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Abstract

The classical problem of the electrophoretic motion of a spherical particle has been treated theoretically by Overbeek in his 1941
PhD thesis and almost 40 years later by O’Brien & White. Although both approaches used identical assumptions, the details are
quite different. Overbeek solved for the pressure, velocity fields as well as the electrostatic potential whereas O’Brien & White
obtained the electrophoretic mobility without the need to consider the pressure and velocity explicitly. In this paper, we establish the
equivalence of these two approaches which allow us to show that the tangential component of the fluid velocity has a maximum near
the surface of the particle and outside the double layer, the velocity decays as 1/r3, where r is the distance from the sphere, instead
of 1/r in normal Stokes flow. Associated with this behavior is that of an irrotational outer flow field. This is consistent with the
fact that a sphere moving with a constant electrophoretic velocity experiences zero net force. A study of the forces on the particle
also provides a physical explanation of the independence of the electrophoretic mobility on the electrostatic boundary conditions
or dielectric permittivity of the particle. These results are important in situations where inter-particle interaction is considered, for
instance, in electrokinetic deposition.

Keywords: Colloid, Double layer, Constant pressure irrotational Stokes flow, Short range interaction for multiple particles,
Electrophoresis, Electrophoretic mobility

1. Introduction

Electrophoresis, the study of the motion of small charged
particles in an electrolyte due to the influence of an applied
electric field, has a long history. In colloid and interface sci-
ence, it has found extensive applications in the characterization
of particulate dispersions, emulsions, polymeric and soft bio-
logical systems [1, 2].

Historically, it has been a century since Smoluchowski [3]
published his result for the electrophoretic mobility of a col-
loidal particle with a thin electrical double layer. Nearly 80
years ago Overbeek [4], in his PhD thesis, extended Henry’s [5]
theory of the electrophoresis of a spherical colloidal particle
with low surface potentials in a symmetric electrolyte to include
the relaxation effect that is important at high surface potentials.
Forty years ago, O’Brien & White [6] provided a comprehen-
sive formulation of the electrokinetic problem in an electrolyte
of arbitrary ionic composition. By exploiting the special sym-
metry of a sphere in a uniform applied electric field, E, they
simplified the electrokinetic equations to a set of coupled ordi-
nary differential equations in the radial coordinate, r and devel-
oped a robust numerical scheme to solve this system of differen-
tial equations. This development facilitated the accurate estima-
tion of the electrokinetic mobility of a solid charged sphere for
all practical magnitudes of the zeta (ζ)-potential and the sphere
radius relative to the thickness of the electrical double layer.

Although the physical models of the electrophoresis of a

spherical particle considered by Overbeek [4] and by O’Brien
& White [6] are identical, the O’Brien & White [6] treatment
highlighted the dual length scale nature of the problem char-
acterized by the Debye length and the particle radius. When
the Debye length is small compared to the particle size, in the
so-called thin double layer regime, one encounters ‘stiff’ dif-
ferential equations that can be challenging in numerical imple-
mentations.

An important theoretical observation was made by Morri-
son [7] nearly half a century ago, whereby the fluid flow field
around a particle undergoing electrophoretic motion is shown to
be irrotational, but there have been few attempts to explore the
consequences of this interesting phenomenon in the literature.
Indeed, a detailed description of the flow field occurring dur-
ing electrophoresis seems not to have been given to this day. In
part perhaps because it has been possible to calculate the elec-
trophoretic mobility, for instance with the O’Brien & White [6]
approach, without the need to consider details of the flow field.
As will be shown later, the velocity field around a particle in
electrophoretic motion is unusual in the sense that it decays as
1/r3 with the distance, r from the particle, rather than as 1/r in
the more familiar Stokes flow [8]. Associated with the fact that
the velocity field is irrotational outside the double layer around
the particle, the pressure field decays exponentially on the scale
of the Debye length with distance from the particle rather than
as 1/r2 in Stokes flow. Such behaviours of the velocity and
pressure fields have implications for electrokinetic studies at
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finite particulate concentrations where effects due to the inter-
actions between particles can become important [9, 10].

One objective in this paper is to demonstrate the connection
between the Overbeek [4] and O’Brien & White [6] general the-
ory of the electrophoresis of a spherical particle. From this de-
velopment, we can make explicit the dual length-scale hydrody-
namic features associated with a particle under electrophoretic
motion and elucidate the physics principles that underpin un-
usual behaviour such as a more rapidly decaying velocity field,
a vanishing pressure field and the presence of a fluid velocity
maximum near the electrical double layer around the particle.
We show that these features, that to the best of our knowledge
have not been demonstrated previously, are all consequences of
the fact that the particle travels at the constant electrophoretic
velocity under the applied electric field that arise from the bal-
ance of the electrical forces that drives the particle and the re-
tarding hydrodynamic drag force.

In Section 2 the governing equations are given for a general
electrophoretic problem. A generalization to multi-valent sys-
tems of the formally exact solution for the electrophoresis of a
spherical particle by Ohshima, Healy & White [11] is given in
Section 3. The connection between this solution and the Over-
beek [4] theory that appears to be absent in the literature is pro-
vided in Section 4. In Section 5 we derive general properties of
the pressure and velocity that appear not to have been elucidated
before. The model of Henry [5] can then be seen as a simplifica-
tion of the Overbeek theory and we use it to produce numerical
results to illustrate the unusual hydrodynamic behavior associ-
ated with the electrophoretic motion of a sphere in Section 6.
A discussion on the force balance and its physical implications
is given in Section 7 where we exhibit the cancellation between
the different contributions as described by Overbeek. This is
an explicit demonstration of the O’Brien & White observation
that the electrophoretic mobility of a dielectric sphere is inde-
pendent of its permittivity and is also independent of the form
of the perturbed electrostatic potential around the sphere. The
perturbed electrostatic potential governs the equal and opposite
internal forces between the particle and the deformed electrical
double layer and so does not affect the net force on the particle.
The paper closes with concluding remarks about the implica-
tions of the present findings. Relevant details of the derivations
are given in the Appendices, including a derivation of the Over-
beek theory expounded in Dutch in his PhD thesis. A glossary
of symbols is provided for convenience.

2. Governing equations

In electrophoresis, a charged colloidal particle, usually in an
aqueous electrolyte, moves with constant velocity, U under the
influence of a constant applied external electric field, E. In gen-
eral, the magnitude of the applied field is small compared to the
field within the electrical double layer around the charged parti-
cle. The physical quantity of interest is the electrophoretic mo-
bility, µm ≡ U/E that can vary with particle size, particle charge
and the electrolyte composition and concentration. For parti-
cles of dimension, d ∼ 10−6 m, velocity, U < 10−4 m/s [12], an
order-of-magnitude estimate for the Reynolds number can be

determined as, Re ∼ ρLUd/η ∼ (103)(10−4)(10−6)/10−3 ∼ 10−4

(for water with density ρL = 1000 kg/m3 and viscosity η = 10−3

Pa s). Since Re << 1, inertial effects can be neglected such that
the Stokes model for creeping flow can be used to describe the
hydrodynamics [13, 14].

The description of steady state electrokinetic phenomena
also requires specification for the velocity of the solvent, the
local ion number density and charge density as well as veloc-
ities or currents of ionic species that make up the electrolyte
and the electrostatic potential. Here, we recapitulate the model
of Overbeek [4] and of O’Brien & White [6] who derived the
same governing equations for particle electrophoresis but fol-
lowed different methods of solution.

2.1. System in an external electric field E
In the description given here, we assume that the coordinate

system is attached to the particle under consideration and thus
the flow at infinity moves in the opposite direction of the elec-
trophoretic velocity in the laboratory frame of reference. In
the presence of an external electric field, E, the local electrical
chemical potential, µi(x) of ionic species i with valence, zi is
related to the total electrostatic potential, ψ(x) and the local ion
number density, ni(x) by

µi = µ∞i + zi e ψ + kT log ni (1)

where µ∞i is the constant reference chemical potential and e is
the protonic charge. The steady state ion transport process of
each ionic species, i is determined by balancing the force due
to the gradient of the ionic electrical chemical potential and that
due to the Stokes-Einstein drag on the ion that is proportional
to the ion velocity, vi(x) relative to the fluid velocity, u(x),

λi (vi − u) = −∇µi = −zi e ∇ψ − kT ∇ log ni (2)

where λi is the ion drag coefficient. The conservation of ionic
flux gives, in the steady state

∇ · (ni vi) = 0. (3)

The local volume charge density, ρ(x) made up of ionic
species i, is given in terms of ni(x) by

ρ = Σi ni zi e. (4)

The Poisson equation provides the relation between the total
electrostatic potential, ψ(x), describing the local electric field,
(−∇ψ), the total volume charge density, ρ(x) and the ion number
density, ni(x):

∇2 ψ = −ρ/ε = −(e/ε) Σi ni zi (5)

where the solvent permittivity ε ≡ ε0εr is the product of the
permittivity of free space, ε0 and the relative permittivity of the
solvent, εr. Inside the particle with dielectric permittivity, εp,
the potential satisfies the Laplace equation: ∇2ψ = 0.

The solvent of the electrolyte is taken to be incompressible
so that the velocity field, u is divergence free

∇ · u = 0. (6)
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The momentum equation that governs the fluid velocity, u and
the pressure, p is described by Stokes flow in the presence of
the electrostatic body force, (−ρ∇ψ)

η ∇2u − ∇p = ρ ∇ψ, (7)

where all inertial terms have been neglected. This equation can
be derived from considering the stress tensor, see Appendix C.

2.2. No external field: E = 0
In the absence of the external electric field, E = 0 the system

is in equilibrium so the fluid and ion velocities vanish: u = 0
and vi = 0. With other physical variables in equilibrium dis-
tinguished by the superscript ‘0’, the ion transport equation be-
comes

zi e ∇ψ0 + kT ∇ log n0
i = 0. (8)

The integral of this result gives the mean field Boltzmann dis-
tribution for the ion number density

n0
i (x) = n∞i exp[−zi eψ0(x)/kT ] (9)

with n∞i representing the uniform ion density in bulk solution
where ψ0 = 0. The gradient of the Boltzmann distribution gives
the identity

∇n0
i (x) = − (zi e/kT ) n0

i (x) ∇ψ0(x) (10)

that is useful in casting later results in physically meaningful
forms. For instance, the momentum equation (7) at equilibrium
becomes, using (4) and (10)

∇p0 = −ρ0 ∇ψ0

= ε (∇2ψ0) ∇ψ0

= ∇ (kT Σi n0
i )

(11)

and relates the pressure gradient to the ionic osmotic gradients.
And finally, the combination of the Poisson equation with

the mean field Boltzmann distribution of ions that relate the
ion density, n0

i to the potential, ψ0 gives the Poisson-Boltzmann
equation that determines the equilibrium electrostatic potential,
ψ0(x):

∇2ψ0 = −ρ0/ε = −(e/ε) Σi n0
i zi

= −(e/ε) Σi n∞i zi exp[−zieψ0/kT ]. (12)

The equilibrium electrostatic potential, ψ0(x) decays exponen-
tially to zero away from the particle with the characteristic De-
bye length, 1/κ, where

κ2 ≡ (e2/εkT ) Σi n∞i z2
i (13)

that is determined by the ionic valence, zi and the ion number
density, n∞i far from the particle.

It is only necessary to solve (12) to determine the potential
distribution in the solvent, without the need to consider the po-
tential inside a dielectric particle if the particle has a specified
surface potential (that may even vary along the surface). On the
other hand, if the particle has a specified surface charge density
distribution, then in general, it will be necessary to consider the
potential inside the particle in determining the potential in the
solvent outside the particle.

2.3. The linearized electrokinetic equations
The electrokinetic transport equations are obtained by ex-

panding the governing equations as first order perturbations in
the applied external electric field, E, to all equilibrium quan-
tities. This is justified on account that the magnitude of the
applied field is in practice small compared to the electric field
in the electrical double layer. Hence, we can express,

p = p0 + δp (14a)

ψ = ψ0 + δψ (14b)

ni = n0
i + δni (14c)

µi = µ0
i + δµi (14d)

ρ = ρ0 + δρ (14e)

in which the perturbation terms δp, δψ, δni, δµi and δρ are of the
same order as the fluid velocity, u, the ion velocities, vi and the
applied field, E. The governing equations for the electrokinetic
phenomenon are obtained by retaining such first order terms in
(2), (3), (5) and (7), namely,

∇ ·
[
λi n0

i u − zi e n0
i ∇δψ − kT∇δni − zie δni∇ψ

0] = 0 (15a)

∇2δψ = −
1
ε
δρ = −

1
ε

Σi zi e δni (15b)

η∇2u − ∇δp = ρ0∇δψ + δρ∇ψ0 (15c)

where (15a) can be obtained by multiplying (2) with ni, linearis-
ing and utilising (3).

The electrokinetic problem then entails solving the coupled
equations that are linear in the perturbation quantities: u, δψ,
δp and δni in (15). This set of equations is the common start-
ing point of the theoretical treatment of electrokinetics. Note
that these coupled equations only require the equilibrium elec-
trostatic potential, ψ0(x), and the ion distributions, n0

i (x) to be
available but they do not depend whether one uses, say, the
full non-linear Poisson-Boltzmann theory or the linear Debye-
Hückel theory to specify these equilibrium quantities.

The theory of the electrophoretic motion of a spherical par-
ticle developed by Overbeek [4] and subsequently by O’Brien
& White [6] therefore have the identical physical content and
only differ in the way the equations are solved. The inherent az-
imuthal symmetry of the electrophoresis of a spherical colloidal
particle under a uniform applied electric field in the z-direction
implies that the unknown perturbation quantities have the gen-
eral form: f (r, θ) = F(r) cos θ, or g(r, θ) = G(r) sin θ, where
r is the radial distance from the centre of the sphere and θ is
the polar angle relative to the direction of E. Thus the problem
described by (15) can be reduced to a set of coupled ordinary
differential equations for the unknown functions of r. This is
the approach adopted by Henry and Overbeek. By further in-
troducing ion potential functions, O’Brien & White were able
to decouple this set of ordinary differential equations in order to
obtain the electrophoretic mobility: one only needs to solve for
a hydrodynamic function, h(r) and N ionic potential functions,
φi(r) where i = 1, . . . ,N for N ionic species of the electrolyte.

In the following, we demonstrate the connection between the
Overbeek and the O’Brien & White solutions.
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3. The O’Brien & White solution for a sphere

3.1. The first order equations in E
To solve the electrokinetic equations that are first order in the

applied field, E, O’Brien & White [6] streamlined the analysis
by introducing the ion potential, ϕi(x) in the linearization of
the expression for the chemical potential (1) for the perturbed
chemical potential, δµi of ion species i

δµi(x) = zi e δψ + kT (δni/n0
i ) ≡ − zi e ϕi(x). (16)

To first order, the ion flux conservation condition (3) can now
be expressed in terms of ϕi

∇ · [n0
i (zi e ∇ϕi + λi u)] = 0 (17)

to provide one equation that couples the function ϕi(x) to the
velocity field, u(x).

To the same linear order, the Stokes equation for the fluid
velocity, (7) becomes

η ∇2u − ∇[δp − kT Σi δni] = − Σi zi e n0
i ∇ϕi. (18)

Now the terms involving δp and δni can be eliminated by taking
the curl of (18) to give

η ∇2(∇ × u) = Σi zi e (∇ϕi) × (∇n0
i ). (19)

Thus (17) and (19) form a pair of equations that together deter-
mine ϕi and u. These two functions are pivotal in the O’Brien
& White solution because they are decoupled from other per-
turbed quantities.

The perturbed electrostatic potential, δψ can be determined
by the linearized version of the Poisson equation (5) in the sol-
vent given by (15b) where the perturbed ion density, δni and
hence the perturbed charged density, δρ can be expressed in
terms of δψ and ϕi using (16) to give for a sphere of radius, a,

r > a : ∇2δψ = −
1
ε
δρ = (e2/εkT ) Σi n0

i z2
i [ϕi + δψ] (20a)

r < a : ∇2δψ = 0. (20b)

To first order in E, the complete electrophoresis problem is
therefore determined by solving (17), (19) and (20) for the un-
knowns ϕi (17), u and δψ together with the following boundary
conditions. More importantly, we will see that the introduction
of the ion potential ϕi means that the electrophoretic mobility,
U/E can be found by solving only (17) and (19) without the
need to solve (20) for the perturbed potential, δψ.

Far from the particle, we have the condition that the per-
turbed ion density, δni → 0 and the electrostatic potential
becomes the potential that corresponds to the applied electric
field, E, that is: ψ → δψ → −E · x. So from (16) we have the
boundary conditions:

Far from the particle, |x| → ∞

δψ(x)→ −E · x (21a)
ϕi(x)→ E · x (21b)
u(x)→ − U. (21c)

The velocity field, u in the frame of reference where the particle
is stationary must be the negative of the electrokinetic velocity,
U that is parallel to E in the laboratory frame.

At the solid particle surface, r = a, with outward unit normal
n the boundary conditions are,

continuity of δψ(x) and ε n · ∇δψ (22a)
∇ϕi(x) · n = 0 (22b)

u(x) = 0 (22c)

since δψ obeys the usual electrostatic boundary conditions, ion
fluxes into the solid particle vanish and the fluid velocity rel-
ative to the solid surface is zero (the immobile hydrodynamic
boundary condition).

3.2. Formal solution for electrophoresis of a sphere
For a spherical solid particle with a uniform ζ potential

in a constant external electric field, E, Ohshima, Healy &
White [11] derived a formal solution of the electrokinetic trans-
port equations for a symmetric z : z electrolyte. Here we gener-
alize their solution to an electrolyte of arbitrary composition.

In view of the boundary condition (21) on ϕi as |x| → ∞

and by symmetry considerations, we can seek a solution of the
chemical potential, δµi or equivalently for the ion potentials, ϕi

in the form

δµi(x) = − zi e ϕi(x) = − zi e φi(r) E cos θ (23)

where the origin of the coordinate system is at the centre of the
sphere, the direction of the z-axis is along E and θ is the polar
angle. The new unknown ion potential, φi(r) is only a function
of the radial distance, r from the centre of the sphere.

The same symmetry consideration also means that the fluid
velocity, u can be represented in terms of a function, h(r) that
only varies with the radial coordinate, r in the form

u = ur nr + uθnθ

= −
2
r

h(r) E cos θ nr +
1
r

d
dr

[
r h(r)

]
E sin θ nθ

(24)

where nr and nθ are unit vectors in the r and θ directions respec-
tively. The incompressibility condition: ∇ · u = 0 is satisfied
automatically by (24).

With the introduction of the ion potential function, φi(r), and
the hydrodynamic function, h(r), the electrokinetic transport
partial differential equations for ϕi(x) (17) and u(x) (19) be-
come the following coupled ordinary differential equations for
φi(r) and h(r):

L [φi(r)] = fi(r) ≡
zie
kT

(
dψ0(r)

dr

) (
dφi(r)

dr
−

2λi

zie
h(r)

r

)
(25)

L [L [h(r)]] = g(r) ≡
e
η

1
r

∑
i

dn0
i (r)
dr

zi φi(r) (26)

with L the differential operator that follows from the identity:

∇2[F(r) cos θ] =

[
d2F
dr2 +

2
r

dF
dr
−

2F
r2

]
cos θ ≡ L [F] cos θ. (27)
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The general solution of the equation

L[F(r)] = K(r) (28)

has homogeneous solutions: F(r) = r and 1/r2 and a particular
integral,

F(r) = −
1
3

∫ ∞

r

(
r −

x3

r2

)
K(x) dx. (29)

Notice that the differential equation for the ion potential,
φi(r) (25), has the gradient of the equilibrium potential, dψ0/dr,
and the hydrodynamic function, h(r) as the inhomogeneous
term on the right hand side. Whereas, the differential equation
for the hydrodynamic function, h(r) (26), has the ion potential,
φi(r), and the gradient of the equilibrium ion density, dn0

i /dr
(that from (10) is proportional to dψ0/dr) as the inhomogeneous
term on the right hand side. The origin of this term is the body
force, (−ρ∇ψ), in (7).

The differential equations for φi(r) (25) and h(r) (26) can be
integrated, using for example the Green’s functions of the op-
erators L and L L, to give the following formal solutions that
are coupled integral equations because the functions fi(r) and
g(r) are themselves defined in terms of φi(r) and h(r) in (25)
and (26):

φi(r) =
3a
2

(
1 −

1
3

∫ ∞

a
fi(x) dx

)
+

1
2r2 (2r + a)(r − a)2

(
1 −

1
3

∫ ∞

a
fi(x) dx

)
+

1
3

∫ r

a

[
r −

x3

r2

]
fi(x) dx (30)

h(r) = −
1
30

∫ ∞

r

(
r3 + 5x3

)
g(x) dx

+
r

18a

[∫ ∞

a

(
a3 + 2x3

)
g(x) dx −

∫ r

a
3ax2 g(x) dx

]
+

1
90r2

[∫ ∞

a

(
5x3a2 − 2a5

)
g(x) dx −

∫ r

a
3x5 g(x) dx

]
.

(31)

These solutions are generalizations of the results of Ohshima,
Healy & White [11] to a uniformly charged spherical solid
particle without restrictions on the magnitude of ratio of the
sphere radius to the double layer length, 1/κa, the ζ-potential
of the particle and the electrolyte composition. The presence of
the terms dψ0/dr or dn0

i /dr in fi(r) and g(r) means that these
functions decay exponentially with the Debye length, 1/κ and
become vanishingly small outside the electrical double layer
around the particle, κ(r − a) >> 1, thus ensuring the conver-
gence of all integrals.

For the electrophoresis problem, we see from (21) and (22)
that the boundary conditions on the functions φi(r) and h(r) are

dφi

dr
= 0, r = a (32a)

φi → r, r → ∞ (32b)

h = 0 =
dh
dr
, r = a (32c)

h→
U
2E

r r → ∞. (32d)

The uniform velocity boundary condition at infinity (21c) is re-
flected in (32d) for h (see also Section 7).

The electrophoretic mobility, U/E, can be obtained from the
boundary condition on h(r) as r → ∞ (32d) where the coeffi-
cient proportional to r in this limit can be obtained from (31)
as

µm ≡
U
E

= 2 lim
r→∞

h(r)
r

=
1
9a

∫ ∞

a

(
a3 + 2x3 − 3ax2

)
g(x) dx

(33)
whereby only knowledge of the functions φi(r) is required, see
(26) for the relation between g and φi. Hence, in the O’Brien
& White [6] analysis, the mobility can be found without having
to solve for the perturbed electrostatic potential, δψ, or the per-
turbed ion density, δni. Since the mobility µm = U/E was their
primary interest, they did not explore the details of the rather
unusual features of the velocity field, u or the pressure.

It is easy to verify that the ion potential functions, φi(r) given
in (30) satisfy the required boundary condition at r = a in (32).
In the limit r → ∞, φi(r) becomes a sum of terms proportional
to r. In the same large r limit, the hydrodynamic function h(r)
given by (31) becomes the sum of a constant and terms propor-
tional to r and 1/r2. As we will demonstrate below, this large
r form of the hydrodynamic function h(r) has the physical im-
plication that the velocity field outside the double layer is an
unusual zero pressure Stokes flow. But before we do so, let us
recall some classical results relating to the velocity and pressure
field around a sphere placed in a uniform flow field at infinity.

3.3. Hydrodynamics of a sphere in uniform flow field
Before considering details of the pressure and velocity field

in the electrophoresis problem, it is instructive to recall results
of the hydrodynamic problem of Stokes flow past a sphere of
radius, a, in an imposed uniform velocity field −Uk. For this
simpler problem, the velocity, uS , has the form, similar to (24)

uS = uS
r nr + uS

θ nθ

= −
2
r

hS (r) cos θ nr +
1
r

d
dr

[
r hS (r)

]
sin θ nθ

(34)

with
hS (r) =

U
2

(
r + b1 +

b2

r2

)
(35)

being the homogeneous solution of (26) with the boundary con-
dition uS → −Uk as r → ∞. The corresponding solution for
the pressure is seen to be proportional to the constant b1

pS = −
ηUb1

r2 cos θ (36)
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and the tangential stress on the sphere at r = a is proportional
to the coefficient b2:

τS ≡ η
(1

r
∂uS

r

∂θ
+
∂uS

θ

∂r
−

uS
θ

r

)
=

3ηUb2 sin θ
a4 . (37)

The coefficients b1 and b2 are determined by the boundary
condition at the sphere surface at r = a where the radial ve-
locity, uS

r = 0, because the particle is impenetrable. However,
there are three cases for the boundary condition on the tangen-
tial velocity, uθ that are of special interest.

3.3.1. Zero tangential velocity: uS
r = 0, uS

θ = 0 at r = a
This is the boundary condition that corresponds to the Stokes

problem of a solid sphere with the immobile surface velocity
condition, the ‘classical’ Stokes flow [13, 14]. This gives for
r ≥ a,

hS (r) =
U
2

(
r −

3a
2

+
a3

2r2

)
(38)

pS (r, θ) =
3ηaU
2r2 cos θ (39)

uS = −U cos θ
(
1 −

3a
2r

+
a3

2r3

)
nr + U sin θ

(
1 −

3a
4r
−

a3

4r3

)
nθ

(40)
where we note that the pressure decays as 1/r2 and the velocity
components decay as 1/r towards the uniform flow as r → ∞.

3.3.2. Zero tangential stress: uS
r = 0, τS = 0 at r = a

The zero tangential stress boundary condition corresponds to
the familiar Hadamard-Rybczynski solution [15, 16, 17] for a
spherical ‘bubble’. The solutions are for r ≥ a:

hS (r) =
U
2

(
r − a

)
(41)

pS (r, θ) =
ηaU
r2 cos θ (42)

uS = −U cos θ
(
1 −

a
r

)
nr + U sin θ

(
1 −

a
2r

)
nθ. (43)

As with the Stokes problem, the pressure decays as 1/r2 and the
velocity components decay as 1/r towards the uniform flow as
r → ∞.

3.3.3. Prescribed velocity: uS
r = 0, uS

θ = 3
2 U sin θ at r = a

When the tangential velocity at r = a is prescribed to have
the value, uθ = 3

2 U sin θ, at r = a we have the solution for r ≥ a,

hS (r) =
U
2

(
r −

a3

r2

)
(44)

pS (r, θ) = 0 (45)

uS = −U cos θ
(
1 −

a3

r3

)
nr + U sin θ

(
1 +

a3

2r3

)
nθ. (46)

Note now that the constant b1 in hS (r) is zero and so the pres-
sure vanishes and the velocity decays faster as 1/r3 towards the
constant value at infinity than the previous two cases. From
(31), we see that for κ(r − a) >> 1, the hydrodynamic function,
h(r), for the electrophoresis problem becomes a sum of terms
in r and 1/r2, just as in (44). Thus outside the double layer, the
hydrodynamic behavior is a zero pressure Stokes flow.

4. The Overbeek solution for a sphere

Some 40 years before the O’Brien & White [6] treatment
of the electrokinetic problem detailed in the preceding section,
Overbeek analysed the same theoretical model using a very dif-
ferent approach in his PhD thesis. His work extended that of
Henry [5] which was published 10 year prior, and included what
Overbeek called the relaxation effect. In essence, Henry as-
sumed that the ionic atmosphere around the spherical colloidal
particle remains in its equilibrium spherically symmetric con-
figuration and thus omitted the distorting effects due to the mo-
tion of the particle and the electrostatic interaction between the
ionic atmosphere and the applied electric field. Overbeek pro-
vided a consistent account of this effect that is important when
the ζ-potential of the particle is high, say above 50 mV.

Overbeek analysed the first order electrokinetic equations
(15), detailed in Section 2, for a z:z electrolyte, but as with
Henry, worked directly to solve for the first order quantities
u, δψ, δni and δp and did not introduce the ion potential, ϕi

(16). As we shall demonstrate, this approach is more phys-
ically perspicuous in that it allows us to deduce rather general
and unusual properties of the velocity field associated with elec-
trokinetic motion. With this approach, it is possible to identify
explicitly and separate the contributions of the hydrodynamic
forces and the electrical forces, and observe how the terms can-
cel to give a zero net force thereby resulting in a constant elec-
trophoretic velocity for the particle, see Appendix B for details.
This analysis also provides insight into why the mobility of a
dielectric sphere is independent of its permittivity or the elec-
trostatic boundary conditions. However, the numerical imple-
mentation of this theoretical approach [18] was not uniformly
accurate for all parameters of interest and the development of
the O’Brien & White [6] approach resolved this issue.

Here we establish equivalence of the Overbeek and O’Brien-
White solutions and in particular give explicit expressions for
the velocity components and the pressure.

In addition to giving an expression for the mobility, Overbeek
also obtained explicit expressions for the fluid velocity, u, the
pressure, p, and the perturbed electrostatic potential, δψ, around
a spherical particle under electrophoretic motion. His solution
is written in terms of 3 functions of the radial distance, r from
the centre of the sphere: ξ(r), χ(r) and R(r). The mobility is
expressed in terms of the function, ξ(r) as,

µm ≡
U
E

= −
2ε
3η

∫ ∞

a
ξ(r) dr. (47)

The function ξ(r) has the same role as that in Henry’s theory
although the particular form differs because of the omission of
the relaxation effect in the Henry treatment [5]. The velocity
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components u = ur nr + uθnθ are also given in terms of ξ(r),

ur(r) =
2εE cos θ

3η

∫ r

a

(
1 −

x3

r3

)
ξ(x) dx ≡

2εζE cos θ
3η

ūr(r)

(48a)

uθ(r) = −
2εE sin θ

3η

∫ r

a

(
1 +

x3

2r3

)
ξ(x) dx ≡

2εζE sin θ
3η

ūθ(r)

(48b)

w(r) ≡ (∇ × u)ϕ =
εE
η
ξ(r) sin θ (48c)

where w(r) ≡ (∇× u)ϕ in (48c) is the only non-zero component
of the vorticity and is along the azimuthal ϕ-direction and we
have introduced the ζ-potential of the particle in defining the
dimensionless velocities, ūr(r) and ūθ(r) in (48). The derivation
of the above equations can be found in Appendix B.

The pressure, p and perturbed potential, δψ are given in terms
of the functions χ(r) and R(r) as follows:

p = − ε

∫ ∞

r
∇2ψ0 dψ0

dx
dx − εE χ(r) cos θ (49a)

δψ = −E R(r) cos θ. (49b)

The first term for the pressure, p in (49a) is the equilibrium
contribution, p0 that follows from (11) that is expressed in terms
of the equilibrium electrostatic potential ψ0(r).

The functions χ(r) for the perturbed pressure, δp and R(r) for
the perturbed potential δψ are related to ξ(r) by

χ(r) =
(
2

R(r)
r

+
dR(r)

dr

) dψ0(r)
dr

− 2 ξ(r) (50)

ξ(r) =
R(r)

r
dψ0(r)

dr
+ 2r

∫ ∞

r

(
1
x2

dR(x)
dx

−
R(x)
x3

)
dψ0(x)

dx
dx.

(51)
The function, R(r) can be found by solving (15b). Overbeek
obtained R(r) for a symmetric z:z electrolyte using a pertur-
bation analysis that involved cumbersome algebraic manipula-
tions that did not provide much general insight. Nonetheless,
we can make the formally exact connection between the Over-
beek solution and the solution of Ohshima et al. [11] by equat-
ing the expressions for ur in (24) and (48a) to give

h(r) = −
ε

3η

∫ r

a

(
r −

x3

r2

)
ξ(x) dx (52)

which can be used to establish, by direct substitution, the fol-
lowing relation between ξ(r) of Overbeek and the hydrody-
namic function h(r) of Ohshima et al., see also (28) and (29)

ξ(r) = −
η

ε

[d2h
dr2 +

2
r

dh
dr
− 2

h
r2

]
≡ −

η

ε
L [h]. (53)

Using (31), ξ(r) can also be expressed in terms of g(r) which is
defined in terms of the ion potentials, φi(r), according to (26)

ξ(r) =
η

3ε

∫ ∞

r

(
r −

x3

r2

)
g(x) dx (54a)

=
e

3ε
1
r

∫ ∞

r

(
r −

x3

r2

)∑
i

dn0
i (x)
dx

zi φi(x) dx. (54b)

This is a key relation that connects the function, ξ(r) in the
Overbeek theory [4] to the ion potentials, φi(r) in the O’Brien
& White [6] solution.

Using (26) and (27), the inverse relationship of (54a) can be
found

L ξ(r) = −
η

ε
L [L [h]] = −

η

ε
g. (55)

These results are important because using (54a), the Over-
beek expression for electrophoretic mobility in (47) can be con-
verted to the expression for the mobility derived by Oshima et
al. in (33) and thus demonstrate the equivalence of the two so-
lutions. Furthermore, from the expression for ξ(r) in terms of
the derivative of the equilibrium ion number density, dn0

i /dx in
(54b) we expect that ξ(r) decays exponentially with the Debye
length, 1/κ as r → ∞. As we shall see in the next Section, this
leads to the existence of a maximum in the tangential compo-
nent of the velocity near the surface of the particle.

By employing the ion potential, φi(r) of O’Brien & White,
we can obtain, using (20) and (27), the equation for the func-
tion, R(r), that determines the radial variation of the perturbed
potential, δψ, see (49b), for an electrolyte of general composi-
tion,

r > a : L [R(r)] =
e2

εkT
Σi n0

i (r) z2
i [R(r) − φi(r)] ≡ K(r)

(56a)

r < a : L [R(r)] = 0. (56b)

We note that the right hand side of (56a) is proportional to the
perturbed charge density, δρ, see (20). Using the properties of
the L operator in (28) and (29), the formal solution of (56) is

R(r) = r +
B
r2 −

1
3

∫ ∞

r

(
r −

x3

r2

)
K(x) dx, r > a, (57a)

= Ar, r < a. (57b)

This solution satisfies the condition R(r) → r as r → ∞ and
the requirement that R is finite at the center of the sphere, r = 0.
Imposing the continuity of R and ε(dR/dr) at the sphere surface,
r = a, gives the constant, B

B =

( ε − εp

2ε + εp

)
a3 +

( εI2 − εpI1

2ε + εp

)
a3 (58)

where

I1 ≡ −
1
3

∫ ∞

a

(
1 −

x3

a3

)
K(x) dx, (59a)

I2 ≡ −
1
3

∫ ∞

a

(
1 +

2x3

a3

)
K(x) dx. (59b)

The above results establish the equivalence of the solutions
of the electrokinetic equations for a spherical particle developed
by Overbeek, O’Brien & White and Ohshima et al. Now we
can use Overbeek’s solution to deduce properties of the unusual
velocity and pressure field associated with the electrophoretic
motion without solving the equations explicitly.
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5. General properties of the pressure and velocity fields

Having established the equivalence between the Over-
beek [4] and the O’Brien & White [6] theories, we can de-
duce some unusual properties of the pressure and velocity field
around a spherical particle undergoing electrophoretic motion.
As far as we can ascertain, these properties have not been ex-
plored in depth and this may be because the focus has been on
obtaining expressions for the electrophoretic mobility.

5.1. The pressure field around a sphere

In most theoretical treatments, the pressure field was elimi-
nated early in the analysis by taking the curl of the linear order
form of the Stokes equation (18) to obtain (19).

From the solution of the pressure field, p, in the Overbeek
solution (49a), it is possible to deduce general properties of the
pressure without knowing the explicit form of χ(r) given by
(50) that is given in terms of the equilibrium potential, ψ0(r),
R(r) and the function, ξ(r). The first term on the right hand side
of (49a) for the pressure, p is simply the equilibrium contribu-
tion, p0 that is present even if there was no applied electric field,
as shown in (11). From the relation between the function ξ(r) in
the Overbeek solution to the Ohshima et al. [11] given in (54),
we deduce that the magnitude of ξ(r) is exponentially small out-
side the electrical double layer because it is proportional to the
derivative of the ion number density, dn0

i /dx. Thus from (50),
we see that χ(r) is also exponentially small outside the double
layer which implies that the pressure outside the double layer is
zero.

Therefore outside the double layer, the hydrodynamic behav-
ior is described by a zero pressure Stokes flow.

5.2. The velocity field around a sphere

We can also deduce general properties of the velocity field
from the general solution given by Overbeek. Since the func-
tion ξ(r) is exponentially small outside the electrical double
layer we conclude from (48c) that the vorticity, w(r) is zero
outside the double layer and the flow field outside the double
layer is irrotational: ∇ × u = 0.

The form of the velocity field, u, outside the double layer
and the manner it approaches the electrophoretic velocity, U
in (47) can be deduced from (47), (48a) and (48b) where the
expressions for the velocity components and the pressure and
vorticity become, in the limit κ(r − a) >> 1

ur ∼ −U cos θ −
(

2εE cos θ
3η

∫ ∞

a
x3ξ(x) dx

)
1
r3 (60a)

uθ ∼ U sin θ −
1
2

(
2εE sin θ

3η

∫ ∞

a
x3ξ(x) dx

)
1
r3 (60b)

p ∼ 0 (60c)
w ∼ 0. (60d)

These equations show that the velocity decays as 1/r3 outside
the double layer toward the uniform flow at infinity and has the
same behavior as the case of Stokes flow with a specially pre-
scribed tangential velocity boundary condition discussed earlier

in Section 3.3.3. This asymptotic behavior has been pointed out
in the literature [8] without extensive investigation. This is in
stark contrast to the velocity decay in a classical Stokes sphere
with the familiar immobile, no-slip boundary condition where
the velocity decays as 1/r given in Section 3.3.1.

The flow field in the limit of κa → ∞ can also be calculated
analytically, since

lim
κa→∞

∫ ∞

a
x3ξ(x) dx→ a3

∫ ∞

a
ξ(x) dx = −a3 3η

2ε
U
E

(61)

where the expression (47) for the mobility U/E is used to estab-
lish the last equality. Using this result in the Overbeek solution
for the velocity components (48) then gives the large κa or thin
double layer limiting forms for the velocity:

lim
κa→∞

ur(r)→ −U cos θ +
a3

r3 U cos θ (62a)

lim
κa→∞

uθ(r)→ U sin θ +
a3

2r3 U sin θ. (62b)

These limiting results have the same form as the zero pressure
Stokes flow result around a sphere with a certain prescribed tan-
gential velocity given in Section 3.3.3. This observation pro-
vides the motivation for modeling electrophoresis in the thin
double layer limit [12, 19].

Although the velocity field in (62) appears to be identical to
the results obtained for a potential flow model, this is coinciden-
tal because the physics of the two models are very different. The
potential flow model is valid in the limit where viscosity effects
may be neglected whereas viscosity effects dominate the hydro-
dynamics in the electrophoresis problem in the low Reynolds
number regime. In zero viscosity potential flow, the pressure is
non-zero but the net force on a sphere in a uniform flow field
is zero because the contribution to the stress tensor due to the
pressure on the up-stream half of the sphere is exactly balanced
by the pressure acting on the down-stream half of the sphere
that gives rise to the well-known d’Alembert Paradox. On the
other hand, in the zero pressure Stokes flow that pertains in the
electrophoresis problem, the pressure is zero. Therefore, the
suggestion [7] that the Bernoulli equation can be used to con-
clude that the pressure varies as the square of the velocity and
hence decays as 1/r6 is not consistent with the governing equa-
tions that describe the electrokinetic phenomenon.

From the general solution of the velocity field given by Over-
beek, we can demonstrate that the radial velocity, ur(r) (48a)
changes monotonically from the surface of the sphere towards
infinity, but the magnitude of the tangential velocity, uθ(r) (48b)
exhibits a maximum near the double layer. We begin by taking
the derivative of the velocity components in (48) to obtain,

dur(r)
dr

=
εE cos θ

η

[
2
r4

∫ r

a
x3 ξ(x) dx

]
(63a)

duθ(r)
dr

= −
εE sin θ

η

[
ξ(r) −

1
r4

∫ r

a
x3 ξ(x) dx

]
. (63b)

As we shall see the magnitude of ξ(r) decreases monotoni-
cally from the surface value |ξ(a)| to zero as r → ∞. Thus the
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derivative of the radial component of the velocity in (63a) does
not change sign.

On the other hand, we know that ξ(r) decays from |ξ(a)| at r =

a to zero exponentially fast outside the double layer whereas the
integral in (63b) is zero at r = a and decays as 1/r4 as r → ∞.
Therefore, the derivative of the tangential velocity duθ(r)/dr
must change sign, that is, the tangential velocity, uθ must have a
maximum in its magnitude at some position between r = a and
r = ∞. This behavior is qualitatively different from familiar
cases of Stokes flow results given in Section 3.3 in which the
velocity profiles are all monotonic and decay much slower as
1/r far from the sphere.

Before we offer numerical examples of these observations,
we digress to revisit the textbook derivation of the Smolu-
chowski results for the mobility in the limit κa→ ∞ to show an
important qualitative difference in the form of the velocity field
in the limit κa >> 1 and the velocity field near a flat surface.

5.3. Planar derivation of the Smoluchowski result
In this section we show that the textbook derivation of the

Smoluchowski results, valid in the κa → ∞, predicts a qualita-
tively different form for the velocity profile to that near a sphere
when κa >> 1.

The planar derivation of the Smoluchowski result assumes
the particle is a flat plate at x = 0 with the electrical double
layer occupying the half-space, x > 0. The applied electric
field is in the z-direction: E = Ek. In the frame of reference in
which the electrolyte is quiescent at x → ∞ and the flat plate
moves with the electrophoretic velocity, U k, the velocity field
only has a non-zero z-component: u = uz(x)k and by symmetry
considerations, all physical quantities only vary with x.

The z-component of the Stokes equation (7) then has the from

η
d2uz(x)

dx2 = ρ(x)
dψ
dz

= −E ρ(x) (64)

since the z-component of the gradient of the potential is just
the negative of the applied field, E. The double layer charge
density, ρ(x) is related by the Poisson equation

d2ψs(x)
dx2 = −

ρ(x)
ε

(65)

to the potential ψs(x) due to the charged planar surface with
surface potential ζ = ψs(0).

By combining (64) and (65) we have

η
d2uz(x)

dx2 = εE
d2ψs(x)

dx2 (66)

and a first integral gives

η
duz(x)

dx
= εE

dψs(x)
dx

(67)

since both (duz(x)/dx) and (dψs(x)/dx) vanish in the limit x→
0. A second integration with the boundary condition uz(0) = U
and ψs(0) = ζ gives the Smoluchowski result for the mobility

µm ≡
U
E

=
εE
η

(Smoluchowski). (68)

that is applicable in the limit κa→ ∞.
An important implication of this derivation is that in the large

κa limit, the electrical double layer is assumed to be unper-
turbed by the applied field, E so that we may take ψs(x) at the
equilibrium potential, ψ0(x). And from (67) we conclude that
the velocity profile decays monotonically from uz(0) = U at the
surface to zero as x → ∞, in contradiction to the conclusion
we deduced in Section 5.2 that the component of the velocity
tangential to the surface has a maximum in its magnitude.

This apparent contradiction arises from that fact that taking
a planar geometry at the start of this analysis is not consistent
with the physically correct model of a thin double layer around
a particle of finite curvature. The important effect of particle
curvature is lost if one starts with a planar surface.

6. Visualisation using the Henry approximation

The omission of the relaxation effect limits the validity of the
Henry approximation to the regime of low surface potentials.
Nonetheless, the variations of the mobility with respect to the
particle radius scaled by the Debye length, κa, is predicted cor-
rectly and thus it can still provide useful and accessible phys-
ical insight into many aspects of the electrophoresis problem.
We therefore use the Henry model to visualise features of the
pressure and velocity field around a spherical particle in elec-
trophoresis.

6.1. The Henry Approximation

Henry’s solution [5] of the electrophoresis of a spherical par-
ticle can now be exhibited as a simplified version of the general
Overbeek solution. Starting with (56) for the radial function,
R(r) of the perturbed potential, δψ, given by (49b), the Henry
approximation (denoted by the superscript H) is to assume [11],

RH(r) = φH
i (r). (69)

From the derivation of (56), this approximation is tantamount
to assuming that the charge density around the particle is unaf-
fected by the applied electric field, E, that is, δρ = 0. Thus (56)
simplifies to,

L[RH(r)] = 0. (70)

The solution that satisfies the boundary conditions (32a) and
(32b), together with the Overbeek expressions (50) for χ(r) and
(54) for ξ(r) are, if we assume the permittivity of the solvent is
much larger than that of the particle, ε >> εp

RH(r) = r +
a3

2r2 = φH
i (r) (71a)

ξH(r) =

(
1 +

a3

2r3

)
dψ0(r)

dr
− 3a3r

∫ ∞

r

1
x5

dψ0(x)
dx

dx (71b)

χH(r) = 3
dψ0(r)

dr
− 2 ξH(r) (71c)
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and are identical to results derived by Henry [5] 1 and Ohshima
et al. [11]. The functions ξ(r) and χ(r) determine the behav-
ior of the velocity, vorticity and pressure according to (48) and
from (71), we can see that they decay with the range of the
electrostatic potential, ψ0(r) that vanishes exponentially with
distance from the sphere surface with the characteristic Debye
length, 1/κ. Finally, we note that the results in (71) are indepen-
dent of the theory used to calculate the equilibrium potential,
ψ0(r).

We exploit the analytical nature of the Henry solution to elu-
cidate the general features of the velocity and pressure fields
around a spherical particle during electrophoresis and to study
the form of the functions ξ(r) and χ(r). Since Henry’s theory is
valid for particles with low surface potentials, we will use the
Debye-Hückel expression for the equilibrium potential:

ψ0
DH(r) = ζ a

e−κ(x−a)

r
. (72)

Combining (71) and (72), we find

ξHDH(r) =
ζκ2

3

∫ ∞

r

(
r −

x3

r2

) ( a
x2 +

κa
x

) (
1 +

a3

2x3

)
e−κ(x−a)dx

(73a)

χHDH(r) = −
3ζa
r2 (1 + κr) e−κ(x−a) − 2 ξHDH(r). (73b)

The superscripts ‘HDH’ denote Henry’s results using the
Debye-Hückel expression for the equilibrium potential, ψ0(r).
The velocity and pressure fields can then be obtained from (48).
The double integrals that arise in the expressions for the veloc-
ity components can be evaluated numerically.

6.2. Numerical results
In Fig. 1, we can see that the dimensionless functions:

χHDH(r)a/ζ and ξHDH(r)a/ζ in the Overbeek solution calcu-
lated using the Henry-Debye-Hückel approximation, decay ex-
ponentially with the Debye length, 1/κ outside the double layer
for κa between 1 and 100. These results provide graphical
validation of the arguments used to prove the existence of a
maximum in the magnitude of the tangential velocity. The
short-ranged nature of the pressure field that vanishes outside
the extent of the double layer is reflected by the function χ(r),
see (49a), and that the similar short-ranged nature of ξ(r) show
that outside the double layer, the vorticity vanishes and the ve-
locity field becomes irrotational, see (48c).

In Fig. 2, the velocity profiles in the dorsal plane around a
sphere at κa = 10 and κa = 100 under electrophoretic motion
are shown in the reference frame in which the sphere is station-
ary so the fluid velocity is zero on the surface. In the upper half
of the figures, the variation of the tangential velocity, uθ(r), is
shown as functions of the radial distance from the sphere sur-
face at different angular positions. The tangential velocity at the

1Unfortunately, the key results given on p. 114 of Henry’s paper numerous
typographical errors so the expressions for ξH(r), χH(r) and RH(r) given here
should be used in the general expressions due to Overbeek to obtain results for
the Henry model.

Figure 1: Variations of the functions χHDH(r)a/ζ and −ξHDH(r)a/ζ in the Over-
beek solution calculated using the Henry-Debye-Hückel approximation in (73)
with κ(r−a), for κa between 1 and 100. The near exponential decaying behavior
of these functions is clear on the log-linear scale.

sphere surface is zero but attains a maximum at a short distance
from the surface. This maximum is larger than the uniform ve-
locity at infinity. In the lower half of the figures, a snap shot
of the velocity field around the particle is displayed and it can
be seen that at r ∼ 2a, the velocity has almost reached its con-
stant uniform flow value, reflecting the faster 1/r3 decay of the
velocity field towards the value at infinity.

By way of contrast, the velocity field that corresponds to a
classical Stokes problem of a sphere with the immobile bound-
ary condition of zero velocity on the surface in a uniform flow
field at infinity is given in Fig. 3. Here the much slower 1/r de-
cay of the velocity field towards the uniform flow at infinity is
evident and the tangential velocity profile varies monotonically
without a maximum.

In Fig. 4, we show the scaled normal, ūr(r) and tangen-
tial, ūθ(r), velocity components defined by (48) as functions
of (r − a)/a for a sphere undergoing electrophoretic motion for

10



Figure 2: The velocity field around a sphere with κa = 10 (upper) and κa = 100
(lower). On the top half of each figure the instantaneous velocity is shown
along radial lines where the velocity maximum is most prominent near the top
of the sphere. In the lower half of each figure, a snap shot of the velocity field is
given at regular intervals in time (starting from the right). The rapid 1/r3 decay
towards the uniform flow is evident as the velocity is close to the uniform value
when r ∼ 2a.

κa between 1 and 100. The maximum in the tangential veloc-
ity, ūθ(r) near the sphere is clearly evident before it approaches
the constant value at infinity. In contrast, the radial velocity
varies monotonically as it approaches the constant value at in-
finity. The variation of the position of the maximum, rmax and
the magnitude of in the scaled tangential velocity maximum,
ūθ,max with κa is given in Fig. 5. The position of the maximum
can be fitted to the empirical equation,[

rmax − a
a

]
≈

1.8
(κa)0.79 . (74)

The magnitude of the scaled tangential velocity maximum
asymptotes to about 2.25 as κa→ ∞ in comparison to the value

Figure 3: The classical Stokes flow field around a sphere that corresponds to the
results in Section 3.3.1. The flow decays as 1/r towards a uniform flow field.
This is in sharp contrast to the flow field around an electrophoretically driven
sphere, where the velocity decays as 1/r3, see Figs. 2 and 4. Also observe that
there is no maximum velocity near the sphere as was observed in Fig. 2.

of 1.5 at r → ∞.
As will be explained in the next section, the above general

characteristics of the velocity field outside the double layer
are consequences of the balance between the electrical driving
force and the retarding hydrodynamic force that gives rise to
a net zero force on the particle and therefore a constant elec-
trophoretic velocity at constant applied electric fields.

7. The force balance and its consequences

A particle under steady electrophoretic motion has constant
velocity because the electrostatic driving force due to the ap-
plied electric field on the particle and electrical double layer is
exactly balanced by the hydrodynamic drag forces on the parti-
cle and ions. The net force of zero on the particle/double layer
is an essential ingredient in understanding the nature of the flow
outside the particle.

Both Overbeek and Henry stated that the proof of the force
balance is tedious but straightforward. O’Brien and White used
the reciprocity theorem by considering an integral of the total
stress over a large surface that encloses the particle. Ohshima
et al. simply noted that the force balance condition is equiv-
alent to the absence of a constant term in the hydrodynamic
h-function. Here, we provide a detailed derivation of the force
balance condition and discuss the physical consequences and
implications.

Outside the double layer, the right hand side of the differ-
ential equation (26) for the hydrodynamic function h(r) is zero
and this equation becomes

L [L h(r)] =
d
dr

[
1
r4

d
dr

(
r4 d2h

dr2

)]
= 0. (75)
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Figure 4: The scaled normal, ūr(r) and tangential, ūθ(r) velocity components
defined by (48) around a sphere as functions of (r − a)/a undergoing elec-
trophoretic motion for κa between 1 and 100. Note the maximum in the tan-
gential velocity, ūθ(r).

This has the general solution: h = c1r3 + c2/r2 + c3r + c4. The
force can be obtained by integrating the stress tensor on a vir-
tual sphere much larger than r = a + 1/κ so that it lies entirely
outside the double layer. The constant c1 must be zero, because
the flow field should remain finite when r tends towards infinity.
The constant c3 = U/(2E) ensures that the velocity at infinity
is uniform with value U. In Appendix D, it is shown that c2
does not contribute to the force and the force depends solely on
the constant c4. If the particle experiences zero force, c4 must
be zero as noted by previous workers [4, 5, 11]. In ‘classical’
Stokes flow, this can only happen for a special boundary condi-
tion, see Section 3.3.

A key physical phenomenon in electrophoretic motion of a
sphere is that certain terms in the electrical and hydrodynamical
forces cancel out exactly. In Overbeek’s theory, as derived in
Appendix B, the total force on the sphere can be decomposed
into a sum of 4 terms made up of two electrical contributions,
FE1 and FE2 and two hydrodynamic contributions, FH1 and FH2
as follows:

FE1 = QE (76a)

FE2 = −QE +
QE
3

(dR
dr

+
2R
a

)
r=a

(76b)

FH1 = −6πηaU (76c)

FH2 = −
QE
3

(dR
dr

+
2R
a

)
r=a

+ 4πεEa
∫ a

∞

ξ dx. (76d)

Here, FE1, is the force experienced by a sphere of charge Q un-
der the influence of electric field E. The perturbed charge dis-
tribution, δρ(r, θ), creates an additional electrostatic ‘relaxation’
force, FE2, by virtue of the asymmetric charge distribution that
is a function of not only the distance from the sphere center but
also the polar angle, θ. In the Henry model with R = RH , see
(71), the relaxation force, FE2, vanishes identically due to the
assumption that the double layer around the sphere maintains

Figure 5: (Upper) Variation of the position of the maximum of the tangential
velocity, (rmax − a)/a with scaled sphere radius, κa. The line is an empirical fit
given by (74). (Lower) Variation of the maximum value of the scaled tangential
velocity, ūθ,max, defined by (48), with κa.

spherical symmetry and is undistorted during electrophoresis.
The hydrodynamic force, FH1, is the classical Stokesian drag
experienced by a sphere of radius a in an imposed uniform flow
field at infinity; FH2 accounts for the additional electrophoretic
drag due to the motion of the ions in the electrolyte.

Since the particle moves with constant electrophoretic veloc-
ity, the total force vanishes:

FE1 + FE2 + FH1 + FH2 = 0. (77)

It is important to note that the terms involving R that represent
the perturbed electrostatic potential δψ in FE2 and FH2 cancel
out exactly, see (49) and (76). This is the reason why O’Brien
& White [6] can obtain the electrophoretic mobility without the
need to solve for the perturbed electrostatic potential δψ since
its contribution to the force components in (76) cancel out when
summed to give the total force on the sphere. The considera-
tion of different contributions to the total force also provides a
direct demonstration of the observation that mobility does not
depend on the electrostatic boundary conditions and hence is in-
dependent of the permittivity of the dielectric particle [6], even
though the perturbation potential, δψ through R, will depend on
the particle permittivity.

At this point, it is possible to connect the decomposition
of forces by Overbeek highlighted in (76) to the U- and E-
problems of O’Brien & White [6] who considered the forces
F1 and F2 on the particle in two sub-problems as follows:
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1. U-problem: Calculate the force, F1 on the particle fixed in
a flow field −U at infinity, but in the absence of an applied
electric field. The fluid velocity and perturbed potential
have the limiting forms: u(r) → −U and δψ(r) → 0 as
r → ∞. By virtue of the linearity of the problem, the force
will be proportional to U: F1 = αU for a determinable
scalar, α. F1 will correspond to the drag force experienced
by a charged sphere moving through the electrolyte at a
velocity of U in the absence of an external electrical field.

2. E-problem: Calculate the force, F2 on the particle fixed
in an electric field E at infinity, but in the absence of
an imposed velocity field. The fluid velocity and per-
turbed potential have the limiting forms: u(r) → 0 and
δψ(r) → −E · r as r → ∞. The force, F2 is now pro-
portional to E, F2 = βE for a determinable scalar, β, and
describes the force experienced by a charged sphere sub-
ject to an external electric field, but fixed in position to
prevent motion through the electrolyte.

O’Brien & White then evaluated the forces by integrating the
stress tensor over a large surface that encloses the particle and
the double layer where the only forces acting are hydrodynamic
in nature. That is, the equation of motion outside the double
layer is classical Stokes flow, without the body force term on the
right hand side of (7), but with the boundary conditions modi-
fied to take into account the physics within the double layer.

Since we are concerned with linear electrophoresis, the su-
perposition of the forces calculated independently in the U and
E problems give rise to the total force experienced by a particle
in electrophoresis, i.e. F1 + F2 = αU + βE = 0, from which the
mobility can be obtained as µm = U/E = −β/α.

It can be shown (see Appendix E) that the sum,

F1 + F2 = −6πηaU + 4πεEa
∫ a

∞

ξ dx = 0 (78)

that is equivalent to the force balance condition (77). We note
that the first term on the right hand side of (78) is the Stokesian
drag, FH1 = −6πηaU in (76c) whereas the second term on the
right hand side of (78) is the second term of FH2 in (76d). As
we can see in (54), the function ξ(r) can be expressed in terms
of the ion potentials, φi(r) that are independent of the function
R(r) that characterizes the radial dependence of the perturbed
electrostatic potential, δψ(r, θ). Therefore, this is an explicit
demonstration that the mobility is independent of the electro-
static boundary conditions and a consideration of the far field
forces of hydrodynamic nature is sufficient to deduce the mo-
bility of the colloidal particle.

We can understand the independence of the mobility on the
electrostatic boundary conditions by noting that when consid-
ering the particle and the double layer as a combined system,
which O’Brien & White did when evaluating the forces over
the large surface enclosing the particle and double layer, the di-
rect electrical force (76a), the relaxation force (76b) and the first
term of the electrophoretic drag (76d) become internal forces,
describing the force exerted by the electrical double layer on the
particle and the equal and opposite force exerted by the particle
on the double layer. These internal forces are dependent on the

Figure 6: Variation of the Stokes drag force, FH1 = −6πηaU and the elec-
trophoretical drag forces, [FE2 + FH2] given in (76), scaled by FE1 = QE, with
sphere radius, κa. Solid lines: Henry-Debye-Hückel model that is independent
of the ζ-potential; O’Brien-White model at eζ/kT = 2 (- - -) and 3 (· · ·). An
inset schematic illustrates the forces acting on the sphere, balancing the direct
electrical force, QE.

electrostatic boundary conditions through the boundary condi-
tions for R(r) in (57) but do not contribute to the electrophoretic
mobility.

In Fig. 6, we exhibit the variation of the different force com-
ponents in (76) with particle radius by plotting the Stokesian
drag force, FH1 and the electrophoretic force, [FE2 + FH2], both
scaled by the direct electrical force, FE1 = QE, as functions
of κa. We considered the univalent symmetrical electrolyte,
KCl for simplicity; hence, the ion drag coefficients (2) for the
potassium and chloride ions were used. The results obtained
for eζ/kT = 2 and eζ/kT = 3 were compared with the lim-
iting, Henry-Debye-Hückel theory that is valid at the low ζ-
potentials where the mobility is linear in ζ. The scaled forces in
the Henry-Debye-Hückel theory would hence be independent
of the ζ-potential due to the use of (72) and the Gauss’s law to
calculate the particle charge, Q. Moreover, at low ζ-potentials,
the relaxation force, FE2 from (76b) vanishes as the relaxation
effect scales with ζ3 [4] for symmetric electrolytes, thereby jus-
tifying the omission of the relaxation effect in Henry’s calcu-
lations [5]. At higher ζ potentials, such as eζ/kT = 2 and
eζ/kT = 3, this omission may no longer be justified and the
mobility was computed using the O’Brien & White program
[6]. The particle charge, Q is now calculated using the ap-
proximation for ψ0 provided by Ohshima, Healy & White in
equation (49) of [20] that approximates the non-linear Poisson-
Boltzmann (12) solution to higher surface potentials than (72).

In particular, we see from Fig. 6 how the magnitudes of these
two force components vary with particle size while their sum
always balances the direct electrical force, FE1 = QE. At small
κa, the Stokes drag force FH1 = −6πηaU becomes the dominant
term in balancing the direct electrical force, FE1 = QE, but as
κa increases, the effect of the Stokes drag force diminishes as
the electrophoretic force, [FE2 + FH2], dominates in cancelling
the direct electrical force, FE1 = QE. Note that a ‘cross-over’
of the two forces happens near κa ∼ 1, and the cross-over shifts
towards lower κa as ζ increases.

Thus the zero force condition not only implies the vanishing
pressure outside the double layer, but it also severely changes
the flow pattern and thus, the range of the hydrodynamic inter-
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action. Previous works appear not to have focussed on this fea-
ture and its implications on particle-particle interactions. The
velocity profile around a sphere in electrophoretic motion in
Fig. 2 calculated using Henry’s model is substantially different
from a classical Stokes velocity profile around a sphere where
h = [r − 3a/2 + a3/(2r2)]U/(2E), as shown in Section 3.3.1,
with the Stokes velocity profile (40) shown in Fig. 3. When
compared to the result for the velocity field around a particle in
electrophoresis (60), we see that, apart from the first terms rep-
resenting the constant velocity part, the velocity decays as 1/r
in a classical Stokes flow such as in sedimentation, as compared
to 1/r3 for the electrophoresis case.

A further interesting phenomenon, from a fluid dynamics
perspective, is the appearance of a maximum in the tangential
velocity as visualized in Section 6. This maximum is actually
also a direct consequence of the 1/r3 behavior of the flow field.
A mass balance (see Appendix F) over a half infinite sphere il-
lustrates that the contribution over the spherical part dies out for
an electrophoretic flow. Since the velocity at the surface of the
sphere is zero, in order to satisfy the continuity of material, the
velocity must be greater than U somewhere between the sphere
surface and infinity, resulting in a maximum. Such a maximum
velocity does not appear in the velocity pattern around a Stokes
flow sphere, since the velocity decays as 1/r only and an inte-
gration of the half sphere at infinity will still give a contribution
to the mass balance.

Morrison [7] has performed a very similar analysis, but
claims that since the velocity, u is irrotational outside the dou-
ble layer, the Bernoulli equation should hold and since u ∼ 1/r3

then p ∼ u2 ∼ 1/r6. Anderson [12], in his review cites this con-
clusion. However, the Anderson/Morrison Bernoulli equation
assumption is incompatible with the Stokes flow assumption.
Even though the flow field outside the double layer looks like a
potential flow field, it is of course a viscosity dominated Stokes
flow where effects due to inertia are negligible, whereas the
Bernoulli pressure is due solely to inertial effects with no contri-
bution from the viscosity. This can easily be shown, if we argue
that the electrophoretic theory is based on the Stokes equation
as η∇2u = ∇p and ∇·u = 0, but since ∇×∇×u = ∇(∇·u)−∇2u,
then this would be equivalent to η∇ × ∇ × u = −∇p. For an ir-
rotational flow ∇ × u = 0, this would mean ∇p = 0 and the
pressure outside the double layer would be a constant and not
given by the Bernoulli equation. Despite this fact, the other key
conclusions of Morrison [7] are indeed valid for electrophore-
sis.

8. Conclusions

The physical models of the electrophoretic motion of a spher-
ical particle considered by Overbeek [4] and later by O’Brien &
White [6] are identical although the theoretical treatments are
quite different. The numerical difficulties of the dual character-
istic length scale the problem encountered in using the Over-
beek treatment [18] that arises when the Debye length, 1/κ,
is small compared to the particle radius, a, i.e. the thin dou-
ble layer regime when κa >> 1, have been addressed by the

O’Brien & White approach. In particular, they were able to cal-
culate the electrophoretic mobility without needing to solve for
the perturbation in the electrostatic potential, the pressure or the
velocity field.

In this paper, we established the equivalence between the
Overbeek treatment that solved for the velocity, pressure and
electrostatic potential and the O’Brien & White approach that
circumvented the need to consider the velocity and the pres-
sure. From the Overbeek result, we showed quite generally that
the pressure and vorticity of the flow field vanishes exponen-
tially fast outside the double layer so that the hydrodynamic
condition outside the double layer is a zero pressure, irrota-
tional flow. As a consequence, the velocity in the laboratory
frame decays with distance as 1/r3 from the sphere compared
to the 1/r decay in standard Stokes flow. The implication of this
faster decay is that the tangential component of the velocity has
a maximum near the sphere surface close to the double layer.
This unusual feature of the hydrodyamic behavior clearly has
implications when considering situations when particles are in
close proximity whereby both electrical double layer and hy-
drodynamic interactions become important [9]. But as far as
we are aware, such features of the hydrodynamic behavior have
not been studied in details. Thus it may be fruitful to revisit
the popular treatment of electrophoretic effects in the thin dou-
ble layer regime [1, 12, 21] that simply models the effect of the
flow inside the double layer by an effective slip velocity.

At a pedagogical level, since the velocity field outside the
double layer is an irrotational, zero pressure Stokes flow, it is
inconsistent to suggest that the Bernoulli equation can be used
to give the pressure. We also note that the textbook derivation
of the Smoluchowski results valid in the limit of κa → ∞ that
considers the particle as a flat plate will lead to the conclusion
of a monotonic tangential velocity profile due to omission of
the singular but important effect of finite surface curvature.
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Appendix A. Glossary of symbols

As far as possible the notation of O’Brien-White [6] and
Ohshima et al. [11] was adopted and SI units were employed.
Any minor differences are noted in the text when a symbol is
first defined and used.

a radius of a spherical charged colloidal particle

E constant external applied electric field vector with absolute
value E

e charge of a proton, 1.602 × 10−19 C

h(r) function used to describe the radial part of the velocity
components by Ohshima et al. [11]

k Boltzmann’s constant, 1.38 × 10−23 J/K
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nr, nθ, nϕ unit vector in the (r, θ, ϕ) - (radial, polar, azimuthal)
direction of a spherical polar coordinate system centered
at the sphere

p pressure

p0 equilibrium pressure when E = 0, defined by (11)

r radial coordinate of the spherical polar system

R(r) function in the Overbeek theory used to describe the radial
component of the perturbed electrostatic potential defined
with: δψ ≡ −E R(r) cos θ

T absolute temperature

u(x) ≡ u, velocity vector of the fluid

uS , pS , hS velocity, pressure and hydrodynamic function in
Stokes flow when E = 0 and in the absence of charges

w ≡ (∇ × u)ϕ = (∇ × u) · nϕ component of the vorticity in the
azimuthal direction

x general 3D position vector

εr relative permittivity of the solvent

ε0 permittivity of vacuum, 8.852 × 10−12 F/m

ε ≡ ε0εr, solvent permittivity

εp particle permittivity

η solvent viscosity

θ polar angular coordinate of the spherical polar system, i.e.
the angle between the radius vector and the electric field

ϕ angle between r− θ plane and the vertical plane in the spher-
ical polar coordinate system

ξ(r) function in the Overbeek theory, defined by (54)

χ(r) function in the Overbeek theory, defined by (50)

zi valence of ionic species i

λi drag coefficient of ionic species i

vi(x) ≡ vi, velocity of ionic species i

n∞i bulk number density of ions of type i

κ ≡ [(e2/εkT )
∑

i n∞i z2
i ]1/2, Debye screening parameter

n0
i (x) ≡ n0

i , equilibrium number density of ionic species i at po-
sition x given by the Poisson-Boltzmann equation, when
E = 0

δni(x) ≡ δni ≡ ni − n0
i

≈ − (zie/kT ) n0
i (δψ + ϕi), to linear order

ϕi(x) ≡ ϕi ≡ φi(r)E cos θ

µ∞i constant reference chemical potential of ionic species i

µ0
i (x) ≡ µ0

i ≡ µ∞i + zi e ψ0(x) + kT log n0
i (x), equilibrium

electrochemical potential of ionic species i when E = 0

µi(x) ≡ µi ≡ µ∞i + zi e ψ(x) + kT log ni(x), electrochemical
potential of ionic species i when E , 0

δµi(x) ≡ δµi ≡ µi(x) − µ0
i (x) = −zi e ϕi ≡ −zi e φi E cos θ

ρ(x) ≡ ρ ≡ e
∑

i zi ni(x), volume charge density at position x,
when E , 0

ρ0(x) ≡ ρ0 ≡ e
∑

i zi n0
i (x), volume charge density at position

x, when E = 0

δρ(x) ≡ δρ ≡ ρ(x) − ρ0(x) = e
∑

i zi δni(x)

ψ0(x) ≡ ψ0, equilibrium electrostatic potential at position x,
when E = 0, given by the Poisson-Boltzmann equation

ψ(x) ≡ ψ, the total electrostatic potential whereby −∇ψ is the
total electric field that includes contributions from the con-
stant external field E, the field due to the charged colloidal
particles and perturbed ion distribution

δψ(x) ≡ δψ ≡ ψ(x) − ψ0(x)

ζ the zeta potential of the colloidal particle (assumed to be con-
stant everywhere on the surface)

Appendix B. The Overbeek theory

We outline the derivation of the Overbeek theory given in
his PhD thesis in Dutch [4] for the electrophoretic motion of a
sphere in an electrolyte of arbitrary composition using modern
notation and SI units. The governing equations of electrokinet-
ics given in Section 2 are linearized according to (14) to give a
set of coupled linear equation to first order in the perturbation
quantities. Due to the axial symmetry of a sphere in an external
electric field, E, directed along θ = 0, the perturbed quantities
have the general form:

δ f (r, θ) = F(r) cos θ or F(r) sin θ. (B.1)

The problem is then reduced to solving for the function F(r)
that is only a function of the distance, r from the center of the
sphere.

The Poisson equation becomes

ρ = ρ0 + δρ = −ε∇2(ψ0 + δψ) (B.2)

where the equilibrium potential, ψ0(r) and charge density, ρ0(r)
are radially symmetric. The perturbed potential, δψ(r, θ) and
the perturbed charge density, δρ(r, θ) have the form

δψ(r, θ) = −E R(r) cos θ (B.3a)

δρ(r, θ) = −ε ∇2δψ = εE L[R(r)] cos θ (B.3b)

where we have used the L differential operator defined in (27)
with R(r) an unknown function to be found. In the limit r → ∞,
δψ(r, θ)→ −E r cos θ.

15



Similarly, using (11) for the equilibrium pressure, p0, the
pressure can be written as

p = p0(r) + δp(r, θ)

= −

∫ r

∞

ρ0
(dψ0

dx

)
dx − εE P(r) cos θ

(B.4)

where P(r), the radial function of the perturbed pressure,
δp(r, θ) ≡ −εE P(r) cos θ, is an unknown function to be found.

The perturbed pressure, δp can be expressed in terms of δψ
and δρ (= −ε∇2δψ) by applying the divergence operator to the
momentum equation (15c) together with the incompressibility
condition: ∇ · u = 0, to eliminate the velocity, u to give

∇2δp = −δρ∇2ψ0 − ρ0∇2δψ − ∇δρ · ∇ψ0 − ∇ρ0 · ∇δψ. (B.5)

This can be simplified by noting that

∇δρ · ∇ψ0 =
∂δρ

∂r
·

dψ0

dr
(B.6)

∇ρ0 · ∇δψ =
dρ0

dr
·
∂δψ

∂r
(B.7)

and using the L differential operator defined in (27) to give

∇2δψ = −E L[R] cos θ (B.8)

∇2δp = −εE L[P] cos θ. (B.9)

Combining these results in (B.5) gives the following relation
between P(r) and R(r)

L[P] = f1(r) ≡ 2 L[R] ∇2ψ0+
dL[R]

dr
dψ0

dr
+

dR
dr

d
dr

(
∇2ψ0

)
.

(B.10)
The formal solution of this differential equation is, see (28)

and (29)

P(r) = c1r +
c2

r2 + r
∫ r

∞

1
x4

∫ x

∞

y3 f1(y) dy dx. (B.11)

For large r, δp(r, θ) and thus P(r) must vanish and consequently
c1 = 0 and later, we will also find c2 = 0 as well. The integral
in (B.11)

χ(r) ≡ r
∫ r

∞

1
x4

∫ x

∞

y3 f1(y) dy dx (B.12)

can be simplified by noting that ∇2ψ0(r) = 1
r2

d
dr

(
r2 dψ0

dr

)
to give

χ(r) =
dR
dr

dψ0

dr
+ 4r

∫ r

∞

( 1
x2

dR
dx
−

R
x3

)dψ0

dx
dx. (B.13)

Thus the complete solution for the pressure p from (B.4) is

p = ε

∫ r

∞

∇2ψ0 dψ0

dx
dx − εE

[
c2

r2 + χ(r)
]

cos θ. (B.14)

To determine the velocity field, we take the curl of the
momentum equation (7) to eliminate p, and use the identity:
∇ × ∇ × u = ∇(∇ · u) − ∇2u and ∇ · u = 0 to give

η∇ × ∇ × ∇ × u + ∇ × (δρ∇ψ0 + ρ0∇δψ) = 0. (B.15)

We now analyse the components of this equation by taking
into account the symmetry of the electrophoretic problem of
a sphere. In spherical polar coordinates (r, θ, ϕ), ∇ × u is2

(∇ × u)r =
1

r sin θ

[
−
∂

∂θ
(uϕ sin θ) +

∂uθ
∂ϕ

]
(∇ × u)θ =

1
r

[
−

1
sin θ

∂ur

∂ϕ
+
∂

∂r
(ruϕ)

]
(∇ × u)ϕ =

1
r

[
−
∂

∂r
(ruθ) +

∂ur

∂θ

]
.

(B.16)

The axial symmetry of the problem means that the azimuthal
component, uϕ must be zero, and u is not a function of the az-
imuthal angle, ϕ. Thus the vorticity w ≡ ∇ × u has no r or θ
components whereas the ϕ component is

(w)ϕ ≡ w(r, θ) = (∇ × u)ϕ =
1
r

[
−
∂

∂r
(ruθ) +

∂ur

∂θ

]
. (B.17)

Consequently, ∇ × w has non-zero r and θ components, but no
ϕ component and so ∇×∇×w only has a ϕ component, namely

[∇ × ∇ × w]ϕ = −
1
r

{∂2(rw)
∂r2 +

1
r
∂

∂θ

[ 1
sinθ

∂

∂θ
(wsinθ)

]}
. (B.18)

Also, ∇×(δρ∇ψ0 +ρ0∇δψ) is a vector with only a ϕ component,
which is

[
∇ × (δρ∇ψ0 + ρ0∇δψ)

]
ϕ =

1
r

(∂δρ
∂θ

dψ0

dr
−

dρ0

dr
∂δψ

∂θ

)
. (B.19)

With these results, (B.15) now transforms into:

η

r

{∂2(rw)
∂r2 +

1
r
∂

∂θ

[ 1
sinθ

∂

∂θ
(wsinθ)

]}
=

1
r

(∂δρ
∂θ

dψ0

dr
−

dρ0

dr
∂δψ

∂θ

)
or after inserting expressions for ρ0, δρ and δψ from (B.2) and
(B.3):

∂2(r w)
∂r2 +

1
r
∂

∂θ

[ 1
sin θ

∂

∂θ
(w sin θ)

]
=
εE sinθ

η

[
R

d
dr
∇2ψ0 − L[R]

dψ0

dr

]
. (B.20)

The solution of (B.20) has the form

w(r, θ) =
εE
η

W(r) sin θ (B.21)

so combining (B.20) and (B.21) gives the differential equation
that determines W(r)

L[W] = f2(r) ≡
R
r

d
dr
∇2ψ0 −

1
r
L[R]

dψ0

dr
(B.22)

with solution

W(r) = c3r +
c4

r2 + r
∫ r

∞

1
x4

∫ x

∞

y3 f2(y) dy dx. (B.23)

2Overbeek seemed to have defined ∇× with a sign difference when com-
pared to modern notation.
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The integration constant c3 = 0, since the vorticity must be-
come zero at infinity and later on, we will see that c4 is also
zero. We define ξ(r) as the integral:

ξ(r) ≡ r
∫ r

∞

1
x4

∫ x

∞

y3
{R

y
d
dy
∇2ψ0 −

1
y

f2(y)
dψ0

dy

}
dy dx (B.24)

that can be simplified using ∇2ψ0 = 1
r2

d
dr

(
r2 dψ0

dr

)
to give 3

ξ(r) =
R
r

dψ0

dr
− 2r

∫ r

∞

( 1
x2

dR
dx
−

R
x3

)dψ0

dx
dx. (B.25)

Overbeek noted that this function fulfills the same role as the
function with the same name in Henry4 [5].

With the full solution for w(r, θ) now being

w(r, θ) =
εE
η

[c4

r2 + ξ(r)
]

sin θ, (B.26)

the only non-zero component of ∇ × u, given by (B.17) and
(B.26) provides one equation for ur and uθ:

(∇ × u)ϕ ≡
1
r

{
−
∂

∂r
(r uθ) +

∂ur

∂θ

}
=
εE sin θ

η

(c4

r2 + ξ(r)
)
.

(B.27)

Since by symmetry, uϕ = 0, a second equation for ur and uϑ is

∇ · u ≡
1
r2

∂

∂r
(r2ur) +

1
r sin θ

∂

∂θ
(uθ sin θ) = 0. (B.28)

The radial and tangential velocities have the form

ur(r, θ) = R1(r) cos θ and uθ(r, θ) = R2(r) sin θ.
(B.29)

Substituting this into (B.27) and (B.28), gives the following set
of coupled differential equations for R1(r) and R2(r)

rR2 = −
1
2

d
dr

(r2R1)

−
2
r

dR2

dr
−

2R2

r2 −
2R1

r2 =
2εE
η

1
r

[c4

r2 + ξ(r)
]
.

The solution is (as can easily be checked by back substituting):

R1(r) =
c5

r3 + c6 −
εE
η

(c4

r
+

2
3r3

∫ r

∞

x3ξ dx +
2
3

∫ r

∞

ξ dx
)

R2(r) =
c5

2r3 − c6 +
εE
η

( c4

2r
−

1
3r3

∫ r

∞

x3ξ dx +
2
3

∫ r

∞

ξ dx
)
.

(B.31)
Aside from the constants c2, c4, c5 and c6 in equations (B.14)

and (B.31), the pressure and velocity distribution are now fully
determined. The constant c2 is partly determined by u, since p

3This can easiest be done by partially integrating
∫ x
∞

y3
{

R
y

d
dy∇

2ψ0
}
dy, by

which many terms will cancel out with the terms in round brackets.
4The function ξ from Henry can be recovered by setting R = r + λa3/r2 and

using ∇2ψ0 = 1
r2

d
dr

(
r2 dψ0

dr

)
. Henry’s formula is ξ =

dψ0

dr + λa3r
∫ r
∞

1
x4 ∇

2ψ0dx
(page 112 of Henry).

and u must also satisfy the momentum equation (7) written in
the form

η ∇ × ∇ × u + ∇p = −ρ ∇ψ. (B.32)

The term in ∇(cos θ/r2) in ∇p, from (B.9) and (B.11), must be
compensated by a term of the same form from η∇×∇×u, since
ρ∇ψ does not contain a term proportional to ∇(cos θ/r2). The
vector η∇ × ∇ × u has r and θ components, thus with the help
of (B.16), (B.17) and (B.26) we find 5:

η(∇ × ∇ × u)r = η(∇ × w)r = −2εE
[c4

r3 +
ξ

r

]
cos θ

η(∇ × ∇ × u)θ = η(∇ × w)θ = −εE
[c4

r3 −
1
r

d
dr

(rξ)
]

sin θ.

The r and θ components of the term ∇(c2 εE cos θ/r2) in ∇p are

c2 εE
(
∇

cos θ
r2

)
r

= − 2c2 εE
cos θ

r3

c2 εE
(
∇

cos θ
r2

)
θ

= − c2 εE
sin θ
r3 .

Then equating terms in cos θ/r2 and sin θ/r2 in (B.32) gives
c2 = c4.

The boundary conditions for the fluid velocity and the poten-
tial:

• as r → ∞: ur → −U cos θ, uθ → U sin θ and ψ0 → 0

• at r = a: ur = 0, uθ = 0 and ψ = ζ.

can be used to determine the constants: c2, c4, c5 and c6. From
the conditions for r → ∞, when applied to (B.29) and (B.31),
we see that R1 → U and R2 → −U, thus

c6 = −U. (B.33)

From the conditions for r = a we find from (B.31)

c4 = c2 = a
∫ a

∞

ξ dx −
3ηaU
2εE

= 0 (B.34)

where the last equality follows from the fact that the force on
the particle (see later) and thus c2 = 0 = c4 and

c5 = −
Ua3

2
+

2εE
3η

∫ a

∞

x3ξdx +
εEa3

3η

∫ a

∞

ξ dx. (B.35)

Finally, the complete expressions for the pressure and veloc-

5Note again the minus sign difference in the definition of the curl operator
when compared to modern notation.
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ity components are

p = ε

∫ r

∞

∇2ψ0 dψ0

dx
dx (B.36a)

+ cos θ
{3ηaU

2r2 − εEχ −
εEa
r2

∫ a

∞

ξ dx
}

ur = cos θ
{(
− 1 +

3a
2r
−

a3

2r3

)
U

+
2εE
3η

( ∫ r

∞

ξ dx +
1
r3

∫ a

r
x3ξ dx

)
−
εE
η

(a
r
−

a3

3r3

) ∫ a

∞

ξ dx
}

(B.36b)

uθ = sin θ
{(

1 −
3a
4r
−

a3

4r3

)
U

−
2εE
3η

( ∫ r

∞

ξ dx −
1

2r3

∫ a

r
x3ξ dx

)
+
εE
η

( a
2r

+
a3

6r3

) ∫ a

∞

ξ dx
}
. (B.36c)

Overbeek then calculated separately the hydrodynamic force,
FH and the electrical force, FE .

To calculate the hydrodynamical force, FH , he divided the
fluid flow into 3 components:

• a pure Stokesian flow, proportional to U, corresponding to
(40),

• a second flow, directly caused in the fluid due to forces
of electrical origin, that do not satisfy the boundary con-
ditions on the boundary of the fluid and the sphere (terms
with χ,

∫ r
∞
ξdx and 1

r3

∫ a
r x3ξdx),

• and a third flow, proportional to
∫ a
∞
ξdx, that is not exposed

to external forces, but is combined with the second flow to
satisfy the boundary conditions at r = a.

The hydrodynamic force FH , that the flow defined by (B.36)
exerts on the sphere, is found by integrating the traction, t, or
force per unit area in the direction of θ = 0 over the whole
surface of the sphere, where 6

t =
(
− p + 2η

∂ur

∂r

)
r=a

cos θ − η
(∂uθ
∂r
−

uθ
r

+
1
r
∂ur

∂θ

)
r=a

sin θ.

Then using (B.36) and after what Overbeek called a ‘simple but
lengthy calculation’, gives

FH =

∫ π

0
t 2πa2 sin θ dθ

= −6πηaU +
4πεEa2

3
χ(a) +

8πεEa2

3
ξ(a) + 4πεEa

∫ a

∞

ξ dx

where we have used the fact that uθ = 0 and ∂ur/∂θ = 0 at
r = a. By substituting χ and ξ according to Eqs. (B.13) and

6The stress tensor is σi j = −pδi j + η[∂ui/∂x j + ∂u j/∂xi]. In the current case

ui =
U j
U

{ xi x j
r2 (R1 + R2) − δi jR2

}
.

(B.25) this will become:

FH = −6πηaU +
4πεEa

3

(dψ0

dr

)
a

(
2R + a

dR
dr

)
a

+ 4πεEa
∫ a

∞

ξ dx.

(B.38)
On the right hand side we see the 3 contributions to the force

1. the classical Stokesian drag for a sphere
2. the friction due to that part of the flow that is caused di-

rectly by electrical forces, and
3. the friction due to that part of the flow that is free of ex-

ternal forces and is required to satisfy the boundary condi-
tions.

The electrophoretic drag force is combination of contributions
2 and 3.

The total electrical force, FE , on the sphere is the sum of the
forces exerted on the sphere by the applied field, E and by the
additional charge density, δρ

FE = QE −
∫ π

0

∫ ∞

a

Q δρ

4πεr2 cos θ 2πr sin θ rdθ dr

where Q is the total charge on the sphere and the second term
on the right hand side is the integral of pair-wise Coulomb
interactions between the sphere and an infinitesimal charge,
ρ(r, θ)

[
2πr2 sin θ dθ dr

]
, over the ion cloud surrounding the

sphere 7 and according to (B.3),

δρ = −ε∇2δψ = εE
(d2R

dr2 +
2
r

dR
dr
−

2R
r2

)
cos θ.

By a simple integration we find

FE =
QE
3

(dR
dr

+
2R
a

)
r=a
. (B.39)

To express the total charge of the sphere, Q in terms of ψ0 and
a, we use the fact that this charge is equal but opposite to the
total charge on the double layer. Thus,

Q = −

∫ ∞

a
ρ04πr2dr = 4πε

∫ ∞

a

1
r2

d
dr

(
r2 dψ0

dr

)
r2dr

= −4πεa2
(dψ0

dr

)
r=a
.

(B.40)

Since the sphere under electrophoretic motion has constant
velocity, the sum of all forces on the sphere must be zero, thus
FH + FE = 0. From (B.38), (B.39) and (B.40) it then follows
that

−6πηaU + 4πεEa
∫ a

∞

ξ dx = 0.

This can be rearranged to give the expression for the elec-
trophoretic mobility as,

µm = U/E =
2ε
3η

∫ a

∞

ξ dx. (B.41)

7Note that the equilibrium charge density, ρ0(r) ≡ ρ(r, θ) − δρ(r, θ) does
not exert a net force on the sphere since the equilibrium charge distribution is
spherically symmetric—the relaxation effect arises from the asymmetry in the
charge distribution within the double layer.
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Overbeek noted that the cancellation of FE against the sec-
ond term of FH in (B.38) is no coincidence, but has essential
meaning, since this part of FH is exactly caused by forces that
act on the charge in the fluid and this charge is equal and op-
posite to the charge on the sphere. This formula (B.41) is thus
generally valid for the electrophoresis velocity of a sphere. We
have not assumed any special assumptions concerning the func-
tional form of ψ0(r), nor that of R(r). The formulae of Henry
and consequently those of Hückel and Smoluchowksi, can be
derived as special case from (B.41) and (B.25), by applying the
appropriate form of the function R(r).

Using (B.41), the expressions for ur and uθ from (B.36) can
be written more elegantly as:

ur =
2εE cos θ

3η

∫ r

a

(
1 −

x3

r3

)
ξ dx

uθ = −
2εE sin θ

3η

∫ r

a

(
1 +

x3

2r3

)
ξ dx

p = ε

∫ r

∞

∇2ψ0 dψ0

dx
dx − εEχ cos θ

w = (∇ × u)ϕ =
εE
η
ξ sin θ

with χ in the pressure from (B.13), which can be simplified
using (B.25) as: χ = −2ξ +

( 2R
r + dR

dr
) dψ0

dr . The above equations
are the main results of Overbeek’s theory as mentioned in the
main text.

Appendix C. The stress tensor of an electrophoretic system

Equation (7) that describes the momentum balance in Stokes
flow with an electrostatic body force can be obtained from the
following stress tensor in Cartesian tensor notation:

σi j = −pδi j + η

[
∂ui

∂x j
+
∂u j

∂xi

]
+ ε

[
EiE j −

1
2

EkEkδi j

]
. (C.1)

The first term is the isotropic pressure that has a hydrodynamic
and an osmotic component and the second term is the hydrody-
namic stress tensor in a Newtonian fluid of shear viscosity, η.
The last term is the Maxwell stress tensor expressed in terms
of the electric field, E. Taking the divergence of (C.1), and
expressing the electric field in terms of the electrostatic po-
tential, ψ: E j = −∂ψ/∂x j, and using the continuity equation
∂u j/∂x j = 0, gives

∂σi j

∂x j
= −

∂p
∂xi

+ η
∂2ui

∂x2
j

− εEi
∂2ψ

∂x2
j

. (C.2)

Since the total force on a fluid element must be zero, the diver-
gence of the stress tensor that expresses must vanish and using
the Poisson equation (5) leads directly to (7).

Appendix D. The force on a spherical particle

In this appendix, we examine the implication on the velocity
field that follows from the fact that the force on a spherical par-
ticle undergoing electrophoretic motion is zero. As shown in

Section 7, the hydrodynamic function, h(r) that holds outside
the electrical double around the sphere is determined by (75)
and has the general solution is h(r) = c2/r2 + c3r + c4. The ob-
jective is to show that the constant term c4 is proportional to the
force on the sphere whereas the other terms in h(r) do not con-
tribute. The derivation of the force requires finding the stress
tensor that is expressed in terms of the velocity and pressure.
The analysis is carried out using Cartesian tensor notation, with
the summation convention over repeating indices.

According to (24), the velocity field, ui can be written as

ui = E j

[
xix j

r2

{
−

h
r

+
dh
dr

}
+ δi j

{
−

h
r
−

dh
dr

}]
= E j

[ xix j

r2

{
−3

c2

r3 −
c4

r

}
+ δi j

{c2

r3 − 2c3 −
c4

r

}]
.

(D.1)

Upon taking the gradient of the velocity field

∂ui

∂xk
= E j

[
c2

(
−3

δik x j

r5 − 3
xiδ jk

r5 + 15
xix jxk

r7 − 3
δi jxk

r5

)
+ c4

(
−
δik x j

r3 −
xiδ jk

r3 + 3
xix jxk

r5 +
δi jxk

r3

) ] (D.2)

we see that the term with c3 drops out since it corresponds to
a uniform flow field. The term in c4 is the only one that con-
tributes to the Laplacian of the velocity field

∂2ui

∂x2
k

= c4E j

[
−2

δi j

r3 + 6
xix j

r5

]
= −c4E j

∂

∂xi

(
2

x j

r3

)
(D.3)

because the term in c2 is proportional to ∇2(1/r) which is iden-
tically zero.

Outside the double layer, the Stokes equation ∇p = η∇2u and
(D.3) can be used to give the pressure, p = −2ηc4E jx j/r3 and
thus the stress tensor σi j outside the double layer is

σik = −pδik + η

[
∂ui

∂xk
+
∂uk

∂xi

]
= c2 ηE j

[
−6

δik x j

r5 − 6
xiδ jk

r5 − 6
xkδi j

r5 + 30
xix jxk

r7

]
+ c4 ηE j

[
6

xix jxk

r5

]
.

(D.4)

The force on the sphere is found by integrating the traction,
ti = σiknk or the force per unit area, over a fictitious sphere that
encloses the particle and its double layer:

ti = c2 η

[
−6

x jE jni

r5 − 6
Eknk xi

r5 − 6
xknkEi

r5 + 30
x jE jxknk xi

r7

]
+ c4 η

[
6

x jE jxknk xi

r5

]
.

(D.5)
This can be further simplified, since on the fictitious spherical
surface, the normal vector, n, and the vector, x are parallel and
ni = −xi/r, thus:

ti = c2 η
[
−18(x jE j)

xi

r6 + 6
Ei

r4

]
− c4 η 6 (x jE j)

xi

r4 . (D.6)
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Finally the force can be obtained by integrating the traction over
the whole surface of the fictitious spherical surface:

Fi =

∫
ti dS . (D.7)

Since the force is directed along the applied electric field, E,
the integral for the force can be evaluated using x j = r cos θ,
x jE j = Er cos θ and dS = 2πr2 sin θ dθ to give

F = c4 (8ηπE) (D.8)

where the integral of term with c2 in the traction (D.6) vanishes.
As the force on the system that comprises the particle and

the double layer must be zero as argued earlier, this leads to
the conclusion that c4 = 0, or equivalently, the h-function does
not contain a constant term. The fact that c4 = 0 for an elec-
trophoretically driven sphere leads to some very unusual fluid
dynamics properties, not encountered in classical Stokes hydro-
dynamics.

Appendix E. The forces in the U and E sub-problems of
O’Brien & White

O’Brien & White [6] considered the decomposition of the
linear electrophoresis problem into two sub-problems, namely
the U and the E problems as referred to in Section 7. In this
appendix, the forces for the two sub-problems will be calculated
in order to ultimately present a derivation for (78).

Physical quantities of relevance to the U-problem will be de-
noted by the bolded superscript ‘1’ such as F1, φ1

i and u1 repre-
senting, respectively, the force on the particle, the ion-potential
function and the velocity field: all evaluated in the context of
the U problem. Similarly, physical quantities evaluated in the
E-problem will be differentiated with the bolded superscript ‘2’
(not to be confused with an exponent).

Appendix E.1. The U-problem
The velocity field for the U-problem is given by modify-

ing the classical Stokes expression from (34) with the hydro-
dynamic function, h1(r), appropriate for this problem:

u1 = −
2
r

h1(r) U cos θ nr +
1
r

d
dr

[
r h1(r)

]
U sin θ nθ. (E.1)

Note that there is also a factor of U difference between (E.1)
and (34), i.e. h1 and h do not share the same units. The bound-
ary conditions of h1(r) are now not the same as those for h(r) in
(32). Indeed, h1(r) may have a constant term at infinity as F1

need not vanish, as will be shown later. The boundary condi-
tions for h1(r) can be written as,

h1 = 0 =
dh1

dr
, r = a (E.2a)

h1 →
1
2

r r → ∞. (E.2b)

Here, (E.2a) is equivalent to the no-slip and no ion-penetration
boundary conditions and (E.2b) defines a uniform flow of −U
at infinity.

The ion-potential function in the U-problem, in analogy to
the ion-potential introduced in Section 3, is represented by
ϕ1

i (r, θ) ≡ φ1
i (r)U cos θ. Note that although ϕ1

i and ϕi describe
similar physical quantities (and have the same units), φ1

i and φi

from (23) do not have the same units. Both ϕ1
i (r) and φ1

i (r) will
vanish as r tends towards infinity, since there is no applied elec-
tric field (see Section 7). However, the boundary conditions on
the surface of the particle would be the same as those in (22).

The h1(r) would satisfy an equation analogous to (26) as,

L [L [h1(r)]] = g1(r) ≡
e
η

1
r

∑
i

dn0
i (r)
dr

zi φ
1
i (r) (E.3)

that is true since in the U and E problem decomposition,
O’Brien & White only modify the boundary conditions, and
the general structure of the governing equations is left unal-
tered. The equation (E.3) can then be solved for h1(r) with the
boundary conditions in (E.2) to yield the following expression
for the h1(r) function:

h1(r) = −
1

30

∫ ∞

r

(
r3 − 5rx2

)
g1(x) dx +

r
2

−
3a
4

[
1 −

2
9a

∫ r

a
x3 g1(x) dx

−
1
9

∫ ∞

a

(
a2 − 3x2

)
g1(x) dx

]
+

1
60r2

[∫ ∞

a

(
5a3x2 − 3a5

)
g1(x) dx

−

∫ r

a
2x5g1(x) dx + 15a3

]
.

(E.4)

In Appendix D, it was observed that the force acting on a par-
ticle is proportional to the constant term of the hydrodynamic
function as r tends to infinity. A similar calculation can be per-
formed, and the force F1 can be derived from (E.4) as,

F1 = −6πηaU
[
1 −

1
9a

∫ ∞

a

(
a3 + 2x3 − 3ax2

)
g1(x) dx

]
.

(E.5)
The first term in (E.5) is the Stokes drag term whereas the sec-
ond term bears a close resemblance to the expression for mobil-
ity in (33). The only difference is that we are now considering
the function, g1(x), which is only a part of the g(x) function
relevant to electrophoresis.

Appendix E.2. The E-problem

The calculations for the computation of F2 is very similar
to the calculations in the previous section used to compute F1.
The velocity field is now,

u2 = −
2
r

h2(r) E cos θ nr +
1
r

d
dr

[
r h2(r)

]
E sin θ nθ. (E.6)

It is important to note that the velocity (and likewise the force)
can now be written as proportional to the applied electric field,
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E. The boundary conditions for h2(r) are now given by,

h2 = 0 =
dh2

dr
, r = a (E.7a)

h2 → constant r → ∞. (E.7b)

The boundary condition in (E.7b) for h2 is different from (32d)
for h. Since far from the particle, the electrolyte is at rest rel-
ative to the particle, h2(r) must be a constant term to leading
order as r tends to infinity. The ion-potential function for the
E-problem would be, ϕ2

i (r, θ) ≡ φ2
i (r)E cos θ. The boundary

conditions for φ2
i would be the same as those specified for the

complete electrophoresis problem in (32).
The h2(r), like h1(r), will satisfy an equation analogous to

(26) with g2(r) now defined in terms of φ2. The h2(r) can thus
be evaluated to yield the following result,

h2(r) = −
1

30

∫ ∞

r

(
r3 − 5rx2

)
g2(x) dx

−
3a
4

[
−

2
9a

∫ r

a
x3 g2(x) dx −

1
9

∫ ∞

a

(
a2 − 3x2

)
g2(x) dx

]
+

1
60r2

[∫ ∞

a

(
5a3x2 − 3a5

)
g2(x) dx −

∫ r

a
2x5g2(x) dx

]
(E.8)

with the force, F2 given as,

F2 = 6πηaE
[

1
9a

∫ ∞

a

(
a3 + 2x3 − 3ax2

)
g2(x) dx

]
. (E.9)

Appendix E.3. Superposition

Under the assumption of linear electrophoresis, the total
force acting on the particle will be, F1 + F2, which can be ex-
pressed as,

F1 + F2 = − 6πηaU

+
2πη

3

∫ ∞

a

(
a3 + 2x3 − 3ax2

) (
g1(x)

U
E

+ g2(x)
)

dx.

(E.10)

Since the problem is linear in terms of the ϕi function, one can
decompose, ϕi = ϕ1

i + ϕ2
i . This would then imply that,

φi(x) = φ1
i (x)

U
E

+ φ2
i (x) (E.11a)

g(x) = g1(x)
U
E

+ g2(x). (E.11b)

Hence, by comparing the second term in (E.10) to (33), we note
that it is proportional to the mobility of the colloidal particle,
µm. Making use of the expression for mobility from Overbeek
(47), equation (33) as well as the equilibrium condition, F1 +

F2 = 0, we can obtain,

F1 + F2 = −6πηaU + 4πεEa
∫ a

∞

ξ dx = 0. (E.12)

Figure F.7: A half-sphere with radius R surrounding the electrophoretic sphere
with radius a. The half-sphere consists of a flat surface S at θ = π/2 and r > a
and a (half) spherical surface S ′. For an electrophoretic sphere, the surface S ′

does not give any contribution to the mass balance (provided R is big enough),
resulting in the occurrence of a velocity maximum on S . For a ’normal’ Stokes
flow sphere there is a contribution on S ′ (even for very large R) and hence no
velocity maximum.

Appendix F. The velocity maximum: a direct consequence
of mass conservation

The velocity field for a sphere as presented in Fig. 2 not only
exhibited a 1/r3 behavior, but also showed a maximum uθ ve-
locity, most clearly observable at θ = π/2. We will now perform
a mass balance on a system consisting of the sphere with radius
a, a flat surface S and a hemi-spherical surface S ′ as illustrated
in Fig. F.7 in order to explain this maximum.

Before investigating the full solution (48a, 48b), let us first
investigate the limit of κa → ∞. Then ξ in (48a, 48b) decays
so rapidly, that it is allowed to replace x by a and with the help
of (47), the velocity of (46) is recovered. Suppose we are in a
reference frame in which the sphere is moving with velocity U,
then the flux entering the volume bounded by S and S ′ due to
the moving sphere simply is πa2U. The terms in U cos θ and
U sin θ in (46) are not present in this frame of reference and the
total flux going through surface S (where θ = π/2) is:∫

S
u · n dS = −

∫ ∞

a
U

a3

2r3 2πrdr

= −a3Uπ
∫ ∞

a

1
r2 dr = −πa2U,

(F.1)

which is equal but opposite in sign to the flux generated by the
moving sphere. The total flux is thus zero (as it should be).
The contribution on the half spherical surface S ′ is zero, since∫

S ′ urdS = 0 when R → ∞ and ur decays as 1/R3 (while the
surface grows as R2, resulting in a zero flux at large R). Thus
the contribution to the flux only originates from the surface S .
This means that the uθ velocity must exhibit a maximum. This
maximum can easily be calculated from (46) and is 1/2U (or
3/2U if we go back to the reference frame in which the sphere
is stationary) and appears very close to r = a. For the κa → ∞
limit, the double layer has a near zero thickness and thus the
velocity decays from its maximum very rapidly to zero at r = a.
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But will the same maximum velocity still occur for a general
κa value? In order to investigate this more general case, we take
as the starting point Equation (48b). If we take again the frame
of reference in which the sphere is moving, the flux entering the
volume bounded by S and S ′ due to the moving sphere is still
πa2U. The mass flux through surface S is given by∫

S
u · n dS = −

∫ ∞

a
(uθ − U)2πrdr (F.2)

The term uθ − U can be expressed as

uθ − U = −
2εE
3η

[∫ r

a
ξdx +

1
2r3

∫ r

a
x3ξdx +

∫ a

∞

ξdx
]

= −
2εE
3η

[∫ r

∞

ξdx +
1

2r3

∫ r

a
x3ξdx

]
,

(F.3)

where (47) was used in the first equality to replace U. Then
(F.2) becomes∫

S
u · n dS =

4πεE
3η

∫ ∞

a

[
r
∫ r

∞

ξ dx +
1

2r2

∫ r

a
x3ξ dx

]
dr

=
4πεE

3η

{ [
1
2

r2
∫ r

∞

ξ dx
]∞

a
−

∫ ∞

a

1
2

r2ξ dr

+

[
−

1
2r

∫ r

a
x3ξ dx

]∞
a
−

∫ ∞

a
−

1
2x

x3ξ dx
}

(F.4)
where in the last equality we have used partial integration for
both double integrals. The third term in the last expression is
zero, and the second and last term cancel each other out. Then
only the first term remains as∫

S
u · n dS = −

4πεE
3η

1
2

a2
∫ a

∞

ξ dx = −πa2U. (F.5)

This is the same result as obtained before. The integral over
the surface S ′ still does not give any contribution. Thus the
sphere pushes a certain flux of fluid forward and exactly the
opposite amount of fluid must leave through the surface S . This
will automatically lead to a maximum in the velocity uθ. This
looks apparently obvious, but this does not always need to be
the case, for example, this is not the case for a classical Stokes
flow sphere.

In summary, the special flow conditions around an elec-
trophoretic sphere, the 1/r3 behavior, cause a velocity maxi-
mum, something which does not occur in classical Stokes flow.
This was shown here by doing a simple, (but tedious) mass bal-
ance.
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