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Abstract

The problem of the spurious frequency spectrum resulting from numerical
implementations of the boundary element method for the exterior Helmholtz
problem is revisited. When the ordinary 3D free space Green’s function
is replaced by a modified Green’s function, it is shown that these spurious
frequencies do not necessarily have to correspond to the internal resonance
frequency of the object. Together with a recently developed fully desingu-
larized boundary element method that confers superior numerical accuracy,
a simple and practical way is proposed for detecting and avoiding these fic-
titious solutions. The concepts are illustrated with examples of a scattering
wave on a rigid sphere.

Keywords: Internal resonance, desingularized boundary element method,
Frequency shift, Modified Green’s function

1. Introduction1

Recent studies of boundary integral formulation of problems in time do-2

main acoustic scattering [1], dynamic elasticity using the Helmholtz decom-3

position method [2] and direct field-only formulation of computational elec-4
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tromagnetics [3, 4, 5], all rely on finding accurate and efficient methods of5

solving the scalar Helmholtz equation. In this regard, it is timely to re-visit6

the boundary integral method of solving the Helmholtz equation.7

It is well-known that the solution of the Helmholtz equation for external8

problems obtained by the boundary integral method, BIM, (or its numerical9

counterpart: boundary element method BEM) can become non-unique at10

certain frequencies. At these so called fictitious frequencies, spurious solu-11

tions that arise are said to correspond to the internal resonance frequencies12

of the scatterer. Although there are established methods, most notably due13

to Schenck [6] and to Burton and Miller [7] that have been developed to elim-14

inate such fictitious solutions, these methods require numerical tools beyond15

the BIM. For instance, the solution of Schenck requires additional numerical16

algorithms such as least squares minimization and that of Burton and Miller17

leads to hypersingular integral equations [8, 9, 10]. Here we show that these18

fictitious solutions, when they do occur, and their corresponding frequencies19

in the BIM context depend not only on the shape of the object but also on20

the choice of Green’s function so that these frequencies do not necessarily21

occur at the corresponding internal resonance frequencies of the object. This22

observation together with the fact that recently developed desingularized23

BIM can give sufficiently high precision that the solution is unaffected by24

such fictitious solutions until the frequency is within about 1 part in 104 of25

a fictitious value. We shall demonstrate how this can be exploited to detect26

the presence of a spurious solution. Furthermore, the fictitious frequency27

spectrum can be changed by using different Green’s functions in the BIM.28

Taken together, these developments provide a practical way to detect and29

eliminate the effects of the fictitious solution without additional numerical30

effort or adjustable parameters beyond the toolkit of the BIM.31

The introduction of a modified Green’s function also poses a number of32

interesting but unanswered questions that can provide stimulus for further33

theoretical development.34

To provide physical context to our discussion on how the fictitious solution35

arises in the solution of the Helmholtz wave equation using the boundary36

integral method, we consider the example of the scattering of an incident37

acoustic wave by an object with boundary S in an infinite medium. In the38

external domain, assumed to be homogeneous, scattered acoustic oscillations39

are described by the Helmholtz scalar wave equation in the frequency domain:40

∇2φ+ k2φ = 0, (1)
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where k = ω/c is the wave number, ω the angular frequency and c the speed41

of sound. The (complex) acoustic potential, φ, is related to the scattered42

velocity: u = ∇φ. Since Eq. 1 is elliptic, the Green’s function formalism43

can be used to express the solution as that of a boundary integral equation44

[11, 12]45

c(x0)φ(x0) +

∫
S

φ(x)
∂G(x,x0|k)

∂n
dS(x) =

∫
S

∂φ(x)

∂n
G(x,x0|k) dS(x), (2)

where46

G(x,x0|k) =
eikr

r
(3)

is the 3D Green’s function with r = ‖x−x0‖ and ∂/∂n ≡ n ·∇ is the normal47

derivative where the normal vector n points out of the domain, and thus into48

the object. The position vector x in Eq. 1 is located on the boundary S. If49

the observation point x0 is located outside the object (i.e. within the solution50

domain), the solid angle c = 4π, if x0 is located inside the object (i.e. outside51

the solution domain), c = 0, and if x0 is located on the surface, S, of the52

object and that point on S has a continuous tangent plane, then and only53

then c = 2π, otherwise the value of the solid angle c is determined by the54

local surface geometry at x0.55

The advantages of using Eq. 2 over other methods such as using finite56

difference in the 3D domain are the obvious reduction in the spatial dimen-57

sion by one and that it is relatively easy to accommodate complicated shapes58

without deploying multi-scale 3D grids. Also the Sommerfeld radiation con-59

dition at infinity [13] is automatically satisfied by Eq. 2.60

For the simple example of the scattering of an incoming plane wave spec-61

ified by φinc = Φ0e
ik·x (with Φ0 a constant and ‖k‖ = k) by a rigid object,62

the velocity potential, φ of the scattered wave can be found by solving Eq. 1.63

The condition of zero normal velocity on the surface is equivalent to the fol-64

lowing boundary condition on S: ∂φ/∂n = −∂φinc/∂n. In this case, the right65

hand side of Eq. 2 is known so this equation can be solved for the velocity66

potential, φ(x0), with x0 on the surface.67

We now demonstrate using this example of a Neumann problem where68

∂φ/∂n is given on the surface S, that there exists certain values of k =69

kf , at which the solution φ of Eq. 2 is no longer unique. This occurs at70

those frequencies kf whereby a non-trivial function f can exist to satisfy the71
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following homogeneous equation:72

c(x0)f(x0|kf ) +

∫
S

f(x|kf )
∂G(x,x0|kf )

∂n
dS = 0. (4)

Consequently Eq. 2 will admit a solution of the form φ + bf on the sur-73

face S, where b is an arbitrary constant and f , the spurious solution, also74

satisfies the integral equation with zero normal derivative on S. Thus the75

fictitious frequency, kf and the corresponding spurious solution, f(x|kf ) are76

the eigenvalue and eigenfunction of Eq. 4, respectively. The existence of spu-77

rious frequencies in boundary integral methods for Helmholtz equations was78

already identified by Helmholtz in 1860 [14], who said on page 24 (see also79

page 29 of his book [15]), while discussing the integral equation, Eq. 2:80

...aber für eine unendlich grosse Zahl von bestimmten Werthen81

von k für eine jede gegebene geschlossene Oberfläche Ausnahmen82

erleidet. Es sind dies nämlich diejenigen Werthe von k, die den83

eigenen Tönen der eingeschlossenen Luftmasse entsprichen.84

This text was more or less translated directly by Rayleigh [16] in his book:85

For a given space S there is .... a series of determinate values of86

k, corresponding to the periods of the possible modes of simple87

harmonic vibration which may take place within a closed rigid88

envelope having the form of S. With any of these values of k, it89

is obvious that φ cannot be determined by its normal variation90

over S, and the fact that it satisfies throughout S the equation91

∇2φ+ k2φ = 0.92

Note that the internal resonance problem corresponds to a problem with93

φ = 0 on the surface, S and g ≡ ∂φ/∂n 6= 0 in Eq. 2, is given by94 ∫
S

g(x|kf )G(x,x0|kf ) dS = 0, (5)

which is different from Eq. 4. It is not immediately obvious that Eqs. 4 and95

5 will produce the same fictitious spectrum and in fact, as we shall see later96

in Section 4, this is not always the case.97

In theory, the spurious solution only appears if k is exactly equal to kf98

so that it is not an issue in analytic work nor if computations have infinite99

4



numerical precision. With the advent of numerical techniques in the late100

1960’s and early 1970’s, the boundary integral equation was transformed into101

the boundary element method (BEM). The issue of spurious frequencies now102

resurfaced once more in the numerical implementations. In the conventional103

implementation of the BEM [12], the surface S is represented by a mesh104

of planar area elements and the unknown value of φ(x) on the surface is105

assumed to be a constant within each planar element and only varies from106

element to element. The surface integral is thus converted to a linear system107

in which the values of φ at different area elements are unknowns to be solved.108

The practicality of discretization where the representation of the surface S109

by a finite number of planer elements and round off errors in numerical110

computation mean that effects of the spurious solution begin to be important,111

not only when k = kf , but even when the value of k is near kf . For instance,112

in a conventional implementation of the BEM, the apparent location of the113

fictitious frequency, kf can be in error because of the approximation involved114

in representing the actual surface by a set of planar elements. Thus the mean115

relative error can exceed 100% when k is within 1-2% of the actual fictitious116

frequency (see Fig.1 for examples of a sphere with radius R at kR ≈ π and117

kR ≈ 2π). Since the values of kf are not known a priori for general boundary118

shapes, S, the accuracy of any BEM solution of the Helmholtz equation can119

become problematic.120

Two popular methods to deal with this issue that are still in use today121

are due to Schenck [6] and to Burton and Miller [7]. Schenck introduced122

the CHIEF method whereby the BEM solution is evaluated at additional123

internal points inside the scatterer with the requirement that such values124

must vanish. This results in an over-determined matrix system that requires125

a least square solution entailing considerable additional computational time,126

especially for larger systems. However, the CHIEF method does not stipulate127

how many CHIEF points should be used and where they should be placed.128

The Burton and Miller [7] method involves taking the normal derivative of129

Eq. 2, multiplying it by an appropriate complex number and then adding it to130

the original equation. It is claimed that Eq. 2 and its normal derivative have131

different resonance spectra and this therefore solves the spurious frequency132

problem. Due to the use of the normal derivative of Eq. 2, the Burton and133

Miller method involves having to deal with strongly singular kernels. This134

approach therefore has the disadvantage that it requires special quadrature135

rules for higher order elements [17].136

The issue of spurious solutions is revisited in this article. Clearly, if a137

5



numerical implementation of the BEM is not sensitive to the fact that k may138

be close to a fictitious value kf , then the effects of a spurious solution will139

be minimized. Furthermore, the spectrum of spurious frequencies does not140

only depend on the shape of the object, but also on the choice of the Green’s141

function. As the classical free space Green’s function or fundamental solution142

of Eq. 3 is not the only choice that can be used, it can be replaced by other143

fundamental solutions, as long as they are analytic in the external domain and144

they satisfy the Sommerfeld radiation condition [18]. Thus using a different145

Green’s function will shift the spectrum of fictitious frequencies relative to146

a given k value. Although the theoretical framework of modified Green’s147

functions has been discussed extensively in the literature [18, 19, 20, 21, 22],148

little attention appears to have been paid to the actual implementation. In149

this article we address this issue.150

The development of our suggestion to eliminate the fictitious frequency151

problem in BEM solutions of the external Helmholtz equation is organized152

as follows. In Section 2, we outline how a desingularized implementation of153

the BEM that is not affected by a spurious solution unless k is very close154

to a fictitious value kf , can be used to decide if an BEM solution has been155

adversely affected by the presence of a spurious component. This framework156

also enables us to implement higher order elements with ease. In Section 3 the157

spectrum of fictitious frequencies and corresponding spurious solutions are158

studied as the solution of an homogeneous integral equation. In Section 4, a159

modified Green’s function is introduced to show how it can be used to change160

the spectrum of fictitious frequencies. Thus by employing the desingularized161

BEM, it is sometimes easy to determine by comparing the solutions obtained162

from using the conventional Green’s function in Eq. 3, and from a modified163

Green’s function whether the solutions have been adversely affected by the164

presence of a spurious solution associated with a fictitious frequency. Some165

discussion and the conclusion follow in Sections 5 and 6, respectively.166

2. Minimize the proximity effects to a fictitious frequency167

As noted earlier, discretization and round off errors can cause the spu-168

rious solution to become important when the wave number happens to be169

near a fictitious value. However, since the spectrum of fictitious frequencies170

is not generally known a priori, the numerical accuracy of a solution obtained171

by the BEM becomes uncertain. Therefore, to ameliorate the fictitious fre-172

quency problem, it is valuable to have an accurate implementation of the173
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BEM that will not produce a spurious component to the solution unless the174

frequency k is extremely close to an unknown fictitious frequency. This is175

provided by a recently developed fully desingularized boundary element for-176

mulation [23, 24], a concept that was first introduced for the Laplace BEM by177

Klaseboer et al. [25]. In this framework, the traditional singularities of the178

Green’s function and its normal derivative in the BEM integrals are removed179

analytically from the start.180

High accuracy can be achieved in this approach firstly due to the fact181

that all elements (including the previously singular one) are treated in the182

same manner with the same Gaussian quadrature scheme. The second rea-183

son for the high accuracy lies in the fact that instead of using planar area184

elements in which the unknown functions are assumed to be constant within185

such elements, the unknowns are now function values at node points on the186

surface, and the surface is represented by quadratic area elements deter-187

mined by these nodal points. In calculating integrals over the surface ele-188

ments, variation of the function value within each element is also estimated189

by quadratic interpolation from the nodal values. The numerical implemen-190

tation is straightforward, once the linear system is set up, the usual linear191

solvers can be used. The thus obtained framework is termed Boundary Reg-192

ularized Integral Equation Formulation (or BRIEF in short [24]).193

Here is a brief description of the desingularized boundary element formu-194

lation, details of which are given in previous works [23, 24]. Assume we have195

a known analytic solution, Ψ(x), of Eq. 1 which then also satisfies Eq. 2 as:196

cΨ(x0) +

∫
S

Ψ(x)
∂G(x,a|k)

∂n
dS =

∫
S

∂Ψ(x)

∂n
G(x,a|k) dS. (6)

Without loss of generality, we can demand that this solution further satisfies197

the following two point-wise conditions:198

lim
x→x0

Ψ(x) = φ(x0) (7)
199

lim
x→x0

∂Ψ(x)

∂n
=
∂φ(x0)

∂n
(8)

A convenient but not the only possible choice is a combination of two standing200

waves, one with the node of the wave and the other with the antinode situated201

at x0, both aligned with n(x0) [23] as:202

Ψ(x) = cos
(
kn(x0) · [x− x0]

)
φ(x0)

+
1

k
sin
(
kn(x0) · [x− x0]

)∂φ(x0)

∂n
.

(9)
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Substituting Eq. 9 in Eq. 6 and subtracting the result from Eq. 2 gives:203

4πφ(x0) +

∫
S

[
φ(x)−Ψ(x)

]∂G(x,x0|k)

∂n
dS =∫

S

[∂φ(x)

∂n
− ∂Ψ(x)

∂n

]
G(x,x0|k) dS.

(10)

The conditions from Eqs. 7 and 8 guarantee that the terms in [...] on both204

sides of Eq. 10 cancel out the singularities of the Green’s function and its205

derivative by noting that206

∂Ψ(x)

∂n
= n · ∇Ψ =− kn(x) · n(x0) sin

(
kn(x0) · [x− x0]

)
φ(x0)

+ n(x) · n(x0) cos
(
kn(x0) · [x− x0]

)∂φ(x0)

∂n
,

(11)

and the fact that n(x) · n(x0) → 1, when x approaches x0 for any smooth207

surface. Note that the solid angle in Eq. 10 has been eliminated, but a term208

with 4πφ(x0) appears due to the contribution of the integral over a surface209

at infinity because of the particular choice of Eq. 9. Also note from Eq. 9210

that Ψ is a different function for each node on the surface.211

We now consider the example of solving the scattering problem by a solid212

sphere with radiusR for which the spectrum of fictitious frequencies is known.213

A list of the values of the lower fictitious frequencies and the equation that214

generates them are given in Table 1 where we see that two of the lowest215

fictitious frequencies are at kfR = π and kfR = 2π. In Fig. 1, we quantify216

the behaviour of the BEM solution for kR values in the neighborhood these217

2 fictitious values in terms of the mean square error defined by218

Mean Error =

√∑DOF
i=1 (|φinum| − |φiana|)

2

DOF
, (12)

where φinum and φiana are, respectively, the numerical (BEM) and analytic219

solution at node i. The number of nodes used in the desingularized BEM, the220

Degree of Freedom (DOF), is around 2000. We see that the mean squared221

error even in the small neighborhoods 0.94π < kR < 1.06π and 1.94π <222

kR < 2.06π around the 2 fictitious frequencies is extremely localized. In223

fact, the BEM solutions obtained by the desingularized BEM [23, 24] are224

unaffected by fictitious solutions until the frequency is within about 1 part225
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(a) (b)

Figure 1: Comparison of the mean error defined in Eq. 12 as a function of the frequency
near a resonant values (a) kfR = π and (b) kfR = 2π obtained using the conventional
BEM (CBIM) approach and the desingularized BEM formulation (BRIEF). When using
CBIM, the sphere surface is discretised with 2000 flat elements (DOF = 2000); while using
BRIEF, the sphere surface is discretised with 980 quadratic elements connected by 1962
nodes (DOF = 1962). In the inset of (b), we see that the solution obtained using the
BRIEF is unaffected by the spurious solution when kR is with 1 part in 104 of kfR.

in 104 of a fictitious value. The results for the conventional boundary integral226

method (CBIM) are also shown. Note that the fictitious frequency predicted227

by the CBIM is significantly higher than the known theoretical value in these228

examples.229

Similar remarks apply for the behavior of the desingularized BEM solu-230

tion in the neighborhood of the lowest m = 1 fictitious value kfR = 4.49341231

(see Table 1) shown Fig. 2. Here we show the values of the real and imagi-232

nary parts of the solution of nodes at the front and at the back of the sphere.233

The effect of the spurious solution can only be discerned in the very narrow234

window 4.493 < kR < 4.494 around kfR = 4.49341. But outside this win-235

dow, there is no noticeable effect due to kR being close to the fictitious value,236

kfR. For example, if at the values kR = 3.140 and kR = 4.490 as given in237

Kinsler [11], page 518, the desingularized BEM (BRIEF) was used to to solve238

the Helmholtz equation, the solution would not register as giving spurious239

results. As we shall see below, the extremely small range the window of kR240

values that would be affected by the fictitious solution, if a sweep of 10,000241
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Figure 2: Real and imaginary part of the scattered potential φ at the back and at the
front of the sphere with the desingularized boundary element method showing the spurious
response around kfR = 4.49341, from kR = 4.490 to kR = 4.496. A quadratic mesh was
used with 1442 nodes and 720 elements.

frequencies from kR = 0 to 10 would be performed in steps of 0.001 one242

would miss many fictitious solutions (since a step size of 0.001 would not be243

precise enough to detect all of them).244

From the above results, we can conclude that the effects of resonance are245

not observed until one is extremely close to the resonant frequency in our246

desingularized BEM [23, 24].247

3. The genesis of spurious solutions248

In the example of acoustic scattering by a rigid scatterer that was dis-249

cussed in the previous section, ∂φ/∂n on the surface of the scatterer is spec-250

ified (Neumann boundary conditions), and the variation of φ on the surface251

is the unknown to be found. At certain frequencies however, instead of the252

expected φ, another function say, φ + f emerges. The frequencies at which253

this occurs, are often said to correspond to the internal resonance frequency254

of the same object. Often the Fredholm integral theory is used to explain255

the occurrence of the fictitious frequency and it is thereby directly related to256

the corresponding internal resonance frequency of the object [26]. However,257

by working directly with the integral equation that determines the spurious258

solution, f , it is easy to demonstrate how the effects of the spurious solution259

can be detected.260
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First we use the example of scattering on a rigid sphere of radius, R, to261

demonstrate how the spurious solution and the fictitious frequency is deter-262

mined by the Green’s function and the boundary shape. For simplicity, we263

consider the solution of the Helmholtz equation outside a sphere that has264

azimuthal symmetry for which the solution on the sphere surface can be ex-265

panded in terms of Legendre polynomials of order m, Pm(cos θ) to account266

for variations in the polar angle, θ. In this case, the fictitious frequencies for267

different m values are known. We consider in detail the spurious solution, f ,268

and the fictitious frequency, kf for the cases with m = 0 and m = 1.269

3.1. Case: f ∼ P0(cos θ), a constant, m = 0270

In this case, the spurious solution, f is a constant, being proportional to271

P0(cos θ), on the surface of the sphere of radius, R and c(x0) = 2π, then272

Eq. 4, at the fictitious wave number, kf , becomes:273

2π +

∫
S

∂G(x,x0|kf )
∂n

dS(x) = 0. (13)

The integral of ∂G(x,x0|k)/∂n, can be evaluated (see Appendix A) to give274 ∫
S

∂G(x,x0|kf )
∂n

dS(x) = −2π
{
ei2kfR +

1

ikfR

[
1− ei2kfR

]}
(14)

so that Eq. 13 is equivalent to275

sin(kfR)[1− ikfR] = 0. (15)

Thus the spectrum of fictitious frequencies corresponding to a constant spu-276

rious function, f ∼ P0(cos θ), on the surface with m = 0 is277

sin(kfR) = 0 or kfR = π, 2π, 3π.... (16)

see also the first row of Table 1. In the external 3D domain, the spurious278

solution f(x) that emerges numerically from the BEM solution corresponding279

to kfR = π is: f(x) = c3 e
ikf‖x‖/‖x‖, where c3 is an arbitrary constant and280

the origin of x taken at the origin of the sphere.281
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Table 1: Values of the fictitious frequency that correspond to scattering by a rigid sphere
with Neumann boundary condition. The three lowest values that are the solutions to
the eigenvalue equation at each m value given in the right most column are given to 6-7
significant figures.

m kfR Equation: x ≡ kfR
1st 2nd 3rd

0 3.14159 6.28319 9.424778 tanx = 0
1 4.49341 7.72525 10.90412 tanx = x
2 5.763459 9.095011 12.32294 tan x = 3x

3−x2

3 6.987932 10.41712 13.69802 tan x = 15x−x3
15−6x2

4 8.182561 11.70491 15.03966 tan x = 105x−10x3
105−45x2+x4

5 9.355812 12.96653 16.35471 tan x = 945x−105x3+x5
945−420x2+15x4

3.2. Case: f ∼ P1(cos θ), m = 1282

A similar calculation to the one given in Section 3.1, for a spurious func-283

tion, f ∼ P1(cos θ), for m = 1 leads to (see Appendix B)284

tan(kfR) = kfR. (17)

The first few solutions to Eq. 17 are given in the m = 1 row of Table 1.285

Again, these values are equal to those of the corresponding internal eigenvalue286

problem, yet they have been derived here purely from a boundary integral287

equation perspective. Spurious frequencies for higher order values of m can288

also be obtained in a similar manner. Table 1 contains all spurious frequencies289

below kfR = 10 for a sphere.290

The above derivation that starts from the homogeneous integral equation,291

Eq. 4 demonstrates the role of the Green’s function and the boundary shape292

in determining the spectrum of fictitious frequencies and spurious solutions293

for acoustic scattering by a solid sphere. We can now show how to modify294

the fictitious frequency spectrum using different Green’s functions.295

4. The modified Green’s function296

Different forms of the Green’s function can be used to construct the inte-297

gral equation of the BEM as long as they satisfy the same differential equation298

in the solution domain and the Sommerfeld radiation condition at infinity as299
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Figure 3: Definition of the length r′ = ‖x− a‖, with a = (0, 0, a) a fixed point inside the
sphere with radius R. Also shown is the angle α. The length L satisfies (L−a)2 +ρ2 = r′2

and since cosα = L/R, it follows that a cosα = (R2 + a2 − r′2)/(2R).

the free space Green’s function. A simple modified Green’s function, Gmod,300

can be taken as301

Gmod(x,x0|k) ≡ G(x,x0|k) + ∆G(x,x0|k)

= G(x,x0|k) + c2 G(x,a|k)
(18)

where the origin is taken to be the center of the sphere and the vector a cor-302

responds to a point inside the sphere (|a| < R) with c2 an arbitrary constant.303

The integral equation that implements the BEM with Gmod becomes:304

cφ(x0) +

∫
S

φ(x)
[∂G(x,x0|k)

∂n
+ c2

∂G(x,a|k)

∂n

]
dS(x)

=

∫
S

∂φ(x)

∂n

[
G(x,x0|k) + c2G(x,a|k)

]
dS(x).

(19)

The additional term G(x,a|k) although singular at the location a, does not305

create any singular behavior on the surface S, since ‖x− a‖ never becomes306

zero (see also Fig. 3). The modified Green’s function, Gmod(x,x0|k), also307

satisfies the Sommerfeld radiation condition at infinity.308

4.1. Case: f ∼ P0(cos θ), a constant, m = 0 with modified Gmod309

Let us now investigate how the modified Green’s function defined in Eq. 18310

and 19 can affect the spectrum of fictitious frequencies that is now determined311

by312

2π +

∫
S

[∂G(x,x0|kf )
∂n

+
∂G(x,a|kf )

∂n

]
dS(x) = 0. (20)
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a) b)

Figure 4: a) Results obtained with the desingularized boundary element method [23, 24]
with a classical free space Green’s function, Eq. 3, with 720 six node quadratic elements
and 1442 nodes. The real and imaginary part of the scattered φ in front of and behind a
sphere with radius R due to an incident plane wave with wavenumber k as a function of kR.
The effect of fictitious solutions can clearly be observed as sharp peaks and correspond
to spurious frequencies listed in Table 1. More data points have been used near the
fictitious frequencies. b) Results using the modified Green’s function, Eq. 18. The spurious
responses corresponding to ka = π, ka = 2π and ka = 3π are now eliminated. Besides
the implementation of the modified Green’s function, the parameters used are the same
as those in a).

Evaluating the integrals (see Appendix C) then gives the equation that de-313

termines the spectrum of fictitious frequencies314

sin(kfR) + c2(R/a) sin(kfa) = 0. (21)

Thus the original fictitious frequency spectrum given by sin(kfR) = 0 in315

Eq. 16 due to the use of the unmodified Green’s function in Fig. 4a has been316

replaced by a different spectrum given by Eq. 21 in Fig. 4b. Furthermore,317

the precise value of a is not critical. In fact, since sin(kfa)/a→ kf as a→ 0,318

we can put a = 0, that is, at the center of the sphere. In the results shown319

in Fig. 4, we have taken a = 0 and c2 = −1.320

For m = 0, Eq. 21 will in general assure that the new fictitious frequency321

spectrum obtained with the modified Green’s function, Gmod will be different322

from that obtained with the original Green’s function, G. However, there are323

still ways for which this may not be true.324

• Firstly, it is still possible that both sin(kfR) and sin(kfa) vanish, that325

is, the original spectrum and the modified spectrum contain common326
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Figure 5: An example where the original and modified spectrum have common values.
Here kR = 2π is fixed and a/R is varied slightly near the value a/R = 0.5, (thus ka = π)
resulting in sin(kfR) = 0 and sin(kfa) = 0 simultaneously in Eq. 21 and the modified
Green’s function framework fails. Plotted are the real and imaginary part of the scattered
potential φ at the nodes in front and at the back of the sphere. In the neighbourhood of
a/R = 0.5, the solution is still accurate up to 2% at a/R = 0.499 and a/R = 0.501. The
value at a/R = 0.5 is highly erroneous at φFront = 1.51 + i5.72 and φBack = 1.60 + i5.29
(for a = 0, φFront = 0.03858 + i0.1443 and φBack = 0.1230− i0.2893). A quadratic mesh
was used with 1442 nodes and 720 elements.

values. An example of such a case can be observed when kfR = 2π327

and a = 0.5R (thus kfa = π and sin(kfa) = 0). This was tested328

numerically and indeed for these parameters there is still a spurious329

solution corresponding to the common fictitious frequency values in330

the 2 spectra as illustrated in Fig. 5.331

• A second way in which a spurious behaviour can still be observed,332

is when for particular parameters of kf , R, a and c2, Eq. 21 is still333

zero. An instance of such spurious behavior can be observed for the334

parameters kfR = 0.5, a = 0.3R and c2 = −0.9624563. The fictitious335

solution for these parameters is about 100 times the theoretical value336

in a numerical test. It is interesting to note that a fictitious frequency337

now appears at kfR = 0.5, a frequency value that was previously free of338

spurious behavior. This is an example of a frequency shift of the lowest339

spurious behavior from kfR = π to a lower frequency of kfR = 0.5.340

However, if c2 = −0.9620000 is chosen, thus only slightly different from341

c2 = −0.9624563, no spurious behavior is observed at all (see Fig. 6).342

• Finally, the location of the point a should not be chosen too close to343
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Figure 6: Spurious behavior when for particular parameters of kf , R, a and c2, Eq. 21
is still zero. Here we have the case kfR = 0.5 and a = 0.3R and the parameter c2
is varied from −0.963 to −0.962. Only when c2 is very close to the ”critical” value of
c2 = −0.9624563 does the solution starts to degenerate. The value at c2 = −0.9624563
has large errors at φFront = 0.2531− i8.352 and φBack = −0.7462− i8.410. These results
were obtained with a quadratic mesh with 1442 nodes and 720 elements.

the boundary S. In order to investigate this, in Fig. 7, the potentials344

in front and at the back of the sphere are shown, while the location of345

a of the modified Green’s function is varied from a = 0.0 to 1.0. From346

the figure it can be deduced that a should not be placed closer to the347

boundary S than roughly the meshsize.348

To conclude, for m = 0, the modified Green’s function approach can349

indeed remove the spurious behavior of the solution. In the next section, the350

m = 1 case will be investigated.351

4.2. The m = 1 case352

In Section 4.1, it was shown that for f =constant (or m = 0), the modified353

Green’s function can indeed remove the spurious solutions. A similar proof354

can now be attempted for m = 1. In analogy to Eq. B.1, it must now be355

shown that356

2πR +

∫
S

z
[∂G(x,x0|kf )

∂n
+ c3

∂G(x,a|kf )
∂n

]
dS(x) = 0. (22)

Thus the integral357 ∫
S

z
∂G(x,a|kf )

∂n
dS(x) (23)
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Figure 7: Variation of the potentials φ in front and at the back of the sphere as a function
of a/R, the parameter a = (a, 0, 0) in the modified Green’s function with kR = π and
c2 = 1.0. The results were obtained with a quadratic mesh with 1442 nodes and 720
elements, which results in an average distance between nodes of about 0.05R. This is
roughly the distance where the solution starts to deviate from the analytical value at
a/R = 0.95. The solution does not diverge, even at exactly a = R, although the value is
incorrect.

must be determined. The framework of Eqs. C.4, C.6 can be adapted im-358

mediately, provided that we add z in the equations. With z = R cosα =359

[R2 + a2 − r′2]/(2a):360 ∫
S

z
∂G(x,a|kf )

∂n
dS(x) =

2πR

a

∫ R+a

R−a

R2 + a2 − r′2

2a

[
−R +

R2 + a2 − r′2

2R

]eikr′
r′2

[ikr′ − 1] dr′
(24)

This integral can be shown not to be equal to zero. However, a similar361

calculation for x or y instead of z, shows that due to symmetry (provided362

that x0 is still situated on the z-axis):363 ∫
S

x
∂G(x,a|kf )

∂n
dS(x) =

∫
S

y
∂G(x,a|kf )

∂n
dS(x) = 0 (25)

From this we can conclude that, unfortunately, the spurious solutions corre-364

sponding to m = 1 cannot be removed when applying our modified Green’s365

function in its present form. This is also clear from Fig. 4b, the spurious366

behavior corresponding to m = 1 is still present. A more elaborate Green’s367
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(a) (b)

Figure 8: a) Field plot of the real part of the potential φ obtained with Eq. 27 for kR = 2π.
a) with the standard (desingularized) BEM method where spurious results are present and
the fictitious solution inside the sphere (indicated by a black circle) can clearly be observed;
b) with the modified Green’s function, no resonance solution is visible, the solution inside
the sphere is very close to zero.

function might still be capable of removing these frequencies as well, but this368

is beyond the scope of the current article, in which we intend merely to show369

the proof of concept.370

5. Discussion371

In both the modified Green’s function and in the CHIEF method, a point372

in the interior of the domain is chosen on which an integral equation for373

G(x,a) is developed. The difference between the modified Green’s function374

and CHIEF, however, lies in the fact that CHIEF uses the following equation375

as an extra condition to the system of equations:376

cφ(a) +

∫
S

φ(x)
∂G(x,a|k)

∂n
dS =

∫
S

∂φ(x)

∂n
G(x,a|k) dS, (26)
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Here, the constant c = 0, since the point a is situated outside the domain (i.e.377

inside the object) in the CHIEF method. In the modified Green’s function378

approach this equation is essentially added to the ’normal’ Green’s function.379

A way to check if the solution using our desingularized boundary element380

code for a general shaped object contains a spurious component due to k381

being close to a fictitious value is to repeat the calculation at a very slightly382

different k value. If the solution differs significantly, the solution is likely to383

contain a spurious component.384

We further illustrate the concepts with some field values of φ obtained by385

post-processing from the following equation386

4πφ(x0) = −
∫
S

φ(x)
∂G(x,x0|k)

∂n
dS +

∫
S

∂φ(x)

∂n
G(x,x0|k) dS, (27)

where x0 is not situated on the boundary S, but either in the solution domain387

or inside the sphere (outside the solution domain). If no resonance is present,388

the solution inside the sphere (and hence outside the solution domain) should389

be φ = 0. In for following examples we use 1442 nodes and 720 quadratic390

elements in the BEM solution. The first case is the solution for kR = 2π391

where in Fig. 8 we plotted the results obtained from both the standard BEM392

(with spurious results, Fig. 8a and that obtained using a modified Green’s393

function Fig. 8b, where the solution inside the sphere is zero.394

A second example shows the solution for the resonance frequency kR =395

4.49341 in Fig. 9a. At a frequency nearby at kR = 4.49000 no resonance396

behavior is observed in Fig. 9b. This once more demonstrates the extreme397

accuracy of our desingularized BEM framework.398

A third example shows the resonance behavior at kR = 5.76345 and a399

nearby value of kR = 5.76000 in Fig. 10. Again no resonant behavior is400

observed at the nearby value.401

A final example shows the solution at kR = 3π in Fig. 11, obtained from402

both with the standard method and with the modified Green’s function.403

At present, the modified Green’s function can only remove spurious solu-404

tions associated with fictitious frequencies in the “breathing modes” (m = 0),405

but these are most likely the first modes to appear with increasing k. It would406

be interesting to find other modified Green’s functions to remove spurious407

solutions associated with fictitious frequencies in all modes, but we have not408

as yet been able to develop such an approach.409
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(a) (b)

Figure 9: a) Field plot of the potential (real part) for a) the resonance frequency
kR = 4.49341 and b) near this frequency at kR = 4.49000; both with the standard
(desingularized) BEM. In a) the spurious solution can clearly be seen inside the sphere.
No resonance solution is visible in b), the solution inside the sphere is zero. The plots em-
phasize the superior accuracy of the desingularized BEM: if the frequency is only slightly
besides a resonance value, the desingularized BEM still gives the correct result.

6. Conclusions410

The spurious frequencies occurring in a BEM implementation of the411

Helmholtz equation were revisited. From a BEM viewpoint it was high-412

lighted how these spurious solutions appear and how they can be detected.413

It was shown that the use of a modified Green’s function can indeed remove414

certain spurious frequencies. To the best knowledge of the authors, this is415

the first time actual numerical results have been obtained with a modified416

Green’s function. The results presented are a demonstration of the proof of417

concept. More elaborate modified Green’s functions might be able to remove418

more spurious frequencies. If indeed so, then this easy to implement method419

could be a viable alternative to existing methods.420
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(a) (b)

Figure 10: a) Potential (real) plot obtained by post processing for a) kR = 5.76345 and b)
kR = 5.76000; both with the standard (desingularized) BEM. In a) the spurious solution
can clearly be observed inside the sphere. No resonance solution can be observed in b).
The plots again emphasize the superior accuracy of the desingularized BEM and also show
a graphical means to test if the solution exhibits spurious behavior or not.

Spurious frequencies cannot fully be avoided with the current alternative421

Green’s function approach, but it is sometimes possible to shift this frequency422

to another region of the spectrum. Thus the spurious frequencies do not nec-423

essarily coincide anymore with a corresponding internal resonance frequency424

of the scatterer. The superior accuracy of the desingularized boundary el-425

ement method further ensures that the spurious behavior is limited to very426

narrow bands in the frequency spectrum. The concepts were illustrated with427

examples of the scattering of a plane wave on a rigid sphere.428
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(a) (b)

Figure 11: a) Plot of the real part of the potential obtained by post processing for a)
kR = 3π (with the standard, desingularized method) and b) kR = 3π with the modified
Green’s function (desingularized as well). The spurious spherical symmetrical solution
inside the sphere in a), which totally overshadows the real solution has successfully been
eliminated in b).
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Appendix A. Spurious frequencies for the m=0 case433

The normal derivative of the Green’s function, ∂G(x,x0|k)/∂n, can be434

expressed as435

∂G(x,x0|k)

∂n
= (x− x0) · n

eikr

r3
(ikr − 1). (A.1)

Without loss of generality lets assume that the point x0 is located on the z-436

axis (see also Fig. A.12 for the definition of symbols), thus x0 = [0, 0, R], the437

vectors x and n can then be presented by x = R[cos θ sinα, sin θ sinα, cosα]438

and n = −x/R. Then (x − x0) · n = R(−1 + cosα). The surface element439
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Figure A.12: Definition of the lengths r = ‖x − x0‖, ρ, and the angles α and α/2 for a
sphere with radius R, it can easily be seen that sin(α/2) = r/(2R) and R sinα = ρ =
r cos(α/2).

dS = 2πRρ dα can also be expressed as dS = 2πR2 sinα dα:440 ∫
S

∂G(x,x0|k)

∂n
dS =

∫ π

0

R[−1 + cosα]
eikr

r3
[ikr − 1]2π sinαR2 dα. (A.2)

With the help of Fig. A.12, the term (−1 + cosα) can be rewritten as:441

(−1 + cosα) = −2 sin2(α/2) = −r2/(2R2). From r = 2R sin(α/2), one can442

deduce R dα = dr/ cos(α/2). With sinα = cos(α/2)r/R, the singular term443

1/r3 in Eq. A.2 will be eliminated and this integral will turn into444 ∫
S

∂G(x,x0|k)

∂n
dS = − π

R

∫ 2R

0

eikr[ikr − 1] dr. (A.3)

which will finally transform Eq. 13 in:445

2π − 2π
{
ei2kR +

1

ikR

[
− ei2kR + 1

]}
= 0. (A.4)

Multiplying this equation by e−ikr and rearranging leads to446

sin(kR)[1− ikR] = 0. (A.5)

Appendix B. Spurious frequencies for the m=1 case447

In Section 3.1 and Appendix A, it was shown how the spurious frequencies448

appear for the simplest case of f = constant, corresponding to the lowest449
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order Legendre polynomials with m = 0. The next least complicated function450

will be a linear function, corresponding to m = 1. For simplicity sake, lets451

take f = z as an example. Taking again x0 on the z-axis will give f(x0) = R452

and with c = 2π, Eq. 4 will turn into:453

2πR +

∫
S

z
∂G(x,x0|k)

∂n
dS = 0. (B.1)

Eq. A.2 is still valid, except that an extra term z = R cosα = R[1−r2/(2R2)]454

must be included, thus Eq. A.3 must be replaced by:455 ∫
S

z
∂G(x,x0|k)

∂n
dS = −π

∫ 2R

0

[
1− r2

2R2

]
eikr[ikr − 1] dr

= −π
∫ 2R

0

eikr[ikr − 1] dr +
π

2R2

∫ 2R

0

r2eikr[ikr − 1] dr

(B.2)

The first integral in the last expression is the same that appeared in Section456

Appendix A as Eqs. A.3, A.4 (except for a factor 1/R), the second integral457

can be evaluated as:458 ∫ 2R

0

r2eikr[ikr − 1] dr = 8ei2kRR3
[
1− 2

ikR
− 2

k2R2
+

1

ik3R3

]
− 8

ik3
(B.3)

Thus Eq. B.2 becomes:459 ∫
S

z
∂G(x,x0)

∂n
dS = −2πR

{
ei2kR +

1

ikR

[
− ei2kR + 1

]}
+4πRei2kR

[
1− 2

ikR
− 2

k2R2
+

1

ik3R3

]
− 4πR

ik3R3
= −2πR,

(B.4)

where Eq. B.1 was used in the last equality. Multiplying by e−ikR/(2πR)460

and regrouping terms with e−ikR and eikR leads to:461

e−ikR
[
1− 1

ikR
− 2

ik3R3

]
+ eikR

[
1− 3

ikR
− 4

k2R2
+

2

ik3R3

]
= 0 (B.5)

Expanding e−ikR and eikR into cos(kR) and sin(kR) terms gives:462

cos(kR)
[
2− 4

ikR
− 4

k2R2

]
− i sin(kR)

[ 2

ikR
+

4

k2R2
− 4

ik3R3

]
(B.6)
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Separating this into real and imaginary parts:463

Real part: cos(kR)
[
2− 4

k2R2

]
= sin(kR)

[ 4

kR
− 4

k3R3

]
Imaginary part: cos(kR)

4

kR
= sin(kR)

4

k2R2

(B.7)

Both the real and imaginary part lead to the following condition:464

tan(kR) = kR (B.8)

which is the same as the internal resonance condition for m = 1, with solution465

kR = 4.49341 etc. (see Table 1).466

Appendix C. The m=0 case with a modified Green’s function467

The normal derivative of the additional part is:468

∂G(x,a|k)

∂n
= n · [x− a]

eikr
′

r′3
[ikr′ − 1]. (C.1)

As in Section 3 assume that f = const (corresponding to m = 0) and again469

assume that the point x0 is located on the z-axis, the vectors x and n and470

dS are defined the same as in Section 3, while471

x−a = [R cos θ sinα,R sin θ sinα,R cosα−a]. Thus n·[x−a] = −R+a cosα.472

For the length r′ the following relationship can be found:473

r′2 = R2 sin2 α + (R cosα− a)2 = R2 − 2aR cosα + a2, (C.2)

while for dr′ one finds:474

r′ dr′ = aR sinα dα (C.3)

Thus, similar to Eq. A.2:475 ∫
S

∂G(x,a|k)

∂n
dS =

∫ R+a

R−a
n · [x− a]

eikr
′

r′3
[ikr′ − 1]2πr′

R

a
dr′. (C.4)

Substituting n · [x− a] = −R+ a cosα and eliminating cosα with Eq. C.2:476 ∫
S

∂G(x,a|k)

∂n
dS =

2πR

a

∫ R+a

R−a

[
−R +

R2 + a2 − r′2

2R

]eikr′
r′2

[ikr′ − 1] dr′

=
2πR

a

[
1− 1

ikR

]
eikR[eika − e−ika].

(C.5)
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The last equality can be obtained easiest by splitting the integral in two parts477

and using ∂eikr
′
/∂r′ = eikr

′
[ikr′ − 1]/r′2. Eq. C.5 can be simplified to:478 ∫

S

∂G(x,a|k)

∂n
dS = 2πR

[
1− 1

ikR

]
eikR2i

sin(ka)

a
. (C.6)

Eq. A.4 will now have an additional part as:479

2π − 2π
{
ei2kR +

1

ikR

[
− ei2kR + 1

]}
c22πR

[
1 +

1

ikR

]
eikR2i

sin(ka)

a
= 0.

(C.7)

Multiplying by e−ikR/(4πi) gives:480

sin(kR)
[
1 +

1

ikR

]
+ c2R

[
1 +

1

ikR

]sin(ka)

a
= 0. (C.8)

Since the common term [1 + 1/ikR] can never become zero (k is a real num-481

ber), this finally simplifies to:482

sin(kR) + c2(R/a) sin(ka) = 0. (C.9)

If this equation is satisfied for a certain wave number, k, then kf = k.483
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