a result 

that has been derived by Wilcox [6] via a different method. 

 

4.2                                    

Using Cartesian tensor notations, we have 

        
  

   
 
                 

 

   
         

   

   
       

   

   
    

   

   
   

    

   
 
  

 

4.5 

 

that is, 

                   4.6 

 

If u obeys the Helmholtz equation 



          4.7 

 

then we have the result 

                     4.8 

 

In other words, if           then                   is equivalent to 

     . 

 

5 Solution for a PEC sphere at k = 0 

In the limit k = 0, the scattering by a perfect electric conductor (PEC) is a standard 

textbook problem of the Laplace equation:        for the electrostatic potential V 

subject to an incident field: E
inc

 = E0
 
k so that the far field boundary condition means 

V = – E0 z = –E0 r cos, as r  ∞, and that the tangential components of the total field 

are zero on the surface of the conducting sphere. The general solution of         is 

 

   

 

   

     
     

       
                              

 

   

 
 

5.1 

 

The above far field and boundary conditions determine the solution 

         
  

  
        

 

5.2 

 

The corresponding non-zero components of E are 

    
  

  
        

   

  
       

 

5.3 

 

    
 

 

  

  
        

  

  
       

 

5.4 

 

It is then straightforward to show that the Cartesian components 

                          
   

  
          

 

5.5 

 

                             
  

  
  
            

 

5.6 

 



                             
  

  
  
            

5.7 

  

all satisfy the Laplace equation in view of eq (5.1).  

 

Finally we find 

                     
  

  
  
                    

   

  
                

                                                                
  

  
          

 

5.8 

 

also satisfies the Laplace equation because of eq (5.1). 

 

Note:              ,          
 

 
          ,   

                    

 

6 Linear system for the discretised boundary integral equations 

In our numerical implementation, we solve for the scattered field, E that satisfies the 

system of 4 scalar equations 

          6.1 

                  6.2 

 

by the boundary integral method. On the surface of a boundary, it is convenient to 

work in terms of the normal and tangential components E = En + Et that is related to 

the Cartesian x-component and the surface unit normal vector n by 

                                    
    6.3 

 

where the tangential component of the scattered field,           cancels the 

corresponding component of the incident field     
   

, on the surface of the perfect 

conductor. Similarly, we have for the y and z components 

             
    6.4 

  

             
    6.5 

 



We discretize the surface with N nodes and let H and G be the discrete representations 

of the integrals involving the pi and ∂pi/∂n terms in eq (6) of the main text where pi 

represents (Ex,  Ey, Ez, x•E),  we obtain 

                6.6 

  

                6.7 

  

                6.8 

  

                    6.9 

For the left hand side of eqs (6.6) – (6.8), we use eqs (6.3) – (6.5) to eliminate the 

Cartesian components: Ex, Ey and Ez in terms of the normal component, En, and the 

tangential component of the incident field,   
   . For eq (6.9) we use eqs (6.3) – (6.5) 

to write 

                                             
                    

                 
      

                  
          

          
     6.10 

and  

      

  
      

  

  
 

6.11 

 

Thus eqs (6.6) – (6.9) can be expressed in terms of the normal component En and the 

normal derivative ∂E/∂n of the scattered field as 
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               6.14 

  

                          6.15 

 

By discretising the surface as N nodes, eqs (6.12) – (6.15) is a 4N  4N linear system 

for the 4 unknowns N-vectors: {En, ∂Ex/∂n, ∂Ey/∂n, ∂Ez/∂n} on the surface 
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7 Induced surface charge and radar cross-section of a perfect conducting sphere 

7.1 Radar cross sections 

We give results computed by our method for the scattering of a linearly polarized 

plane wave by a perfect conducting sphere of radius a – the Mie problem. We show 

the induced surface charge density that is proportional to the normal component of the 

total electric field and radar cross section computed from the far field values. The 

incident wave has electric field is polarized in the z-direction: E
inc

= (0, 0, E0) and 

propagates in the x direction: k = (k, 0, 0). The results for ka = 10 and E0 = 1 are 

shown in fig. S1. 

 

 

 

 

 

 

 

 

      (a) x = 0 plane             (b)  y = 0 plane 

   

 

 

 

 

 

 

 

 

           (c) x = 0 plane                    (d)  y = 0 plane  

Fig. S1. Induced surface charge density (color sphere) and radar cross-section (RCS) 

in the planes (a) x = 0 and (b) y = 0 represented as polar plots and as functions of the 

angle , for E
inc

= (1, 0, 0) and k = (0, 0, k) calculated using 1442 nodes on the sphere 

(lines). Symbols (squares) in (c) and (d) are results from an implementation of the 

infinite series Mie solution [7]. 



The radar cross section (RCS), scaled by the incident wavelength, , is the ratio of the 

magnitudes of the scattered far field to the incident field: 

       
   

  
   

   
        

       
 

7.1 

 

7.2 The k = 0 limit 

In the conventional formulation of scattering by perfect electric conductors, the long 

wavelength limit (k  0) is singular, see eq (2.3). However, our formulation does not 

suffer from this limitation. In fig S2 we compare our numerical results for k = 0 with 

the analytic results derived in eqs (5.6) and (5.7) for the scattered fields Ex and Ez on 

the surface of a unit sphere in response to an incident field E
inc

= (0, 0, 1). 

 

 

 

 

 

 

 

 

 

Fig. S2. Scattered fields Ex and Ez on the surface of a unit sphere as functions of the 

polar angle,  in response to an incident field E
inc

= (0, 0, 1) at k = 0 computed by our 

method (points) using 386 nodes and the analytic solutions (lines) given by eqs (5.6) 

and (5.7). 

 

8 Needle and ellipsoid shape function 

We give the equation for the axisymmetric needle shape function with fore-aft 

symmetry [8]. In the body coordinate system, the axisymmetric surface is defined by 

rotating the closed curve (, ) with semi-major axis, a and semi-minor axis, b about 

the -axis. The equation for a point on the curve or the axisymmetric surface (, ) is 

given by 

 

  
 
   

  
 
   

  
  

 

  
 

 

8.1 

where R+(, )  and R–(, ) are defined by 



                
 

   8.2 

the constant R is given in terms of the semi-axes a and b; and the position of the 

focus, c (< a) on the -axis, is calculated via two equivalent expressions 

   

        
 
 

  
 

  

            
 

 

8.3 

 

The shape varies from a sphere at b/a = 1 to a long thin needle as b/a  0, 

approaching a circular cylinder with spherical cap ends.  

 

Thus given the aspect ratio, b/a, eq (8.3) can be used to determine c/a and R/a, and the 

rotation of the curve given by eq (8.1) about the -axis generates the axisymmetric 

surface. 

 

The 3D ellipsoid is represented by the equation 

                       8.4 

 

9 Animations - phase variations of scattered field and the induced surface charge 

and boundary integral parameters 

One_sphere.mov: Animations of the variation of the induced surface charge density 

and the scattered components of the electric field in a single perfect electric 

conducting sphere of radius, a over one cycle for ka = 10 - see Fig 1 in the main text. 

 

Three_sphere.mov: Animations of the variation of the induced surface charge density 

and the scattered components of the electric field in three single perfect electric 

conducting sphere of radius, a over one cycle for ka = 1 – see Fig 2 in the main text. 

 

Needle.mov: Animations of the variation of the induced surface charge density and the 

scattered components of the electric field in a perfect conducting needle of aspect 

ratio 10 over one cycle for ka = 5, ba = 0.5 – see Fig 3 in the main text. 

 

Ellipsoid.mov: Animations of varying views of the induced surface charge density and 

the scattered components of the electric field in a perfect conducting ellipsoid of 

aspect ratio 1:3:9 for ka = 1, kb = 3, kc = 9 – see Fig 3 in the main text. 

  



10 Boundary integral parameters 

All surfaces in the examples in the main text are represented by quadratic elements. 

The number of nodes, that is, the number of degrees of freedom, and the number of 

elements per surface are listed in Table 1. The ease with which quadratic elements can 

be used in our non-singular formulation of the boundary integral equation means that 

good accuracy can be achieved using only a very modest number of nodes or 

elements to represent surfaces that can have high or disparate geometric aspect ratios. 

  

 

Table 1 Numbers of nodes and quadratic elements used for the examples in Figs. 1 to 

3 in the main text 

Example Number of nodes Number of quadratic elements 

Fig.1 One sphere 1442 720 

Fig. 2 Three spheres (on each sphere) 362 180 

Fig. 3a Needle (aspect ratio 10:1) 1442 720 

Fig. 3b Ellipsoid (aspect ratio 1:3:9) 2562 1280 
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